1
|
Li Z, Xu J, Lin H, Yu S, Sun J, Zhang C, Zhang S, Li T, Yang A, Lu W. Interleukin-15Rα-Sushi-Fc Fusion Protein Co-Hitchhikes Interleukin-15 and Pheophorbide A for Cancer Photoimmunotherapy. Pharmaceutics 2025; 17:615. [PMID: 40430906 PMCID: PMC12114846 DOI: 10.3390/pharmaceutics17050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Interleukin-15 (IL-15) stimulates the proliferation of natural killer cells or T cells, which, in combination with photodynamic therapy (PDT), has emerged as an effective strategy for cancer photoimmunotherapy. Instead of direct cytokine receptor activation, IL-15 necessitates first binding to the IL-15 receptor α chain subunit (IL-15Rα), followed by trans-presentation to the IL-15 receptor β/γ chain subunit on the effector cells for pharmacologic activation. Therefore, the delivery of IL-15 remains a major challenge owing to its short half-life, its lack of targeting activity, and the limited availability of IL-15Rα. Methods: A co-hitchhiking delivery approach using recombinant IL-15 (rIL-15) and a photosensitizer, pheophorbide A (PhA), is developed for enhanced combinatorial cancer immunotherapy with PDT. A recombinant IL-15Rα-sushi-Fc fusion protein (rILR-Fc) is designed to load rIL-15 through the IL-15Rα sushi domain, which mimics its trans-presentation. Moreover, the Fc moiety of rILR-Fc can load PhA based on its high binding affinity. Results: Through self-assembly, rILR-Fc/PhA/rIL-15 nanoparticles (NPs) are formulated to co-hitchhike PhA and rIL-15, which improves the tumor accumulation of PhA and rIL-15 through receptor-mediated transcytosis. Moreover, the nanoparticles prolong the blood half-life of rIL-15 but do not alter the elimination rate of PhA from the blood. The rILR-Fc/PhA/rIL-15 NPs effectively elicit potent systemic antitumor immunity and long-lasting immune memory against tumor rechallenge in model mice bearing orthotopic colon tumors. Conclusions: The enhanced antitumor therapeutic effect demonstrates that the co-hitchhiking delivery strategy, optimizing the pharmacokinetics of both the photosensitizer and IL-15, provides a promising strategy for combinatorial photodynamic and IL-15 immunotherapy.
Collapse
Affiliation(s)
- Zhe Li
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jiaojiao Xu
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hongzheng Lin
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Sheng Yu
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jingwen Sun
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chen Zhang
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Sihang Zhang
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Tingting Li
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Afeng Yang
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Lu
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Quzhou Fudan Institute, 108 Minjiang Avenue, Quzhou 324002, China
| |
Collapse
|
2
|
Kong WY, Soderholm A, Brooks AJ, Gonzalez Cruz JL, Wells JW. Harnessing cytokine immunocomplexes and cytokine fusion proteins for cancer Therapy: Mechanisms and clinical potential. Cancer Treat Rev 2025; 136:102937. [PMID: 40233680 DOI: 10.1016/j.ctrv.2025.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Cytokines are pivotal regulators of cellular functions and immune responses, making them highly promising targets for cancer immunotherapy. Despite their widespread clinical application, the effectiveness of cytokine immunotherapy is often hampered by their pleiotropic effects, short half-lives, uneven biodistribution, and severe side effects at high dosages. Recent advancements in cytokine biology have led to the development of cytokine-antibody immunocomplexes and cytokine fusion proteins, offering a new paradigm in cancer treatments. These innovations foster the ability of cytokines to selectively activate specific cancer-targeting immune cell populations, such as CD8 T cells and NK cells, effectively inhibiting tumour progression. Furthermore, both therapeutic approaches can mitigate systemic toxicities and prolong the biological activity of cytokines in the body. This review delves into the recent advancements of cytokine immunocomplexes and cytokine fusion proteins, with a particular focus on interleukin-2 (IL-2), IL-7 and IL-15, which are in clinical/preclinical development. Moreover, we discuss the therapeutic benefits of these approaches observed in recent preclinical and clinical studies, along with the challenges that must be addressed to fully unlock their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Yang Kong
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia Soderholm
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Brooks
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia; School of Science & Technology, University of New England, Armidale, New South Wales, Australia
| | - Jazmina L Gonzalez Cruz
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James W Wells
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia; Dermatology Research Centre, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Li Z, Wrangle J, He K, Sprent J, Rubinstein MP. IL-15: from discovery to FDA approval. J Hematol Oncol 2025; 18:19. [PMID: 39966991 PMCID: PMC11837486 DOI: 10.1186/s13045-025-01664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
- Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - John Wrangle
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kai He
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, 1466, Australia
| | - Mark P Rubinstein
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA.
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Kar S, Verma D, Mehrotra S, Prajapati VK. Reconfiguring the immune system to target cancer: Therapies based on T cells, cytokines, and vaccines. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:77-150. [PMID: 39978976 DOI: 10.1016/bs.apcsb.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Over the years, extensive research has been dedicated to performing in-depth analysis of cancer to uncover the intricate details of its nature - including the types of cancer, causative agents, stimulators of disease progression, factors contributing to poor prognosis, and efficient therapies to restrict the metastatic aggressiveness. This chapter highlights the mechanisms through which different arms of the host immune system - namely cytokines, lymphocytes, antigen-presenting cells (APCs) -can be mobilized to eradicate cancer. Most malignant tumors are either poorly immunogenic, or are harbored in a highly immuno-suppressive microenvironment. This is why reinforcing the host's anti-tumor defenses, through infusion of pro-inflammatory cytokines, tumor antigen-loaded APCs, and anti-tumor cytotoxic cells has emerged as a viable treatment option against cancer. The chapter also highlights the ongoing preclinical and clinical studies in different malignancies and the outcome of various therapies. Although these methods are not foolproof, and antigen escape variants can still evade or develop resistance to customized therapies, they achieve disease stabilization in several cases when conventional treatments fail. In many instances, combination therapies involving cytokines, T cells, and vaccinations prove more effective than monotherapies. The limitations of the current therapies are also discussed, along with ongoing modifications aimed at improving efficacy.
Collapse
Affiliation(s)
- Sramona Kar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Divya Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
5
|
Balkhi S, Bilato G, De Lerma Barbaro A, Orecchia P, Poggi A, Mortara L. Efficacy of Anti-Cancer Immune Responses Elicited Using Tumor-Targeted IL-2 Cytokine and Its Derivatives in Combined Preclinical Therapies. Vaccines (Basel) 2025; 13:69. [PMID: 39852848 PMCID: PMC11768832 DOI: 10.3390/vaccines13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Effective cancer therapies must address the tumor microenvironment (TME), a complex network of tumor cells and stromal components, including endothelial, immune, and mesenchymal cells. Durable outcomes require targeting both tumor cells and the TME while minimizing systemic toxicity. Interleukin-2 (IL-2)-based therapies have shown efficacy in cancers such as metastatic melanoma and renal cell carcinoma but are limited by severe side effects. Innovative IL-2-based immunotherapeutic approaches include immunotoxins, such as antibody-drug conjugates, immunocytokines, and antibody-cytokine fusion proteins that enhance tumor-specific delivery. These strategies activate cytotoxic CD8+ T lymphocytes and natural killer (NK) cells, eliciting a potent Th1-mediated anti-tumor response. Modified IL-2 variants with reduced Treg cell activity further improve specificity and reduce immunosuppression. Additionally, IL-2 conjugates with peptides or anti-angiogenic agents offer improved therapeutic profiles. Combining IL-2-based therapies with immune checkpoint inhibitors (ICIs), anti-angiogenic agents, or radiotherapy has demonstrated synergistic potential. Preclinical and clinical studies highlight reduced toxicity and enhanced anti-tumor efficacy, overcoming TME-driven immune suppression. These approaches mitigate the limitations of high-dose soluble IL-2 therapy, promoting immune activation and minimizing adverse effects. This review critically explores advances in IL-2-based therapies, focusing on immunotoxins, immunocytokines, and IL-2 derivatives. Emphasis is placed on their role in combination strategies, showcasing their potential to target the TME and improve clinical outcomes effectively. Also, the use of IL-2 immunocytokines in "in situ" vaccination to relieve the immunosuppression of the TME is discussed.
Collapse
Affiliation(s)
- Sahar Balkhi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
| | - Giorgia Bilato
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| | - Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, 20145 Varese, Italy;
| | - Paola Orecchia
- Pathology and Experimental Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Alessandro Poggi
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| |
Collapse
|
6
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
7
|
Ren Z, Zhang X, Fu YX. Facts and Hopes on Chimeric Cytokine Agents for Cancer Immunotherapy. Clin Cancer Res 2024; 30:2025-2038. [PMID: 38190116 DOI: 10.1158/1078-0432.ccr-23-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/17/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Cytokines are key mediators of immune responses that can modulate the antitumor activity of immune cells. Cytokines have been explored as a promising cancer immunotherapy. However, there are several challenges to cytokine therapy, especially a lack of tumor targeting, resulting in high toxicity and limited efficacy. To overcome these limitations, novel approaches have been developed to engineer cytokines with improved properties, such as chimeric cytokines. Chimeric cytokines are fusion proteins that combine different cytokine domains or link cytokines to antibodies (immunocytokines) or other molecules that can target specific receptors or cells. Chimeric cytokines can enhance the selectivity and stability of cytokines, leading to reduced toxicity and improved efficacy. In this review, we focus on two promising cytokines, IL2 and IL15, and summarize the current advances and challenges of chimeric cytokine design and application for cancer immunotherapy. Most of the current approaches focus on increasing the potency of cytokines, but another important goal is to reduce toxicity. Cytokine engineering is promising for cancer immunotherapy as it can enhance tumor targeting while minimizing adverse effects.
Collapse
Affiliation(s)
| | - Xuhao Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yang-Xin Fu
- Changping Laboratory, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Dean I, Lee CYC, Tuong ZK, Li Z, Tibbitt CA, Willis C, Gaspal F, Kennedy BC, Matei-Rascu V, Fiancette R, Nordenvall C, Lindforss U, Baker SM, Stockmann C, Sexl V, Hammond SA, Dovedi SJ, Mjösberg J, Hepworth MR, Carlesso G, Clatworthy MR, Withers DR. Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity. Nat Commun 2024; 15:683. [PMID: 38267402 PMCID: PMC10808449 DOI: 10.1038/s41467-024-44789-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Immune cell dysfunction within the tumor microenvironment (TME) undermines the control of cancer progression. Established tumors contain phenotypically distinct, tumor-specific natural killer (NK) cells; however, the temporal dynamics, mechanistic underpinning and functional significance of the NK cell compartment remains incompletely understood. Here, we use photo-labeling, combined with longitudinal transcriptomic and cellular analyses, to interrogate the fate of intratumoral NK cells. We reveal that NK cells rapidly lose effector functions and adopt a distinct phenotypic state with features associated with tissue residency. NK cell depletion from established tumors did not alter tumor growth, indicating that intratumoral NK cells cease to actively contribute to anti-tumor responses. IL-15 administration prevented loss of function and improved tumor control, generating intratumoral NK cells with both tissue-residency characteristics and enhanced effector function. Collectively, our data reveals the fate of NK cells after recruitment into tumors and provides insight into how their function may be revived.
Collapse
Affiliation(s)
- Isaac Dean
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Colin Y C Lee
- Department of Medicine, Molecular Immunity Unit, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Zewen K Tuong
- Department of Medicine, Molecular Immunity Unit, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Zhi Li
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Christopher A Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Fabrina Gaspal
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bethany C Kennedy
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Veronika Matei-Rascu
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rémi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Caroline Nordenvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrik Lindforss
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Syed Murtuza Baker
- Division of Informatics, Imaging & Data Science, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Clinical Lung and Allergy Research, Medical unit for Lung and Allergy Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Menna R Clatworthy
- Department of Medicine, Molecular Immunity Unit, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
Gellert J, Jäkel A, Danielczyk A, Goletz C, Lischke T, Flechner A, Dix L, Günzl A, Kehler P. GT-00AxIL15, a Novel Tumor-Targeted IL-15-Based Immunocytokine for the Treatment of TA-MUC1-Positive Solid Tumors: Preclinical In Vitro and In Vivo Pharmacodynamics and Biodistribution Studies. Int J Mol Sci 2024; 25:1406. [PMID: 38338686 PMCID: PMC10855649 DOI: 10.3390/ijms25031406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
GT-00AxIL15 is a novel interleukin-15-based immunocytokine targeting a tumor-specific, glycosylated epitope of MUC1 (TA-MUC1). We characterized mode of action, pharmacokinetic (PK) and pharmacodynamic (PD) properties and investigated the relevance of TA-MUC1 binding for the concept of delivering IL-15 to solid tumors. In vitro pharmacology was analyzed in binding and cell-based assays. The in vivo PK profile and IL-15-mediated PD effects of GT-00AxIL15 were investigated in tumor-free mice. Tumor accumulation, immune infiltration and anti-tumor activity were assessed in TA-MUC1+ syngeneic and xenogeneic murine tumor models. GT-00AxIL15 was shown to specifically bind TA-MUC1 on tumor cells via its mAb moiety, to IL-15 receptors on immune cells via its IL-15 fusion modules and to FcγRs via its functional Fc-part. In vitro, NK, NKT and CD8+ T cells were activated and proliferated, leading to anti-tumor cytotoxicity and synergism with antibody-dependent cellular cytotoxicity (ADCC)-mediating mAbs. In vivo, GT-00AxIL15 exhibited favorable PK characteristics with a serum half-life of 13 days and specifically accumulated in TA-MUC1+ tumors. In the tumor microenvironment, GT-00AxIL15 induced robust immune activation and expansion and mediated anti-metastatic and anti-tumor effects in syngeneic and xenograft tumor models. These results support the rationale to improve PK and anti-tumor efficacy of IL-15 by increasing local concentrations at the tumor site via conjugation to a TA-MUC1 binding mAb. The tumor-selective expression pattern of TA-MUC1, powerful immune activation and anti-tumor cytotoxicity, long serum half-life and tumor targeting properties, render GT-00AxIL15 a promising candidate for treatment of solid tumors with high medical need, e.g., ovarian, lung and breast cancer.
Collapse
Affiliation(s)
- Johanna Gellert
- Glycotope GmbH, Robert-Roessle-Str.10, 13125 Berlin, Germany (A.D.); (T.L.); (P.K.)
| | - Anika Jäkel
- Glycotope GmbH, Robert-Roessle-Str.10, 13125 Berlin, Germany (A.D.); (T.L.); (P.K.)
| | - Antje Danielczyk
- Glycotope GmbH, Robert-Roessle-Str.10, 13125 Berlin, Germany (A.D.); (T.L.); (P.K.)
| | - Christoph Goletz
- Glycotope GmbH, Robert-Roessle-Str.10, 13125 Berlin, Germany (A.D.); (T.L.); (P.K.)
| | - Timo Lischke
- Glycotope GmbH, Robert-Roessle-Str.10, 13125 Berlin, Germany (A.D.); (T.L.); (P.K.)
| | - Anke Flechner
- Glycotope GmbH, Robert-Roessle-Str.10, 13125 Berlin, Germany (A.D.); (T.L.); (P.K.)
| | - Laura Dix
- Glycotope GmbH, Robert-Roessle-Str.10, 13125 Berlin, Germany (A.D.); (T.L.); (P.K.)
| | | | - Patrik Kehler
- Glycotope GmbH, Robert-Roessle-Str.10, 13125 Berlin, Germany (A.D.); (T.L.); (P.K.)
| |
Collapse
|
10
|
Luo M, Gong W, Zhang Y, Li H, Ma D, Wu K, Gao Q, Fang Y. New insights into the stemness of adoptively transferred T cells by γc family cytokines. Cell Commun Signal 2023; 21:347. [PMID: 38049832 PMCID: PMC10694921 DOI: 10.1186/s12964-023-01354-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 12/06/2023] Open
Abstract
T cell-based adoptive cell therapy (ACT) has exhibited excellent antitumoral efficacy exemplified by the clinical breakthrough of chimeric antigen receptor therapy (CAR-T) in hematologic malignancies. It relies on the pool of functional T cells to retain the developmental potential to serially kill targeted cells. However, failure in the continuous supply and persistence of functional T cells has been recognized as a critical barrier to sustainable responses. Conferring stemness on infused T cells, yielding stem cell-like memory T cells (TSCM) characterized by constant self-renewal and multilineage differentiation similar to pluripotent stem cells, is indeed necessary and promising for enhancing T cell function and sustaining antitumor immunity. Therefore, it is crucial to identify TSCM cell induction regulators and acquire more TSCM cells as resource cells during production and after infusion to improve antitumoral efficacy. Recently, four common cytokine receptor γ chain (γc) family cytokines, encompassing interleukin-2 (IL-2), IL-7, IL-15, and IL-21, have been widely used in the development of long-lived adoptively transferred TSCM in vitro. However, challenges, including their non-specific toxicities and off-target effects, have led to substantial efforts for the development of engineered versions to unleash their full potential in the induction and maintenance of T cell stemness in ACT. In this review, we summarize the roles of the four γc family cytokines in the orchestration of adoptively transferred T cell stemness, introduce their engineered versions that modulate TSCM cell formation and demonstrate the potential of their various combinations. Video Abstract.
Collapse
Affiliation(s)
- Mengshi Luo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjian Gong
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuewen Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Leidner R, Conlon K, McNeel DG, Wang-Gillam A, Gupta S, Wesolowski R, Chaudhari M, Hassounah N, Lee JB, Ho Lee L, O'Keeffe JA, Lewis N, Pavlakis GN, Thompson JA. First-in-human phase I/Ib study of NIZ985, a recombinant heterodimer of IL-15 and IL-15Rα, as a single agent and in combination with spartalizumab in patients with advanced and metastatic solid tumors. J Immunother Cancer 2023; 11:e007725. [PMID: 37907221 PMCID: PMC10619015 DOI: 10.1136/jitc-2023-007725] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Preclinically, interleukin-15 (IL-15) monotherapy promotes antitumor immune responses, which are enhanced when IL-15 is used in combination with immune checkpoint inhibitors (ICIs). This first-in-human study investigated NIZ985, a recombinant heterodimer comprising physiologically active IL-15 and IL-15 receptor α, as monotherapy and in combination with spartalizumab, an anti-programmed cell death protein-1 (anti-PD-1) monoclonal antibody, in patients with advanced solid tumors. METHODS This phase I/Ib study had two dose-escalation arms: single-agent NIZ985 administered subcutaneously thrice weekly (TIW, 2 weeks on/2 weeks off) or once weekly (QW, 3 weeks on/1 week off), and NIZ985 TIW or QW administered subcutaneously plus spartalizumab (400 mg intravenously every 4 weeks (Q4W)). The dose-expansion phase investigated NIZ985 1 µg/kg TIW/spartalizumab 400 mg Q4W in patients with anti-PD-1-sensitive or anti-PD-1-resistant tumor types stratified according to approved indications. The primary objectives were the safety, tolerability, and the maximum tolerated doses (MTDs) and/or recommended dose for expansion (RDE) of NIZ985 for the dose-expansion phase. RESULTS As of February 17, 2020, 83 patients (median age: 63 years; range: 28-85) were treated in dose escalation (N=47; single-agent NIZ985: n=27; NIZ985/spartalizumab n=20) and dose expansion (N=36). No dose-limiting toxicities occurred nor was the MTD identified. The most common treatment-related adverse event (TRAE) was injection site reaction (primarily grades 1-2; single-agent NIZ985: 85% (23/27)); NIZ985/spartalizumab: 89% [50/56]). The most common grade 3-4 TRAE was decreased lymphocyte count (single-agent NIZ985: 7% [2/27]; NIZ985/spartalizumab: 5% [3/56]). The best overall response was stable disease in the single-agent arm (30% (8/27)) and partial response in the NIZ985/spartalizumab arm (5% [3/56]; melanoma, pancreatic cancer, gastric cancer). In dose expansion, the disease control rate was 45% (5/11) in the anti-PD-1-sensitive and 20% (5/25) in the anti-PD-1-resistant tumor type cohorts. Pharmacokinetic parameters were similar across arms. The transient increase in CD8+ T cell and natural killer cell proliferation and induction of several cytokines occurred in response to the single-agent and combination treatments. CONCLUSIONS NIZ985 was well tolerated in the single-agent and NIZ985/spartalizumab regimens. The RDE was established at 1 µg/kg TIW. Antitumor activity of the combination was observed against tumor types known to have a poor response to ICIs. TRIAL REGISTRATION NUMBER NCT02452268.
Collapse
Affiliation(s)
- Rom Leidner
- EACRI, Providence Cancer Institute, Portland, Oregon, USA
| | - Kevin Conlon
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas G McNeel
- Department of Medicine, Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sumati Gupta
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Robert Wesolowski
- Division of Medical Oncology, James Cancer Hospital and the Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | - Nadia Hassounah
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Jong Bong Lee
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Lang Ho Lee
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Jessica A O'Keeffe
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Nancy Lewis
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - George N Pavlakis
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | | |
Collapse
|
12
|
Zhang Q, Zhang J, Tian Y, Wang J, Jin G, Liu F. Ki67-targeted oncolytic adenovirus expressing IL-15 improves intratumoral T cell infiltration and PD-L1 expression in glioblastoma. Virology 2023; 587:109885. [PMID: 37738842 DOI: 10.1016/j.virol.2023.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Glioblastoma (GBM) is a devastating malignant brain tumor. Current therapeutic strategies targeting tumor cells have limited efficacy owing to the immunosuppressive microenvironment. Previous work demonstrated that the targeted Ad5-Ki67/IL-15 could specifically kill tumor cells and decrease the angiogenic capacity in vitro. However, the efficacy of this virus in vivo and its effect on the tumor microenvironment (TME) has not been elucidated. In this study, we found that the Ad5-Ki67/IL-15 treatment down-regulated PD-L1 expression of glioma cells. More importantly, Ad5-Ki67/IL-15 also remodeled the tumor microenvironment via increasing intratumoral T cell infiltration and PD-L1 improvement in a GBM model, as well as the increase of antitumor cytokines, thereby improving the efficacy of GBM treatment. Furthermore, a combination of Ad5-Ki67/IL-15 with PD-L1 blockade significantly inhibits tumor growth in the GBM model. These results provide new insight into the therapeutic effects of targeted oncolytic Ad5-Ki67/IL-15 in patients with GBM, indicating potential clinical applications.
Collapse
Affiliation(s)
- Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Yifu Tian
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China.
| |
Collapse
|
13
|
Sindaco P, Pandey H, Isabelle C, Chakravarti N, Brammer JE, Porcu P, Mishra A. The role of interleukin-15 in the development and treatment of hematological malignancies. Front Immunol 2023; 14:1141208. [PMID: 37153603 PMCID: PMC10157481 DOI: 10.3389/fimmu.2023.1141208] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Cytokines are a vital component of the immune system that controls the activation and growth of blood cells. However, chronic overexpression of cytokines can trigger cellular events leading to malignant transformation. The cytokine interleukin-15 (IL-15) is of particular interest, which has been shown to contribute to the development and progression of various hematological malignancies. This review will provide an overview of the impact of the immunopathogenic function of IL-15 by studying its role in cell survival, proliferation, inflammation, and treatment resistance. We will also review therapeutic approaches for inhibiting IL-15 in blood cancers.
Collapse
Affiliation(s)
- Paola Sindaco
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hritisha Pandey
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Colleen Isabelle
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nitin Chakravarti
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Pierluigi Porcu
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anjali Mishra
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Anjali Mishra,
| |
Collapse
|
14
|
Antosova Z, Podzimkova N, Tomala J, Augustynkova K, Sajnerova K, Nedvedova E, Sirova M, de Martynoff G, Bechard D, Moebius U, Kovar M, Spisek R, Adkins I. SOT101 induces NK cell cytotoxicity and potentiates antibody-dependent cell cytotoxicity and anti-tumor activity. Front Immunol 2022; 13:989895. [PMID: 36300122 PMCID: PMC9590108 DOI: 10.3389/fimmu.2022.989895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
SOT101 is a superagonist fusion protein of interleukin (IL)-15 and the IL-15 receptor α (IL-15Rα) sushi+ domain, representing a promising clinical candidate for the treatment of cancer. SOT101 among other immune cells specifically stimulates natural killer (NK) cells and memory CD8+ T cells with no significant expansion or activation of the regulatory T cell compartment. In this study, we showed that SOT101 induced expression of cytotoxic receptors NKp30, DNAM-1 and NKG2D on human NK cells. SOT101 stimulated dose-dependent proliferation and the relative expansion of both major subsets of human NK cells, CD56brightCD16- and CD56dimCD16+, and these displayed an enhanced cytotoxicity in vitro. Using human PBMCs and isolated NK cells, we showed that SOT101 added concomitantly or used for immune cell pre-stimulation potentiated clinically approved monoclonal antibodies Cetuximab, Daratumumab and Obinutuzumab in killing of tumor cells in vitro. The anti-tumor efficacy of SOT101 in combination with Daratumumab was assessed in a solid multiple myeloma xenograft in CB17 SCID mouse model testing several combination schedules of administration in the early and late therapeutic setting of established tumors in vivo. SOT101 and Daratumumab monotherapies decreased with various efficacy tumor growth in vivo in dependence on the advancement of the tumor development. The combination of both drugs showed the strongest anti-tumor efficacy. Specifically, the sequencing of both drugs did not matter in the early therapeutic setting where a complete tumor regression was observed in all animals. In the late therapeutic treatment of established tumors Daratumumab followed by SOT101 administration or a concomitant administration of both drugs showed a significant anti-tumor efficacy over the respective monotherapies. These results suggest that SOT101 might significantly augment the anti-tumor activity of therapeutic antibodies by increasing NK cell-mediated activity in patients. These results support the evaluation of SOT101 in combination with Daratumumab in clinical studies and present a rationale for an optimal clinical dosing schedule selection.
Collapse
Affiliation(s)
| | - Nada Podzimkova
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Jakub Tomala
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Eva Nedvedova
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
| | - Milada Sirova
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Ulrich Moebius
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radek Spisek
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Irena Adkins
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
- *Correspondence: Irena Adkins,
| |
Collapse
|
15
|
Zhang Y, Zhuang Q, Wang F, Zhang C, Xu C, Gu A, Zhong WH, Hu Y, Zhong X. Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limiting IL-15 systemic exposure during CAR-T immunotherapy. J Transl Med 2022; 20:432. [PMID: 36167591 PMCID: PMC9516829 DOI: 10.1186/s12967-022-03626-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chimeric antigen receptor (CAR)-T cell therapy is a powerful adoptive immunotherapy against both B-cell malignancies and some types of solid tumors. Interleukin (IL) -15 is an important immune stimulator that may provide ideal long-term persistent CAR-T cells. However, higher base line or peak serum IL-15 levels are also related to severe toxicity, such as cytokine release syndrome (CRS), graft-versus-host disease (GVHD), and neurotoxicity. Methods We successfully constructed CD19 specific armored CAR-T cells overexpressing IL-I5 and IL-15 receptor alpha (IL-15Ra). In vitro cell differentiation and viability were monitored by flow cytometry, and an in vivo xenograft mouse models was used to evaluate the anti-tumor efficiency and liver damage of CAR-T cells. Results CAR-T cells overexpressing IL-15 alone demonstrated enhanced viability, retarded exhaustion in vitro and superior tumor-inhibitory effects in vivo. However, these tumor-free mice had lower survival rates, with serious liver injuries, as a possible result of toxicity. As expected, CAR-T cells overexpressing IL-15 combined with IL-15Ra had reduced CD132 expression and released fewer cytokines (IFNγ, IL-2 and IL-15) in vitro, as well as had the tendency to improve mouse survival via repressing the growth of tumor cells and keeping livers healthier compared to CAR-IL-15 T cells. Conclusions These results indicated the importance of IL-15 in enhancing T cells persistence and IL-15Ra in reducing the adverse effects of IL-15, with superior tumor retardation during CAR-T therapy. This study paves the way for the rapid exploitation of IL-15 in adoptive cell therapy in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03626-x.
Collapse
Affiliation(s)
- Ying Zhang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Qinghui Zhuang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Fang Wang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Can Zhang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Chang Xu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Aiqin Gu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | | | - Yi Hu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China. .,Carriage Therapeutics for Affiliation, Beijing, China.
| |
Collapse
|
16
|
Ferrer M, Janowitz T. Training the host organism to enhance anti-cancer immunity. Cancer Cell 2022; 40:703-705. [PMID: 35750051 DOI: 10.1016/j.ccell.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this issue of Cancer Cell, Kurz et al. demonstrate in an orthotopic pancreatic cancer model that low-intensity exercise improves tumor control and response to immunotherapy in an IL-15-dependent manner. Combination therapy, IL-15 super-agonist, anti-PD-1 antibody and chemotherapy, strongly reduces tumor growth. Therefore, the study opens rich translational avenues.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Northwell Health Cancer Institute, New York, NY, USA.
| |
Collapse
|
17
|
Interleukin 15 in Cell-Based Cancer Immunotherapy. Int J Mol Sci 2022; 23:ijms23137311. [PMID: 35806311 PMCID: PMC9266896 DOI: 10.3390/ijms23137311] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Cell-based cancer immunotherapy, such as chimeric antigen receptor (CAR) engineered T and natural killer (NK) cell therapies, has become a revolutionary new pillar in cancer treatment. Interleukin 15 (IL-15), a potent immunostimulatory cytokine that potentiates T and NK cell immune responses, has demonstrated the reliability and potency to potentially improve the therapeutic efficacy of current cell therapy. Structurally similar to interleukin 2 (IL-2), IL-15 supports the persistence of CD8+ memory T cells while inhibiting IL-2-induced T cell death that better maintains long-term anti-tumor immunity. In this review, we describe the biology of IL-15, studies on administrating IL-15 and/or its derivatives as immunotherapeutic agents, and IL-15-armored immune cells in adoptive cell therapy. We also discuss the advantages and challenges of incorporating IL-15 in cell-based immunotherapy and provide directions for future investigation.
Collapse
|
18
|
Recent Advancements in Antifibrotic Therapies for Regression of Liver Fibrosis. Cells 2022; 11:cells11091500. [PMID: 35563807 PMCID: PMC9104939 DOI: 10.3390/cells11091500] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Cirrhosis is a severe form of liver fibrosis that results in the irreversible replacement of liver tissue with scar tissue in the liver. Environmental toxicity, infections, metabolic causes, or other genetic factors including autoimmune hepatitis can lead to chronic liver injury and can result in inflammation and fibrosis. This activates myofibroblasts to secrete ECM proteins, resulting in the formation of fibrous scars on the liver. Fibrosis regression is possible through the removal of pathophysiological causes as well as the elimination of activated myofibroblasts, resulting in the reabsorption of the scar tissue. To date, a wide range of antifibrotic therapies has been tried and tested, with varying degrees of success. These therapies include the use of growth factors, cytokines, miRNAs, monoclonal antibodies, stem-cell-based approaches, and other approaches that target the ECM. The positive results of preclinical and clinical studies raise the prospect of a viable alternative to liver transplantation in the near future. The present review provides a synopsis of recent antifibrotic treatment modalities for the treatment of liver cirrhosis, as well as a brief summary of clinical trials that have been conducted to date.
Collapse
|
19
|
Wei F, Cheng XX, Xue JZ, Xue SA. Emerging Strategies in TCR-Engineered T Cells. Front Immunol 2022; 13:850358. [PMID: 35432319 PMCID: PMC9006933 DOI: 10.3389/fimmu.2022.850358] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T holds great promise for the treatment of human cancers. In this focused review, we summarize basic, translational, and clinical insights into the challenges and opportunities of TCR-T. We review emerging strategies used in current ACT, point out limitations, and propose possible solutions. We highlight the importance of targeting tumor-specific neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-specific therapy, which is able to penetrate into solid tumors and resist the immunosuppressive tumor microenvironment. We believe such a combination approach should lead to a significant improvement in cancer immunotherapies, especially for solid tumors, and may provide a general strategy for the eradication of multiple cancers.
Collapse
Affiliation(s)
- Fang Wei
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Xiao-Xia Cheng
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - John Zhao Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Shao-An Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| |
Collapse
|
20
|
Kim C, Lim M, Woodworth GF, Arvanitis CD. The roles of thermal and mechanical stress in focused ultrasound-mediated immunomodulation and immunotherapy for central nervous system tumors. J Neurooncol 2022; 157:221-236. [PMID: 35235137 PMCID: PMC9119565 DOI: 10.1007/s11060-022-03973-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Focused ultrasound (FUS) is an emerging technology, offering the capability of tuning and prescribing thermal and mechanical treatments within the brain. While early works in utilizing this technology have mainly focused on maximizing the delivery of therapeutics across the blood-brain barrier (BBB), the potential therapeutic impact of FUS-induced controlled thermal and mechanical stress to modulate anti-tumor immunity is becoming increasingly recognized. OBJECTIVE To better understand the roles of FUS-mediated thermal and mechanical stress in promoting anti-tumor immunity in central nervous system tumors, we performed a comprehensive literature review on focused ultrasound-mediated immunomodulation and immunotherapy in brain tumors. METHODS First, we summarize the current clinical experience with immunotherapy. Then, we discuss the unique and distinct immunomodulatory effects of the FUS-mediated thermal and mechanical stress in the brain tumor-immune microenvironment. Finally, we highlight recent findings that indicate that its combination with immune adjuvants can promote robust responses in brain tumors. RESULTS Along with the rapid advancement of FUS technologies into recent clinical trials, this technology through mild-hyperthermia, thermal ablation, mechanical perturbation mediated by microbubbles, and histotripsy each inducing distinct vascular and immunological effects, is offering the unique opportunity to improve immunotherapeutic trafficking and convert immunologically "cold" tumors into immunologically "hot" ones that are prone to generate prolonged anti-tumor immune responses. CONCLUSIONS While FUS technology is clearly accelerating concepts for new immunotherapeutic combinations, additional parallel efforts to detail rational therapeutic strategies supported by rigorous preclinical studies are still in need to leverage potential synergies of this technology with immune adjuvants. This work will accelerate the discovery and clinical implementation of new effective FUS immunotherapeutic combinations for brain tumor patients.
Collapse
Affiliation(s)
- Chulyong Kim
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael Lim
- Department of Neurosurgery, School of Medicine (Oncology), of Neurology, of Otolaryngology, and of Radiation Oncology, Stanford University, Paulo Alto, CA, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Costas D Arvanitis
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Cubitt CC, McClain E, Becker-Hapak M, Foltz JA, Wong P, Wagner JA, Neal CC, Marin ND, Marsala L, Foster M, Schappe T, Soon-Shiong P, Lee J, Berrien-Elliott MM, Fehniger TA. A novel fusion protein scaffold 18/12/TxM activates the IL-12, IL-15, and IL-18 receptors to induce human memory-like natural killer cells. Mol Ther Oncolytics 2022; 24:585-596. [PMID: 35284622 PMCID: PMC8889352 DOI: 10.1016/j.omto.2022.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphoid cells that are emerging as a cellular immunotherapy for various malignancies. NK cells are particularly dependent on interleukin (IL)-15 for their survival, proliferation, and cytotoxic function. NK cells differentiate into memory-like cells with enhanced effector function after a brief activation with IL-12, IL-15, and IL-18. N-803 is an IL-15 superagonist composed of an IL-15 mutant (IL-15N72D) bound to the sushi domain of IL-15Rα fused to the Fc region of IgG1, which results in physiological trans-presentation of IL-15. Here, we describe the creation of a novel triple-cytokine fusion molecule, 18/12/TxM, using the N-803 scaffold fused to IL-18 via the IL-15N72D domain and linked to a heteromeric single-chain IL-12 p70 by the sushi domain of the IL-15Rα. This molecule displays trispecific cytokine activity through its binding and signaling through the individual cytokine receptors. Compared with activation with the individual cytokines, 18/12/TxM induces similar short-term activation and memory-like differentiation of NK cells on both the transcriptional and protein level and identical in vitro and in vivo anti-tumor activity. Thus, N-803 can be modified as a functional scaffold for the creation of cytokine immunotherapies with multiple receptor specificities to activate NK cells for adoptive cellular therapy.
Collapse
Affiliation(s)
- Celia C. Cubitt
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Ethan McClain
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Michelle Becker-Hapak
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Jennifer A. Foltz
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Pamela Wong
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Julia A. Wagner
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Carly C. Neal
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Nancy D. Marin
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Lynne Marsala
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Mark Foster
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Timothy Schappe
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | | | - John Lee
- ImmunityBio, Culver City, CA 90232, USA
| | - Melissa M. Berrien-Elliott
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Todd A. Fehniger
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Rubinstein MP, Williams C, Mart C, Beall J, MacPherson L, Azar J, Swiderska-Syn M, Manca P, Gibney BC, Robinson MD, Krieg C, Hill EG, Taha SA, Rock AD, Lee JH, Soon-Shiong P, Wrangle J. Phase I Trial Characterizing the Pharmacokinetic Profile of N-803, a Chimeric IL-15 Superagonist, in Healthy Volunteers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1362-1370. [PMID: 35228263 DOI: 10.4049/jimmunol.2100066] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
The oncotherapeutic promise of IL-15, a potent immunostimulant, is limited by a short serum t 1/2 The fusion protein N-803 is a chimeric IL-15 superagonist that has a >20-fold longer in vivo t 1/2 versus IL-15. This phase 1 study characterized the pharmacokinetic (PK) profile and safety of N-803 after s.c. administration to healthy human volunteers. Volunteers received two doses of N-803, and after each dose, PK and safety were assessed for 9 d. The primary endpoint was the N-803 PK profile, the secondary endpoint was safety, and immune cell levels and immunogenicity were measures of interest. Serum N-803 concentrations peaked 4 h after administration and declined with a t 1/2 of ∼20 h. N-803 did not cause treatment-emergent serious adverse events (AEs) or grade ≥3 AEs. Injection site reactions, chills, and pyrexia were the most common AEs. Administration of N-803 was well tolerated and accompanied by proliferation of NK cells and CD8+ T cells and sustained increases in the number of NK cells. Our results suggest that N-803 administration can potentiate antitumor immunity.
Collapse
Affiliation(s)
- Mark P Rubinstein
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University James Comprehensive Cancer Center, Columbus, OH
- Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Cameron Williams
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Caroline Mart
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Jonathan Beall
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Linda MacPherson
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University James Comprehensive Cancer Center, Columbus, OH
- Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Marzena Swiderska-Syn
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Paolo Manca
- Department of Medical Oncology, IRCCS Foundation - National Cancer Institute, Milan, Italy
| | - Barry C Gibney
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Carsten Krieg
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Elizabeth G Hill
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | | | | | | | | | - John Wrangle
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC;
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
23
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
24
|
The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cell Mol Immunol 2022; 19:192-209. [PMID: 35043005 PMCID: PMC8803834 DOI: 10.1038/s41423-021-00786-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023] Open
Abstract
Cytokines exert powerful immunomodulatory effects that are critical to physiology and pathology in humans. The application of natural cytokines in clinical studies has not been clearly established, and there are often problems associated with toxicity or lack of efficacy. The key reasons can be attributed to the pleiotropy of cytokine receptors and undesired activation of off-target cells. With a deeper understanding of the structural principles and functional signals of cytokine-receptor interactions, artificial modification of cytokine signaling through protein engineering and synthetic immunology has become an increasingly feasible and powerful approach. Engineered cytokines are designed to selectively target cells. Herein, the theoretical and experimental evidence of cytokine engineering is reviewed, and the "supercytokines" resulting from structural enhancement and the "immunocytokines" generated by antibody fusion are described. Finally, the "engager cytokines" formed by the crosslinking of cytokines and bispecific immune engagers and other synthetic cytokines formed by nonnatural analogs are also discussed.
Collapse
|
25
|
Chada S, Wiederhold D, Menander KB, Sellman B, Talbott M, Nemunaitis JJ, Ahn HM, Jung BK, Yun CO, Sobol RE. Tumor suppressor immune gene therapy to reverse immunotherapy resistance. Cancer Gene Ther 2022; 29:825-834. [PMID: 34349241 PMCID: PMC9209327 DOI: 10.1038/s41417-021-00369-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND While immune checkpoint inhibitors are becoming a standard of care for multiple types of cancer, the majority of patients do not respond to this form of immunotherapy. New approaches are required to overcome resistance to immunotherapies. METHODS We investigated the effects of adenoviral p53 (Ad-p53) gene therapy in combination with immune checkpoint inhibitors and selective IL2 or IL15 CD122/132 agonists in the aggressive B16F10 tumor model resistant to immunotherapies. To assess potential mechanisms of action, pre- and post- Ad-p53 treatment biopsies were evaluated for changes in gene-expression profiles by Nanostring IO 360 assays. RESULTS The substantial synergy of "triplet" Ad-p53 + CD122/132 + anti-PD-1 therapy resulted in potential curative effects associated with the complete tumor remissions of both the primary and contralateral tumors. Interestingly, contralateral tumors, which were not injected with Ad-p53 showed robust abscopal effects resulting in statistically significant decreases in tumor size and increased survival (p < 0.001). None of the monotherapies or doublet treatments induced the complete tumor regressions. Ad-p53 treatment increased interferon, CD8+ T cell, immuno-proteosome antigen presentation, and tumor inflammation gene signatures. Ad-p53 treatment also decreased immune-suppressive TGF-beta, beta-catenin, macrophage, and endothelium gene signatures, which may contribute to enhanced immune checkpoint inhibitor (CPI) efficacy. Unexpectedly, a number of previously unidentified, strongly p53 downregulated genes associated with stromal pathways and IL10 expression identified novel anticancer therapeutic applications. CONCLUSIONS These results imply the ability of Ad-p53 to induce efficacious local and systemic antitumor immune responses with the potential to reverse resistance to immune checkpoint inhibitor therapy when combined with CD122/132 agonists and immune checkpoint blockade. Our findings further imply that Ad-p53 has multiple complementary immune mechanisms of action, which support future clinical evaluation of triplet Ad-p53, CD122/132 agonist, and immune checkpoint inhibitor combination treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - John J. Nemunaitis
- grid.411726.70000 0004 0628 5895University of Toledo Medical Center, Eleanor N. Dana Cancer Center, Toledo, OH USA
| | - Hyo Min Ahn
- grid.49606.3d0000 0001 1364 9317Hanyang University, Seoul, South Korea
| | - Bo-Kyeong Jung
- grid.49606.3d0000 0001 1364 9317Hanyang University, Seoul, South Korea
| | - Chae-Ok Yun
- grid.49606.3d0000 0001 1364 9317Hanyang University, Seoul, South Korea ,grid.49606.3d0000 0001 1364 9317Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
| | | |
Collapse
|
26
|
Leem G, Jeon M, Kim KW, Jeong S, Choi SJ, Lee YJ, Kim ES, Lee JI, Ha SY, Park SH, Shim HS, Lee JG, Kang SM, Shin EC. Tumour-infiltrating bystander CD8 + T cells activated by IL-15 contribute to tumour control in non-small cell lung cancer. Thorax 2021; 77:769-780. [PMID: 34853159 DOI: 10.1136/thoraxjnl-2021-217001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumour-unrelated, virus-specific bystander CD8+ T cells were recently shown to be abundant among tumour-infiltrating lymphocytes (TILs). However, their roles in tumour immunity have not been elucidated yet. METHODS We studied the characteristics of bystander CD8+ TILs from non-small cell lung cancer (NSCLC) tissues (N=66) and their activation by interleukin (IL)-15 to repurpose them for tumour immunotherapy. RESULTS We show that bystander CD8+ TILs specific to various viruses are present in human NSCLC tissues. We stimulated CD8+ TILs ex vivo using IL-15 without cognate antigens and found that IL-15 treatment upregulated NKG2D expression on CD8+ TILs, resulting in NKG2D-dependent production of interferon (IFN)-γ (p=0.0006). Finally, we tested whether IL-15 treatment can control tumour growth in a murine NSCLC model with or without a history of murine cytomegalovirus (MCMV) infection. IL-15 treatment reduced the number of tumour nodules in the lung only in mice with MCMV infection (p=0.0037). We confirmed that MCMV-specific bystander CD8+ TILs produced interferon (IFN)-γ after IL-15 treatment, and that IL-15 treatment in MCMV-infected mice upregulated tumour necrosis factor-α and IFN-γ responsive genes in tumour microenvironment. CONCLUSION Thus, the study demonstrates that bystander CD8+ TILs can be repurposed by IL-15 for tumour immunotherapy.
Collapse
Affiliation(s)
- Galam Leem
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Minwoo Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Kun Woo Kim
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Incheon, Korea (the Republic of)
| | - Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Yong Joon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Eui-Soon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Jae-Ik Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Incheon, Korea (the Republic of)
| | - Seung Yeon Ha
- Department of Pathology, Gachon University Gil Medical Center, Incheon, Korea (the Republic of)
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Hyo Sup Shim
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Jin Gu Lee
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Shin Myung Kang
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea (the Republic of)
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| |
Collapse
|
27
|
Conlon K, Watson DC, Waldmann TA, Valentin A, Bergamaschi C, Felber BK, Peer CJ, Figg WD, Potter EL, Roederer M, McNeel DG, Thompson JA, Gupta S, Leidner R, Wang-Gillam A, Parikh NS, Long D, Kurtulus S, Ho Lee L, Chowdhury NR, Bender F, Pavlakis GN. Phase I study of single agent NIZ985, a recombinant heterodimeric IL-15 agonist, in adult patients with metastatic or unresectable solid tumors. J Immunother Cancer 2021; 9:jitc-2021-003388. [PMID: 34799399 PMCID: PMC8606766 DOI: 10.1136/jitc-2021-003388] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Background NIZ985 is a recombinant heterodimer of physiologically active interleukin (IL-)15 and IL-15 receptor alpha. In preclinical models, NIZ985 promotes cytotoxic lymphocyte proliferation, killing function, and organ/tumor infiltration, with resultant anticancer effects. In this first-in-human study, we assessed the safety, pharmacokinetics, and immune effects of NIZ985 in patients with metastatic or unresectable solid tumors. Methods Single agent NIZ985 dose escalation data are reported from a phase I dose escalation/expansion study of NIZ985 as monotherapy. Adult patients (N=14) received 0.25, 0.5, 1, 2 or 4 µg/kg subcutaneous NIZ985 three times weekly (TIW) for the first 2 weeks of each 28-day cycle, in an accelerated 3+3 dose escalation trial design. IL-15 and endogenous cytokines were monitored by ELISA and multiplexed electrochemiluminescent assays. Multiparameter flow cytometry assessed the frequency, phenotype and proliferation of peripheral blood mononuclear cells. Preliminary antitumor activity was assessed by overall response rate (Response Evaluation Criteria in Solid Tumors V.1.1). Results As of March 2, 2020, median treatment duration was 7.5 weeks (range 1.1–77.1). Thirteen patients had discontinued and one (uveal melanoma) remains on treatment with stable disease. Best clinical response was stable disease (3 of 14 patients; 21%). The most frequent adverse events (AEs) were circular erythematous injection site reactions (100%), chills (71%), fatigue (57%), and fever (50%). Treatment-related grade 3/4 AEs occurred in six participants (43%); treatment-related serious AEs (SAEs) in three (21%). The per-protocol maximum tolerated dose was not reached. Pharmacokinetic accumulation of serum IL-15 in the first week was followed by significantly lower levels in week 2, likely due to more rapid cytokine consumption by an expanding lymphocyte pool. NIZ985 treatment was associated with increases in several cytokines, including interferon (IFN)-γ, IL-18, C-X-C motif chemokine ligand 10, and tumor necrosis factor-β, plus significant induction of cytotoxic lymphocyte proliferation (including natural killer and CD8+ T cells), increased CD16+ monocytes, and increased CD163+ macrophages at injection sites. Conclusions Subcutaneous NIZ985 TIW was generally well tolerated in patients with advanced cancer and produced immune activation paralleling preclinical observations, with induction of IFN-γ and proliferation of cytotoxic lymphocytes. Due to delayed SAEs at the two highest dose levels, administration is being changed to once-weekly in a revised protocol, as monotherapy and combined with checkpoint inhibitor spartalizumab. These alterations are expected to maximize the potential of NIZ985 as a novel immunotherapy. Trial registration number NCT02452268.
Collapse
Affiliation(s)
- Kevin Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Dionysios C Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA.,University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - William D Figg
- Clinical Pharmacology Program, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - E Lake Potter
- Vaccine Research Center, NIAID, Bethesda, Maryland, USA
| | | | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Rom Leidner
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Medicine, Washington University in Saint Louis, St Louis, Missouri, USA
| | - Nehal S Parikh
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - Debby Long
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - Sema Kurtulus
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - Lang Ho Lee
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | | | - Florent Bender
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
28
|
Gordon SM. Interleukin-15 in Outcomes of Pregnancy. Int J Mol Sci 2021; 22:11094. [PMID: 34681751 PMCID: PMC8541205 DOI: 10.3390/ijms222011094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine that classically acts to support the development, maintenance, and function of killer lymphocytes. IL-15 is abundant in the uterus prior to and during pregnancy, but it is subject to tight spatial and temporal regulation. Both mouse models and human studies suggest that homeostasis of IL-15 is essential for healthy pregnancy. Dysregulation of IL-15 is associated with adverse outcomes of pregnancy. Herein, we review producers of IL-15 and responders to IL-15, including non-traditional responders in the maternal uterus and fetal placenta. We also review regulation of IL-15 at the maternal-fetal interface and propose mechanisms of action of IL-15 to facilitate additional study of this critical cytokine in the context of pregnancy.
Collapse
Affiliation(s)
- Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Do-Thi VA, Lee H, Jeong HJ, Lee JO, Kim YS. Protective and Therapeutic Effects of an IL-15:IL-15Rα-Secreting Cell-Based Cancer Vaccine Using a Baculovirus System. Cancers (Basel) 2021; 13:cancers13164039. [PMID: 34439192 PMCID: PMC8394727 DOI: 10.3390/cancers13164039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
This study reports the use of the BacMam system to deliver and express self-assembling IL-15 and IL-15Rα genes to murine B16F10 melanoma and CT26 colon cancer cells. BacMam-based IL-15 and IL-15Rα were well-expressed and assembled to form the biologically functional IL-15:IL-15Rα complex. Immunization with this IL-15:IL-15Rα cancer vaccine delayed tumor growth in mice by inducing effector memory CD4+ and CD8+ cells and effector NK cells which are tumor-infiltrating. It caused strong antitumor immune responses of CD8+ effector cells in a tumor-antigen specific manner both in vitro and in vivo and significantly attenuated Treg cells which a control virus-infected cancer vaccine could induce. Post-treatment with this cancer vaccine after a live cancer cell injection also prominently delayed the growth of the tumor. Collectively, we demonstrate a vaccine platform consisting of BacMam virus-infected B16F10 or CT26 cancer cells that secrete IL-15:IL-15Rα. This study is the first demonstration of a functionally competent soluble IL-15:IL-15Rα complex-related cancer vaccine using a baculovirus system and advocates that the BacMam system can be used as a secure and rapid method of producing a protective and therapeutic cancer vaccine.
Collapse
Affiliation(s)
- Van Anh Do-Thi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Hye Jin Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
| | - Jie-Oh Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
- Correspondence: (J.-O.L.); (Y.S.K.)
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (J.-O.L.); (Y.S.K.)
| |
Collapse
|
30
|
McArdel SL, Dugast AS, Hoover ME, Bollampalli A, Hong E, Castano Z, Leonard SC, Pawar S, Mellen J, Muriuki K, McLaughlin DC, Bayhi N, Carpenter CL, Turka LA, Wickham TJ, Elloul S. Anti-tumor effects of RTX-240: an engineered red blood cell expressing 4-1BB ligand and interleukin-15. Cancer Immunol Immunother 2021; 70:2701-2719. [PMID: 34244816 PMCID: PMC8360899 DOI: 10.1007/s00262-021-03001-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023]
Abstract
Recombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.
Collapse
Affiliation(s)
| | | | | | | | - Enping Hong
- Rubius Therapeutics® Inc., Cambridge, MA, USA
| | | | | | - Sneha Pawar
- Rubius Therapeutics® Inc., Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xue D, Hsu E, Fu YX, Peng H. Next-generation cytokines for cancer immunotherapy. Antib Ther 2021; 4:123-133. [PMID: 34263141 PMCID: PMC8271143 DOI: 10.1093/abt/tbab014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Most studies focus on the first and second signals of T cell activation. However, the roles of cytokines in immunotherapy are not fully understood, and cytokines have not been widely used in patient care. Clinical application of cytokines is limited due to their short half-life in vivo, severe toxicity at therapeutic doses, and overall lack of efficacy. Several modifications have been engineered to extend their half-life and increase tumor targeting, including polyethylene glycol conjugation, fusion to tumor-targeting antibodies, and alteration of cytokine/cell receptor-binding affinity. These modifications demonstrate an improvement in either increased antitumor efficacy or reduced toxicity. However, these cytokine engineering strategies may still be improved further, as each strategy poses advantages and disadvantages in the delicate balance of targeting tumor cells, tumor-infiltrating lymphocytes, and peripheral immune cells. This review focuses on selected cytokines, including interferon-α, interleukin (IL)-2, IL-15, IL-21, and IL-12, in both preclinical studies and clinical applications. We review next-generation designs of these cytokines that improve half-life, tumor targeting, and antitumor efficacy. We also present our perspectives on the development of new strategies to potentiate cytokine-based immunotherapy.
Collapse
Affiliation(s)
- Diyuan Xue
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hua Peng
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China
| |
Collapse
|
32
|
Xu H, Shi M, Shao C, Li H, Wu J, Yu Y, Fang F, Guo Y, Xiao W. Development of IL-15/IL-15Rα sushi domain-IgG4 Fc complexes in Pichia pastoris with potent activities and prolonged half-lives. Microb Cell Fact 2021; 20:115. [PMID: 34107983 PMCID: PMC8190845 DOI: 10.1186/s12934-021-01605-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interleukin-15 (IL-15) is a critical cytokine for the development, proliferation, and function of natural killer (NK) cells, NKT cells, and CD8+ memory T cells and has become one of the most promising protein molecules for the treatment of cancer and viral diseases. However, there are several limitations in applying IL-15 in therapy, such as its low yield in vitro, limited potency, and short half-life in vivo. To date, there are several recombinant IL-15 agonists based on configurational modifications that are being pursued in the treatment of cancer, such as ALT-803, which are mainly produced from mammalian cells. RESULTS In this study, we designed two different forms of the IL-15 complex, which were formed by the noncovalent assembly of IL-15 with dimeric or monomeric sushi domain of IL-15 receptor α (SuIL-15Rα)-IgG4 Fc fusion protein and designated IL-15/SuIL-15Rα-dFc and IL-15/SuIL-15Rα-mFc, respectively. The two IL-15 complexes were expressed in Pichia pastoris (P. pastoris), and their activities and half-lives were evaluated and compared. Pharmacokinetic analysis showed that IL-15/SuIL-15Rα-dFc had a half-life of 14.26 h while IL-15/SuIL-15Rα-mFc had a half-life of 9.16 h in mice, which were much longer than the 0.7-h half-life of commercial recombinant human IL-15 (rhIL-15). Treatment of mice with intravenous injection of the two IL-15 complexes resulted in significant increases in NK cells, NKT cells, and memory CD8+ T cells, which were not observed after rhIL-15 treatment. Treatment of human peripheral blood mononuclear cells (PBMCs) from healthy donors with the two IL-15 complexes yielded enhanced NK and CD8+ T cell activation and proliferation, which was comparable to the effect of rhIL-15. CONCLUSIONS These findings indicate that the IL-15/SuIL-15Rα-dFc and IL-15/SuIL-15Rα-mFc produced in P. pastoris exhibit potent activities and prolonged half-lives and may serve as superagonists for immunotherapy in further research and applications.
Collapse
Affiliation(s)
- Huan Xu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Mingyang Shi
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Changsheng Shao
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Hao Li
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Jing Wu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yin Yu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Fang Fang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yugang Guo
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Weihua Xiao
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
33
|
Desbois M, Béal C, Charrier M, Besse B, Meurice G, Cagnard N, Jacques Y, Béchard D, Cassard L, Chaput N. IL-15 superagonist RLI has potent immunostimulatory properties on NK cells: implications for antimetastatic treatment. J Immunother Cancer 2021; 8:jitc-2020-000632. [PMID: 32532840 PMCID: PMC7295443 DOI: 10.1136/jitc-2020-000632] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background As the immune system is compromised in patients with cancer, therapeutic strategies to stimulate immunity appear promising, to avoid relapse and increase long-term overall survival. Interleukin-15 (IL-15) has similar properties to IL-2, but does not cause activation-induced cell death nor activation and proliferation of regulatory T cells (Treg), which makes it a serious candidate for anticancer immunotherapy. However, IL-15 has a short half-life and high doses are needed to achieve responses. Designed to enhance its activity, receptor-linker-IL-15 (RLI) (SO-C101) is a fusion molecule of human IL-15 covalently linked to the human IL-15Rα sushi+ domain currently assessed in a phase I/Ib clinical trial on patients with advanced/metastatic solid cancer. Methods We investigated the antimetastatic activity of RLI in a 4T1 mouse mammary carcinoma that spontaneously metastasizes and evaluated its immunomodulatory role in the metastatic lung microenvironment. We further characterized the proliferation, maturation and cytotoxic functions of natural killer (NK) cells in tumor-free mice treated with RLI. Finally, we explored the effect of RLI on human NK cells from healthy donors and patients with non-small cell lung cancer (NSCLC). Results RLI treatment displayed antimetastatic properties in the 4T1 mouse model. By characterizing the lung microenvironment, we observed that RLI restored the balance between NK cells and neutrophils (CD11b+ Ly6Ghigh Ly6Clow) that massively infiltrate lungs of 4T1-tumor bearing mice. In addition, the ratio between NK cells and Treg was strongly increased by RLI treatment. Further pharmacodynamic studies in tumor-free mice revealed superior proliferative and cytotoxic functions on NK cells after RLI treatment compared with IL-15 alone. Characterization of the maturation stage of NK cells demonstrated that RLI favored accumulation of CD11b+ CD27high KLRG1+ mature NK cells. Finally, RLI demonstrated potent immunostimulatory properties on human NK cells by inducing proliferation and activation of NK cells from healthy donors and enhancing cytotoxic responses to NKp30 crosslinking in NK cells from patients with NSCLC. Conclusions Collectively, our work demonstrates superior activity of RLI compared with rhIL-15 in modulating and activating NK cells and provides additional evidences for a therapeutic strategy using RLI as antimetastatic molecule.
Collapse
Affiliation(s)
- Mélanie Desbois
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France.,Cytune Pharma, Nantes, France.,Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, Île-de-France, France
| | - Coralie Béal
- Centre d'investigation Clinique Biothérapie 1428, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Mélinda Charrier
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France.,Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, Île-de-France, France.,Centre d'investigation Clinique Biothérapie 1428, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Benjamin Besse
- Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, Île-de-France, France.,Comité de Pathologie Thoracique, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Guillaume Meurice
- Plateforme de Bioinformatique, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Nicolas Cagnard
- Plateforme de Bioinformatique, Université Paris Descartes, Paris, Île-de-France, France
| | | | | | - Lydie Cassard
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France
| | - Nathalie Chaput
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France .,Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The use of cytokines in harnessing the immune system to eradicate cancer has been an important treatment modality. However, the dose-limiting toxicities of these cytokines limited their usage in clinic. Here, we review the basic biology of cytokines involved in the treatment of melanoma and discuss their therapeutic applications. Moreover, we describe several innovative technological approaches that have been developed to improve the pharmacokinetics, safety, and efficacy of these cytokines. RECENT FINDINGS The safety and the anti-tumor activity of newly engineered cytokines including PEGylated IL-2 (NKTR-214), PEGylated IL-10 (AM0010), and IL-15 super agonist (ALT-803) have been evaluated in clinical trials with encouraging clinical activity and acceptable safety profile, both as single agents and in combination with immuno-oncology agents. A greater understanding of the mechanisms of action and effective dosing of these newly engineered cytokine together with determination of optimum combination therapy regimens may yield greater clinical benefits in the future.
Collapse
|
35
|
Patidar M, Yadav N, Dalai SK. Development of Stable Chimeric IL-15 for Trans-Presentation by the Antigen Presenting Cells. Front Immunol 2021; 12:646159. [PMID: 33953717 PMCID: PMC8092395 DOI: 10.3389/fimmu.2021.646159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
IL-15 is one of the important biologics considered for vaccine adjuvant and treatment of cancer. However, a short half-life and poor bioavailability limit its therapeutic potential. Herein, we have structured IL-15 into a chimeric protein to improve its half-life enabling greater bioavailability for longer periods. We have covalently linked IL-15 with IgG2 base to make the IL-15 a stable chimeric protein, which also increased its serum half-life by 40 fold. The dimeric structure of this kind of IgG based biologics has greater stability, resistance to proteolytic cleavage, and less frequent dosing schedule with minimum dosage for achieving the desired response compared to that of their monomeric forms. The structured chimeric IL-15 naturally forms a dimer, and retains its affinity for binding to its receptor, IL-15Rβ. Moreover, with the focused action of the structured chimeric IL-15, antigen-presenting cells (APC) would transpresent chimeric IL-15 along with antigen to the T cell, that will help the generation of quantitatively and qualitatively better antigen-specific memory T cells. In vitro and in vivo studies demonstrate the biological activity of chimeric IL-15 with respect to its ability to induce IL-15 signaling and modulating CD8+ T cell response in favor of memory generation. Thus, a longer half-life, dimeric nature, and anticipated focused transpresentation by APCs to the T cells will make chimeric IL-15 a super-agonist for memory CD8+ T cell responses.
Collapse
Affiliation(s)
- Manoj Patidar
- Institute of Science, Nirma University, Ahmedabad, India.,Department of Zoology, Govt. College Manawar, Dhar, India
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad, India.,Translation Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| |
Collapse
|
36
|
Bergamaschi C, Pandit H, Nagy BA, Stellas D, Jensen SM, Bear J, Cam M, Valentin A, Fox BA, Felber BK, Pavlakis GN. Heterodimeric IL-15 delays tumor growth and promotes intratumoral CTL and dendritic cell accumulation by a cytokine network involving XCL1, IFN-γ, CXCL9 and CXCL10. J Immunother Cancer 2021; 8:jitc-2020-000599. [PMID: 32461349 PMCID: PMC7254133 DOI: 10.1136/jitc-2020-000599] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Interleukin-15 (IL-15) promotes growth and activation of cytotoxic CD8+ T and natural killer (NK) cells. Bioactive IL-15 is produced in the body as a heterodimeric cytokine, comprising the IL-15 and IL-15 receptor alpha chains (hetIL-15). Several preclinical models support the antitumor activity of hetIL-15 promoting its application in clinical trials. METHODS The antitumor activity of hetIL-15 produced from mammalian cells was tested in mouse tumor models (MC38 colon carcinoma and TC-1 epithelial carcinoma). The functional diversity of the immune infiltrate and the cytokine/chemokine network within the tumor was evaluated by flow cytometry, multicolor immunohistochemistry (IHC), gene expression profiling by Nanostring Technologies, and protein analysis by electrochemiluminescence and ELISA assays. RESULTS hetIL-15 treatment resulted in delayed primary tumor growth. Increased NK and CD8+ T cell tumoral infiltration with an increased CD8+/Treg ratio were found by flow cytometry and IHC in hetIL-15 treated animals. Intratumoral NK and CD8+ T cells showed activation features with enhanced interferon-γ (IFN-γ) production, proliferation (Ki67+), cytotoxic potential (Granzyme B+) and expression of the survival factor Bcl-2. Transcriptomics and proteomics analyses revealed complex effects on the tumor microenvironment triggered by hetIL-15 therapy, including increased levels of IFN-γ and XCL1 with intratumoral accumulation of XCR1+IRF8+CD103+ conventional type 1 dendritic cells (cDC1). Concomitantly, the production of the chemokines CXCL9 and CXCL10 by tumor-localized myeloid cells, including cDC1, was boosted by hetIL-15 in an IFN-γ-dependent manner. An increased frequency of circulating CXCR3+ NK and CD8+ T cells was found, suggesting their ability to migrate toward the tumors following the CXCL9 and CXCL10 chemokine gradient. CONCLUSIONS Our results show that hetIL-15 administration enhances T cell entry into tumors, increasing the success rate of immunotherapy interventions. Our study further supports the incorporation of hetIL-15 in tumor immunotherapy approaches to promote the development of antitumor responses by favoring effector over regulatory cells and by promoting lymphocyte and DC localization into tumors through the modification of the tumor chemokine and cytokine milieu.
Collapse
Affiliation(s)
- Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Hrishikesh Pandit
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Bethany A Nagy
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Dimitris Stellas
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Shawn M Jensen
- Robert W Franz Cancer Research Center, Providence Portland Medical Center, Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Maggie Cam
- Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Bernard A Fox
- Robert W Franz Cancer Research Center, Providence Portland Medical Center, Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
37
|
Xu H, Buhtoiarov IN, Guo H, Cheung NKV. A novel multimeric IL15/IL15Rα-Fc complex to enhance cancer immunotherapy. Oncoimmunology 2021; 10:1893500. [PMID: 33763293 PMCID: PMC7954438 DOI: 10.1080/2162402x.2021.1893500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of T cells in controlling human cancers is well known. Their success requires continued persistence in vivo and efficient trafficking to tumor sites, requirements shared by other effectors such as Natural Killer (NK) cells. To date, cytokine IL2 remains the only clinically approved cytokine therapy available to expand, maintain, and activate these effector lymphoid cells, but toxicities can be severe. Cytokine IL15 offers similar T cell proliferation and activation properties, but without the unwanted side-effects seen with IL2. Several IL15-cytokine fusion proteins have been developed to improve their in vivo function, typically exploiting the IL15Rα to complex with IL15, to extend serum half-life and increase affinity for IL15β receptor on immune cells. Here we describe a novel IL15 complex incorporating the full-length IL15Rα to complex with wild type IL15 to form spontaneous trimers of dimers (6 IL15 + 6 IL15Rα) during co-expression, resulting in a substantial increase in serum half-life and enhancement of in vivo cytokine effect on IgG or T cell engaging antibody-dependent cell-mediated cytotoxicities, when compared to alternative strategies.
Collapse
Affiliation(s)
- Hong Xu
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ilia N Buhtoiarov
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pediatric Hematology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | - Hongfen Guo
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong V Cheung
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
38
|
Corbellari R, Stringhini M, Mock J, Ongaro T, Villa A, Neri D, De Luca R. A Novel Antibody-IL15 Fusion Protein Selectively Localizes to Tumors, Synergizes with TNF-based Immunocytokine, and Inhibits Metastasis. Mol Cancer Ther 2021; 20:859-871. [PMID: 33632875 DOI: 10.1158/1535-7163.mct-20-0853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
IL15 is an immunostimulatory cytokine that holds promises for cancer therapy, but its performance (alone or as partner for fusion proteins) has often been limited by suboptimal accumulation in the tumor and very rapid clearance from circulation. Most recently, the Sushi Domain (SD, the shortest region of IL15 receptor α, capable of binding to IL15) has been fused to IL15-based anticancer products to increase its biological activity. Here, we describe two novel antibody fusion proteins (termed F8-F8-IL15 and F8-F8-SD-IL15), specific to the alternatively spliced EDA domain of fibronectin (a marker of tumor neoangiogenisis, expressed in the majority of solid and hematologic tumors, but absent in normal healthy tissues) and featuring the F8 antibody in single-chain diabody format (with a short linker between VH and VL, thus allowing the domains to pair with the complementary ones of another chain). Unlike previously described fusions of the F8 antibody with human IL15, F8-F8-IL15 and F8-F8-SD-IL15 exhibited a preferential uptake in solid tumors, as evidenced by quantitative biodistribution analysis with radioiodinated protein preparations. Both products were potently active in vivo against mouse metastatic colon carcinomas and in sarcoma lesion in combination with targeted TNF. The results may be of clinical significance, as F8-F8-IL15 and F8-F8-SD-IL15 are fully human proteins, which recognize the cognate tumor-associated antigen with identical affinity in mouse and man.
Collapse
Affiliation(s)
- Riccardo Corbellari
- CiBIO (Department of Cellular, Computational and Integrative Biology), University of Trento, Povo, Trento, Italy.,Philochem AG, Otelfingen, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Jaqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | |
Collapse
|
39
|
Heterodimeric IL-15 in Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13040837. [PMID: 33671252 PMCID: PMC7922495 DOI: 10.3390/cancers13040837] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The rapidly expanding field of cancer immunotherapy uses diverse technologies, including cytokines, T cells, and antibody administration, with the aim to induce effective immune responses leading to tumor control. Interleukin-15 (IL-15), a cytokine discovered in 1994, supports the homeostasis of cytotoxic immune cells and shows promise as an anti-tumor agent. Many studies have elucidated IL-15 synthesis, regulation and biological function and explored its therapeutic efficacy in preclinical cancer models. Escherichia coli-derived single-chain IL-15 was tested in the first in-human trial in cancer patients. Its effects were limited by the biology of IL-15, which in vivo comprises a complex of the IL-15 chain with the IL-15 receptor alpha (IL-15Rα) chain, together forming the IL-15 heterodimer (hetIL-15). Currently, single-chain IL-15 and several heterodimeric IL-15:IL-15Rα variants (hetIL-15, N-803 and RLI) are being tested in clinical trials. This review presents a summary of contemporary preclinical and clinical research on IL-15. Abstract Immunotherapy has emerged as a valuable strategy for the treatment of many cancer types. Interleukin-15 (IL-15) promotes the growth and function of cytotoxic CD8+ T and natural killer (NK) cells. It also enhances leukocyte trafficking and stimulates tumor-infiltrating lymphocytes expansion and activity. Bioactive IL-15 is produced in the body as a heterodimeric cytokine, comprising the IL-15 and the so-called IL-15 receptor alpha chain that are together termed “heterodimeric IL-15” (hetIL-15). hetIL-15, closely resembling the natural form of the cytokine produced in vivo, and IL-15:IL-15Rα complex variants, such as hetIL-15Fc, N-803 and RLI, are the currently available IL-15 agents. These molecules have showed favorable pharmacokinetics and biological function in vivo in comparison to single-chain recombinant IL-15. Preclinical animal studies have supported their anti-tumor activity, suggesting IL-15 as a general method to convert “cold” tumors into “hot”, by promoting tumor lymphocyte infiltration. In clinical trials, IL-15-based therapies are overall well-tolerated and result in the expansion and activation of NK and memory CD8+ T cells. Combinations with other immunotherapies are being investigated to improve the anti-tumor efficacy of IL-15 agents in the clinic.
Collapse
|
40
|
Guo S, Smeltz RB, Nanajian A, Heller R. IL-15/IL-15Rα Heterodimeric Complex as Cancer Immunotherapy in Murine Breast Cancer Models. Front Immunol 2021; 11:614667. [PMID: 33628206 PMCID: PMC7897681 DOI: 10.3389/fimmu.2020.614667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Interleukin 15 (IL-15) has been evaluated as a potential treatment for solid tumors in clinical trials, but the effectiveness of systemic IL-15 administration as a monotherapy has not been realized. IL-15 receptor alpha (IL-15Rα) can stabilize IL-15 and enhance its bioactivity. The goal of this study was to examine the activity of IL-15/IL-15Rα complex (IL-15cx) to CD8+ T cells and evaluate its potential efficacy in murine breast cancer models. The antitumor efficacy was studied in mouse mammary carcinoma models (Her2/neu transgenic and 4T1-luc mammary cancers) treated with systemic recombinant protein with/without the depletion of myeloid-derived suppressor cells or intra-tumoral gene electrotransfer (GET). IL-15cx shows superior in vivo bioactivity to expand CD8 T cells in comparison to an equimolar single chain IL-15. T-bet is partially involved in CD8 T cell expansion ex vivo and in vivo due to IL-15 or IL-15cx. Intraperitoneal administration of IL-15cx results in a moderate inhibition of breast cancer growth that is associated with an increase in the frequency of cytotoxic CD8 T cells and the improvement of their function. The depletion of myeloid-derived suppressor cells (MDSCs) has no impact on mouse breast cancer growth. IL-15cx treatment diminishes MDSCs in murine tumors. However, it also antagonizes the effects of anti-Gr-1 depleting antibodies. Intratumoral GET with plasmid IL-15/IL-15Rα leads to a long-term survival benefit in 4T1 mammary carcinoma model. An early increase of local cytotoxic cells correlates with GET treatment and an increase of long-term memory T cells results from animals with complete tumor regression. Systemic and local administration of IL-15cx shows two distinct therapeutic responses, a moderate tumor growth inhibition or heterogeneous tumor regressions with survival improvement. Further studies are warranted to improve the efficacy of IL-15cx as an immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, United States
| | - Ronald B Smeltz
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, United States
| | - Anthony Nanajian
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
41
|
Kupz A, Pai S, Giacomin PR, Whan JA, Walker RA, Hammoudi PM, Smith NC, Miller CM. Treatment of mice with S4B6 IL-2 complex prevents lethal toxoplasmosis via IL-12- and IL-18-dependent interferon-gamma production by non-CD4 immune cells. Sci Rep 2020; 10:13115. [PMID: 32753607 PMCID: PMC7403597 DOI: 10.1038/s41598-020-70102-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Toxoplasmic encephalitis is an AIDS-defining condition. The decline of IFN-γ-producing CD4+ T cells in AIDS is a major contributing factor in reactivation of quiescent Toxoplasma gondii to an actively replicating stage of infection. Hence, it is important to characterize CD4-independent mechanisms that constrain acute T. gondii infection. We investigated the in vivo regulation of IFN-γ production by CD8+ T cells, DN T cells and NK cells in response to acute T. gondii infection. Our data show that processing of IFN-γ by these non-CD4 cells is dependent on both IL-12 and IL-18 and the secretion of bioactive IL-18 in response to T. gondii requires the sensing of viable parasites by multiple redundant inflammasome sensors in multiple hematopoietic cell types. Importantly, our results show that expansion of CD8+ T cells, DN T cells and NK cell by S4B6 IL-2 complex pre-treatment increases survival rates of mice infected with T. gondii and this is dependent on IL-12, IL-18 and IFN-γ. Increased survival is accompanied by reduced pathology but is independent of expansion of TReg cells or parasite burden. This provides evidence for a protective role of IL2C-mediated expansion of non-CD4 cells and may represent a promising lead to adjunct therapy for acute toxoplasmosis.
Collapse
Affiliation(s)
- Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Jennifer A Whan
- Advanced Analytical Centre, James Cook University, Cairns, QLD, 4878, Australia
| | - Robert A Walker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Nicholas C Smith
- School of Science and Health, Western Sydney University, Parramatta South Campus, Sydney, NSW, 2116, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Catherine M Miller
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.,Discipline of Biomedicine, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
42
|
Waldmann TA, Miljkovic MD, Conlon KC. Interleukin-15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer. J Exp Med 2020; 217:132622. [PMID: 31821442 PMCID: PMC7037239 DOI: 10.1084/jem.20191062] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
IL-15 supports NK, NK-T, γδ, ILC1, and memory CD8 T cell function, and dysregulated IL-15 is associated with many autoimmune diseases. Striking IL-15–driven increases in NK and CD8 T cells in patients highlight the potential for combination therapy of cancers. IL-15, a pleiotropic cytokine, stimulates generation of NK, NK-T, γδ, ILC1, and memory CD8 T cells. IL-15 disorders play pathogenetic roles in organ-specific autoimmune diseases including celiac disease. Diverse approaches are developed to block IL-15 action. IL-15 administered to patients with malignancy yielded dramatic increases in NK numbers and modest increases in CD8 T cells. Due to immunological checkpoints, to achieve major cancer therapeutic efficacy, IL-15 will be used in combination therapy, and combination trials with checkpoint inhibitors, with anti-CD40 to yield tumor-specific CD8 T cells, and with anticancer monoclonal antibodies to increase ADCC and antitumor efficacy, have been initiated.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Cytokines that target immune killer cells against tumors. Cell Mol Immunol 2020; 17:722-727. [PMID: 32523115 DOI: 10.1038/s41423-020-0481-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
T-cell-stimulating cytokines have shown promise as monotherapies or in combination with other therapeutic modalities for immunotherapy of cancer. However, their efficacy is limited due to their short half-life, pleiotropic roles, and induction of severe toxicity even at therapeutic doses. To overcome these major therapeutic barriers, cytokine-based products are being further developed to improve their therapeutic index. These approaches include manipulating their activity to preferentially bind to effector immune cells rather than immune-suppressive cells, prolonging their half-life in vivo and modifying them to target tumors. This review focuses on IL-2, IL-15, and IL-10, which have potent effects on immune cells that mediate effective antitumor responses. We will summarize the recent progress of these cytokines in both preclinical studies and selective clinical applications and will discuss our perspectives on the development of new strategies to potentiate cytokine-based immunotherapy.
Collapse
|
44
|
Dubois S, Feigenbaum L, Waldmann TA, Müller JR. NK cells prevent T cell lymphoma development in T cell receptor-transgenic mice. Cell Immunol 2020; 352:104081. [PMID: 32143838 DOI: 10.1016/j.cellimm.2020.104081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Mice that express a single transgenic T cell receptor have a low incidence of T cell lymphoma development. We investigated whether this tumor development is restricted by surveillance mechanisms that are exerted by IL-15-dependent cells. Lymphoma incidence was increased to between 30 and 60% when TCR transgenes were expressed in IL-15-deficient mice. Mice in which NK cells had been depleted genetically or with neutralizing antibodies allowed lymphoma growth while the absence of CD8 T cells was without consequence. Half of the emerged T cell lymphomas carried Notch1 mutations. The distinct phenotype of the lymphomas involved expression of PD1, CD30, CD24, the stress receptor ligand Mult1 and MHC class I down-regulation. NK cells were able to directly lyse lymphoma cells, and neutralizations of Mult1 and class I expression prevented NK cell degranulation. Together these data support an involvement of NK cells in tumor surveillance of nascent T cell lymphomas.
Collapse
Affiliation(s)
- Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lionel Feigenbaum
- Science Applications International Corporation/Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jürgen R Müller
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Moui A, Klein M, Hassoun D, Dijoux E, Cheminant MA, Magnan A, Bouchaud G. The IL-15 / sIL-15Rα complex modulates immunity without effect on asthma features in mouse. Respir Res 2020; 21:33. [PMID: 31996218 PMCID: PMC6988344 DOI: 10.1186/s12931-020-1301-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Interleukin 15 (IL-15) is a growth and modulating factor for B, T lymphocytes and natural killer cells (NK). Its action on innate and adaptive immunity is modulated by its alpha chain receptor (IL-15Rα). The IL-15/sIL-15Rα complex (IL-15Cx) increases the bioavailability and activity of the cytokine in vivo. IL-15Cx has been used in diseases to dampen IL-15 inflammation by the use of soluble IL-15Ralpha specificity. Here, we aim to evaluate the interest of IL-15Cx in a mouse model of asthma. METHODS Using a mouse model of asthma consisting in percutaneous sensitization and intranasal challenge with total house dust mite extract, we evaluated the effect of IL-15Cx injected intraperitoneally four times after a first nasal challenge. Respiratory function was assessed by the technique of forced oscillations (Flexivent®). The effect on bronchial remodeling was evaluated by lung histology. The inflammatory status was analyzed by flow cytometry. RESULTS We observed that the IL-15Cx modulates lung and systemic inflammation by increasing NK cells, CD8+ memory T cells and regulatory cells. However, IL-15Cx displays no effect on bronchial hyperreactivity, bronchial remodeling nor cellular bronchial infiltrate, but limits the secretion of bronchial mucus and modulates only inflammatory response in a HDM-allergic asthma murine model. CONCLUSIONS IL-15Cx has a limited effect on immune response in asthma and has no effect on lung function in mice. Thus, it limits its therapeutic potential but might suggest a combinatory potential with other therapeutics.
Collapse
Affiliation(s)
- Antoine Moui
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France.,L'institut du thorax, CHU de Nantes, service de pneumologie, Nantes, France
| | - Martin Klein
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France
| | - Dorian Hassoun
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France.,L'institut du thorax, CHU de Nantes, service de pneumologie, Nantes, France
| | - Eléonore Dijoux
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France
| | | | - Antoine Magnan
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France.,L'institut du thorax, CHU de Nantes, service de pneumologie, Nantes, France
| | - Grégory Bouchaud
- INRA, UR1268 BIA, rue de la Géraudière, F-44316, Nantes, France.
| |
Collapse
|
46
|
Thi VAD, Jeon HM, Park SM, Lee H, Kim YS. Cell-Based IL-15:IL-15Rα Secreting Vaccine as an Effective Therapy for CT26 Colon Cancer in Mice. Mol Cells 2019; 42:869-883. [PMID: 31760731 PMCID: PMC6939657 DOI: 10.14348/molcells.2019.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-15 is an essential immune-modulator with high potential for use in cancer treatment. Natural IL-15 has a low biological potency because of its short half-life and difficulties in mass-production. IL-15Rα, a member of the IL-15 receptor complex, is famous for its high affinity to IL-15 and its ability to lengthen the half-life of IL-15. We have double-transfected IL-15 and its truncated receptor IL-15Rα into CT26 colon cancer cells to target them for intracellular assembly. The secreted IL-15:IL-15Rα complexes were confirmed in ELISA and Co-IP experiments. IL-15:IL15Rα secreting clones showed a higher anti-tumor effect than IL-15 secreting clones. Furthermore, we also evaluated the vaccine and therapeutic efficacy of the whole cancercell vaccine using mitomycin C (MMC)-treated IL-15:IL15Rα secreting CT26 clones. Three sets of experiments were evaluated; (1) therapeutics, (2) vaccination, and (3) longterm protection. Wild-type CT26-bearing mice treated with a single dose of MMC-inactivated secreted IL-15:IL-15Rα clones prolonged survival compared to the control group. Survival of MMC-inactivated IL-15:IL-15Rα clone-vaccinated mice (without any further adjuvant) exceeded up to 100%. This protection effect even lasted for at least three months after the immunization. Secreted IL-15:IL-15Rα clones challenging trigger anti-tumor response via CD4+ T, CD8+ T, and natural killer (NK) cell-dependent cytotoxicity. Our result suggested that cell-based vaccine secreting IL-15:IL-15Rα, may offer the new tools for immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Van Anh Do Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hyung Min Jeon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
47
|
Berger A, Colpitts SJ, Seabrook MSS, Furlonger CL, Bendix MB, Moreau JM, McKillop WM, Medin JA, Paige CJ. Interleukin-15 in cancer immunotherapy: IL-15 receptor complex versus soluble IL-15 in a cancer cell-delivered murine leukemia model. J Immunother Cancer 2019; 7:355. [PMID: 31856922 PMCID: PMC6924073 DOI: 10.1186/s40425-019-0777-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/22/2019] [Indexed: 01/13/2023] Open
Abstract
Cytokines of the common γ-chain receptor family such as IL-15 are vital with respect to activating immune cells, sustaining healthy immune functions, and augmenting the anti-tumor activity of effector cells, making them ideal candidates for cancer immunotherapy. IL-15, either in its soluble form (IL-15sol) or complexed with IL-15Rα (IL-15Rc), has been shown to exhibit potent anti-tumor activities in various experimental cancer studies. Here we describe the impact of intraperitoneal IL-15 in a cancer cell-delivered IL-15 immunotherapy approach using the 70Z/3-L leukemia mouse model. Whereas both forms of IL-15 led to significantly improved survival rates compared to the parent cell line, there were striking differences in the extent of the improved survival: mice receiving cancer cells secreting IL-15sol showed significantly longer survival and protective long-term immunity compared to those producing IL-15Rc. Interestingly, injection of leukemia cells secreting IL-15sol lead to heightened expansion of CD4+ and CD8+ T-cell populations in the peritoneum compared to IL-15Rc. Cell-secreted IL-15Rc resulted in an influx and/or expansion of NK1.1+ cells in the peritoneum which was much less pronounced in the IL-15sol model. Furthermore, IL-15Rc but not IL-15sol lead to T-cell exhaustion and disease progression. To our knowledge, this is the first study detailing a significantly different biological effect of cell-delivered IL-15sol versus IL-15Rc in a mouse cancer immunotherapy study.
Collapse
Affiliation(s)
- Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.
| | - Sarah J Colpitts
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Melanie S S Seabrook
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada
| | - Caren L Furlonger
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada
| | - Maura B Bendix
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada
| | - Joshua M Moreau
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Canada.,Department of Dermatology, University of California San Francisco, San Francisco, USA
| | - William M McKillop
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.,Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, USA
| | - Jeffrey A Medin
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.,Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, USA.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
48
|
Backhaus PS, Veinalde R, Hartmann L, Dunder JE, Jeworowski LM, Albert J, Hoyler B, Poth T, Jäger D, Ungerechts G, Engeland CE. Immunological Effects and Viral Gene Expression Determine the Efficacy of Oncolytic Measles Vaccines Encoding IL-12 or IL-15 Agonists. Viruses 2019; 11:v11100914. [PMID: 31623390 PMCID: PMC6832518 DOI: 10.3390/v11100914] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor-targeted immunomodulation using oncolytic viral vectors is currently being investigated as a promising strategy in cancer therapy. In a previous study, we showed that a measles virus Schwarz vaccine strain (MeVac) vector encoding an interleukin-12 fusion protein (FmIL-12) is an effective immunotherapy in the MC38cea murine colon adenocarcinoma model. We hypothesized that MeVac encoding interleukin-15 may mediate enhanced T and NK cell responses and thus increase the therapeutic efficacy, especially in NK cell-controlled tumors. Therefore, we generated MeVac vectors encoding an interleukin-15 superagonist, FmIL-15. Replication and oncolytic capacity, transgene expression, and functionality of MeVac FmIL-15 vectors were validated in vitro. Effects on the tumor immune landscape and therapeutic efficacy of both FmIL-12 and FmIL-15 vectors were studied in the MC38cea and B16hCD46 tumor models. Treatment with MeVac FmIL-15 increased T and NK cell infiltration in both models. However, MeVac FmIL-12 showed more robust viral gene expression and immune activation, resulting in superior anti-tumor efficacy. Based on these results, MeVac encoding a human IL-12 fusion protein was developed for future clinical translation.
Collapse
Affiliation(s)
- Paul S Backhaus
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
- Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Rūta Veinalde
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Present address: Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Laura Hartmann
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- German Cancer Research Center, 69120 Heidelberg, Germany.
- Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Jessica E Dunder
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
- Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Lara M Jeworowski
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
| | - Jessica Albert
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Birgit Hoyler
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Tanja Poth
- CMCP-Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Dirk Jäger
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Guy Ungerechts
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.
| | - Christine E Engeland
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Clark SE, Burrack KS, Jameson SC, Hamilton SE, Lenz LL. NK Cell IL-10 Production Requires IL-15 and IL-10 Driven STAT3 Activation. Front Immunol 2019; 10:2087. [PMID: 31552035 PMCID: PMC6736993 DOI: 10.3389/fimmu.2019.02087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/19/2019] [Indexed: 01/22/2023] Open
Abstract
Natural killer (NK) cells can produce IFNγ or IL-10 to regulate inflammation and immune responses but the factors driving NK cell IL-10 secretion are poorly-defined. Here, we identified NK cell-intrinsic STAT3 activation as vital for IL-10 production during both systemic Listeria monocytogenes (Lm) infection and following IL-15 cytokine/receptor complex (IL15C) treatment for experimental cerebral malaria (ECM). In both contexts, conditional Stat3 deficiency in NK cells abrogated production of IL-10. Initial NK cell STAT3 phosphorylation was driven by IL-15. During Lm infection, this required capture or presentation of IL-15 by NK cell IL-15Rα. Persistent STAT3 activation was required to drive measurable IL-10 secretion and required NK cell expression of IL-10Rα. Survival-promoting effects of IL-15C treatment in ECM were dependent on NK cell Stat3 while NK cell-intrinsic deficiency for Stat3, Il15ra, or Il10ra abrogated NK cell IL-10 production and increased resistance against Lm. NK cell Stat3 deficiency did not impact production of IFNγ, indicating the STAT3 activation initiated by IL-15 and amplified by IL-10 selectively drives the production of anti-inflammatory IL-10 by responding NK cells.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kristina S Burrack
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Sara E Hamilton
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Laurel L Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
50
|
Du C, Bevers J, Cook R, Lombana TN, Rajasekaran K, Matsumoto M, Spiess C, Kim JM, Ye Z. MICA immune complex formed with alpha 3 domain-specific antibody activates human NK cells in a Fc-dependent manner. J Immunother Cancer 2019; 7:207. [PMID: 31387641 PMCID: PMC6685158 DOI: 10.1186/s40425-019-0687-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/21/2019] [Indexed: 12/04/2022] Open
Abstract
Background One of the mechanisms by which tumors evade immune surveillance is through shedding of the major histocompatibility complex (MHC) class I chain-related protein A and B (MICA/B) from their cell surface. MICA/B are ligands for the activating receptor NKG2D on NK and CD8 T cells. This shedding reduces cell surface levels of MICA/B and impairs NKG2D recognition. Shed MICA/B can also mask NKG2D receptor and is thought to induce NKG2D internalization, further compromising immune surveillance by NK cells. Methods We isolated human primary NK cells from normal donors and tested the suppressive activity of soluble recombinant MICA in vitro. Utilizing a panel of novel anti-MICA antibodies, we further examined the stimulatory activities of anti-MICA antibodies that reversed the suppressive effects of soluble MICA. Results We show that suppressive effects of soluble MICA (sMICA) on NK cell cytolytic activity was not due to the down-regulation of cell surface NKG2D. In the presence of an α3 domain-specific MICA antibody, which did not obstruct NKG2D binding, sMICA-mediated NK cell suppression was completely reversed. Reversal of NK cell inhibition by sMICA was mediated by immune complex formation that agonized NKG2D signaling. Furthermore, this restorative activity was dependent on antibody Fc effector function as the introduction of Fc mutations to abrogate Fc receptor binding failed to reverse sMICA-mediated NK cell suppression. Furthermore, MICA immune complexes preformed with an α3 domain-specific antibody (containing a wild-type Fc) induced IFN-γ and TNF-α secretion by NK cells in the absence of cancer cells, whereas MICA immune complexes preformed with the Fc effectorless antibody failed to induce IFN-γ and TNF-α secretion. Finally, we demonstrated that MICA immune complexes formed with the α3 domain-specific antibody activates NKG2D on NK cells leading to the release of IFN-γ. Conclusions Our results demonstrate that an α3 domain-specific MICA antibody can circumvent sMICA-mediated suppression of NK cell cytolytic activity. Moreover, our data suggest that MICA immune complexes formed with α3-specific antibodies can activate NKG2D receptor and restore NK cell function in a Fc-dependent manner. The clinical utility of α3 domain-specific MICA/B antibodies may hold great promise as a new strategy for cancer immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-019-0687-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changchun Du
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.,Cancer Immunology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jack Bevers
- Antibody Engineering, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ryan Cook
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - T Noelle Lombana
- Antibody Engineering, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Marissa Matsumoto
- Structural Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Christoph Spiess
- Antibody Engineering, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jeong M Kim
- Cancer Immunology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA. .,Present address: NGM Biopharmaceuticals, 333 Oyster Point Blvd, South San Francisco, CA, 94080, USA.
| | - Zhengmao Ye
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|