1
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
2
|
Souissi C, Marzouki S, Elbini-Dhouib I, Jebali J, Oliveira F, Valenzuela JG, Srairi-Abid N, Kamhawi S, Ben Ahmed M. PpSP32, the Phlebotomus papatasi immunodominant salivary protein, exerts immunomodulatory effects on human monocytes, macrophages, and lymphocytes. Parasit Vectors 2023; 16:1. [PMID: 36593519 PMCID: PMC9806891 DOI: 10.1186/s13071-022-05627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The saliva of sand flies, vectors of Leishmania parasites, contains several components that exert pharmacological activity facilitating the acquisition of blood by the insect and contributing to the establishment of infection. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and validated its usefulness as a predictive biomarker of disease. PpSP32, whose functions are little known to date, is an intriguing protein due to its involvement in the etiopathogenesis of pemphigus, an auto-immune disease. Herein, we aimed to better decipher its role through the screening of several immunomodulatory activity either on lymphocytes or on monocytes/macrophages. METHODS Peripheral mononuclear cells from healthy volunteers were stimulated with anti-CD3/anti-CD28 antibodies, phytohemagglutinin, phorbol 12-myristate 13-acetate/ionomycin, or lipopolysaccharide in the presence of increasing doses of PpSP32. Cell proliferation was measured after the addition of tritiated thymidine. Monocyte activation was tested by analyzing the expression of CD86 and HLA-DR molecules by flow cytometry. Cytokine production was analyzed in culture supernatants by ELISA. THP-1-derived macrophages were stimulated with LPS in the presence of increasing doses of PpSP32, and cytokine production was analyzed in culture supernatants by ELISA and multiplex technique. The effect of PpSP32 on NF-kB signaling was tested by Western blot. The anti-inflammatory activity of PpSP32 was assessed in vivo in an experimental inflammatory model of carrageenan-induced paw edema in rats. RESULTS Our data showed that PpSP32 down-modulated the expression of activation markers in LPS-stimulated monocytes and THP1-derived macrophages. This protein negatively modulated the secretion of Th1 and Th2 cytokines by human lymphocytes as well as pro-inflammatory cytokines by monocytes, and THP1-derived macrophages. PpSP32 treatment led to a dose-dependent reduction of IκB phosphorylation. When PpSP32 was injected into the paw of carrageenan-injected rats, edema was significantly reduced. CONCLUSIONS Our data indicates that PpSP32 induces a potent immunomodulatory effect on monocytes and THP-1-derived macrophages. This inhibition could be mediated, among others, by the modulation of the NF-kB signaling pathway. The anti-inflammatory activity of PpSP32 was confirmed in vivo in the carrageenan-induced paw edema model in rats.
Collapse
Affiliation(s)
- Cyrine Souissi
- grid.418517.e0000 0001 2298 7385Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Pasteur Institute de Tunis, Tunis, Tunisia
| | - Soumaya Marzouki
- grid.418517.e0000 0001 2298 7385Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Pasteur Institute de Tunis, Tunis, Tunisia
| | - Ines Elbini-Dhouib
- grid.12574.350000000122959819Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, 1002 Tunis, Tunisia
| | - Jed Jebali
- grid.12574.350000000122959819Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, 1002 Tunis, Tunisia
| | - Fabiano Oliveira
- grid.94365.3d0000 0001 2297 5165Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD USA
| | - Jesus G. Valenzuela
- grid.94365.3d0000 0001 2297 5165Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD USA
| | - Najet Srairi-Abid
- grid.12574.350000000122959819Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, 1002 Tunis, Tunisia
| | - Shaden Kamhawi
- grid.94365.3d0000 0001 2297 5165Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD USA
| | - Melika Ben Ahmed
- grid.418517.e0000 0001 2298 7385Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Pasteur Institute de Tunis, Tunis, Tunisia ,grid.12574.350000000122959819Faculty of Medicine de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
3
|
Sangare M, Coulibaly YI, Huda N, Vidal S, Tariq S, Coulibaly ME, Coulibaly SY, Soumaoro L, Dicko I, Traore B, Sissoko IM, Traore SF, Faye O, Nutman TB, Valenzuela JG, Oliveira F, Doumbia S, Kamhawi S, Semnani RT. Individuals co-exposed to sand fly saliva and filarial parasites exhibit altered monocyte function. PLoS Negl Trop Dis 2021; 15:e0009448. [PMID: 34106920 PMCID: PMC8189443 DOI: 10.1371/journal.pntd.0009448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/04/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In Mali, cutaneous leishmaniasis (CL) and filariasis are co-endemic. Previous studies in animal models of infection have shown that sand fly saliva enhance infectivity of Leishmania parasites in naïve hosts while saliva-specific adaptive immune responses may protect against cutaneous and visceral leishmaniasis. In contrast, the human immune response to Phlebotomus duboscqi (Pd) saliva, the principal sand fly vector in Mali, was found to be dichotomously polarized with some individuals having a Th1-dominated response and others having a Th2-biased response. We hypothesized that co-infection with filarial parasites may be an underlying factor that modulates the immune response to Pd saliva in endemic regions. METHODOLOGY/PRINCIPAL FINDINGS To understand which cell types may be responsible for polarizing human responses to sand fly saliva, we investigated the effect of salivary glands (SG) of Pd on human monocytes. To this end, elutriated monocytes were cultured in vitro, alone, or with SG, microfilariae antigen (MF ag) of Brugia malayi, or LPS, a positive control. The mRNA expression of genes involved in inflammatory or regulatory responses was then measured as were cytokines and chemokines associated with these responses. Monocytes of individuals who were not exposed to sand fly bites (mainly North American controls) significantly upregulated the production of IL-6 and CCL4; cytokines that enhance leishmania parasite establishment, in response to SG from Pd or other vector species. This selective inflammatory response was lost in individuals that were exposed to sand fly bites which was not changed by co-infection with filarial parasites. Furthermore, infection with filarial parasites resulted in upregulation of CCL22, a type-2 associated chemokine, both at the mRNA levels and by its observed effect on the frequency of recruited monocytes. CONCLUSIONS/SIGNIFICANCE Together, our data suggest that SG or recombinant salivary proteins from Pd alter human monocyte function by upregulating selective inflammatory cytokines.
Collapse
Affiliation(s)
- Moussa Sangare
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Yaya Ibrahim Coulibaly
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Dermatology Hospital of Bamako, Bamako, Mali
| | - Naureen Huda
- Department of Pediatrics, University of California, San Francisco, California, United States of America
| | - Silvia Vidal
- Institut Recerca H. Sant Pau C. Sant Quintí, Spain
| | - Sameha Tariq
- Laboratory of Parasitic Diseases, LPD, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michel Emmanuel Coulibaly
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Siaka Yamoussa Coulibaly
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Lamine Soumaoro
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ilo Dicko
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bourama Traore
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Dermatology Hospital of Bamako, Bamako, Mali
| | - Ibrahim Moussa Sissoko
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou Fantamady Traore
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ousmane Faye
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Dermatology Hospital of Bamako, Bamako, Mali
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, LPD, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, LMVR, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, LMVR, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Seydou Doumbia
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Shaden Kamhawi
- Vector Molecular Biology Section, LMVR, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Roshanak Tolouei Semnani
- Autoimmunity and Translational Immunology, Precigen, Inc. A wholly owned subsidiary of Intrexon Corporation, Germantown, Maryland, United States of America
| |
Collapse
|
4
|
Demarta-Gatsi C, Mécheri S. Vector saliva controlled inflammatory response of the host may represent the Achilles heel during pathogen transmission. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200155. [PMID: 34035796 PMCID: PMC8128132 DOI: 10.1590/1678-9199-jvatitd-2020-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with vector-borne pathogens starts with the inoculation of these pathogens during blood feeding. In endemic regions, the population is regularly bitten by naive vectors, implicating a permanent stimulation of the immune system by the vector saliva itself (pre-immune context). Comparatively, the number of bites received by exposed individuals from non-infected vectors is much higher than the bites from infected ones. Therefore, vector saliva and the immunological response in the skin may play an important role, so far underestimated, in the establishment of anti-pathogen immunity in endemic areas. Hence, the parasite biology and the disease pathogenesis in “saliva-primed” and “saliva-unprimed” individuals must be different. This integrated view on how the pathogen evolves within the host together with vector salivary components, which are known to be endowed with a variety of pharmacological and immunological properties, must remain the focus of any investigational study dealing with vector-borne diseases. Considering this three-way partnership, the host skin (immune system), the pathogen, and the vector saliva, the approach that consists in the validation of vector saliva as a source of molecular entities with anti-disease vaccine potential has been recently a subject of active and fruitful investigation. As an example, the vaccination with maxadilan, a potent vasodilator peptide extracted from the saliva of the sand fly Lutzomyia longipalpis, was able to protect against infection with various leishmanial parasites. More interestingly, a universal mosquito saliva vaccine that may potentially protect against a range of mosquito-borne infections including malaria, dengue, Zika, chikungunya and yellow fever. In this review, we highlight the key role played by the immunobiology of vector saliva in shaping the outcome of vector-borne diseases and discuss the value of studying diseases in the light of intimate cross talk among the pathogen, the vector saliva, and the host immune mechanisms.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France.,Medicines for Malaria Venture (MMV), Geneva, Switzerland.,Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Salah Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| |
Collapse
|
5
|
Rêgo FD, Soares RP. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021; 93:e20200254. [PMID: 33950136 DOI: 10.1590/0001-37652021xxxx] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
Lutzomyia longipalpis is the most important vector of Leishmania infantum, the etiological agent of visceral leishmaniasis (VL) in the New World. It is a permissive vector susceptible to infection with several Leishmania species. One of the advantages that favors the study of this sand fly is the possibility of colonization in the laboratory. For this reason, several researchers around the world use this species as a model for different subjects including biology, insecticides testing, host-parasite interaction, physiology, genetics, proteomics, molecular biology, and saliva among others. In 2003, we published our first review (Soares & Turco 2003) on this vector covering several aspects of Lu. longipalpis. This current review summarizes what has been published between 2003-2020. During this period, modern approaches were incorporated following the development of more advanced and sensitive techniques to assess this sand fly.
Collapse
Affiliation(s)
- Felipe D Rêgo
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| | - Rodrigo Pedro Soares
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
RÊGO FELIPED, SOARES RODRIGOPEDRO. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021. [DOI: 10.1590/0001-3765202120200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
7
|
Xiao J, Zhang J, Li X, Dai X, Wang J, He Y, Wei L, Shi J, Gong N. Downregulation of Blimp1 inhibits the maturation of bone marrow-derived dendritic cells. Int J Mol Med 2018; 43:1094-1104. [PMID: 30483767 DOI: 10.3892/ijmm.2018.4000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/21/2018] [Indexed: 11/06/2022] Open
Abstract
Modulation of differentiation of dendritic cells (DCs), which are derived from bone marrow cells, may influence their maturation and consequently regulate their ability to present antigens to alloreactive T lymphocytes. B lymphocyte‑induced maturation protein‑1 (Blimp1) is a master regulator of immunocyte differentiation, which has been investigated for its effect on DCs. In the present study, a lentivirus was used as a vector to transduce Blimp1‑short hairpin (sh)RNA into primary bone marrow cells during their differentiation to DCs. Lentiviral‑mediated Blimp1‑shRNA (lenti‑shRNA‑Blimp1) had a transduction efficiency of >60% in DC precursors. Lenti‑shRNA‑Blimp1 significantly downregulated the expression levels of Blimp1 and modulated the expression of its target proteins, including class II major histocompatibility complex (MHC) transactivator, c‑myc and interleukin‑6. Although lenti‑shRNA‑Blimp1 did not interfere with the differentiation of bone marrow cells to DCs, it inhibited DC maturation by decreasing the expression of surface MHC‑II molecules, but not the expression of MHC‑I molecules and co‑stimulatory molecules [cluster of differentiation (CD)80/CD86]. Subsequently, alloreactive T cell proliferation was alleviated and regulatory T cells were expanded in response to lenti‑shRNA‑Blimp1. A toxicity assay indicated that the morphology and proliferation of cultured DCs were mildly influenced by the lentiviral vector, indicating that the use of alternative vectors with minimal or no toxicity could be investigated in future studies. In conclusion, transduction with lenti‑shRNA‑Blimp1 modulated the maturation of DCs via MHC‑II molecule suppression and inhibited alloreactive T cell activation. The present findings supported the application of Blimp1‑based intervention as a novel approach to induce immature DCs for further immunological research.
Collapse
Affiliation(s)
- Jiansheng Xiao
- Department of Hepatobiliary and Organ Transplantation Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaomin Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jing Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying He
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jun Shi
- Department of Hepatobiliary and Organ Transplantation Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
8
|
Tomiotto-Pellissier F, Bortoleti BTDS, Assolini JP, Gonçalves MD, Carloto ACM, Miranda-Sapla MM, Conchon-Costa I, Bordignon J, Pavanelli WR. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front Immunol 2018; 9:2529. [PMID: 30429856 PMCID: PMC6220043 DOI: 10.3389/fimmu.2018.02529] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/15/2018] [Indexed: 01/14/2023] Open
Abstract
Leishmaniasis is a vector-borne neglected tropical disease that affects more than 700,000 people annually. Leishmania parasites cause the disease, and different species trigger a distinct immune response and clinical manifestations. Macrophages are the final host cells for the proliferation of Leishmania parasites, and these cells are the key to a controlled or exacerbated response that culminates in clinical manifestations. M1 and M2 are the two main macrophage phenotypes. M1 is a pro-inflammatory subtype with microbicidal properties, and M2, or alternatively activated, is an anti-inflammatory/regulatory subtype that is related to inflammation resolution and tissue repair. The present review elucidates the roles of M1 and M2 polarization in leishmaniasis and highlights the role of the salivary components of the vector and the action of the parasite in the macrophage plasticity.
Collapse
Affiliation(s)
- Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - João Paulo Assolini
- Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, Department of Chemistry, State University of Londrina, Universitary Hospital, Londrina, Brazil
| | | | | | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Juliano Bordignon
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Molecular Virology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil
| | - Wander Rogério Pavanelli
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
9
|
Anversa L, Tiburcio MGS, Richini-Pereira VB, Ramirez LE. Human leishmaniasis in Brazil: A general review. ACTA ACUST UNITED AC 2018; 64:281-289. [PMID: 29641786 DOI: 10.1590/1806-9282.64.03.281] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/06/2017] [Indexed: 11/22/2022]
Abstract
Leishmaniasis is a disease with ample clinical spectrum and epidemiological diversity and is considered a major public health problem. This article presents an overview of the transmission cycles, host-parasite interactions, clinical, histological and immunological aspects, diagnosis and treatment of various forms of the human disease.
Collapse
Affiliation(s)
- Laís Anversa
- Biomedical Sciences Core - Instituto Adolfo Lutz, Centro de Laboratório Regional de Bauru, Bauru, SP, Brazil
| | | | | | - Luis Eduardo Ramirez
- Department of Immunology, Microbiology and Parasitology, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
10
|
Wheat WH, Arthun EN, Spencer JS, Regan DP, Titus RG, Dow SW. Immunization against full-length protein and peptides from the Lutzomyia longipalpis sand fly salivary component maxadilan protects against Leishmania major infection in a murine model. Vaccine 2017; 35:6611-6619. [PMID: 29079105 PMCID: PMC5710984 DOI: 10.1016/j.vaccine.2017.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is an arthropod vectored disease causing considerable human morbidity and mortality. Vaccination remains the most realistic and practical means to interrupt the growing number and diversity of sand fly vectors and reservoirs of Leishmania. Since transmission of Leishmania is achieved exclusively by sand fly vectors via immune-modulating salivary substances, conventional vaccination requiring an unmodified host immune response for success are potentially destined to fail unless immunomodulatory factors are somehow neutralized. Using cationic liposome DNA complexes (CLDC) as an adjuvant system along with Lu. longipalpis sand fly salivary component maxadilan (MAX) as antigen (Ag), we show that mice are protected from the MAX-induced exacerbation of infection with Leishmania major (Lm). The CLDC adjuvant and alum were comparable in terms of lesion induration and decreased parasite burden, however the alum adjuvant imposed more inflammation at the injection site. BALB/c, C3H and C57BL/6 mice vaccinated with MAX-CLDC containing either the full-length MAX or peptides spanning the N- and C-terminal regions of MAX are protected against footpad challenges with Lm co-injected with MAX. When compared to unvaccinated controls, all strains of mice immunized with CLDC containing either peptides encompassing the first 20 N-terminal AA or those spanning the last 15 AA of the C-terminal domain of MAX demonstrated decreased parasite burden after 9 or 18 weeks post challenge with Lm + MAX. MAX-CLDC immunized mice showed increased IFNγ-secreting and decreased IL-4-secreting CD4+ cells in footpad-draining lymph nodes. Antisera from C-terminal peptide (P11) MAX-CLDC-vaccinated animals was capable of recognizing FL-MAX and its C-terminal domain and also blocked MAX-mediated reprogramming of bone marrow-derived dendritic cells (BM-DC) in vitro. This peptide vaccine targeting sand fly MAX, improves host immunity against MAX-mediated immunomodulation.
Collapse
Affiliation(s)
- William H Wheat
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States; Department of Microbiology, Immunology, Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States.
| | - Erik N Arthun
- Department of Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - John S Spencer
- Department of Microbiology, Immunology, Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Daniel P Regan
- Department of Microbiology, Immunology, Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Richard G Titus
- Department of Microbiology, Immunology, Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Steven W Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States; Department of Microbiology, Immunology, Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
11
|
Kammoun-Rebai W, Bahi-Jaber N, Naouar I, Toumi A, Ben Salah A, Louzir H, Meddeb-Garnaoui A. Human cellular and humoral immune responses to Phlebotomus papatasi salivary gland antigens in endemic areas differing in prevalence of Leishmania major infection. PLoS Negl Trop Dis 2017; 11:e0005905. [PMID: 29023574 PMCID: PMC5638224 DOI: 10.1371/journal.pntd.0005905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/24/2017] [Indexed: 01/22/2023] Open
Abstract
Background Sand fly saliva compounds are able to elicit specific immune responses that have a significant role in Leishmania parasite establishment and disease outcome. Characterizing anti-saliva immune responses in individuals living in well defined leishmaniasis endemic areas would provide valuable insights regarding their effect on parasite transmission and establishment in humans. Methodology/Principal findings We explored the cellular and humoral immune responses to Phlebotomus (P.) papatasi salivary gland extracts (SGE) in individuals living in cutaneous leishmaniasis (CL) old or emerging foci (OF, EF). OF was characterized by a higher infection prevalence as assessed by higher proportions of leishmanin skin test (LST) positive individuals compared to EF. Subjects were further subdivided into healed, asymptomatic or naïve groups. We showed anti-SGE proliferation in less than 30% of the individuals, regardless of the immune status, in both foci. IFN-γ production was higher in OF and only observed in immune individuals from OF and naïve subjects from EF. Although IL-10 was not detected, addition of anti-human IL-10 antibodies revealed an increase in proliferation and IFN-γ production only in individuals from OF. The percentage of seropositive individuals was similar in immune and naïves groups but was significantly higher in OF. No correlation was observed between anti-saliva immune responses and LST response. High anti-SGE-IgG responses were associated with an increased risk of developing ZCL. No differences were observed for anti-SGE humoral or cellular responses among naïve individuals who converted or not their LST response or developed or not ZCL after the transmission season. Conclusions/Significance These data suggest that individuals living in an old focus characterized by a frequent exposure to sand fly bites and a high prevalence of infection, develop higher anti-saliva IgG responses and IFN-γ levels and a skew towards a Th2-type cellular response, probably in favor of parasite establishment, compared to those living in an emerging focus. During murine experimental leishmaniasis sand fly saliva components modulate the host immune response and facilitate infection while pre-exposition to uninfected sand fly bites is associated with a protective cellular response against subsequent infection. Human anti-saliva immune responses are not well defined in leishmaniasis endemic areas. Here, we report an analysis of anti P. papatasi saliva cellular and humoral responses in individuals residing in endemic foci showing different prevalence rates of L. major infection. Individuals were further subdivided based on LST response and presence of typical CL scars. We showed higher anti-saliva cellular and humoral responses and a skew towards a Th2 response in the old focus characterized by the highest prevalence of infection. No correlation was observed between LST and anti-saliva cellular or humoral response. We showed that high anti-saliva IgG responses constituted a risk factor for the development of CL. Our findings suggest that the anti-P. papatasi saliva cellular and humoral response profiles vary with the level of sand fly exposure and the prevalence of infection in CL endemic areas. Such studies in humans from highly endemic areas could contribute to a better understanding of the immune response to sand fly saliva and its role in leishmaniasis outcome.
Collapse
Affiliation(s)
- Wafa Kammoun-Rebai
- Laboratory of Medical Parasitology, Biotechnologies and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- Département de Biologie, Université Tunis El Manar, Tunis, Tunisia
| | - Narges Bahi-Jaber
- UPSP EGEAL Institut Polytechnique LaSalle Beauvais, Beauvais, France
| | - Ikbel Naouar
- Département de Biologie, Université Tunis El Manar, Tunis, Tunisia
- Laboratory of Transmission, Control and Immunobiology of Infection, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Amine Toumi
- Laboratory of Transmission, Control and Immunobiology of Infection, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Afif Ben Salah
- Laboratory of Transmission, Control and Immunobiology of Infection, Institut Pasteur de Tunis, Tunis, Tunisia
- Arabian Gulf University, College of Medicine and Medical Sciences, Manama, Bahrain
| | - Hechmi Louzir
- Laboratory of Transmission, Control and Immunobiology of Infection, Institut Pasteur de Tunis, Tunis, Tunisia
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Amel Meddeb-Garnaoui
- Laboratory of Medical Parasitology, Biotechnologies and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
12
|
de Menezes JP, Saraiva EM, da Rocha-Azevedo B. The site of the bite: Leishmania interaction with macrophages, neutrophils and the extracellular matrix in the dermis. Parasit Vectors 2016; 9:264. [PMID: 27146515 PMCID: PMC4857439 DOI: 10.1186/s13071-016-1540-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Leishmania spp., the causative agents of leishmaniasis, are intracellular parasites, transmitted to humans via the bite of their sand fly vectors. Once inoculated, the promastigotes are exposed to the dermis, which is composed of extracellular matrix (ECM), growth factors and its resident cells. Promastigote forms are phagocytosed by macrophages recruited to the site of the sand fly bite, either directly or after interaction with neutrophils. Since Leishmania is an intracellular parasite, its interaction with the host ECM has been neglected as well as the immediate steps after the sand fly bite. However, promastigotes must overcome the obstacles presented by the dermis ECM in order to establish the infection. Thus, the study of the interaction between Leishmania promastigotes and ECM components as well as the earliest stages of infection are important steps to understand the establishment of the disease, and could contribute in the future to new drug developments towards leishmaniasis.
Collapse
Affiliation(s)
| | - Elvira M Saraiva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno da Rocha-Azevedo
- Programa de Terapia Celular e Bioengenharia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. .,Present Address: Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
13
|
Ockenfels B, Michael E, McDowell MA. Meta-analysis of the effects of insect vector saliva on host immune responses and infection of vector-transmitted pathogens: a focus on leishmaniasis. PLoS Negl Trop Dis 2014; 8:e3197. [PMID: 25275509 PMCID: PMC4183472 DOI: 10.1371/journal.pntd.0003197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
A meta-analysis of the effects of vector saliva on the immune response and progression of vector-transmitted disease, specifically with regard to pathology, infection level, and host cytokine levels was conducted. Infection in the absence or presence of saliva in naïve mice was compared. In addition, infection in mice pre-exposed to uninfected vector saliva was compared to infection in unexposed mice. To control for differences in vector and pathogen species, mouse strain, and experimental design, a random effects model was used to compare the ratio of the natural log of the experimental to the control means of the studies. Saliva was demonstrated to enhance pathology, infection level, and the production of Th2 cytokines (IL-4 and IL-10) in naïve mice. This effect was observed across vector/pathogen pairings, whether natural or unnatural, and with single salivary proteins used as a proxy for whole saliva. Saliva pre-exposure was determined to result in less severe leishmaniasis pathology when compared with unexposed mice infected either in the presence or absence of sand fly saliva. The results of further analyses were not significant, but demonstrated trends toward protection and IFN-γ elevation for pre-exposed mice. Arthropod vectors transmit a wide variety of diseases resulting in substantial human morbidity and economic costs worldwide. When hematophagous arthropods blood feed, they release saliva into the host. This saliva elicits a strong immune response and has recently been a focus for vaccine research. There is evidence that the saliva enhances infection in naïve hosts, but that prior exposure to saliva results in less severe infection. This analysis endeavored to determine whether there was a statistically significant enhancement or protective effect with regard to saliva exposure and the progression of disease, and to determine the underlying immune mechanism driving these effects. We found that saliva does indeed enhance infection levels of vector-transmitted pathogens and leishmaniasis pathology in naïve mice and elevates Th2 cytokine levels (IL-4 and IL-10). We also determined that pre-exposure to saliva results in less severe pathology of experimental leishmaniasis in mice. These results are important for vaccine trials and vector control programs, though more studies are needed with regard to pre-exposure.
Collapse
Affiliation(s)
- Brittany Ockenfels
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Edwin Michael
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells. J Ginseng Res 2014; 39:29-37. [PMID: 25535474 PMCID: PMC4268565 DOI: 10.1016/j.jgr.2014.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/16/2014] [Indexed: 12/16/2022] Open
Abstract
Background Panax ginseng (i.e., ginseng) root is extensively used in traditional oriental medicine. It is a modern pharmaceutical reagent for preventing various human diseases such as cancer. Ginsenosides—the major active components of ginseng—exhibit immunomodulatory effects. However, the mechanism and function underlying such effects are not fully elucidated, especially in human monocytes and dendritic cells (DCs). Methods We investigated the immunomodulatory effect of ginsenosides from Panax ginseng root on CD14+ monocytes purified from human adult peripheral blood mononuclear cells (PBMCs) and on their differentiation into DCs that affect CD4+ T cell activity. Results After treatment with ginsenoside fractions, monocyte levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 increased through phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein kinase (MAPK). After treatment with ginsenoside fractions, TNF-α production and phosphorylation of ERK1/2 and JNK decreased in lipopolysaccharide (LPS)-sensitized monocytes. We confirmed that DCs derived from CD14+ monocytes in the presence of ginsenoside fractions (Gin-DCs) contained decreased levels of the costimulatory molecules CD80 and CD86. The expression of these costimulatory molecules decreased in LPS-treated DCs exposed to ginsenoside fractions, compared to their expression in LPS-treated DCs in the absence of ginsenoside fractions. Furthermore, LPS-treated Gin-DCs could not induce proliferation and interferon gamma (IFN-γ) production by CD4+ T cells with the coculture of Gin-DCs with CD4+ T cells. Conclusion These results suggest that ginsenoside fractions from the ginseng root suppress cytokine production and maturation of LPS-treated DCs and downregulate CD4+ T cells.
Collapse
|
15
|
Innate immunity to Leishmania infection: within phagocytes. Mediators Inflamm 2014; 2014:754965. [PMID: 25110400 PMCID: PMC4119695 DOI: 10.1155/2014/754965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/24/2022] Open
Abstract
Infection by Leishmania takes place in the context of inflammation and tissue repair. Besides tissue resident macrophages, inflammatory macrophages and neutrophils are recruited to the infection site and serve both as host cells and as effectors against infection. Recent studies suggest additional important roles for monocytes and dendritic cells. This paper addresses recent experimental findings regarding the regulation of Leishmania major infection by these major phagocyte populations. In addition, the role of IL-4 on dendritic cells and monocytes is discussed.
Collapse
|
16
|
Bernard Q, Jaulhac B, Boulanger N. Smuggling across the Border: How Arthropod-Borne Pathogens Evade and Exploit the Host Defense System of the Skin. J Invest Dermatol 2014; 134:1211-1219. [DOI: 10.1038/jid.2014.36] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/04/2013] [Accepted: 12/28/2013] [Indexed: 12/20/2022]
|
17
|
Teixeira C, Gomes R, Oliveira F, Meneses C, Gilmore DC, Elnaiem DEA, Valenzuela JG, Kamhawi S. Characterization of the early inflammatory infiltrate at the feeding site of infected sand flies in mice protected from vector-transmitted Leishmania major by exposure to uninfected bites. PLoS Negl Trop Dis 2014; 8:e2781. [PMID: 24762408 PMCID: PMC3998922 DOI: 10.1371/journal.pntd.0002781] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/23/2014] [Indexed: 11/18/2022] Open
Abstract
Background Mice exposed to sand fly saliva are protected against vector-transmitted Leishmania major. Although protection has been related to IFN- γ producing T cells, the early inflammatory response orchestrating this outcome has not been defined. Methodology/Principal findings Mice exposed to uninfected P. duboscqi bites and naïve mice were challenged with L. major-infected flies to characterize their early immune response at the bite site. Mostly, chemokine and cytokine transcript expression post-infected bites was amplified in exposed compared to naïve mice. In exposed mice, induced chemokines were mostly involved in leukocyte recruitment and T cell and NK cell activation; IL-4 was expressed at 6 h followed by IFN-γ and iNOS2 as well as IL-5 and IL-10 expression. In naïve animals, the transcript expression following Leishmania-infected sand fly bites was suppressed. Expression profiles translated to an earlier and significantly larger recruitment of leukocytes including neutrophils, macrophages, Gr+ monocytes, NK cells and CD4+ T cells to the bite site of exposed compared to naïve mice post-infected bites. Additionally, up to 48 hours post-infected bites the number of IFN-γ-producing CD4+T cells and NK cells arriving at the bite site was significantly higher in exposed compared to naïve mice. Thereafter, NK cells become cytolytic and persist at the bite site up to a week post-bite. Conclusion/Significance The quiet environment induced by a Leishmania-infected sand fly bite in naïve mice was significantly altered in animals previously exposed to saliva of uninfected flies. We propose that the enhanced recruitment of Gr+ monocytes, NK cells and CD4 Th1 cells observed at the bite site of exposed mice creates an inhospitable environment that counters the establishment of L. major infection. Sand flies transmit Leishmania parasites during bloodfeeding. Salivary molecules are deposited alongside parasites and can reshape the host's immune response to infection. Exposure to uninfected sand fly bites or immunization with salivary molecules protects the host against Leishmania infection. Here we show that mice exposed to bites of uninfected Phlebotomus duboscqi sand flies are protected against P. duboscqi-transmitted L. major and characterize the formerly unknown early cellular infiltrate at the bite site following L.major vector-transmission. The kinetics and nature of the inflammatory response at the bite site of exposed mice were notably different from those of naïve mice showing an amplified expression of cytokines and chemokines after parasite transmission. The transcripts reflected a faster and more robust infiltrate of immune cells to the bite site of exposed mice composed of neutrophils, macrophages, monocytes, NK cells and CD4+ T cells. In addition, there was an increased influx of activated IFN-γ producing CD4+ T cells and Granzyme B-producing mature NK cells in exposed animals. These findings suggest that the observed robust and persistent proinflammatory response in exposed animals restrict parasite multiplication.
Collapse
Affiliation(s)
- Clarissa Teixeira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fiocruz, Bahia, Brazil
| | - Regis Gomes
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fiocruz, Bahia, Brazil
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dana C. Gilmore
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dia-Eldin A. Elnaiem
- Department of Zoology, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (JGV); (SK)
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (JGV); (SK)
| |
Collapse
|
18
|
Cockroach allergen Bla g 7 promotes TIM4 expression in dendritic cells leading to Th2 polarization. Mediators Inflamm 2013; 2013:983149. [PMID: 24204099 PMCID: PMC3800592 DOI: 10.1155/2013/983149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022] Open
Abstract
As one of the most common sources of indoor aeroallergens worldwide, cockroach is important in causing rhinitis and asthma while the mechanisms underlying remain obscure. Since T helper (Th) type 2 polarization plays an important role in the pathogenesis of allergic diseases, we investigated the effect of Bla g 7, a pan-allergen from Blattella germanica (B. germanica), on Th polarization which is controlled by monocyte-derived dendritic cells (DCs). Challenged by recombinant Bla g 7 (rBla g 7), immature DCs obtained from human exhibited upregulated levels of TIM4, CD80, and CD86 and increased IL-13 secretion. Cocultured with CD4+ T cells, challenged DCs increased the ratio of IL-4+ versus IFN-γ+ of CD4+ T cells, suggesting a balance shift from Th1 to Th2. Moreover, antibodies against TIM4, CD80, and CD86 reversed the enhancement of IL-4+/IFN-γ+ ratio and alleviated the IL-13 release induced by rBla g 7, indicating that the Th2 polarization provoked by rBla g 7 challenged DCs is via TIM4-, CD80-, and CD86-dependent mechanisms. In conclusion, the present findings implied a crucial role of Bla g 7 in the development of cockroach allergy and highlighted an involvement of DCs-induced Th2 polarization in cockroach allergy.
Collapse
|
19
|
Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses. PLoS Pathog 2013; 9:e1003450. [PMID: 23825947 PMCID: PMC3695081 DOI: 10.1371/journal.ppat.1003450] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/07/2013] [Indexed: 12/28/2022] Open
Abstract
Hard ticks subvert the immune responses of their vertebrate hosts in order to feed for much longer periods than other blood-feeding ectoparasites; this may be one reason why they transmit perhaps the greatest diversity of pathogens of any arthropod vector. Tick-induced immunomodulation is mediated by salivary components, some of which neutralise elements of innate immunity or inhibit the development of adaptive immunity. As dendritic cells (DC) trigger and help to regulate adaptive immunity, they are an ideal target for immunomodulation. However, previously described immunoactive components of tick saliva are either highly promiscuous in their cellular and molecular targets or have limited effects on DC. Here we address the question of whether the largest and globally most important group of ticks (the ixodid metastriates) produce salivary molecules that specifically modulate DC activity. We used chromatography to isolate a salivary gland protein (Japanin) from Rhipicephalus appendiculatus ticks. Japanin was cloned, and recombinant protein was produced in a baculoviral expression system. We found that Japanin specifically reprogrammes DC responses to a wide variety of stimuli in vitro, radically altering their expression of co-stimulatory and co-inhibitory transmembrane molecules (measured by flow cytometry) and their secretion of pro-inflammatory, anti-inflammatory and T cell polarising cytokines (assessed by Luminex multiplex assays); it also inhibits the differentiation of DC from monocytes. Sequence alignments and enzymatic deglycosylation revealed Japanin to be a 17.7 kDa, N-glycosylated lipocalin. Using molecular cloning and database searches, we have identified a group of homologous proteins in R. appendiculatus and related species, three of which we have expressed and shown to possess DC-modulatory activity. All data were obtained using DC generated from at least four human blood donors, with rigorous statistical analysis. Our results suggest a previously unknown mechanism for parasite-induced subversion of adaptive immunity, one which may also facilitate pathogen transmission. Dendritic cells (DC) are specialised cells of the vertebrate immune system. DC can sense different types of infectious agents and parasites, and both trigger and help regulate the specific types of immunity needed to eliminate them. We have discovered that the largest and globally most important group of hard ticks produce a unique family of proteins in their saliva that selectively targets DC, radically altering functions that would otherwise induce robust immune responses; these proteins also prevent DC developing from precursor cells. The production of these salivary molecules may help to explain two highly unusual features of these hard ticks compared with other blood-feeding parasites: their ability to feed continuously on their vertebrate hosts for considerable lengths of time (7 days or more) without eliciting potentially damaging immune responses, and their capacity to transmit possibly the greatest variety of pathogens of any type of invertebrate.
Collapse
|
20
|
Gomes R, Oliveira F. The immune response to sand fly salivary proteins and its influence on leishmania immunity. Front Immunol 2012; 3:110. [PMID: 22593758 PMCID: PMC3349933 DOI: 10.3389/fimmu.2012.00110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/19/2012] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic. Immunization with a single salivary protein or exposure to uninfected bites was shown to result in a protective immune response against leishmaniasis. Antibodies to saliva were not required for this protection. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review the immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and their vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.
Collapse
Affiliation(s)
- Regis Gomes
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Disease Rockville, MD, USA
| | | |
Collapse
|
21
|
Grespan R, Lemos HP, Carregaro V, Verri WA, Souto FO, de Oliveira CJF, Teixeira C, Ribeiro JM, Valenzuela JG, Cunha FQ. The protein LJM 111 from Lutzomyia longipalpis salivary gland extract (SGE) accounts for the SGE-inhibitory effects upon inflammatory parameters in experimental arthritis model. Int Immunopharmacol 2012; 12:603-10. [PMID: 22366405 PMCID: PMC3438676 DOI: 10.1016/j.intimp.2012.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/12/2011] [Accepted: 02/09/2012] [Indexed: 12/11/2022]
Abstract
Several studies have pointed out the immunomodulatory properties of the Salivary Gland Extract (SGE) from Lutzomyia longipalpis. We aimed to identify the SGE component (s) responsible for its effect on ovalbumin (OVA)-induced neutrophil migration (NM) and to evaluate the effect of SGE and components in the antigen-induced arthritis (AIA) model. We tested the anti-arthritic activities of SGE and the recombinant LJM111 salivary protein (rLJM111) by measuring the mechanical hypernociception and the NM into synovial cavity. Furthermore, we measured IL-17, TNF-α and IFN-γ released by lymph nodes cells stimulated with mBSA or anti-CD3 using enzyme-linked immunosorbent assay (ELISA). Additionally, we tested the effect of SGE and rLJM111 on co-stimulatory molecules expression (MHC-II and CD-86) by flow cytometry, TNF-α and IL-10 production (ELISA) of bone marrow-derived dendritic cells (BMDCs) stimulated with LPS, chemotaxis and actin polymerization from neutrophils. Besides, the effect of SGE on CXCR2 and GRK-2 expression on neutrophils was investigated. We identified one plasmid expressing the protein LJM111 that prevented NM in OVA-challenged immunized mice. Furthermore, both SGE and rLJM111 inhibited NM and pain sensitivity in AIA and reduced IL-17, TNF-α and IFN-γ. SGE and rLJM111 also reduced MHC-II and CD-86 expression and TNF-α whereas increased IL-10 release by LPS-stimulated BMDCs. SGE, but not LJM 111, inhibited neutrophils chemotaxis and actin polymerization. Additionally, SGE reduced neutrophil CXCR2 expression and increased GRK-2. Thus, rLJM111 is partially responsible for SGE mechanisms by diminishing DC function and maturation but not chemoattraction of neutrophils.
Collapse
Affiliation(s)
- Renata Grespan
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
More than 20 years ago, immunologists discovered that resistance and susceptibility to experimental infection with the intracellular protozoan Leishmania major was associated with the development of T-helper 1 (Th1)- and Th2-dominated immune responses, respectively. This infectious disease model was later used to identify and assess the role of key factors, such as interleukin-12 (IL-12) and IL-4, in Th1 and Th2 maturation. While infection by Leishmania remains a popular model for immunologists who wish to assess the role of their favorite molecule in T-cell differentiation, other investigators have tried to better understand how Leishmania interact with its insect and mammalian hosts. In this review, we discuss some of these new data with an emphasis on the early events that shape the immune response to Leishmania and on the immune evasion mechanisms that allow this parasite to avoid the development of sterilizing immunity and to secure its transmission to a new host.
Collapse
Affiliation(s)
- Evelyne Mougneau
- Institut National de la Santé et de la Recherche Médicale, University of Nice-Sophia Antipolis, Valbonne, France
| | | | | |
Collapse
|
23
|
Lauenstein HD, Quarcoo D, Plappert L, Schleh C, Nassimi M, Pilzner C, Rochlitzer S, Brabet P, Welte T, Hoymann HG, Krug N, Müller M, Lerner EA, Braun A, Groneberg DA. Pituitary adenylate cyclase-activating peptide receptor 1 mediates anti-inflammatory effects in allergic airway inflammation in mice. Clin Exp Allergy 2010; 41:592-601. [PMID: 21059121 DOI: 10.1111/j.1365-2222.2010.03636.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Bronchial asthma is characterized by airway inflammation and reversible obstruction. Since the gold standard of therapy, a combination of anti-inflammatory corticosteroids and bronchodilatory β(2) agonists, has recently been discussed to be related to an increased mortality, there is a need for novel therapeutic pathways. OBJECTIVE A new experimental concept that encompasses the vasoactive intestinal peptide/pituitary adenylate cyclase activating peptide (PACAP) family of receptors by demonstrating the anti-inflammatory effects of the PACAP receptor 1 (PAC1R) in a murine model of allergic asthma is described. METHODS PAC1R expression was investigated in lung tissue and isolated dendritic cells (DCs) via real-time PCR. Ovalbumin (OVA)-induced asthma models were used in PAC1R-deficient mice and BALB/c mice treated with PAC1R agonist maxadilan (MAX). Bronchoalveolar lavages have been performed and investigated at the cellular and cytokine levels. Fluorescence staining of a frozen lung section has been performed to detect eosinophil granulocytes in lung tissue. Plasma IgE levels have been quantified via the ELISA technique. Lung function was determined using head-out body plethysmography or whole-body plethysmography. RESULTS Increased PAC1R mRNA expression in lung tissue was present under inflammatory conditions. PAC1R expression was detected on DCs. In OVA-induced asthma models, which were applied to PAC1R-deficient mice (PAC1R(-/-)) and to BALB/c mice treated with the specific PAC1R agonist MAX, PAC1R deficiency resulted in inflammatory effects, while agonistic stimulation resulted in anti-inflammatory effects. No effects on lung function were detected both in the gene-depletion and in the pharmacologic studies. In summary, here, we demonstrate that anti-inflammatory effects can be achieved via PAC1R. CONCLUSION PAC1R agonists may represent a promising target for an anti-inflammatory therapy in airway diseases such as bronchial asthma.
Collapse
Affiliation(s)
- H D Lauenstein
- Department of Immunology, Allergology and Immunotoxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Son YM, Ahn SM, Jang MS, Moon YS, Kim SH, Cho KK, Han SH, Yun CH. Immunomodulatory effect of resistin in human dendritic cells stimulated with lipoteichoic acid from Staphylococcus aureus. Biochem Biophys Res Commun 2008; 376:599-604. [PMID: 18805395 DOI: 10.1016/j.bbrc.2008.09.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 09/11/2008] [Indexed: 11/16/2022]
Abstract
Resistin is an adipokine whose physiologic role in obesity, type II diabetes mellitus, and inflammatory diseases has been a subject of debate because while it is expressed in adipocytes and adipose tissue in mouse, it is expressed in leukocytes, such as macrophages, in human. In the present study, we attempt to define the effect of resistin on human dendritic cells (DCs) derived from CD14(+) monocytes. When DCs were stimulated with lipoteichoic acid (LTA) and treated with various concentrations of resistin, antigen-uptake process and the endocytic capacity of DCs were decreased. It is intriguing that resistin attenuated cytokine production in LTA-primed DCs. Consequently, T cell activity was reduced when lymphocytes were mixed with Staphylococcus aureus-primed autologous DCs treated with resistin compared to S. aureus-primed DCs without resistin. Our results suggest that resistin interferes with the efficacy of immune responses activated by Gram-positive bacterial infection in human DCs.
Collapse
Affiliation(s)
- Young Min Son
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|