1
|
Neurath MF, Berg LJ. VAV1 as a putative therapeutic target in autoimmune and chronic inflammatory diseases. Trends Immunol 2024; 45:580-596. [PMID: 39060140 DOI: 10.1016/j.it.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
The guanine nucleotide exchange factor (GEF) VAV1, a previously 'undruggable' protein integral to T/B lymphocyte antigen-receptor signaling, promotes actin polymerization, immunological synapse formation, T cell activation and differentiation, and cytokine production. With the development of novel modalities for targeting proteins, we hypothesize that interventions targeting VAV1 will have therapeutic potential in T and T/B cell-mediated autoimmune and chronic inflammatory diseases. This opinion is supported by recent CRISPR-Cas9 studies showing VAV1 as a key positive regulator of T cell receptor (TCR) activation and cytokine production in primary human CD4+ and CD8+ T cells; data demonstrating that loss/suppression of VAV1 regulates autoimmunity and inflammation; and promising preclinical data from T and T/B cell-mediated disease models of arthritis and colitis showing the effectiveness of selective VAV1 targeting via protein degradation.
Collapse
Affiliation(s)
- Markus F Neurath
- Department of Medicine, 1 & Deutsches Zentrum Immuntherapie, University of Erlangen-Nürnberg, Kussmaul Campus for Medical Research, 91054 Erlangen, Germany
| | - Leslie J Berg
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Dane TL, Gill AL, Vieira FG, Denton KR. Reduced C9orf72 expression exacerbates polyGR toxicity in patient iPSC-derived motor neurons and a Type I protein arginine methyltransferase inhibitor reduces that toxicity. Front Cell Neurosci 2023; 17:1134090. [PMID: 37138766 PMCID: PMC10149854 DOI: 10.3389/fncel.2023.1134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Intronic repeat expansions in the C9orf72 gene are the most frequent known single genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These repeat expansions are believed to result in both loss-of-function and toxic gain-of-function. Gain-of-function results in the production of toxic arginine-rich dipeptide repeat proteins (DPRs), namely polyGR and polyPR. Small-molecule inhibition of Type I protein arginine methyltransferases (PRMTs) has been shown to protect against toxicity resulting from polyGR and polyPR challenge in NSC-34 cells and primary mouse-derived spinal neurons, but the effect in human motor neurons (MNs) has not yet been explored. Methods To study this, we generated a panel of C9orf72 homozygous and hemizygous knockout iPSCs to examine the contribution of C9orf72 loss-of-function toward disease pathogenesis. We differentiated these iPSCs into spinal motor neurons (sMNs). Results We found that reduced levels of C9orf72 exacerbate polyGR15 toxicity in a dose-dependent manner. Type I PRMT inhibition was able to partially rescue polyGR15 toxicity in both wild-type and C9orf72-expanded sMNs. Discussion This study explores the interplay of loss-of-function and gain-of-function toxicity in C9orf72 ALS. It also implicates type I PRMT inhibitors as a possible modulator of polyGR toxicity.
Collapse
|
3
|
Dai W, Zhang J, Li S, He F, Liu Q, Gong J, Yang Z, Gong Y, Tang F, Wang Z, Xie C. Protein Arginine Methylation: An Emerging Modification in Cancer Immunity and Immunotherapy. Front Immunol 2022; 13:865964. [PMID: 35493527 PMCID: PMC9046588 DOI: 10.3389/fimmu.2022.865964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, protein arginine methyltransferases (PRMTs) have emerged as new members of a gene expression regulator family in eukaryotes, and are associated with cancer pathogenesis and progression. Cancer immunotherapy has significantly improved cancer treatment in terms of overall survival and quality of life. Protein arginine methylation is an epigenetic modification function not only in transcription, RNA processing, and signal transduction cascades, but also in many cancer-immunity cycle processes. Arginine methylation is involved in the activation of anti-cancer immunity and the regulation of immunotherapy efficacy. In this review, we summarize the most up-to-date information on regulatory molecular mechanisms and different underlying arginine methylation signaling pathways in innate and adaptive immune responses during cancer. We also outline the potential of PRMT-inhibitors as effective combinatorial treatments with immunotherapy.
Collapse
Affiliation(s)
- Weijing Dai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianguo Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fajian He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiao Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zetian Yang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| |
Collapse
|
4
|
Shams S, Martinez JM, Dawson JRD, Flores J, Gabriel M, Garcia G, Guevara A, Murray K, Pacifici N, Vargas MV, Voelker T, Hell JW, Ashouri JF. The Therapeutic Landscape of Rheumatoid Arthritis: Current State and Future Directions. Front Pharmacol 2021; 12:680043. [PMID: 34122106 PMCID: PMC8194305 DOI: 10.3389/fphar.2021.680043] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease with grave physical, emotional and socioeconomic consequences. Despite advances in targeted biologic and pharmacologic interventions that have recently come to market, many patients with RA continue to have inadequate response to therapies, or intolerable side effects, with resultant progression of their disease. In this review, we detail multiple biomolecular pathways involved in RA disease pathogenesis to elucidate and highlight pathways that have been therapeutic targets in managing this systemic autoimmune disease. Here we present an up-to-date accounting of both emerging and approved pharmacological treatments for RA, detailing their discovery, mechanisms of action, efficacy, and limitations. Finally, we turn to the emerging fields of bioengineering and cell therapy to illuminate possible future targeted therapeutic options that combine material and biological sciences for localized therapeutic action with the potential to greatly reduce side effects seen in systemically applied treatment modalities.
Collapse
Affiliation(s)
- Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Joseph M. Martinez
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - John R. D. Dawson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Juan Flores
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Marina Gabriel
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Gustavo Garcia
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Amanda Guevara
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Noah Pacifici
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | | | - Taylor Voelker
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Judith F. Ashouri
- Rosalind Russell and Ephraim R. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
5
|
Chen L, Lin Z, Liu Y, Cao S, Huang Y, Yang X, Zhu F, Tang W, He S, Zuo J. DZ2002 alleviates psoriasis-like skin lesions via differentially regulating methylation of GATA3 and LCN2 promoters. Int Immunopharmacol 2021; 91:107334. [PMID: 33412493 DOI: 10.1016/j.intimp.2020.107334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
Psoriasis is the most prevalent inflammatory skin disorders, affecting 1-3% of the worldwide population. We previously reported that topical application of methyl 4-(adenin-9-yl)-2-hydroxybutanoate (DZ2002), a reversible S-adenosyl-l-homocysteine hydrolase (SAHH) inhibitor, was a viable treatment in murine psoriatic skin inflammation. In current study, we further explored the mechanisms of DZ2002 on keratinocyte dysfunction and skin infiltration, the key pathogenic events in psoriasis. We conducted genome-wide DNA methylation analysis in skin tissue from imiquimod (IMQ)-induced psoriatic and normal mice, demonstrated that topical administration of DZ2002 directly rectified aberrant DNA methylation pattern in epidermis and dermis of psoriatic skin lesion. Especially, DZ2002 differentially regulated DNA methylation of GATA3 and LCN2 promoters, which maintained keratinocytes differentiation and reduced inflammatory infiltration in psoriatic skin respectively. In vitro studies in TNF-α/IFN-γ-elicited HaCaT manifested that DZ2002 treatment rectified compromised keratinocyte differentiation via GATA3 enhancement and abated chemokine expression by reducing LCN2 production under inflammatory stimulation. Chemotaxis assays conducted on dHL-60 cells confirmed that suppression of LCN2 expression by DZ2002 was accompanied by CXCR1 and CXCR2 downregulation, and contributed to the inhibition of CXCL8-driven neutrophils migration. In conclusion, therapeutic benefits of DZ2002 are achieved through differentially regulating DNA methylation of GATA3 and LCN2 promoters in psoriatic skin lesion, which efficiently interrupt the pathogenic interplay between keratinocytes and infiltrating immune cells, thus maintains epidermal keratinocytes differentiation and prevents dermal immune infiltration in psoriatic skin.
Collapse
Affiliation(s)
- Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Zemin Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Yuting Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Shiqi Cao
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Yueteng Huang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoqian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Fenghua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Wei Tang
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China.
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Huang Y, Wang S, Ding X, Wu C, Chen J, Hu Z, Du X, Wang G. Inhibition of S-adenosyl-L-homocysteine hydrolase alleviates alloimmune response by down-regulating CD4 + T-cell activation in a mouse heart transplantation model. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1582. [PMID: 33437781 PMCID: PMC7791210 DOI: 10.21037/atm-20-2899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Transmethylation reactions play an important role on lymphocyte activation and function. S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitors prevent the feedback of transmethylation reactions by S-adenosyl-L-homocysteine (SAH) accumulation, a competitive antagonist of S-adenosylmethionine (SAM)-dependent methyltransferases. However, the role of SAH in solid organ transplantation is currently unclear. Methods A murine model of cardiac transplantation (BALB/C to C57B/6) was established to assess allograft survival, histology, and T cell infiltration. The reversible SAHH inhibitor, DZ2002, and irreversible SAHH inhibitor, adenosine dialdehyde (AdOx), were used to assess their immunosuppressive effects in murine cardiac transplantation, compared with mice with DMSO. Results Both SAHH inhibitors prolonged the survival of cardiac allografts and alleviated alloimmune response. Notably, AdOx and DZ2002 both eliminated frequencies of Th1 and Th17 in CD4+ T cells in cardiac transplantation, and reduced the frequency of active CD4+ T cell (CD44+ CD62L−). The irreversible SAHH inhibitor facilitated the differentiation of regulatory T cells (Tregs) and increased Bim expression. Furthermore, both SAHH inhibitors alleviated infiltration of CD4+ T cells in cardiac allografts. Conclusions The SAHH inhibitors (AdOx and DZ2002) alleviates allograft rejection in cardiac transplantation by inhibition of CD4+ T alloimmune response. SAHH inhibitors, especially DZ2002, is a promising complementary therapeutic agent in organ transplantation.
Collapse
Affiliation(s)
- Yajun Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangchao Ding
- Department of Thoracic Surgery, Hubei Provincial People's Hospital, Wuhan University, Wuhan, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohua Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Thompson KK, Tsirka SE. Guanabenz modulates microglia and macrophages during demyelination. Sci Rep 2020; 10:19333. [PMID: 33168944 PMCID: PMC7653931 DOI: 10.1038/s41598-020-76383-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by infiltration of peripheral immune cells into the central nervous system, demyelination, and neuronal damage. There is no cure for MS, but available disease-modifying therapies can lessen severity and delay progression. However, current therapies are suboptimal due to adverse effects. Here, we investigate how the FDA-approved antihypertensive drug, guanabenz, which has a favorable safety profile and was recently reported to enhance oligodendrocyte survival, exerts effects on immune cells, specifically microglia and macrophages. We first employed the experimental autoimmune encephalomyelitis (EAE) model and observed pronounced immunomodulation evident by a reduction in pro-inflammatory microglia and macrophages. When guanabenz was administered in the cuprizone model, in which demyelination is less dependent upon immune cells, we did not observe improvements in remyelination, oligodendrocyte numbers, and effects on microglial activation were less dramatic. Thus, guanabenz may be a promising therapeutic to minimize inflammation without exerting severe off-target effects.
Collapse
Affiliation(s)
- Kaitlyn Koenig Thompson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8651, USA
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8651, USA.
| |
Collapse
|
8
|
Protein Arginine Methyltransferase 5 in T Lymphocyte Biology. Trends Immunol 2020; 41:918-931. [PMID: 32888819 DOI: 10.1016/j.it.2020.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/20/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is the major methyltransferase (MT) catalyzing symmetric dimethylation (SDM). PRMT5 regulates developmental, homeostatic and disease processes in vertebrates and invertebrates, and a carcinogenic role has been observed in mammals. Recently, tools generated for PRMT5 loss of function have allowed researchers to demonstrate essential roles for PRMT5 in mouse and human lymphocyte biology. PRMT5 modulates CD4+ and CD8+ T cell development in the thymus, peripheral homeostasis, and differentiation into CD4+ helper T lymphocyte (Th)17 cell phenotypes. Here, we provide a timely review of the milestones leading to our current understanding of PRMT5 in T cell biology, discuss current tools to modify PRMT5 expression/activity, and highlight mechanistic pathways.
Collapse
|
9
|
Zhang Z, Wu Y, Wu B, Qi Q, Li H, Lu H, Fan C, Feng C, Zuo J, Niu L, Tang W. DZ2002 ameliorates fibrosis, inflammation, and vasculopathy in experimental systemic sclerosis models. Arthritis Res Ther 2019; 21:290. [PMID: 31842999 PMCID: PMC6916442 DOI: 10.1186/s13075-019-2074-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Systemic sclerosis is a multisystem inflammatory and vascular lesion leading to extensive tissue fibrosis. A reversible S-adenosyl-l-homocysteine hydrolase (SAHH) inhibitor, DZ2002, modulates the pathologic processes of various inflammatory diseases and autoimmune diseases. This study is designed to investigate the therapeutic potentiality of DZ2002 for experimental systemic sclerosis models. METHODS The anti-inflammatory and anti-fibrotic features of DZ2002 and its mechanisms were investigated in a bleomycin (BLM)-induced dermal fibrosis mice model. The effects of DZ2002 on expression of extracellular matrix components and TGF-β signaling in human dermal fibroblasts were analyzed. Simultaneously, the effects of DZ2002 on macrophage activation and endothelial cell adhesion molecule expression were also evaluated. RESULTS DZ2002 significantly attenuated dermal fibrosis in BLM-induced mice. Consistently, DZ2002 inhibited the expression of various molecules associated with dermal fibrosis, including transforming growth factor β1, connective tissue growth factor, tumor necrosis factor-α, interferon-γ, IL-1β, IL-4, IL-6, IL-10, IL-12p40, IL-17A, and monocyte chemotactic protein 1 in the lesional skin of BLM-induced mice. Furthermore, DZ2002 decreased the proportion of macrophages, neutrophils, and T cells (especially T helper cells) in the skin tissue of BLM-induced mice. In addition, DZ2002 attenuated both M1 macrophage and M2 macrophage differentiation in vivo and in vitro. Importantly, DZ2002 directly reversed the profibrotic phenotype of transforming growth factor-β1-treated dermal fibroblasts and suppressed ICAM-1, VCAM-1, VEGF, bFGF, and ET-1 expression in endothelial cells. Finally, our investigations showed that DZ2002 relieved systemic sclerosis by regulating fibrosis TGF-β/Smad signaling pathway. CONCLUSIONS DZ2002 prevents the development of experimental dermal fibrosis by reversing the profibrotic phenotype of various cell types and would be a potential drug for the treatment of systemic sclerosis.
Collapse
Affiliation(s)
- Zongwang Zhang
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai, 200444, China
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yanwei Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Qi
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Heng Li
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Lu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Fan
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chunlan Feng
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lili Niu
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai, 200444, China.
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Zhang M, Zeng X, Yang Q, Xu J, Liu Z, Zhou Y, Cao Y, Zhang X, An X, Xu Y, Huang L, Han Z, Wang T, Wu C, Fulton DJ, Weintraub NL, Hong M, Huo Y. Ablation of Myeloid ADK (Adenosine Kinase) Epigenetically Suppresses Atherosclerosis in ApoE -/- (Apolipoprotein E Deficient) Mice. Arterioscler Thromb Vasc Biol 2018; 38:2780-2792. [PMID: 30571174 PMCID: PMC6309817 DOI: 10.1161/atvbaha.118.311806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Abstract
Objective- Monocyte-derived foam cells are one of the key players in the formation of atherosclerotic plaques. Adenosine receptors and extracellular adenosine have been demonstrated to modulate foam cell formation. ADK (adenosine kinase) is a major enzyme regulating intracellular adenosine levels, but its functional role in myeloid cells remains poorly understood. To enhance intracellular adenosine levels in myeloid cells, ADK was selectively deleted in novel transgenic mice using Cre-LoxP technology, and foam cell formation and the development of atherosclerotic lesions were determined. Approach and Results- ADK was upregulated in macrophages on ox-LDL (oxidized low-density lipoprotein) treatment in vitro and was highly expressed in foam cells in atherosclerotic plaques. Atherosclerotic mice deficient in ADK in myeloid cells were generated by breeding floxed ADK (ADKF/F) mice with LysM-Cre (myeloid-specific Cre recombinase expressing) mice and ApoE-/- (apolipoprotein E deficient) mice. Mice absent ADK in myeloid cells exhibited much smaller atherosclerotic plaques compared with controls. In vitro assays showed that ADK deletion or inhibition resulted in increased intracellular adenosine and reduced DNA methylation of the ABCG1 (ATP-binding cassette transporter G1) gene. Loss of methylation was associated with ABCG1 upregulation, enhanced cholesterol efflux, and eventually decreased foam cell formation. Conclusions- Augmentation of intracellular adenosine levels through ADK knockout in myeloid cells protects ApoE-/- mice against atherosclerosis by reducing foam cell formation via the epigenetic regulation of cholesterol trafficking. ADK inhibition is a promising approach for the treatment of atherosclerotic diseases.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Adenosine Kinase/deficiency
- Adenosine Kinase/genetics
- Animals
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cells, Cultured
- Cholesterol/metabolism
- DNA Methylation
- Disease Models, Animal
- Epigenesis, Genetic
- Female
- Foam Cells/enzymology
- Foam Cells/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic
- Signal Transduction
Collapse
Affiliation(s)
- Min Zhang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xianqiu Zeng
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qiuhua Yang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiean Xu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhiping Liu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yaqi Zhou
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yapeng Cao
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoyu Zhang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaofei An
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yiming Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tao Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77840, USA
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mei Hong
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, GA 30912, USA
| |
Collapse
|
11
|
Wang Z, Long H, Chang C, Zhao M, Lu Q. Crosstalk between metabolism and epigenetic modifications in autoimmune diseases: a comprehensive overview. Cell Mol Life Sci 2018; 75:3353-3369. [PMID: 29974127 PMCID: PMC11105184 DOI: 10.1007/s00018-018-2864-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Little information is available regarding mechanistic links between epigenetic modifications and autoimmune diseases. It seems plausible to surmise that aberrant gene expression and energy metabolism would disrupt immune tolerance, which could ultimately result in autoimmune responses. Metaboloepigenetics is an emerging paradigm that defines the interrelationships between metabolism and epigenetics. Epigenetic modifications, such as the methylation/demethylation of DNA and histone proteins and histone acetylation/deacetylation can be dynamically produced and eliminated by a group of enzymes that consume several metabolites derived from various physiological pathways. Recent insights into cellular metabolism have demonstrated that environmental stimuli such as dietary exposure and nutritional status act through the variation in concentration of metabolites to affect epigenetic regulation and breakdown biochemical homeostasis. Metabolites, including S-adenosylmethionine, acetyl-CoA, nicotinamide adenine dinucleotide, α-ketoglutarate, and ATP serve as cofactors for chromatin-modifying enzymes, such as methyltransferases, deacetylases and kinases, which are responsible for chromatin remodelling. The concentration of crucial nutrients, such as glucose, glutamine, and oxygen, spatially and temporally modulate epigenetic modifications to regulate gene expression and the reaction to stressful microenvironments in disease pathology. In this review, we focus on the interaction between metabolic intermediates and epigenetic modifications, integrating environmental signals with programmes through modification of the epigenome-metabolome to speculate as to how this may influence autoimmune diseases.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China
| | - Hai Long
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Suite 6510, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Xu Y, Wang Y, Yan S, Yang Q, Zhou Y, Zeng X, Liu Z, An X, Toque HA, Dong Z, Jiang X, Fulton DJ, Weintraub NL, Li Q, Bagi Z, Hong M, Boison D, Wu C, Huo Y. Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nat Commun 2017; 8:943. [PMID: 29038540 PMCID: PMC5643397 DOI: 10.1038/s41467-017-00986-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/10/2017] [Indexed: 02/08/2023] Open
Abstract
The molecular mechanisms underlying vascular inflammation and associated inflammatory vascular diseases are not well defined. Here we show that endothelial intracellular adenosine and its key regulator adenosine kinase (ADK) play important roles in vascular inflammation. Pro-inflammatory stimuli lead to endothelial inflammation by increasing endothelial ADK expression, reducing the level of intracellular adenosine in endothelial cells, and activating the transmethylation pathway through increasing the association of ADK with S-adenosylhomocysteine (SAH) hydrolase (SAHH). Increasing intracellular adenosine by genetic ADK knockdown or exogenous adenosine reduces activation of the transmethylation pathway and attenuates the endothelial inflammatory response. In addition, loss of endothelial ADK in mice leads to reduced atherosclerosis and affords protection against ischemia/reperfusion injury of the cerebral cortex. Taken together, these results demonstrate that intracellular adenosine, which is controlled by the key molecular regulator ADK, influences endothelial inflammation and vascular inflammatory diseases.The molecular mechanisms underlying vascular inflammation are unclear. Here the authors show that pro-inflammatory stimuli lead to endothelial inflammation by increasing adenosine kinase expression, and that its knockdown in endothelial cells inhibits atherosclerosis and cerebral ischemic injury in mice.
Collapse
Affiliation(s)
- Yiming Xu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yong Wang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Siyuan Yan
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
| | - Qiuhua Yang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yaqi Zhou
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xianqiu Zeng
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiping Liu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiaofei An
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
| | - David J Fulton
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Qinkai Li
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zsolt Bagi
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mei Hong
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Detlev Boison
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, 97232, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, 77840, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
13
|
Li H, Lu H, Tang W, Zuo J. Targeting methionine cycle as a potential therapeutic strategy for immune disorders. Expert Opin Ther Targets 2017; 21:1-17. [PMID: 28829212 DOI: 10.1080/14728222.2017.1370454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.
Collapse
Affiliation(s)
- Heng Li
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Huimin Lu
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Wei Tang
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Jianping Zuo
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
14
|
Interleukin-7 is required for CD4(+) T cell activation and autoimmune neuroinflammation. Clin Immunol 2015; 161:260-9. [PMID: 26319414 DOI: 10.1016/j.clim.2015.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022]
Abstract
IL-7 is known to be vital for T cell homeostasis but has previously been presumed to be dispensable for TCR-induced activation. Here, we show that IL-7 is critical for the initial activation of CD4(+) T cells in that it provides some of the necessary early signaling components, such as activated STAT5 and Akt. Accordingly, short-term in vivo IL-7Rα blockade inhibited the activation and expansion of autoantigen-specific CD4(+) T cells and, when used to treat experimental autoimmune encephalomyelitis (EAE), prevented and ameliorated disease. Our studies demonstrate that IL-7 signaling is a prerequisite for optimal CD4(+) T cell activation and that IL-7R antagonism may be effective in treating CD4(+) T cell-mediated neuroinflammation and other autoimmune inflammatory conditions.
Collapse
|
15
|
Li CH, Lin MH, Chu SH, Tu PH, Fang CC, Yen CH, Liang PI, Huang JC, Su YC, Sytwu HK, Chen YMA. Role of glycine N-methyltransferase in the regulation of T-cell responses in experimental autoimmune encephalomyelitis. Mol Med 2015; 20:684-96. [PMID: 25535034 DOI: 10.2119/molmed.2014.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/12/2014] [Indexed: 01/18/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) is known for its function as a tumor suppressor gene. Since 100% of female Gnmt(-/-) mice developed hepatocellular carcinoma, we hypothesized that Gnmt(-/-) mice may have defective immune surveillance. In this study, we examined the immune modulation of GNMT in T-cell responses using experimental autoimmune encephalomyelitis (EAE). The results showed that EAE severity was reduced significantly in Gnmt(-/-) mice. Pathological examination of the spinal cords revealed that Gnmt(-/-) mice had significantly lower levels of mononuclear cell infiltration and demyelination than the wild-type mice. In addition, quantitative real-time PCR showed that expression levels of proinflammatory cytokines, including interferon (IFN)-γ and interleukin (IL)-17A, were much lower in the spinal cord of Gnmt(-/-) than in that of wild-type mice. Accordingly, myelin oligodendrocyte glycoprotein (MOG)-specific T-cell proliferation and induction of T-helper (Th)1 and Th17 cells were markedly suppressed in MOG(35-55)-induced Gnmt(-/-) mice. Moreover, the number of regulatory T (Treg) cells was increased significantly in these mice. When the T-cell receptor was stimulated, the proliferative capacity and the activation status of mTOR-associated downstream signaling were decreased significantly in Gnmt(-/-) CD4(+) T cells via an IL-2- and CD25-independent manner. Moreover, GNMT deficiency enhanced the differentiation of Treg cells without affecting the differentiation of Th1 and Th17 cells. Furthermore, the severity of EAE in mice adoptive transferred with GNMT-deficient CD4(+) T cells was much milder than in those with wild-type CD4(+) T cells. In summary, our findings suggest that GNMT is involved in the pathogenesis of EAE and plays a crucial role in the regulation of CD4(+) T-cell functions.
Collapse
Affiliation(s)
- Chung-Hsien Li
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Lin
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Han Chu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pang-Hsien Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chieh Fang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jason C Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chia Su
- National Laboratory Animal Center, National Applied Research Laboratories
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ming Arthur Chen
- Department of Microbiology and Immunology, Institute of Medical Research and Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Bhat S, Mary S, Banarjee R, Giri AP, Kulkarni MJ. Immune response to chemically modified proteome. Proteomics Clin Appl 2014; 8:19-34. [PMID: 24375944 DOI: 10.1002/prca.201300068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022]
Abstract
Both enzymatic and nonenzymatic PTMs of proteins involve chemical modifications. Some of these modifications are prerequisite for the normal functioning of cell, while other chemical modifications render the proteins as "neo-self" antigens, which are recognized as "non-self" leading to aberrant cellular and humoral immune responses. However, these modifications could be a secondary effect of autoimmune diseases, as in the case of type I diabetes, hyperglycemia leads to protein glycation. The enigma of chemical modifications and immune response is akin to the "chick-and-egg" paradox. Nevertheless, chemical modifications regulate immune response. In some of the well-known autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, chemically modified proteins act as autoantigens forming immune complexes. In some instances, chemical modifications are also involved in regulating immune response during pathogen infection. Further, the usefulness of proteomic analysis of immune complexes is briefly discussed.
Collapse
Affiliation(s)
- Shweta Bhat
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | | | | | | | | |
Collapse
|
17
|
Therapeutic effects of DZ2002, a reversible SAHH inhibitor, on lupus-prone NZB×NZW F1 mice via interference with TLR-mediated APC response. Acta Pharmacol Sin 2014; 35:219-29. [PMID: 24374810 DOI: 10.1038/aps.2013.167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/02/2013] [Indexed: 01/13/2023]
Abstract
AIM To examine the therapeutic effects and underlying mechanisms of DZ2002, a reversible S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, on lupus-prone female NZB×NZW F1 (NZB/W F1) mice. METHODS Female NZB/W F1 mice were treated orally with DZ2002 (0.5 mg·kg(-1)·d(-1)) for 11 weeks, and the proteinuria level and body weight were monitored. After the mice ware euthanized, serum biochemical parameters and renal damage were determined. Splenocytes of NZB/W F1 mice were isolated for ex vivo study. Toll-like receptor (TLR)-stimulated human peripheral blood mononuclear cells (PBMCs) or murine bone marrow-derived dendritic cells (BMDCs) were used for in vitro study. RESULTS Treatment of the mice with DZ2002 significantly attenuated the progression of glomerulonephritis and improved the overall health. The improvement was accompanied by decreased levels of nephritogenic anti-dsDNA IgG2a and IgG3 antibodies, serum IL-17, IL-23p19 and TGF-β. In ex vivo studies, treatment of the mice with DZ2002 suppressed the development of pathogenic Th17 cells, significantly decreased IL-17, TGF-β, IL-6, and IL-23p19 production and impeded activation of the STAT3 protein and JNK/NF-κB signaling in splenocytes. DZ2002 (500 μmol/L) significantly suppressed TLR agonists-stimulated up-regulation in IL-6, IL-12p40, TNF-α, and IgG and IgM secretion as well as in HLA-DR and CD40 expression of dendritic cells among human PBMCs in vitro. DZ2002 (100 μmol/L) also significantly suppressed TLR agonists-stimulated up-regulation in IL-6 and IL-23p19 production in murine BMDCs, and prevented Th17 differentiation and suppressed IL-17 secretion by the T cells in a BMDC-T cell co-culture system. CONCLUSION DZ2002 effectively ameliorates lupus syndrome in NZB/W F1 mice by regulating TLR signaling-mediated antigen presenting cell (APC) responses.
Collapse
|
18
|
Stanger O, Fowler B, Piertzik K, Huemer M, Haschke-Becher E, Semmler A, Lorenzl S, Linnebank M. Homocysteine, folate and vitamin B12in neuropsychiatric diseases: review and treatment recommendations. Expert Rev Neurother 2014; 9:1393-412. [DOI: 10.1586/ern.09.75] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Doyle HA, Yang ML, Raycroft MT, Gee RJ, Mamula MJ. Autoantigens: novel forms and presentation to the immune system. Autoimmunity 2013; 47:220-33. [PMID: 24191689 DOI: 10.3109/08916934.2013.850495] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is clear that lupus autoimmunity is marked by a variety of abnormalities, including those found at a macroscopic scale, cells and tissues, as well as more microenvironmental influences, originating at the individual cell surface through to the nucleus. The convergence of genetic, epigenetic, and perhaps environmental influences all lead to the overt clinical expression of disease, reflected by the presences of autoantibodies and tissue pathology. This review will address several specific areas that fall among the non-genetic factors that contribute to lupus autoimmunity and related syndromes. In particular, we will discuss the importance of understanding various protein post-translational modifications (PTMs), mechanisms that mediate the ability of "modified self" to trigger autoimmunity, and how these PTMs influence lupus diagnosis. Finally, we will discuss altered pathways of autoantigen presentation that may contribute to the perpetuation of chronic autoimmune disease.
Collapse
Affiliation(s)
- Hester A Doyle
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | | | | | | | | |
Collapse
|
20
|
Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B, Kim HJ, Padmanabhan K, Swoboda JG, Ahmad I, Kondo T, Gage FH, Theofilopoulos AN, Lawson BR, Schultz PG, Lairson LL. A regenerative approach to the treatment of multiple sclerosis. Nature 2013; 502:327-332. [PMID: 24107995 DOI: 10.1038/nature12647] [Citation(s) in RCA: 418] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022]
Abstract
Progressive phases of multiple sclerosis are associated with inhibited differentiation of the progenitor cell population that generates the mature oligodendrocytes required for remyelination and disease remission. To identify selective inducers of oligodendrocyte differentiation, we performed an image-based screen for myelin basic protein (MBP) expression using primary rat optic-nerve-derived progenitor cells. Here we show that among the most effective compounds identifed was benztropine, which significantly decreases clinical severity in the experimental autoimmune encephalomyelitis (EAE) model of relapsing-remitting multiple sclerosis when administered alone or in combination with approved immunosuppressive treatments for multiple sclerosis. Evidence from a cuprizone-induced model of demyelination, in vitro and in vivo T-cell assays and EAE adoptive transfer experiments indicated that the observed efficacy of this drug results directly from an enhancement of remyelination rather than immune suppression. Pharmacological studies indicate that benztropine functions by a mechanism that involves direct antagonism of M1 and/or M3 muscarinic receptors. These studies should facilitate the development of effective new therapies for the treatment of multiple sclerosis that complement established immunosuppressive approaches.
Collapse
Affiliation(s)
- Vishal A Deshmukh
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Virginie Tardif
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Costas A Lyssiotis
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Chelsea C Green
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Bilal Kerman
- Laboratory of Genetics, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Hyung Joon Kim
- Laboratory of Genetics, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Krishnan Padmanabhan
- Laboratory of Genetics, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Jonathan G Swoboda
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Insha Ahmad
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi- 7, Kita-ku, Sapporo 060-0815, Japan
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Argyrios N Theofilopoulos
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Brian R Lawson
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037, USA.,The California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037, USA.,The California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
21
|
Tardif V, Manenkova Y, Berger M, Hoebe K, Zuo JP, Yuan C, Kono DH, Theofilopoulos AN, Lawson BR. Critical role of transmethylation in TLR signaling and systemic lupus erythematosus. Clin Immunol 2013; 147:133-43. [PMID: 23583916 DOI: 10.1016/j.clim.2013.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Post-translational protein modifications can play a significant role in immune cell signaling. Recently, we showed that inhibition of transmethylation curtails experimental autoimmune encephalomyelitis, notably by reducing T cell receptor (TCR)-induced activation of CD4(+) T cells. Here, we demonstrate that transmethylation inhibition by a reversible S-adenosyl-l-homocysteine hydrolase inhibitor (DZ2002) led to immunosuppression by reducing TLR-, B cell receptor (BCR)- and TCR-induced activation of immune cells, most likely by blocking NF-κB activity. Moreover, prophylactic treatment with DZ2002 prevented lupus-like disease from developing in both BXSB and MRL-Fas(lpr) mouse models. DZ2002 treatment initiated during active disease significantly improved outcomes in both in vivo models, suggesting methylation inhibition as a novel approach for the treatment of autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Virginie Tardif
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang ML, Gee AJP, Gee RJ, Zurita-Lopez CI, Khare S, Clarke SG, Mamula MJ. Lupus autoimmunity altered by cellular methylation metabolism. Autoimmunity 2012; 46:21-31. [PMID: 23039363 DOI: 10.3109/08916934.2012.732133] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Modifications of both DNA and protein by methylation are key factors in normal T and B cell immune responses as well as in the development of autoimmune disease. For example, the failure to maintain the methylation status of CpG dinucleotides in DNA triggers T cell autoreactivity. Methylated proteins are known targets of autoimmunity, including the symmetrical dimethylarginine residues of SmD1 and SmD3 in SLE. Herein, we demonstrate that altering the metabolism of S-adenosylmethionine (SAM), the major methyl donor for transmethylation reactions, can suppress T cell immunity. A by-product of SAM metabolism, 5'-deoxy-5'-methylthioadenosine (MTA), and an indirect inhibitor of methyltransferases, inhibits T cell responses including T cell activation markers, Th1/Th2 cytokines and TCR-related signaling events. Moreover, treatment of the lupus-prone MRL/lpr mouse with MTA markedly ameliorates splenomegaly, lymphadenopathy, autoantibody titers as well as IgG deposition and cellular infiltration in the kidney. Incubation of cells with SAM, which increases intracellular MTA levels, inhibits both TCR-mediated T cell proliferation and BCR (anti-IgM)-triggered B cell proliferation in a dose-dependent manner. These studies define the central role of MTA and SAM in immune responses and provide a simple approach to altering lymphocyte transmethylation and T cell mediated autoimmune syndromes.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8031, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lawson BR, Eleftheriadis T, Tardif V, Gonzalez-Quintial R, Baccala R, Kono DH, Theofilopoulos AN. Transmethylation in immunity and autoimmunity. Clin Immunol 2011; 143:8-21. [PMID: 22364920 DOI: 10.1016/j.clim.2011.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/18/2011] [Accepted: 10/27/2011] [Indexed: 10/14/2022]
Abstract
The activation of immune cells is mediated by a network of signaling proteins that can undergo post-translational modifications critical for their activity. Methylation of nucleic acids or proteins can have major effects on gene expression as well as protein repertoire diversity and function. Emerging data indicate that indeed many immunologic functions, particularly those of T cells, including thymic education, differentiation and effector function are highly dependent on methylation events. The critical role of methylation in immunocyte biology is further documented by evidence that autoimmune phenomena may be curtailed by methylation inhibitors. Additionally, epigenetic alterations imprinted by methylation can also exert effects on normal and abnormal immune responses. Further work in defining methylation effects in the immune system is likely to lead to a more detailed understanding of the immune system and may point to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Brian R Lawson
- The Scripps Research Institute, Department of Immunology & Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kominsky DJ, Keely S, MacManus CF, Glover LE, Scully M, Collins CB, Bowers BE, Campbell EL, Colgan SP. An endogenously anti-inflammatory role for methylation in mucosal inflammation identified through metabolite profiling. THE JOURNAL OF IMMUNOLOGY 2011; 186:6505-14. [PMID: 21515785 DOI: 10.4049/jimmunol.1002805] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissues of the mucosa are lined by an epithelium that provides barrier and transport functions. It is now appreciated that inflammatory responses in inflammatory bowel diseases are accompanied by striking shifts in tissue metabolism. In this paper, we examined global metabolic consequences of mucosal inflammation using both in vitro and in vivo models of disease. Initial analysis of the metabolic signature elicited by inflammation in epithelial models and in colonic tissue isolated from murine colitis demonstrated that levels of specific metabolites associated with cellular methylation reactions are significantly altered by model inflammatory systems. Furthermore, expression of enzymes central to all cellular methylation, S-adenosylmethionine synthetase and S-adenosylhomocysteine hydrolase, are increased in response to inflammation. Subsequent studies showed that DNA methylation is substantially increased during inflammation and that epithelial NF-κB activity is significantly inhibited following treatment with a reversible S-adenosylhomocysteine hydrolase inhibitor, DZ2002. Finally, these studies demonstrated that inhibition of cellular methylation in a murine model of colitis results in disease exacerbation while folate supplementation to promote methylation partially ameliorates the severity of murine colitis. Taken together, these results identify a global change in methylation, which during inflammation, translates to an overall protective role in mucosal epithelia.
Collapse
Affiliation(s)
- Douglas J Kominsky
- Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Science Center, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Moreno B, Fernandez-Diez B, Di Penta A, Villoslada P. Preclinical studies of methylthioadenosine for the treatment of multiple sclerosis. Mult Scler 2010; 16:1102-8. [PMID: 20670985 DOI: 10.1177/1352458510375968] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Methylthioadenosine (MTA) is a natural metabolite with immunomodulatory properties. MTA improves the clinical course and pathology of the animal model of multiple sclerosis, even when therapy is started after disease onset. OBJECTIVE Our aim was to compare the efficacy of MTA in ameliorating experimental autoimmune encephalomyelitis (EAE) compared with first line approved therapies, to develop an oral formulation of MTA and to assess its pharmacokinetic profile. METHODS EAE was induced in C57BL/6 mice by immunization with MOG(35-55) peptide in Freund's Adjuvant. Animals were treated with MTA, interferon-beta or glatiramer acetate starting the day of immunization and the clinical score was collected blind. Pharmacokinetic studies were performed in Sprague Dawley rats by administering MTA by intraperitoneal injection and orally, and collecting blood at different intervals. MTA levels were measured by high-performance liquid chromatography. RESULTS We found that MTA ameliorated EAE in a dose-response manner. Moreover, the highest dose of MTA (60 mg/kg) was more efficacious than mouse interferon-beta or glatiramer acetate. We developed a salt of MTA for oral administration, with similar dose-response effect in the EAE model. Combination therapy assays between MTA and interferon-beta or glatiramer acetate were more effective than the individual therapies. Finally, oral MTA half-life was 20 min, with a C(max) of 80 mg/L and without signs of obvious toxicity (animal death, behavioural changes, liver enzymes). CONCLUSIONS In the EAE model MTA is more efficacious than first line therapies for multiple sclerosis, with a dose- response effect and higher efficacy when combined with interferon-beta or glatiramer acetate. Oral MTA was also effective in the animal model of multiple sclerosis.
Collapse
Affiliation(s)
- B Moreno
- Department of Neuroscience, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
26
|
Kominsky DJ, Campbell EL, Colgan SP. Metabolic shifts in immunity and inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 184:4062-8. [PMID: 20368286 DOI: 10.4049/jimmunol.0903002] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sites of ongoing inflammation and triggered immune responses are characterized by significant changes in metabolic activity. Recent studies have indicated that such shifts in tissue metabolism result from a combination of profound recruitment of inflammatory cells (neutrophils and monocytes) and high proliferation rates among lymphocyte populations. The resultant shifts in energy supply and demand can result in metabolic acidosis and diminished delivery and/or availability of oxygen, leading to hypoxia extensive enough to trigger transcriptional and translation changes in tissue phenotype. Such phenotypic shifts can imprint fundamental changes to tissue metabolism. In this study, we review recent work addressing metabolic changes and metabolic control of inflammation and immunity.
Collapse
Affiliation(s)
- Douglas J Kominsky
- Department of Anesthesiology, University of Colorado Denver Health Sciences Center, Aurora, CO 80045, USA
| | | | | |
Collapse
|
27
|
Bonham K, Hemmers S, Lim YH, Hill DM, Finn M, Mowen KA. Effects of a novel arginine methyltransferase inhibitor on T-helper cell cytokine production. FEBS J 2010; 277:2096-108. [PMID: 20345902 PMCID: PMC2903848 DOI: 10.1111/j.1742-4658.2010.07623.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The protein arginine methyltransferase (PRMT) family of enzymes catalyzes the transfer of methyl groups from S-adenosylmethionine to the guanidino nitrogen atom of peptidylarginine to form monomethylarginine or dimethylarginine. We created several less polar analogs of the specific PRMT inhibitor arginine methylation inhibitor-1, and one such compound was found to have improved PRMT inhibitory activity over the parent molecule. The newly identified PRMT inhibitor modulated T-helper-cell function and thus may serve as a lead for further inhibitors useful for the treatment of immune-mediated disease.
Collapse
Affiliation(s)
- Kevin Bonham
- Department of Chemical Physiology and Department of Immunology and Microbial Sciences, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Saskia Hemmers
- Department of Chemical Physiology and Department of Immunology and Microbial Sciences, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Yeon-Hee Lim
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Dawn M. Hill
- Department of Chemical Physiology and Department of Immunology and Microbial Sciences, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - M.G. Finn
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Kerri A. Mowen
- Department of Chemical Physiology and Department of Immunology and Microbial Sciences, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
28
|
Infantino S, Benz B, Waldmann T, Jung M, Schneider R, Reth M. Arginine methylation of the B cell antigen receptor promotes differentiation. J Exp Med 2010; 207:711-9. [PMID: 20231378 PMCID: PMC2856019 DOI: 10.1084/jem.20091303] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 02/11/2010] [Indexed: 12/22/2022] Open
Abstract
Signals processed through the B cell antigen receptor (BCR) control both the proliferation and differentiation of B lymphocytes. How these different signaling modes are established at the BCR is poorly understood. We show that a conserved arginine in the tail sequence of the Igalpha subunit of the BCR is methylated by the protein arginine methyltransferase 1. This modification negatively regulates the calcium and PI-3 kinase pathways of the BCR while promoting signals leading to B cell differentiation. Thus, Igalpha arginine methylation can play an important role in specifying the outcome of BCR signaling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Arginine/genetics
- Arginine/metabolism
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/transplantation
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/transplantation
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- CD79 Antigens/genetics
- CD79 Antigens/metabolism
- Calcium Signaling/immunology
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cell Line
- Humans
- Interleukin-7/pharmacology
- Intracellular Signaling Peptides and Proteins/metabolism
- Lymphocyte Activation/physiology
- Methylation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Nitrohydroxyiodophenylacetate/immunology
- Phosphorylation/immunology
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/drug effects
- Precursor Cells, B-Lymphoid/metabolism
- Protein Binding/immunology
- Protein-Arginine N-Methyltransferases/antagonists & inhibitors
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Sequence Homology, Amino Acid
- Spleen/cytology
- Spleen/immunology
- Syk Kinase
- Transfection
Collapse
Affiliation(s)
- Simona Infantino
- Center for Biological Signaling Studies, Faculty of Biology and Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | - Beate Benz
- Center for Biological Signaling Studies, Faculty of Biology and Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | - Tanja Waldmann
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | - Manfred Jung
- Center for Biological Signaling Studies, Faculty of Biology and Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | | | - Michael Reth
- Center for Biological Signaling Studies, Faculty of Biology and Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| |
Collapse
|
29
|
Parry RV, Ward SG. Protein arginine methylation: a new handle on T lymphocytes? Trends Immunol 2010; 31:164-9. [PMID: 20181528 DOI: 10.1016/j.it.2010.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 01/20/2023]
Abstract
Protein arginine methylation has emerged as a key regulator of signal transduction with an important role in T lymphocyte activation. The predominant methyl transferase PRMT-1 is highly expressed in T helper cells, and ligation of the T cell antigen and costimulatory receptors, induces arginine methylation on several cytoplasmic proteins. Global inhibition of methyl transferases can result in signaling defects in CD4 T cells and profound immunosuppression. Here we suggest that manipulating protein arginine methylation could be a feasible strategy to modulate T lymphocyte function, presenting a novel approach towards immunotherapy and the treatment of T cell-mediated disorders such as autoimmune disease and transplant rejection.
Collapse
Affiliation(s)
- Richard V Parry
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom.
| | | |
Collapse
|
30
|
Regulation of redox forms of plasma thiols by albumin in multiple sclerosis after fasting and methionine loading test. Amino Acids 2009; 38:1461-71. [DOI: 10.1007/s00726-009-0350-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 09/09/2009] [Indexed: 11/26/2022]
|
31
|
Matthews RP, Lorent K, Mañoral-Mobias R, Huang Y, Gong W, Murray IVJ, Blair IA, Pack M. TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development 2009; 136:865-75. [PMID: 19201949 DOI: 10.1242/dev.027565] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatic steatosis and liver degeneration are prominent features of the zebrafish ducttrip (dtp) mutant phenotype. Positional cloning identified a causative mutation in the gene encoding S-adenosylhomocysteine hydrolase (Ahcy). Reduced Ahcy activity in dtp mutants led to elevated levels of S-adenosylhomocysteine (SAH) and, to a lesser degree, of its metabolic precursor S-adenosylmethionine (SAM). Elevated SAH in dtp larvae was associated with mitochondrial defects and increased expression of tnfa and pparg, an ortholog of the mammalian lipogenic gene. Antisense knockdown of tnfa rescued hepatic steatosis and liver degeneration in dtp larvae, whereas the overexpression of tnfa and the hepatic phenotype were unchanged in dtp larvae reared under germ-free conditions. These data identify an essential role for tnfa in the mutant phenotype and suggest a direct link between SAH-induced methylation defects and TNF expression in human liver disorders associated with elevated TNFalpha. Although heterozygous dtp larvae had no discernible phenotype, hepatic steatosis was present in heterozygous adult dtp fish and in wild-type adult fish treated with an Ahcy inhibitor. These data argue that AHCY polymorphisms and AHCY inhibitors, which have shown promise in treating autoimmunity and other disorders, may be a risk factor for steatosis, particularly in patients with diabetes, obesity and liver disorders such as hepatitis C infection. Supporting this idea, hepatic injury and steatosis have been noted in patients with recently discovered AHCY mutations.
Collapse
Affiliation(s)
- Randolph P Matthews
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang YM, Ding Y, Tang W, Luo W, Gu M, Lu W, Tang J, Zuo JP, Nan FJ. Synthesis and biological evaluation of immunosuppressive agent DZ2002 and its stereoisomers. Bioorg Med Chem 2008; 16:9212-6. [DOI: 10.1016/j.bmc.2008.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/01/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
|
33
|
Abstract
The burden of neurological diseases in western societies has accentuated the need to develop effective therapies to stop the progression of chronic neurological diseases. Recent discoveries regarding the role of the immune system in brain damage coupled with the development of new technologies to manipulate the immune response make immunotherapies an attractive possibility to treat neurological diseases. The wide repertoire of immune responses and the possibility to engineer such responses, as well as their capacity to promote tissue repair, indicates that immunotherapy might offer benefits in the treatment of neurological diseases, similar to the benefits that are being associated with the treatment of cancer and autoimmune diseases. However, before applying such strategies to patients it is necessary to better understand the pathologies to be targeted, as well as how individual subjects may respond to immunotherapies, either in isolation or in combination. Due to the powerful effects of the immune system, one priority is to avoid tissue damage due to the activity of the immune system, particularly considering that the nervous system does not tolerate even the smallest amount of tissue damage.
Collapse
|