1
|
Basardeh E, Piri-Gavgani S, Moradi HR, Azizi M, Mirzabeigi P, Nazari F, Ghanei M, Mahboudi F, Rahimi-Jamnani F. Anti-Acinetobacter Baumannii single-chain variable fragments provide therapeutic efficacy in an immunocompromised mouse pneumonia model. BMC Microbiol 2024; 24:55. [PMID: 38341536 PMCID: PMC10858608 DOI: 10.1186/s12866-023-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant and extensively drug-resistant (XDR) Acinetobacter baumannii as well as inadequate effective antibiotics calls for an urgent effort to find new antibacterial agents. The therapeutic efficacy of two human scFvs, EB211 and EB279, showing growth inhibitory activity against A. baumannii in vitro, was investigated in immunocompromised mice with A. baumannii pneumonia. RESULTS The data revealed that infected mice treated with EB211, EB279, and a combination of the two scFvs showed better survival, reduced bacterial load in the lungs, and no marked pathological abnormalities in the kidneys, liver, and lungs when compared to the control groups receiving normal saline or an irrelevant scFv. CONCLUSIONS The results from this study suggest that the scFvs with direct growth inhibitory activity could offer promising results in the treatment of pneumonia caused by XDR A. baumannii.
Collapse
Affiliation(s)
- Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Piri-Gavgani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Mirzabeigi
- Department of Clinical Pharmacy and Pharmacoeconomics, Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Nazari
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Wang H, Chen D, Lu H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Appl Microbiol Biotechnol 2022; 106:3957-3972. [PMID: 35648146 DOI: 10.1007/s00253-022-11989-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
Prior to the nineteenth century, infectious disease was one of the leading causes of death. Human life expectancy has roughly doubled over the past century as a result of the development of antibiotics and vaccines. However, the emergence of antibiotic-resistant superbugs brings new challenges. The side effects of broad-spectrum antibiotics, such as causing antimicrobial resistance and destroying the normal flora, often limit their applications. Furthermore, the development of new antibiotics has lagged far behind the emergence and spread of antibiotic resistance. On the other hand, the genome complexity of bacteria makes it difficult to create effective vaccines. Therefore, novel therapeutic agents in supplement to antibiotics and vaccines are urgently needed to improve the treatment of infections. In recent years, monoclonal antibodies (mAbs) have achieved remarkable clinical success in a variety of fields. In the treatment of infectious diseases, mAbs can play functions through multiple mechanisms, including toxins neutralization, virulence factors inhibition, complement-mediated killing activity, and opsonic phagocytosis. Toxins and bacterial surface components are good targets to generate antibodies against. The U.S. FDA has approved three monoclonal antibody drugs, and there are numerous candidates in the preclinical or clinical trial stages. This article reviews recent advances in the research and development of anti-bacterial monoclonal antibody drugs in order to provide a valuable reference for future studies in this area. KEY POINTS: • Novel drugs against antibiotic-resistant superbugs are urgently required • Monoclonal antibodies can treat bacterial infections through multiple mechanisms • There are many anti-bacterial monoclonal antibodies developed in recent years and some candidates have entered the preclinical or clinical stages of development.
Collapse
Affiliation(s)
- Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
3
|
Soltanmohammadi B, Piri‐Gavgani S, Basardeh E, Ghanei M, Azizi M, Khaksar Z, Sharifzadeh Z, Badmasti F, Soezi M, Fateh A, Azimi P, Siadat SD, Shooraj F, Bouzari S, Omrani MD, Rahimi‐Jamnani F. Bactericidal fully human single-chain fragment variable antibodies protect mice against methicillin-resistant Staphylococcus aureus bacteraemia. Clin Transl Immunology 2021; 10:e1302. [PMID: 34221401 PMCID: PMC8240403 DOI: 10.1002/cti2.1302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/01/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The increasing prevalence of antibiotic-resistant Staphylococcus aureus, besides the inadequate numbers of effective antibiotics, emphasises the need to find new therapeutic agents against this lethal pathogen. METHODS In this study, to obtain antibody fragments against S. aureus, a human single-chain fragment variable (scFv) library was enriched against living methicillin-resistant S. aureus (MRSA) cells, grown in three different conditions, that is human peripheral blood mononuclear cells with plasma, whole blood and biofilm. The antibacterial activity of scFvs was evaluated by the growth inhibition assay in vitro. Furthermore, the therapeutic efficacy of anti-S. aureus scFvs was appraised in a mouse model of bacteraemia. RESULTS Three scFv antibodies, that is MEH63, MEH158 and MEH183, with unique sequences, were found, which exhibited significant binding to S. aureus and reduced the viability of S. aureus in in vitro inhibition assays. Based on the results, MEH63, MEH158 and MEH183, in addition to their combination, could prolong the survival rate, reduce the bacterial burden in the blood and prevent inflammation and tissue destruction in the kidneys and spleen of mice with MRSA bacteraemia compared with the vehicle group (treated with normal saline). CONCLUSION The combination therapy with anti-S. aureus scFvs and conventional antibiotics might shed light on the treatment of patients with S. aureus infections.
Collapse
Affiliation(s)
- Behnoush Soltanmohammadi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Somayeh Piri‐Gavgani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Mostafa Ghanei
- Chemical Injuries Research CenterSystems Biology and Poisoning InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Zabihollah Khaksar
- Department of Basic SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | | | - Farzad Badmasti
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Mahdieh Soezi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Parisa Azimi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Fahimeh Shooraj
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Saeid Bouzari
- Molecular Biology DepartmentPasteur Institute of IranTehranIran
| | - Mir Davood Omrani
- Department of Medical GeneticsSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Rahimi‐Jamnani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| |
Collapse
|
4
|
Bartlett ML, Griffin DE. Acute RNA Viral Encephalomyelitis and the Role of Antibodies in the Central Nervous System. Viruses 2020; 12:v12090988. [PMID: 32899509 PMCID: PMC7551998 DOI: 10.3390/v12090988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Acute RNA viral encephalomyelitis is a serious complication of numerous virus infections. Antibodies in the cerebral spinal fluid (CSF) are correlated to better outcomes, and there is substantive evidence of antibody secreting cells (ASCs) entering the central nervous system (CNS) and contributing to resolution of infection. Here, we review the RNA viruses known to cause acute viral encephalomyelitis with mechanisms of control that require antibody or ASCs. We compile the cytokines, chemokines, and surface receptors associated with ASC recruitment to the CNS after infection and compare known antibody-mediated mechanisms as well as potential noncytolytic mechanisms for virus control. These non-canonical functions of antibodies may be employed in the CNS to protect precious non-renewable neurons. Understanding the immune-specialized zone of the CNS is essential for the development of effective treatments for acute encephalomyelitis caused by RNA viruses.
Collapse
|
5
|
Dimitrov JD, Lacroix-Desmazes S. Noncanonical Functions of Antibodies. Trends Immunol 2020; 41:379-393. [PMID: 32273170 DOI: 10.1016/j.it.2020.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
The typical functions of antibodies are based on linking the process of antigen recognition with initiation of innate immune reactions. With the introduction of modern research technologies and the use of sophisticated model systems, recent years have witnessed the discovery of a number of noncanonical functions of antibodies. These functions encompass either untypical strategies for neutralization of pathogens or exertion of activities that are characteristic for other proteins (cytokines, chaperones, or enzymes). Here, we provide an overview of the noncanonical functions of antibodies and discuss their mechanisms and implications in immune regulation and defense. A better comprehension of these functions will enrich our knowledge of the adaptive immune response and shall inspire the development of novel therapeutics.
Collapse
Affiliation(s)
- Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France.
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| |
Collapse
|
6
|
Antibody Binding to the O-Specific Antigen of Pseudomonas aeruginosa O6 Inhibits Cell Growth. Antimicrob Agents Chemother 2020; 64:AAC.02168-19. [PMID: 32015038 DOI: 10.1128/aac.02168-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/24/2020] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is inherently resistant to many antibiotics and represents an increasing threat due to the emergence of drug-resistant strains. There is a pressing need to develop innovative antimicrobials against this pathogen. In this study, we identified the O-specific antigen (OSA) of P. aeruginosa serotype O6 as a novel target for therapeutic intervention. Binding of monoclonal antibodies and antigen-binding fragments therefrom to O6 OSA leads to rapid outer membrane destabilization and inhibition of cell growth. The antimicrobial effect correlated directly with antibody affinity. Antibody binding to the O antigen of a second lipopolysaccharide (LPS) type present in P. aeruginosa or to the LPS core did not affect cell viability. Atomic force microscopy showed that antibody binding to OSA resulted in early flagellum loss, formation of membrane blebs, and eventually complete outer membrane loss. We hypothesize that antibody binding to OSA disrupts a key interaction in the P. aeruginosa outer membrane.
Collapse
|
7
|
Djokic V, Giacani L, Parveen N. Analysis of host cell binding specificity mediated by the Tp0136 adhesin of the syphilis agent Treponema pallidum subsp. pallidum. PLoS Negl Trop Dis 2019; 13:e0007401. [PMID: 31071095 PMCID: PMC6529012 DOI: 10.1371/journal.pntd.0007401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/21/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background Syphilis affects approximately 11 million people each year globally, and is the third most prevalent sexually transmitted bacterial infection in the United States. Inability to independently culture and genetically manipulate Treponema pallidum subsp. pallidum, the causative agent of this disease, has hindered our understanding of the molecular mechanisms of syphilis pathogenesis. Here, we used the non-infectious and poorly adherent B314 strain of the Lyme disease-causing spirochete, Borrelia burgdorferi, to express two variants of a known fibronectin-binding adhesin, Tp0136, from T. pallidum SS14 and Nichols strains. Using this surrogate system, we investigated the ability of Tp0136 in facilitating differential binding to mammalian cell lines offering insight into the possible role of this virulence factor in colonization of specific tissues by T. pallidum during infection. Principal findings Expression of Tp0136 could be detected on the surface of B. burgdorferi by indirect immunofluorescence assay using sera from a secondary syphilis patient that does not react with intact B314 spirochetes transformed with the empty vector. Increase in Tp0136-mediated adherence of B314 strain to human epithelial HEK293 cells was observed with comparable levels of binding exhibited by both Tp0136 alleles. Adherence of Tp0136-expressing B314 was highest to epithelial HEK293 and C6 glioma cells. Gain in binding of B314 strain expressing Tp0136 to purified fibronectin and poor binding of these spirochetes to the fibronectin-deficient cell line (HEp-2) indicated that Tp0136 interaction with this host receptor plays an important role in spirochetal attachment to mammalian cells. Furthermore, preincubation of these cell lines with fibronectin-binding peptide from Staphylococcus aureus FnbA-2 protein significantly inhibited binding of B314 expressing Tp0136. Conclusions Our results show that Tp0136 facilitates differential level of binding to cell lines representing various host tissues, which highlights the importance of this protein in colonization of human organs by T. pallidum and resulting syphilis pathogenesis. Syphilis is one of the most prevalent sexually transmitted infections that affect millions of people around the world. The causative bacterium, Treponema pallidum subsp. pallidum, can be transmitted from mother to fetus during maternal infection, resulting in adverse pregnancy outcomes. Although timely treatment of syphilis is highly effective, untreated infection causes late syphilis that affects virtually every organ and leads to serious clinical manifestations. Therefore, syphilis remains a serious healthcare problem. T. pallidum cannot be grown in laboratory using traditional methods, which has slowed the progress in understanding this pathogen biology and pathogenesis. We employed a novel approach of using a related bacterium, Borrelia burgdorferi, to express Tp0136 protein from two different T. pallidum isolates to study the function of this protein. This strategy enabled us to demonstrate the ability of this protein to bind to fibronectin and laminin receptors present on the surface of various host cells. We showed that Tp0136 facilitates binding to only those host cells that produce fibronectin. In addition, we found that Tp0136-mediated binding is not equivalent in all host cell types, suggesting that the protein could help in colonization of specific human organs and tissues during infection by T. pallidum.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
8
|
Naran K, Nundalall T, Chetty S, Barth S. Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases. Front Microbiol 2018; 9:3158. [PMID: 30622524 PMCID: PMC6308495 DOI: 10.3389/fmicb.2018.03158] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
The advances in cancer biology and pathogenesis during the past two decades, have resulted in immunotherapeutic strategies that have revolutionized the treatment of malignancies, from relatively non-selective toxic agents to specific, mechanism-based therapies. Despite extensive global efforts, infectious diseases remain a leading cause of morbidity and mortality worldwide, necessitating novel, innovative therapeutics that address the current challenges of increasing antimicrobial resistance. Similar to cancer pathogenesis, infectious pathogens successfully fashion a hospitable environment within the host and modulate host metabolic functions to support their nutritional requirements, while suppressing host defenses by altering regulatory mechanisms. These parallels, and the advances made in targeted therapy in cancer, may inform the rational development of therapeutic interventions for infectious diseases. Although "immunotherapy" is habitually associated with the treatment of cancer, this review accentuates the evolving role of key targeted immune interventions that are approved, as well as those in development, for various cancers and infectious diseases. The general features of adoptive therapies, those that enhance T cell effector function, and ligand-based therapies, that neutralize or eliminate diseased cells, are discussed in the context of specific diseases that, to date, lack appropriate remedial treatment; cancer, HIV, TB, and drug-resistant bacterial and fungal infections. The remarkable diversity and versatility that distinguishes immunotherapy is emphasized, consequently establishing this approach within the armory of curative therapeutics, applicable across the disease spectrum.
Collapse
Affiliation(s)
- Krupa Naran
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shivan Chetty
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Nagy E, Nagy G, Power CA, Badarau A, Szijártó V. Anti-bacterial Monoclonal Antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1053:119-153. [PMID: 29549638 DOI: 10.1007/978-3-319-72077-7_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The failing efficacy of antibiotics and the high mortality rate among high-risk patients calls for new treatment modalities for bacterial infections. Due to the vastly divergent pathogenesis of human pathogens, each microbe requires a tailored approach. The main modes of action of anti-bacterial antibodies are virulence factor neutralization, complement-mediated bacterial lysis and enhancement of opsonophagocytic uptake and killing (OPK). Gram-positive bacteria cannot be lysed by complement and their pathogenesis often involves secreted toxins, therefore typically toxin-neutralization and OPK activity are required to prevent and ameliorate disease. In fact, the success stories in terms of approved products, in the anti-bacterial mAb field are based on toxin neutralization (Bacillus anthracis, Clostridium difficile). In contrast, Gram-negative bacteria are vulnerable to antibody-dependent complement-mediated lysis, while their pathogenesis rarely relies on secreted exotoxins, and involves the pro-inflammatory endotoxin (lipopolysaccharide). Given the complexity of bacterial pathogenesis, antibody therapeutics are expected to be most efficient upon targeting more than one virulence factor and/or combining different modes of action. The improved understanding of bacterial pathogenesis combined with the versatility and maturity of antibody discovery technologies available today are pivotal for the design of novel anti-bacterial therapeutics. The intensified research generating promising proof-of-concept data, and the increasing number of clinical programs with anti-bacterial mAbs, indicate that the field is ready to fulfill its promise in the coming years.
Collapse
Affiliation(s)
- Eszter Nagy
- Arsanis Biosciences GmbH/Arsanis, Inc, Vienna, Austria.
| | - Gábor Nagy
- Arsanis Biosciences GmbH/Arsanis, Inc, Vienna, Austria
| | | | | | | |
Collapse
|
10
|
Wagemakers A, Koetsveld J, Narasimhan S, Wickel M, Deponte K, Bleijlevens B, Jahfari S, Sprong H, Karan LS, Sarksyan DS, van der Poll T, Bockenstedt LK, Bins AD, Platonov AE, Fikrig E, Hovius JW. Variable Major Proteins as Targets for Specific Antibodies against Borrelia miyamotoi. THE JOURNAL OF IMMUNOLOGY 2016; 196:4185-95. [PMID: 27076681 DOI: 10.4049/jimmunol.1600014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/13/2016] [Indexed: 11/19/2022]
Abstract
Borrelia miyamotoi is a relapsing fever spirochete in Ixodes ticks that has been recently identified as a human pathogen causing hard tick-borne relapsing fever (HTBRF) across the Northern Hemisphere. No validated serologic test exists, and current serologic assays have low sensitivity in early HTBRF. To examine the humoral immune response against B. miyamotoi, we infected C3H/HeN mice with B. miyamotoi strain LB-2001 expressing variable small protein 1 (Vsp1) and demonstrated that spirochetemia was cleared after 3 d, coinciding with anti-Vsp1 IgM production. Clearance was also observed after passive transfer of immune sera to infected SCID mice. Next, we showed that anti-Vsp1 IgG eliminates Vsp1-expressing B. miyamotoi, selecting for spirochetes expressing a variable large protein (VlpC2) resistant to anti-Vsp1. The viability of Asian isolate B. miyamotoi HT31, expressing Vlp15/16 and Vlp18, was also unaffected by anti-Vsp1. Finally, in nine HTBRF patients, we demonstrated IgM reactivity to Vsp1 in two and against Vlp15/16 in four ∼1 wk after these patients tested positive for B. miyamotoi by PCR. Our data show that B. miyamotoi is able to express various variable major proteins (VMPs) to evade humoral immunity and that VMPs are antigenic in humans. We propose that serologic tests based on VMPs are of additional value in diagnosing HTBRF.
Collapse
Affiliation(s)
- Alex Wagemakers
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Joris Koetsveld
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Melvin Wickel
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Kathleen Deponte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Boris Bleijlevens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Seta Jahfari
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, the Netherlands
| | - Hein Sprong
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, the Netherlands
| | - Lyudmila S Karan
- Central Research Institute of Epidemiology, Moscow 111123, Russia
| | | | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Linda K Bockenstedt
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Adriaan D Bins
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| |
Collapse
|
11
|
Raffel SJ, Battisti JM, Fischer RJ, Schwan TG. Inactivation of genes for antigenic variation in the relapsing fever spirochete Borrelia hermsii reduces infectivity in mice and transmission by ticks. PLoS Pathog 2014; 10:e1004056. [PMID: 24699793 PMCID: PMC3974855 DOI: 10.1371/journal.ppat.1004056] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 11/18/2022] Open
Abstract
Borrelia hermsii, a causative agent of relapsing fever of humans in western North America, is maintained in enzootic cycles that include small mammals and the tick vector Ornithodoros hermsi. In mammals, the spirochetes repeatedly evade the host's acquired immune response by undergoing antigenic variation of the variable major proteins (Vmps) produced on their outer surface. This mechanism prolongs spirochete circulation in blood, which increases the potential for acquisition by fast-feeding ticks and therefore perpetuation of the spirochete in nature. Antigenic variation also underlies the relapsing disease observed when humans are infected. However, most spirochetes switch off the bloodstream Vmp and produce a different outer surface protein, the variable tick protein (Vtp), during persistent infection in the tick salivary glands. Thus the production of Vmps in mammalian blood versus Vtp in ticks is a dominant feature of the spirochete's alternating life cycle. We constructed two mutants, one which was unable to produce a Vmp and the other was unable to produce Vtp. The mutant lacking a Vmp constitutively produced Vtp, was attenuated in mice, produced lower cell densities in blood, and was unable to relapse in animals after its initial spirochetemia. This mutant also colonized ticks and was infectious by tick-bite, but remained attenuated compared to wild-type and reconstituted spirochetes. The mutant lacking Vtp also colonized ticks but produced neither Vtp nor a Vmp in tick salivary glands, which rendered the spirochete noninfectious by tick bite. Thus the ability of B. hermsii to produce Vmps prolonged its survival in blood, while the synthesis of Vtp was essential for mammalian infection by the bite of its tick vector.
Collapse
Affiliation(s)
- Sandra J. Raffel
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - James M. Battisti
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
- Division of Biological Sciences, The University of Montana, Missoula, Montana, United States of America
| | - Robert J. Fischer
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tom G. Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
12
|
|
13
|
Abstract
The view that immunoglobulins function largely by potentiating neutralization, cytotoxicity or phagocytosis is being replaced by a new synthesis whereby antibodies participate in all aspects of the immune response, from protecting the host at the earliest time of encounter with a microbe to later challenges. Perhaps the most transformative concept is that immunoglobulins manifest emergent properties, from their structure and function as individual molecules to their interactions with microbial targets and the host immune system. Given that emergent properties are neither reducible to first principles nor predictable, there is a need for new conceptual approaches for understanding antibody function and mechanisms of antibody immunity.
Collapse
|
14
|
Colombo MJ, Abraham D, Shibuya A, Alugupalli KR. B1b lymphocyte-derived antibodies control Borrelia hermsii independent of Fcα/μ receptor and in the absence of host cell contact. Immunol Res 2011; 51:249-56. [PMID: 22139824 PMCID: PMC6707740 DOI: 10.1007/s12026-011-8260-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The critical role of IgM in controlling pathogen burden has been demonstrated in a variety of infection models. In the murine model of Borrelia hermsii infection, IgM is necessary and sufficient for the rapid clearance of bacteremia. Convalescent, but not naïve, B1b cells generate a specific IgM response against B. hermsii, but the mechanism of IgM-mediated protection is unknown. Here, we show that neither Fcα/μR, a high-affinity receptor for IgM, nor IgM-dependent complement activation is required for controlling B. hermsii. Bacteria in diffusion chambers with a pore size impermeable to cells were killed when diffusion chambers were implanted into either convalescent or passively immunized mice. Furthermore, adoptively transferred convalescent B1b cells in Rag1(-/-) mice produced specific IgM that also cleared B. hermsii in diffusion chambers independent of complement. These results demonstrate that IgM-mediated clearance of B. hermsii does not require opsonophagocytosis and indicate that a mechanism for in vivo B1b cell-mediated protection is through the generation of bactericidal IgM.
Collapse
Affiliation(s)
- Matthew J. Colombo
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - David Abraham
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Akira Shibuya
- Department of Immunology and Anatomy, University of Tsukuba, Tsukuba, Japan
| | - Kishore R. Alugupalli
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
15
|
LaRocca TJ, Crowley JT, Cusack BJ, Pathak P, Benach J, London E, Garcia-Monco JC, Benach JL. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe 2011; 8:331-42. [PMID: 20951967 DOI: 10.1016/j.chom.2010.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/20/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022]
Abstract
Borrelia burgdorferi, the agent of Lyme disease, is unusual as it contains free cholesterol and cholesterol glycolipids. It is also susceptible to complement-independent bactericidal antibodies, such as CB2, a monoclonal IgG1 against outer surface protein B (OspB). We find that the bactericidal action of CB2 requires the presence of cholesterol glycolipids and cholesterol. Ultrastructural, biochemical, and biophysical analysis revealed that the bacterial cholesterol glycolipids exist as lipid raft-like microdomains in the outer membrane of cultured and mouse-derived B. burgdorferi and in model membranes from B. burgdorferi lipids. The order and size of the microdomains are temperature sensitive and correlate with the bactericidal activity of CB2. This study demonstrates the existence of cholesterol-containing lipid raft-like microdomains in a prokaryote, and we suggest that the temperature dependence of B. burgdorferi lipid raft organization may have significant implications in the transmission cycle of the spirochetes which are exposed to a range of temperatures.
Collapse
Affiliation(s)
- Timothy J LaRocca
- Department of Molecular Genetics and Microbiology, and Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Toledo A, Anda P, Escudero R, Larsson C, Bergstrom S, Benach JL. Phylogenetic analysis of a virulent Borrelia species isolated from patients with relapsing fever. J Clin Microbiol 2010; 48:2484-9. [PMID: 20463158 PMCID: PMC2897527 DOI: 10.1128/jcm.00541-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/21/2010] [Accepted: 05/04/2010] [Indexed: 11/20/2022] Open
Abstract
Multilocus sequence analysis (MLSA) was used to clarify the taxonomic status of a virulent Borrelia organism previously isolated from patients with relapsing fever and from ticks in Spain that is designated the Spanish relapsing fever (SRF) Borrelia. This species has been used extensively in experimental infection models because of its continued virulence. Seven genes were amplified to analyze the phylogenetic relationships among several Spanish isolates of SRF Borrelia and other relapsing fever Borrelia species. The genes targeted in this study included rrs and flaB, which have commonly been used in phylogenetic studies; the rrf-rrl intergenic spacer (IGS), which is highly discriminatory; and four additional genes, p66, groEL, glpQ, and recC, which are located on the chromosome and which have therefore evolved in a clonal way. The species included in this study were Borrelia duttonii, B. recurrentis, B. crocidurae, and B. hispanica as Old World Borrelia species and B. turicatae and B. hermsii as New World Borrelia species. The results obtained by MLSA of the SRF Borrelia on the basis of 1% of the genomic sequence data analyzed confirmed that the SRF Borrelia isolates are B. hispanica. However, the prototype isolates of B. hispanica used in this study have an uncertain history and display unique phenotypic characteristics that are not shared with the SRF Borrelia. Therefore, we propose to use strain SP1, isolated from a relapsing fever patient in 1994 in southern Spain, as the type strain for B. hispanica.
Collapse
Affiliation(s)
- A Toledo
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Xie X, McLean MD, Hall JC. Antibody-dependent cell-mediated cytotoxicity- and complement-dependent cytotoxicity-independent bactericidal activity of an IgG against Pseudomonas aeruginosa O6ad. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3725-33. [PMID: 20190144 DOI: 10.4049/jimmunol.0902732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to Ag recognition, some Abs are capable of killing target organisms in the absence of phagocytes and complement. In this study, we report that an anti-Pseudomonas aeruginosa O6ad LPS IgG(1), tobacco-expressed human S20 IgG(1) (te-hS20), as well as its recombinant Fab and single-chain variable fragment (scFv) fragments have cellular- and complement-independent bactericidal activity. te-hS20 and its Fab and scFv significantly reduced viability of P. aeruginosa O6ad in dose- and time-dependent manners in vitro and also showed lower levels of bactericidal activity against P. aeruginosa PAO1, but had no activity against P. aeruginosa O10, Escherichia coli TG1, and Streptococcus agalactiae. The H chain and its Fd fragment both had significant Ag-binding and bactericidal activities against P. aeruginosa O6ad. Bactericidal activity was completely inhibited with specific LPS Ag, suggesting that Ag binding is involved in the bactericidal mechanism. Live/dead cell staining and electron microscopic observations indicate that the bactericidal effect was due to disruption of the cell wall and suggest inhibition of cell division. In addition to te-hS20, the Fab and scFv were also protective in vivo, as leukopenic mice had prolonged and improved survival after administration of these Ab fragments followed by challenge with P. aeruginosa O6ad cells at 80-90% lethal dose, supporting a bactericidal mechanism independent of phagocytes and complement. Understanding of the bactericidal mechanism will allow assessment of the potential for therapeutic application of these Abs.
Collapse
Affiliation(s)
- Xuemei Xie
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
18
|
Saylor C, Dadachova E, Casadevall A. Monoclonal antibody-based therapies for microbial diseases. Vaccine 2010; 27 Suppl 6:G38-46. [PMID: 20006139 PMCID: PMC2810317 DOI: 10.1016/j.vaccine.2009.09.105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/24/2009] [Indexed: 12/16/2022]
Abstract
The monoclonal antibody (mAb) revolution that currently provides many new options for the treatment of neoplastic and inflammatory diseases has largely bypassed the field of infectious diseases. Only one mAb is licensed for use against an infectious disease, although there are many in various stages of development. This situation is peculiar given that serum therapy was one of the first effective treatments for microbial diseases and that specific antibodies have numerous antimicrobial properties. The underdevelopment and underutilization of mAb therapies for microbial diseases has various complex explanations that include the current availability of antimicrobial drugs, small markets, high costs and microbial antigenic variation. However, there are signs that the climate for mAb therapeutics in infectious diseases is changing given increasing antibiotic drug resistance, the emergence of new pathogenic microbes for which no therapy is available, and development of mAb cocktail formulations. Currently, the major hurdle for the widespread introduction of mAb therapies for microbial diseases is economic, given the high costs of immunoglobulin preparations and relatively small markets. Despite these obstacles there are numerous opportunities for mAb development against microbial diseases and the development of radioimmunotherapy provides new options for enhancing the magic bullet. Hence, there is cautious optimism that the years ahead will see more mAbs in clinical use against microbial diseases.
Collapse
Affiliation(s)
- Carolyn Saylor
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
19
|
The bactericidal effect of a complement-independent antibody is osmolytic and specific to Borrelia. Proc Natl Acad Sci U S A 2009; 106:10752-7. [PMID: 19549817 DOI: 10.1073/pnas.0901858106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A complement-independent bactericidal IgG1 against the OspB of Borrelia burgdorferi increased the permeability of the outer membrane through the creation of openings of 2.8 - 4.4 nm, resulting in its osmotic lysis. Cryo-electron microscopy and tomography demonstrated that exposure to the antibody causes the formation of outer membrane projections and large breaks which may precede the increase in permeability of the outer membrane. The bactericidal effect of this antibody is not transferable to Escherichia coli expressing rOspB on its outer membrane. Additionally, the porin P66, the only protein that coprecipitated with OspB, is dispensable for the bactericidal mechanism.
Collapse
|
20
|
Malkiel S, Kuhlow CJ, Mena P, Benach JL. The Loss and Gain of Marginal Zone and Peritoneal B Cells Is Different in Response to Relapsing Fever and Lyme DiseaseBorrelia. THE JOURNAL OF IMMUNOLOGY 2008; 182:498-506. [DOI: 10.4049/jimmunol.182.1.498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Bebbington C, Yarranton G. Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr Opin Biotechnol 2008; 19:613-9. [DOI: 10.1016/j.copbio.2008.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 01/10/2023]
|
22
|
Inhibition of Salmonella enterica serovar typhimurium motility and entry into epithelial cells by a protective antilipopolysaccharide monoclonal immunoglobulin A antibody. Infect Immun 2008; 76:4137-44. [PMID: 18625740 DOI: 10.1128/iai.00416-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Secretory immunoglobulin A (SIgA) antibodies directed against the O antigen of lipopolysaccharide (LPS) are the primary determinants of mucosal immunity to gram-negative enteric pathogens. However, the underlying mechanisms by which these antibodies interfere with bacterial colonization and invasion of intestinal epithelial cells are not well understood. In this study, we report that Sal4, a protective, anti-O5-specific monoclonal IgA, is a potent inhibitor of Salmonella enterica serovar Typhimurium flagellum-based motility. Using video light microscopy, we observed that Sal4 completely and virtually instantaneously "paralyzed" laboratory and clinical strains of serovar Typhimurium. Sal4-mediated motility arrest preceded and occurred independently of agglutination. Polyclonal anti-LPS IgG antibodies and F(ab)(2) fragments were as potent as was Sal4 at impeding bacterial motility, whereas monovalent Fab fragments were 5- to 10-fold less effective. To determine whether motility arrest can fully account for Sal4's protective capacity in vitro, we performed epithelial cell infection assays in which the requirement for flagellar motility in adherence and invasion was bypassed by centrifugation. Under these conditions, Sal4-treated serovar Typhimurium cells remained noninvasive, revealing that the monoclonal IgA, in addition to interfering with motility, has an effect on bacterial uptake into epithelial cells. Sal4 did not, however, inhibit bacterial uptake into mouse macrophages, indicating that the antibody interferes specifically with Salmonella pathogenicity island 1 (SPI-1)-dependent, but not SPI-1-independent, entry into host cells. These results reveal a previously unrecognized capacity of SIgA to "disarm" microbial pathogens on mucosal surfaces and prevent colonization and invasion of the intestinal epithelium.
Collapse
|