1
|
Castagnola L, Gallino L, Schafir A, Vota D, Grasso E, Gori S, Waschek J, Parborell F, Pérez Leirós C, Hauk V, Ramhorst R. Ovarian premature aging: VIP as key regulator of fibro-inflammation and foamy macrophages generation. Mol Cell Endocrinol 2025; 599:112486. [PMID: 39894337 DOI: 10.1016/j.mce.2025.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Ovarian aging is associated with fibro-inflammation, contributing to the decline in oocyte count and quality. Given the immunomodulatory properties of the vasoactive intestinal peptide (VIP) in the reproductive tract, we investigated its role in maintaining ovarian immune homeostasis and preventing premature aging. We evaluated young VIP knockout (KO) mice, comparing them to young wild type (WT) females, for signs of premature aging. Histological staining revealed aberrant ovarian morphology in VIP KO mice, characterized by increased atretic follicles and decreased ovarian reserve compared to WT controls. Moreover, VIP KO ovaries showed reduced vascularization, increased collagen deposition and elevated ROS and IL-1β levels. Foamy macrophages were significantly predominant, indicating premature aging in young VIP KO ovaries. To determine potential mechanisms behind these pathogenic changes, we conditioned peritoneal macrophages from young WT or VIP KO mice in vitro with ovarian-conditioned media from young WT or VIP KO mice to mimic the respective ovarian microenvironment. When WT or VIP KO peritoneal macrophages were conditioned with ovarian media from their respective genotypes, lipid droplet accumulation increased compared to control medium. In cross-genotype experiments, WT macrophages conditioned with media from VIP KO ovaries selectively accumulated higher levels of lipid droplets, whereas no differences were observed in VIP KO macrophages conditioned with WT ovarian media. This suggests that VIP KO macrophages are uniquely sensitized to the inflammatory environment of VIP KO ovaries, implicating both ovarian factors and macrophage status. These findings highlight the role of VIP in preventing fibro-inflammation, thereby preserving ovarian health and preventing premature aging.
Collapse
Affiliation(s)
- Lara Castagnola
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lucila Gallino
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Ana Schafir
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Daiana Vota
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Esteban Grasso
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Soledad Gori
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - James Waschek
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | - Claudia Pérez Leirós
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Vanesa Hauk
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| | - Rosanna Ramhorst
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Zhao J, Gomes D, Yuan F, Feng J, Zhang X, O'Toole TE. Oral Polystyrene Consumption Potentiates Atherosclerotic Lesion Formation in ApoE -/- Mice. Circ Res 2024; 134:1228-1230. [PMID: 38662862 PMCID: PMC11047141 DOI: 10.1161/circresaha.124.324419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Affiliation(s)
- Jingjing Zhao
- Division of Environmental Medicine, Department of Medicine, Christina Lee Brown Envirome Institute (J.Z., D.G., F.Y., T.E.O.)
- Center for Integrative Environmental Health Sciences (J.Z., X.Z., T.E.O.)
| | - Daniel Gomes
- Division of Environmental Medicine, Department of Medicine, Christina Lee Brown Envirome Institute (J.Z., D.G., F.Y., T.E.O.)
- Department of Pharmacology and Toxicology (D.G.)
| | - Fangping Yuan
- Division of Environmental Medicine, Department of Medicine, Christina Lee Brown Envirome Institute (J.Z., D.G., F.Y., T.E.O.)
| | - Jing Feng
- Department of Chemistry (J.F., X.Z.)
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, KY (J.F., X.Z.)
| | - Xiang Zhang
- Center for Integrative Environmental Health Sciences (J.Z., X.Z., T.E.O.)
- Department of Chemistry (J.F., X.Z.)
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, KY (J.F., X.Z.)
| | - Timothy E O'Toole
- Division of Environmental Medicine, Department of Medicine, Christina Lee Brown Envirome Institute (J.Z., D.G., F.Y., T.E.O.)
- Center for Integrative Environmental Health Sciences (J.Z., X.Z., T.E.O.)
| |
Collapse
|
3
|
Witzel R, Block A, Pollmann S, Oetzel L, Fleck F, Bonaterra GA, Kinscherf R, Schwarz A. PACAP regulates VPAC1 expression, inflammatory processes and lipid homeostasis in M1- and M2-macrophages. Front Cardiovasc Med 2023; 10:1264901. [PMID: 37900572 PMCID: PMC10611464 DOI: 10.3389/fcvm.2023.1264901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) acts as an anti-atherogenic neuropeptide and plays an important role in cytoprotective, as well as inflammatory processes, and cardiovascular regulation. Therefore, the aim of this study is to investigate the regulatory effects of PACAP and its receptor VPAC1 in relation to inflammatory processes and lipid homeostasis in different macrophage (MΦ) subtypes. Methods To investigate the role of PACAP deficiency in the pathogenesis of atherosclerosis under standard chow (SC) or cholesterol-enriched diet (CED) in vivo, PACAP-/- mice were crossbred with ApoE-/- to generate PACAP-/-/ApoE-/- mice. Lumen stenosis in the aortic arch and different MΦ-subtypes were analyzed in atherosclerotic plaques by quantitative immunohistochemistry. Undifferentiated bone marrow-derived cells (BMDC) from 30-weeks-old ApoE-/- and PACAP-/-/ApoE-/- mice were isolated, differentiated into BMDM1- and BMDM2-MΦ, and incubated with oxidized low-density lipoprotein (oxLDL). In addition, PMA-differentiated human THP-1 MΦ were further differentiated into M1-/M2-MΦ and subsequently treated with PACAP38, the VPAC1 agonist [(Ala11,22,28)VIP], the antagonist (PG 97-269), and/or oxLDL. Uptake/accumulation of oxLDL was analyzed by oxLDL-DyLight™488 and Bodipy™ 493/503. The mRNA expression was analyzed by qRT-PCR, protein levels by Western blot, and cytokine release by ELISA. Results In vivo, after 30 weeks of SC, PACAP-/-/ApoE-/- mice showed increased lumen stenosis compared with ApoE-/- mice. In atherosclerotic plaques of PACAP-/-/ApoE-/- mice under CED, immunoreactive areas of VPAC1, CD86, and CD163 were increased compared with ApoE-/- mice. In vitro, VPAC1 protein levels were increased in PACAP-/-/ApoE-/- BMDM compared with ApoE-/- BMDM, resulting in increased TNF-α mRNA expression in BMDM1-MΦ and decreased TNF-α release in BMDM2-MΦ. Concerning lipid homeostasis, PACAP deficiency decreased the area of lipid droplets in BMDM1-/M2-MΦ with concomitant increasing adipose differentiation-related protein level. In THP-1 M1-/M2-MΦ, the VPAC1 antagonist increased the uptake of oxLDL, whereas the VPAC1 agonist decreased the oxLDL-induced intracellular triglyceride content. Conclusion Our data suggest that PACAP via VPAC1 signaling plays an important regulatory role in inflammatory processes in atherosclerotic plaques and in lipid homeostasis in different MΦ-subtypes, thereby affecting foam cell formation. Therefore, VPAC1 agonists or PACAP may represent a new class of anti-atherogenic therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anja Schwarz
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
4
|
Zhang Z, Li Q, Huang Y, Xu Z, Chen X, Jiang B, Huang Y, Jian J. Vasoactive Intestinal Peptide (VIP) Protects Nile Tilapia ( Oreochromis niloticus) against Streptococcus agalatiae Infection. Int J Mol Sci 2022; 23:ijms232314895. [PMID: 36499231 PMCID: PMC9738603 DOI: 10.3390/ijms232314895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Vasoactive intestinal peptide (VIP), a member of secretin/glucagon family, is involved in a variety of biological activities such as gut motility, immune responses, and carcinogenesis. In this study, the VIP precursor gene (On-VIP) and its receptor gene VIPR1 (On-VIPR1) were identified from Nile tilapia (Oreochromis niloticus), and the functions of On-VIP in the immunomodulation of Nile tilapia against bacterial infection were investigated and characterized. On-VIP and On-VIPR1 contain a 450 bp and a 1326 bp open reading frame encoding deduced protein of 149 and 441 amino acids, respectively. Simultaneously, the transcript of both On-VIP and On-VIPR1 were highly expressed in the intestine and sharply induced by Streptococcus agalatiae. Moreover, the positive signals of On-VIP and On-VIPR1 were detected in the longitudinal muscle layer and mucosal epithelium of intestine, respectively. Furthermore, both in vitro and in vivo experiments indicated several immune functions of On-VIP, including reduction of P65, P38, MyD88, STAT3, and AP1, upregulation of CREB and CBP, and suppression of inflammation. Additionally, in vivo experiments proved that On-VIP could protect Nile tilapia from bacterial infection and promote apoptosis and pyroptosis. These data lay a theoretical basis for further understanding of the mechanism of VIP guarding bony fish against bacterial infection.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Li
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiong Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhou Xu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinjin Chen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Baijian Jiang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen 327005, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen 327005, China
- Correspondence:
| |
Collapse
|
5
|
Salekeen R, Haider AN, Akhter F, Billah MM, Islam ME, Didarul Islam KM. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2022; 14:200143. [PMID: 36060286 PMCID: PMC9434419 DOI: 10.1016/j.ijcrp.2022.200143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
A marked increase in the global prevalence of ischemic heart disease demands focused research for novel and more effective therapeutic strategies. At present, atherosclerotic cardiovascular disease (ACVD) is the leading cause of the global incidence of heart attacks and a major contributor to many peripheral cardiac diseases. Decades of research have unearthed the complex and multidimensional pathophysiology of ACVD encompassing oxidative stress, redox imbalance, lipid peroxidation, pro-inflammatory signaling, hyperglycemic stress and diabetes mellitus, chronic low-grade inflammation and aging, immune dysregulation, vascular dysfunction, loss of hemostasis, thrombosis, and fluid shear stress. However, the scientific basis of therapeutic interventions using conventional understandings of the disease mechanisms has been subject to renewed scrutiny with novel findings in recent years. This critical review attempts to revise the pathophysiological mechanisms of atherosclerosis using a recent body of literature, with a focus on lipid metabolism and associated cellular and biochemical processes. The comprehensive study encompasses different molecular perspectives in the development and progression of coronary atherosclerosis. The review also summarizes currently prescribed small molecule therapeutics in inflammation and ACVD, and overviews prospective management measures under development including peptides and microRNA therapeutics. The study provides updated insights into the current knowledge of coronary atherosclerosis, and highlights the need for effective prevention, management and development of novel intervention approaches to overcome this chronic epidemic.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Abu Nasim Haider
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Fouzia Akhter
- Khulna Medical College Hospital, Khulna, 9000, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
6
|
Cellular Phenotypic Transformation in Heart Failure Caused by Coronary Heart Disease and Dilated Cardiomyopathy: Delineating at Single-Cell Level. Biomedicines 2022; 10:biomedicines10020402. [PMID: 35203611 PMCID: PMC8962334 DOI: 10.3390/biomedicines10020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Heart failure (HF) is known as the final manifestation of cardiovascular diseases. Although cellular heterogeneity of the heart is well understood, the phenotypic transformation of cardiac cells in progress of HF remains obscure. This study aimed to analyze phenotypic transformation of cardiac cells in HF through human single-cell RNA transcriptome profile. Here, phenotypic transformation of cardiomyocytes (CMs), endothelial cells (ECs), and fibroblasts was identified by data analysis and animal experiments. Abnormal myosin subunits including the decrease in Myosin Heavy Chain 6, Myosin Light Chain 7 and the increase in Myosin Heavy Chain 7 were found in CMs. Two disease phenotypes of ECs named inflammatory ECs and muscularized ECs were identified. In addition, myofibroblast was increased in HF and highly associated with abnormal extracellular matrix. Our study proposed an integrated map of phenotypic transformation of cardiac cells and highlighted the intercellular communication in HF. This detailed definition of cellular transformation will facilitate cell-based mapping of novel interventional targets for the treatment of HF.
Collapse
|
7
|
Hua F, Zhou P, Liu PP, Bao GH. Rat plasma protein binding of kaempferol-3-O-rutinoside from Lu'an GuaPian tea and its anti-inflammatory mechanism for cardiovascular protection. J Food Biochem 2021; 45:e13749. [PMID: 34041764 DOI: 10.1111/jfbc.13749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Previous study found a high content of kaempferol-3-O-rutinoside (KR) in Lu'an GuaPian tea, however, the rat plasma protein binding and mechanism of KR for cardiovascular protection are unclear. Thus, we studied plasma protein binding using ultrafiltration followed by UPLC, and screened its inhibition against LPS-induced inflammation injury in vitro as well as the underlying mechanism by molecular docking and western blot. KR showed over 74% plasma protein binding ratio. Furthermore, KR may act on the toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). In vitro experiments showed that KR decreases the overexpression of TLR4, MyD88, and nuclear factor-κB (NF-κB), which further validates the molecular docking results, suggesting that KR could block TLR4/MyD88/NF-κB signaling. These results indicate that KR could be a potential active agent in the protection of myocardial injury. PRACTICAL APPLICATIONS: Health benefits of tea are largely dependent on the intake of flavonoids. Flavonoids are a group of compounds beneficial to cardiovascular disease and an important part of "functional foods." Lu'an GuaPian tea is mainly produced in Lu'an City, Anhui Province and is one of the top 10 famous teas in China. Kaempferol-3-O-rutinoside in Lu'an GuaPian has good hypoglycemic effect, mainly manifested in a strong inhibition of α-glucosidase and α-amylase activities. Present study showed that kaempferol-3-O-rutinoside could block TLR4/MyD88/NF-κB signaling, suggesting that it could be a potential active agent in the protection of myocardial injury.
Collapse
Affiliation(s)
- Fang Hua
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Pharmacy, Anhui Xinhua University, Hefei, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Pei-Pei Liu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Harris LK. VIP: The big shot peptide in pregnancy and beyond? Acta Physiol (Oxf) 2021; 232:e13636. [PMID: 33630381 DOI: 10.1111/apha.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lynda K. Harris
- Division of Pharmacy & Optometry School of Health Sciences The University of Manchester Manchester UK
- Maternal and Fetal Health Research Centre School of Medical Sciences The University of ManchesterSt Mary's Hospital Manchester UK
- St Mary’s HospitalManchester Foundation TrustManchester Academic Health Science Centre Manchester UK
| |
Collapse
|
9
|
Chen M, Luo Y, Men L, Lin B, Lin H, Li Y, Zhong G, Zhong X, Fu W, Zhou H, Tong G, Liu Q, Luan J. Investigating the mechanisms of Modified Xiaoyaosan (tiaogan-liqi prescription) in suppressing the progression of atherosclerosis, by means of integrative pharmacology and experimental validation. Aging (Albany NY) 2021; 13:11411-11432. [PMID: 33839698 PMCID: PMC8109114 DOI: 10.18632/aging.202832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/16/2021] [Indexed: 01/26/2023]
Abstract
Atherosclerosis (AS)-related diseases remain among the leading causes of death worldwide. Modified Xiaoyaosan (also called Tiaogan-Liqi prescription, TGLQ), a traditional Chinese medical formulation, has been widely applied in the treatment of AS-related diseases. The aim of this study was to investigate the underlying pharmacological mechanisms of TGLQ in acting on AS. A total of 548 chemical compounds contained in TGLQ, and 969 putative targets, were collected from the Computation Platform for Integrative Pharmacology of Traditional Chinese Medicine, while 1005 therapeutic targets for the treatment of AS were obtained from the DisGeNET, TTD and CTD databases. Moreover, the 63 key targets were screened by the intersection of the targets above, and by network topological analysis. Further functional enrichment analysis showed that the key targets were significantly associated with regulation of the immune system and inflammation, improvement of lipid and glucose metabolism, regulation of the neuroendocrine system and anti-thrombosis effect. The in vivo experiments confirmed that TGLQ could reduce plasma lipid profiles and plasma inflammatory cytokines, and also inhibit AS plaque formation, within the AS model ApoE-/- mice. The in vitro experiments validated the hypothesis that TGLQ could significantly reduce intracellular lipid accumulation, suppress the production of inflammatory cytokines of macrophages induced by oxidized-LDL, and inhibit the protein expression of heat shock protein 90 and toll-like receptor 4. This study identified a list of key targets of TGLQ in the treatment of AS by applying an integrative pharmacology approach, which was validated by in vivo and in vitro experimentation.
Collapse
Affiliation(s)
- Mingtai Chen
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yong Luo
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ling Men
- Nephrology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Bo Lin
- Intensive Care Unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Haidan Lin
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Ying Li
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Guofu Zhong
- Intensive Care Unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaoling Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Wenjun Fu
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Guangdong Tong
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qiang Liu
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jienan Luan
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
10
|
VIP modulates human macrophages phenotype via FPRL1 via activation of RhoA-GTPase and PLC pathways. Inflamm Res 2021; 70:309-321. [PMID: 33502586 DOI: 10.1007/s00011-021-01436-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/26/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE AND DESIGN This study is aimed at uncovering the signaling pathways activated by vasoactive intestinal peptide in human macrophages MATERIALS: Human peripheral blood mononuclear cell-derived macrophages were used for the in vitro investigation of the VIP-activated signaling pathways. METHODS AND TREATMENT Time-course and dose-response experiments and siRNA were used in human macrophages co-challenged with various concentrations of VIP and different MAPK pharmacologic inhibitors to investigate signaling pathways activated by VIP. Flow analysis was performed to assess the levels of CD11b, CD35 and CD66. Luminescence spectrometry was used to measure the levels of the released hydrogen peroxide and the intracellular calcium levels in the media. RESULTS Macrophages incubated with VIP showed increased phospho-AKT and phospho-ERK1/2 levels in a GTP-RhoA-GTPase-dependent manner. Similarly, VIP increased intracellular release of H2O2 and calcium via PLC and GTP-RhoA-GTPase, in addition to inducing the expression of CD11b, CD35, CD66 and MMP9. Furthermore, VIP activated P38 MAPK through the cAMP/PKA pathway but was independent of both PLC and RhoA signaling. The above-mentioned VIP effects were mediated via activation of the FPRL1 receptor. CONCLUSION VIP/FPRL1/VPAC/GTP-RhoA-GTPase signaling modulated macrophages phenotype through activation of multiple signaling pathways including ERK1/2, AKT, P38, ROS, cAMP and calcium.
Collapse
|
11
|
Vasoactive Intestinal Polypeptide in the Carotid Body-A History of Forty Years of Research. A Mini Review. Int J Mol Sci 2020; 21:ijms21134692. [PMID: 32630153 PMCID: PMC7370131 DOI: 10.3390/ijms21134692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Vasoactive intestinal polypeptide (VIP) consists of 28 amino acid residues and is widespread in many internal organs and systems. Its presence has also been found in the nervous structures supplying the carotid body not only in mammals but also in birds and amphibians. The number and distribution of VIP in the carotid body clearly depends on the animal species studied; however, among all the species, this neuropeptide is present in nerve fibers around blood vessels and between glomus cell clusters. It is also known that the number of nerves containing VIP located in the carotid body may change under various pathological and physiological factors. The knowledge concerning the functioning of VIP in the carotid body is relatively limited. It is known that VIP may impact the glomus type I cells, causing changes in their spontaneous discharge, but the main impact of VIP on the carotid body is probably connected with the vasodilatory effects of this peptide and its influence on blood flow and oxygen delivery. This review is a concise summary of forty years of research concerning the distribution of VIP in the carotid body.
Collapse
|
12
|
Splitthoff P, Rasbach E, Neudert P, Bonaterra GA, Schwarz A, Mey L, Schwarzbach H, Eiden LE, Weihe E, Kinscherf R. PAC1 deficiency attenuates progression of atherosclerosis in ApoE deficient mice under cholesterol-enriched diet. Immunobiology 2020; 225:151930. [PMID: 32173151 PMCID: PMC9741700 DOI: 10.1016/j.imbio.2020.151930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
The neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP) is vasoactive and cytoprotective and exerts immunoregulatory functions throughout the nervous, neuroendocrine cardiovascular and immune systems in health and disease. PACAP mainly acts through PAC1 receptor signaling in neuronal communication, but the role of PAC1 in immune regulation of atherosclerosis is not known. Here, we generated PAC1-/-/ApoE-/- mice to test, whether PAC1-/- influences plasma cholesterol-/triglyceride levels and/or atherogenesis in the brachiocephalic trunk (BT) seen in ApoE-/- mice, under standard chow (SC) or cholesterol-enriched diet (CED). Furthermore, the effect of PAC1-/-, on inflammatory, autophagy-, apoptosis- and necroptosis-relevant proteins in atherosclerotic plaques was determined. In plaques of PAC1-/-/ApoE-/- mice fed a SC, the immunoreactivity for apoptotic, autophagic, necroptotic and proinflammatory proteins was increased, however, proliferation was unaffected. Interestingly, without affecting hyperlipidemia, PAC1-/- in ApoE-/- mice remarkably reduced CED-induced lumen stenosis seen in ApoE-/- mice. Thus, PAC1-/- allows unchecked inflammation, necroptosis and decreased proliferation during SC, apparently priming the BT to develop reduced atheroma under subsequent CED. Remarkably, no differences in inflammation/necroptosis signatures in the atheroma under CED between PAC1-/-/ApoE-/- and ApoE-/- mice were observed. These data indicate that selective PAC1 antagonists should offer potential as a novel class of atheroprotective therapeutics, especially during hypercholesterolemia.
Collapse
Affiliation(s)
- Paul Splitthoff
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Erik Rasbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Philip Neudert
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Gabriel A. Bonaterra
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany,Corresponding author at: Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany., (G.A. Bonaterra)
| | - Anja Schwarz
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Lilli Mey
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health Intramural Research Program, Bethesda, 20814, Maryland, USA
| | - Eberhard Weihe
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| |
Collapse
|
13
|
Zhou Y, Zhang CY, Duan JX, Li Q, Yang HH, Sun CC, Zhang J, Luo XQ, Liu SK. Vasoactive intestinal peptide suppresses the NLRP3 inflammasome activation in lipopolysaccharide-induced acute lung injury mice and macrophages. Biomed Pharmacother 2020; 121:109596. [DOI: 10.1016/j.biopha.2019.109596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
|
14
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
15
|
Zhang X, Li M, Wang H. Astragaloside IV Alleviates the Myocardial Damage Induced by Lipopolysaccharide via the Toll-Like Receptor 4 (TLR4)/Nuclear Factor kappa B (NF-κB)/Proliferator-Activated Receptor α (PPARα) Signaling Pathway. Med Sci Monit 2019; 25:7158-7168. [PMID: 31545785 PMCID: PMC6775796 DOI: 10.12659/msm.916030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We previously reported that astragaloside IV (As-IV) can alleviate myocardial damage induced by lipopolysaccharide (LPS). However, the anti-inflammatory effects of As-IV following LPS stimulation in mice and H9C2 cardiomyocytes remain unclear. The present study was designed to explore the mechanism of action of As-IV. MATERIAL AND METHODS In vivo, C57BL/6J mice were randomly divided into 5 groups: the control group, the LPS group (10 mg/kg), and 3 LPS groups receiving different doses of As-IV (20, 40, and 80 mg/kg). The protective effect of As-IV on LPS-stimulated H9C2 cardiomyocytes was evaluated in vitro. Cardiac function was detected by echocardiography, and H&E staining was used to evaluate morphologic changes. Cardiomyocyte viability was detected by MTT assay. ELISA was used to detect free fatty acid (FFA), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor alpha (TNF-alpha) levels in mouse serum and in cell supernatant. Adenosine triphosphate (ATP) and adenosine monophosphate (AMP) contents in myocardial tissues and cells were detected by high-performance liquid chromatography. ATP5D and TLR4/NF-kappaB/PPARalpha signaling pathway proteins (TLR4, NF-kappaB, p65, and PPARalpha) were detected by Western blotting. RESULTS As-IV significantly improved cardiac function, myocardial cell viability, and pathological changes and reduced FFA, IL-1ß, IL-6, and TNF-alpha levels. The ATP/AMP ratio in the cardiac tissues of mice and in H9C2 cardiomyocytes was increased compared to that in the LPS group. In addition, As-IV enhanced ATP synthase and PPARalpha protein expression. In H9C2 cardiomyocytes, the p65-specific inhibitor BAY11-7082 exerted similar effects as As-IV. CONCLUSIONS As-IV alleviates LPS-induced myocardial damage by modulating TLR4/NF-kappaB/PPARalpha signaling-mediated energy biosynthesis.
Collapse
Affiliation(s)
- Xiaoyao Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Mengfei Li
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| |
Collapse
|
16
|
Fu D, Senouthai S, Wang J, You Y. Vasoactive intestinal peptide ameliorates renal injury in a pristane-induced lupus mouse model by modulating Th17/Treg balance. BMC Nephrol 2019; 20:350. [PMID: 31488076 PMCID: PMC6728947 DOI: 10.1186/s12882-019-1548-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lupus nephritis (LN) is an inflammation of the kidneys and is a major cause of mortality in systemic lupus erythaematosus (SLE) patients. In addition, Th17/Treg balance is one of the most important factors that can promote the development of LN. It has been reported that vasoactive intestinal peptide (VIP) is associated with the downregulation of both inflammatory and autoimmune diseases through regulating T lymphocyte balance. Therefore, the aim of this study was to determine the role of VIP in modulating Th17/Treg balance in LN. METHODS LN was induced in BALB/c female mice by injection pristane. After 3 months, mice were randomly divided into four groups: control, VIP + control, LN and VIP + LN. Autoantibody levels were tested by ELISA. The distribution of Th17/Treg cells in vivo and in vitro was detected by FC. Renal tissues were examined by PASM and DIF for pathology and Foxp3+CD3+. The mRNA and protein expression levels of pro- and anti-inflammatory cytokines were detected by qRT-PCR and western blotting. RESULTS VIP can improve renal injury by regulating Th17/Treg imbalance in LN mice. Proteinuria, renal function defects and autoantibodies were significantly decreased, and Th17/Treg cell balance was restored in VIP compared with LN mice. In addition, VIP improved renal lesions by promoting the expression of Foxp3+CD3+ in renal tissue. Furthermore, VIP downregulated the mRNA and protein expression of IL-17, IL-6 and upregulated Foxp3, IL-10 expression. CONCLUSIONS VIP reduced LN proteinuria and renal function defects and restored the Th17/Treg cell balance. Furthermore, VIP also downregulated autoantibody and inflammatory cytokine expression and upregulated Foxp3 and IL-10 expression.
Collapse
Affiliation(s)
- Dongdong Fu
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Soulixay Senouthai
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Junjie Wang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Yanwu You
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| |
Collapse
|
17
|
|
18
|
Rasbach E, Splitthoff P, Bonaterra GA, Schwarz A, Mey L, Schwarzbach H, Eiden LE, Weihe E, Kinscherf R. PACAP deficiency aggravates atherosclerosis in ApoE deficient mice. Immunobiology 2018; 224:124-132. [PMID: 30447883 DOI: 10.1016/j.imbio.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022]
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) plays an important role in cytoprotection, inflammation and cardiovascular regulation. Thus, we studied the involvement of PACAP in atherogenesis. Differentiated human THP-1 macrophages (MΦ) were stimulated with oxidized low-density lipoproteins (oxLDL) and the influence of PACAP38 treatment on lipid content and TNF release was determined. To test the effect of PACAP deficiency (PACAP-/-) on the development of atherosclerosis under standard chow (SC) or cholesterol-enriched diet (CED) in vivo, PACAP-/- mice were crossbred with ApoE-/- to generate PACAP-/-/ApoE-/- mice. Blood cholesterol and triglyceride levels were quantified. Lumen stenosis in the brachiocephalic trunk, cellularity and amounts of pro-inflammatory as well as autophagy-, apoptosis- and necroptosis-relevant proteins were analysed in atherosclerotic plaques by quantitative immunohistochemistry. In vitro, PACAP38 inhibited oxLDL-induced intracellular lipid storage as well as TNF release in MФ. In vivo, after SC, but not under CED, PACAP-/-/ApoE-/- mice showed an increased lumen stenosis compared to ApoE-/- mice. In atherosclerotic plaques of PACAP-/-/ApoE-/- mice, the immunoreactive areas of TNF+, IL-1β+, autophagic, apoptotic and necroptotic cells were increased. In contrast, the overall cell density was decreased compared to ApoE-/- under SC, while no differences were seen under CED. Similar plasma cholesterol levels were observed in PACAP-/-/ApoE-/- and ApoE-/- mice under the respective feeding regime. Thus, PACAP-/-/ApoE-/- mice represent a novel mouse model of accelerated atherosclerosis where CED is not required. Our data indicate that PACAP acts as an endogenous atheroprotective neuropeptide. Thus, stable PACAP agonists may have potential as anti-atherosclerotic therapeutics. The specific PACAP receptor(s) mediating atheroprotection remain(s) to be identified.
Collapse
Affiliation(s)
- Erik Rasbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany
| | - Paul Splitthoff
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany
| | - Gabriel A Bonaterra
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany.
| | - Anja Schwarz
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany
| | - Lilli Mey
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany
| | - Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health Intramural Research Program, Bethesda, 20814 MD, USA
| | - Eberhard Weihe
- Department of Molecular and Cellular Neuroscience, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg Robert-Koch-Str. 8, 35037 Marburg, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany
| |
Collapse
|
19
|
Meng LB, Qi R, Xu L, Chen Y, Yu Z, Guo P, Gong T. The more critical murderer of atherosclerosis than lipid metabolism: chronic stress. Lipids Health Dis 2018; 17:143. [PMID: 29921279 PMCID: PMC6009046 DOI: 10.1186/s12944-018-0795-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The mortality of atherosclerotic cerebrovascular disease is on the rise, and changes in intimal and media thickness are a leading cause of cerebral ischemia-related death. Levels of low density lipoprotein cholesterol (LDLC), total cholesterol (TC), and chronic stress (CS) are all recognized risk factors for atherosclerosis (AS). However, the leading independent risk factor is indistinct. This study explored the effects of chronic stress, LDLC, and TC on AS and intimal and media thickness, preliminarily explored the main risk factor of AS, and analyzed the related histocyte mechanisms for macrophages and endothelial cells. METHODS Conditions include normal, high-fat diet (HF), and HF plus CS. The correlations between intimal and media thickness and general risk factors were analyzed using χ2, Spearman's rho test, and multiple linear regression. Univariate Cox regression was used to identify potential factors that affect the non-depression time (NDT). We performed a ROC curve to determine the ability of this condition to predict the thickness. Immunohistochemistry was implemented to detect macrophagocytes and endotheliocytes. RESULTS Based on χ2 and Spearman's rho test, LDLC, TC, and CS are all related with intimal and media thickness (P < 0.05). However, in multiple linear regression, CS is still a risk factor of thickness (P < 0.05) but LDLC and TC are not. High levels of LDLC, TC, and CS were correlated with poor NDT (P < 0.05). This condition can predict the thickness sensitively. The endarterium is richest in macrophagocytes, and the arrangement of endotheliocytes is disordered and cracked under CS. CONCLUSION CS is the main independent risk factor for AS and intimal (and media) thickness, rather than LDLC or TC.
Collapse
Affiliation(s)
- Ling-bing Meng
- Neurology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730 People’s Republic of China
| | - Ruomei Qi
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730 People’s Republic of China
| | - Lei Xu
- Neurology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730 People’s Republic of China
| | - Yuhui Chen
- Neurology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730 People’s Republic of China
| | - Zemou Yu
- Department of Neurology, Peking University First Hospital, Beijing, People’s Republic of China
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Gong
- Neurology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730 People’s Republic of China
| |
Collapse
|