1
|
Byrne C, Schiffer JT. Ensemble modeling of SARS-CoV-2 immune dynamics in immunologically naïve rhesus macaques predicts that potent, early innate immune responses drive viral elimination. Front Immunol 2024; 15:1426016. [PMID: 39575237 PMCID: PMC11578959 DOI: 10.3389/fimmu.2024.1426016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction An unprecedented breadth of longitudinal viral and multi-scale immunological data has been gathered during SARS-CoV-2 infection. However, due to the high complexity, non-linearity, multi-dimensionality, mixed anatomic sampling, and possible autocorrelation of available immune data, it is challenging to identify the components of the innate and adaptive immune response that drive viral elimination. Novel mathematical models and analytical approaches are required to synthesize contemporaneously gathered cytokine, transcriptomic, flow cytometry, antibody response, and viral load data into a coherent story of viral control, and ultimately to discriminate drivers of mild versus severe infection. Methods We investigated a dataset describing innate, SARS-CoV-2 specific T cell, and antibody responses in the lung during early and late stages of infection in immunologically naïve rhesus macaques. We used multi-model inference and ensemble modeling approaches from ecology and weather forecasting to compare and combine various competing models. Results and discussion Model outputs suggest that the innate immune response plays a crucial role in controlling early infection, while SARS-CoV-2 specific CD4+ T cells correspond to later viral elimination, and anti-spike IgG antibodies do not impact viral dynamics. Among the numerous genes potentially contributing to the innate response, we identified IFI27 as most closely linked to viral load decline. A 90% knockdown of the innate response from our validated model resulted in a ~10-fold increase in peak viral load during infection. Our approach provides a novel methodological framework for future analyses of similar complex, non-linear multi-component immunologic data sets.
Collapse
Affiliation(s)
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center,
Seattle, WA, United States
| |
Collapse
|
2
|
Bai L, Xu J, Zeng L, Zhang L, Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. MOLECULAR BIOMEDICINE 2024; 5:35. [PMID: 39207577 PMCID: PMC11362470 DOI: 10.1186/s43556-024-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herpes simplex virus (HSV), an epidemic human pathogen threatening global public health, gains notoriety for its complex pathogenesis that encompasses lytic infection of mucosal cells, latent infection within neurons, and periodic reactivation. This intricate interplay, coupled with HSV's sophisticated immune evasion strategies, gives rise to various diseases, including genital lesions, neonatal encephalitis, and cancer. Despite more than 70 years of relentless research, an effective preventive or therapeutic vaccine against HSV has yet to emerge, primarily due to the limited understanding of virus-host interactions, which in turn impedes the identification of effective vaccine targets. However, HSV's unique pathological features, including its substantial genetic load capacity, high replicability, transmissibility, and neurotropism, render it a promising candidate for various applications, spanning oncolytic virotherapy, gene and immune therapies, and even as an imaging tracer in neuroscience. In this review, we comprehensively update recent breakthroughs in HSV pathogenesis and immune evasion, critically summarize the progress made in vaccine candidate development, and discuss the multifaceted applications of HSV as a biological tool. Importantly, we highlight both success and challenges, emphasizing the critical need for intensified research into HSV, with the aim of providing deeper insights that can not only advance HSV treatment strategies but also broaden its application horizons.
Collapse
Affiliation(s)
- Lan Bai
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiuzhi Xu
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Danastas K, Guo G, Merjane J, Hong N, Larsen A, Miranda-Saksena M, Cunningham AL. Interferon inhibits the release of herpes simplex virus-1 from the axons of sensory neurons. mBio 2023; 14:e0181823. [PMID: 37655893 PMCID: PMC10653907 DOI: 10.1128/mbio.01818-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Herpes simplex virus-1 (HSV-1) is a human pathogen known to cause cold sores and genital herpes. HSV-1 establishes lifelong infections in our sensory neurons, with no cure or vaccine available. HSV-1 can reactivate sporadically and travel back along sensory nerves, where it can form lesions in the oral and genital mucosa, eye, and skin, or be shed asymptomatically. New treatment options are needed as resistance is emerging to current antiviral therapies. Here, we show that interferons (IFNs) are capable of blocking virus release from nerve endings, potentially stopping HSV-1 transmission into the skin. Furthermore, we show that IFNγ has the potential to have widespread antiviral effects in the neuron and may have additional effects on HSV-1 reactivation. Together, this study identifies new targets for the development of immunotherapies to stop the spread of HSV-1 from the nerves into the skin.
Collapse
Affiliation(s)
- Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Gerry Guo
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jessica Merjane
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Nathan Hong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Ava Larsen
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
4
|
Bourne N, Keith CA, Miller AL, Pyles RB, Milligan GN. Impact of CD4 + T lymphocytes on the cellular and molecular milieu of the vaginal mucosa following HSV-2 challenge of immune guinea pigs. Virology 2023; 588:109907. [PMID: 39492229 DOI: 10.1016/j.virol.2023.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
CD4+ and CD8+ tissue resident memory cells (TRM) express many shared anti-viral activities upon re-exposure to virus. CD4+ T cells were depleted from HSV-immune guinea pigs to identify CD4-dependent functions in the vaginal mucosa following HSV-2 challenge. The incidence of animals shedding HSV-2 fell rapidly after challenge in control animals but remained significantly higher through day four post infection in CD4-depleted animals. Genes encoding CD14, IFN-γ, CCL2, and CCL5 were up-regulated in the vaginal mucosa of both groups following challenge. However, significantly higher expression of CD107b, IL-15, and TLR9 but lower expression of CD20, IL-21, and CCL5 was detected in CD4-depleted- compared to control-treated animals. Further, antigen stimulation of CD4+ TRM increased the expression of IFN-γ, IL-2, IL-21, IL-17A, and CCL5. The impact of these gene expression patterns on the recruitment and maintenance of the cellular milieu of the vaginal mucosa upon virus challenge is discussed.
Collapse
Affiliation(s)
- Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA.
| | - Celeste A Keith
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Richard B Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Gregg N Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA.
| |
Collapse
|
5
|
Lim YS, Lee AG, Jiang X, Scott JM, Cofie A, Kumar S, Kennedy D, Granville DJ, Shin H. NK cell-derived extracellular granzyme B drives epithelial ulceration during HSV-2 genital infection. Cell Rep 2023; 42:112410. [PMID: 37071533 DOI: 10.1016/j.celrep.2023.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/25/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Genital herpes is characterized by recurrent episodes of epithelial blistering. The mechanisms causing this pathology are ill defined. Using a mouse model of vaginal herpes simplex virus 2 (HSV-2) infection, we show that interleukin-18 (IL-18) acts upon natural killer (NK) cells to promote accumulation of the serine protease granzyme B in the vagina, coinciding with vaginal epithelial ulceration. Genetic loss of granzyme B or therapeutic inhibition by a specific protease inhibitor reduces disease and restores epithelial integrity without altering viral control. Distinct effects of granzyme B and perforin deficiency on pathology indicates that granzyme B acts independent of its classic cytotoxic role. IL-18 and granzyme B are markedly elevated in human herpetic ulcers compared with non-herpetic ulcers, suggesting engagement of these pathways in HSV-infected patients. Our study reveals a role for granzyme B in destructing mucosal epithelium during HSV-2 infection, identifying a therapeutic target to augment treatment of genital herpes.
Collapse
Affiliation(s)
- Ying Shiang Lim
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aisha G Lee
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoping Jiang
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason M Scott
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adjoa Cofie
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandeep Kumar
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dania Kennedy
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Granville
- International Collaboration on Repair Discoveries Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC V5V 3P1, Canada
| | - Haina Shin
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Smith JB, Herbert JJ, Truong NR, Cunningham AL. Cytokines and chemokines: The vital role they play in herpes simplex virus mucosal immunology. Front Immunol 2022; 13:936235. [PMID: 36211447 PMCID: PMC9538770 DOI: 10.3389/fimmu.2022.936235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous infections in humans. They cause orofacial and genital herpes with occasional severe complications. HSV2 also predisposes individuals to infection with HIV. There is currently no vaccine or immunotherapy for these diseases. Understanding the immunopathogenesis of HSV infections is essential to progress towards these goals. Both HSV viruses result in initial infections in two major sites - in the skin or mucosa, either after initial infection or recurrence, and in the dorsal root or trigeminal ganglia where the viruses establish latency. HSV1 can also cause recurrent infection in the eye. At all of these sites immune cells respond to control infection. T cells and resident dendritic cells (DCs) in the skin/mucosa and around reactivating neurones in the ganglia, as well as keratinocytes in the skin and mucosa, are major sources of cytokines and chemokines. Cytokines such as the Type I and II interferons synergise in their local antiviral effects. Chemokines such as CCL2, 3 and 4 are found in lesion vesicle fluid, but their exact role in determining the interactions between epidermal and dermal DCs and with resident memory and infiltrating CD4 and CD8 T cells in the skin/mucosa is unclear. Even less is known about these mechanisms in the ganglia. Here we review the data on known sources and actions of these cytokines and chemokines at cellular and tissue level and indicate their potential for preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Anthony L. Cunningham,
| |
Collapse
|
7
|
Lange J, Rivera-Ballesteros O, Buggert M. Human mucosal tissue-resident memory T cells in health and disease. Mucosal Immunol 2022; 15:389-397. [PMID: 34743182 PMCID: PMC8571012 DOI: 10.1038/s41385-021-00467-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023]
Abstract
Memory T cells are fundamental to maintain immune surveillance of the human body. During the past decade, it has become apparent that non-recirculating resident memory T cells (TRMs) form a first line memory response in tissues to tackle re-infections. The fact that TRMs are essential for local immunity highlights the therapeutic potential of targeting this population against tumors and infections. However, similar to other immune subsets, TRMs are heterogenous and may form distinct effector populations with unique functions at diverse tissue sites. Further insight into the mechanisms of how TRM function and respond to pathogens and malignancies at different mucosal sites will help to shape future vaccine and immunotherapeutic approaches. Here, we review the current understanding of TRM function and biology at four major mucosal sites: gastrointestinal tract, lung, head and neck, as well as female reproductive tract. We also summarize our current knowledge of how TRM targets invading pathogens and developing tumor cells at these mucosal sites and contemplate how TRMs may be exploited to protect from infections and cancer.
Collapse
Affiliation(s)
- Joshua Lange
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Rice SA. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses 2021; 13:v13122395. [PMID: 34960664 PMCID: PMC8704881 DOI: 10.3390/v13122395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1, or HSV-1, is a widespread human pathogen that replicates in epithelial cells of the body surface and then establishes latent infection in peripheral neurons. When HSV-1 replicates, viral progeny must be efficiently released to spread infection to new target cells. Viral spread occurs via two major routes. In cell-cell spread, progeny virions are delivered directly to cellular junctions, where they infect adjacent cells. In cell-free release, progeny virions are released into the extracellular milieu, potentially allowing the infection of distant cells. Cell-cell spread of HSV-1 has been well studied and is known to be important for in vivo infection and pathogenesis. In contrast, HSV-1 cell-free release has received less attention, and its significance to viral biology is unclear. Here, I review the mechanisms and regulation of HSV-1 cell-free virion release. Based on knowledge accrued in other herpesviral systems, I argue that HSV-1 cell-free release is likely to be tightly regulated in vivo. Specifically, I hypothesize that this process is generally suppressed as the virus replicates within the body, but activated to high levels at sites of viral reactivation, such as the oral mucosa and skin, in order to promote efficient transmission of HSV-1 to new human hosts.
Collapse
Affiliation(s)
- Stephen A Rice
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Byrne CM, Johnston C, Orem J, Okuku F, Huang ML, Rahman H, Wald A, Corey L, Schiffer JT, Casper C, Coombs D, Gantt S. Examining the dynamics of Epstein-Barr virus shedding in the tonsils and the impact of HIV-1 coinfection on daily saliva viral loads. PLoS Comput Biol 2021; 17:e1009072. [PMID: 34153032 PMCID: PMC8248743 DOI: 10.1371/journal.pcbi.1009072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/01/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is transmitted by saliva and is a major cause of cancer, particularly in people living with HIV/AIDS. Here, we describe the frequency and quantity of EBV detection in the saliva of Ugandan adults with and without HIV-1 infection and use these data to develop a novel mathematical model of EBV infection in the tonsils. Eligible cohort participants were not taking antiviral medications, and those with HIV-1 infection had a CD4 count >200 cells/mm3. Over a 4-week period, participants provided daily oral swabs that we analysed for the presence and quantity of EBV. Compared with HIV-1 uninfected participants, HIV-1 coinfected participants had an increased risk of EBV detection in their saliva (IRR = 1.27, 95% CI = 1.10-1.47) and higher viral loads in positive samples. We used these data to develop a stochastic, mechanistic mathematical model that describes the dynamics of EBV, infected cells, and immune response within the tonsillar epithelium to analyse potential factors that may cause EBV infection to be more severe in HIV-1 coinfected participants. The model, fit using Approximate Bayesian Computation, showed high fidelity to daily oral shedding data and matched key summary statistics. When evaluating how model parameters differed among participants with and without HIV-1 coinfection, results suggest HIV-1 coinfected individuals have higher rates of B cell reactivation, which can seed new infection in the tonsils and lower rates of an EBV-specific immune response. Subsequently, both these traits may explain higher and more frequent EBV detection in the saliva of HIV-1 coinfected individuals.
Collapse
Affiliation(s)
- Catherine M. Byrne
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Institute of Applied Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jackson Orem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Uganda Cancer Institute, Kampala, Uganda
| | - Fred Okuku
- Uganda Cancer Institute, Kampala, Uganda
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Habibur Rahman
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Joshua T. Schiffer
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Corey Casper
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Daniel Coombs
- Institute of Applied Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
10
|
Bertram KM, Truong NR, Smith JB, Kim M, Sandgren KJ, Feng KL, Herbert JJ, Rana H, Danastas K, Miranda-Saksena M, Rhodes JW, Patrick E, Cohen RC, Lim J, Merten SL, Harman AN, Cunningham AL. Herpes Simplex Virus type 1 infects Langerhans cells and the novel epidermal dendritic cell, Epi-cDC2s, via different entry pathways. PLoS Pathog 2021; 17:e1009536. [PMID: 33905459 PMCID: PMC8104422 DOI: 10.1371/journal.ppat.1009536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/07/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Skin mononuclear phagocytes (MNPs) provide the first interactions of invading viruses with the immune system. In addition to Langerhans cells (LCs), we recently described a second epidermal MNP population, Epi-cDC2s, in human anogenital epidermis that is closely related to dermal conventional dendritic cells type 2 (cDC2) and can be preferentially infected by HIV. Here we show that in epidermal explants topically infected with herpes simplex virus (HSV-1), both LCs and Epi-cDC2s interact with HSV-1 particles and infected keratinocytes. Isolated Epi-cDC2s support higher levels of infection than LCs in vitro, inhibited by acyclovir, but both MNP subtypes express similar levels of the HSV entry receptors nectin-1 and HVEM, and show similar levels of initial uptake. Using inhibitors of endosomal acidification, actin and cholesterol, we found that HSV-1 utilises different entry pathways in each cell type. HSV-1 predominantly infects LCs, and monocyte-derived MNPs, via a pH-dependent pathway. In contrast, Epi-cDC2s are mainly infected via a pH-independent pathway which may contribute to the enhanced infection of Epi-cDC2s. Both cells underwent apoptosis suggesting that Epi-cDC2s may follow the same dermal migration and uptake by dermal MNPs that we have previously shown for LCs. Thus, we hypothesize that the uptake of HSV and infection of Epi-cDC2s will stimulate immune responses via a different pathway to LCs, which in future may help guide HSV vaccine development and adjuvant targeting.
Collapse
Affiliation(s)
- Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Min Kim
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Konrad L. Feng
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jake W. Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Ralph C. Cohen
- Department of Surgery, University of Sydney and The Children’s Hospital at Westmead, Westmead, Australia
| | - Jake Lim
- Department of Surgery, Westmead Private Hospital, Westmead, Australia
| | - Steven L. Merten
- Department of Surgery, Macquarie University Hospital, Macquarie Park, Australia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- * E-mail:
| |
Collapse
|
11
|
O’Neil TR, Hu K, Truong NR, Arshad S, Shacklett BL, Cunningham AL, Nasr N. The Role of Tissue Resident Memory CD4 T Cells in Herpes Simplex Viral and HIV Infection. Viruses 2021; 13:359. [PMID: 33668777 PMCID: PMC7996247 DOI: 10.3390/v13030359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue-resident memory T cells (TRM) were first described in 2009. While initially the major focus was on CD8+ TRM, there has recently been increased interest in defining the phenotype and the role of CD4+ TRM in diseases. Circulating CD4+ T cells seed CD4+ TRM, but there also appears to be an equilibrium between CD4+ TRM and blood CD4+ T cells. CD4+ TRM are more mobile than CD8+ TRM, usually localized deeper within the dermis/lamina propria and yet may exhibit synergy with CD8+ TRM in disease control. This has been demonstrated in herpes simplex infections in mice. In human recurrent herpes infections, both CD4+ and CD8+ TRM persisting between lesions may control asymptomatic shedding through interferon-gamma secretion, although this has been more clearly shown for CD8+ T cells. The exact role of the CD4+/CD8+ TRM axis in the trigeminal ganglia and/or cornea in controlling recurrent herpetic keratitis is unknown. In HIV, CD4+ TRM have now been shown to be a major target for productive and latent infection in the cervix. In HSV and HIV co-infections, CD4+ TRM persisting in the dermis support HIV replication. Further understanding of the role of CD4+ TRM and their induction by vaccines may help control sexual transmission by both viruses.
Collapse
Affiliation(s)
- Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sana Arshad
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
12
|
Roychoudhury P, Swan DA, Duke E, Corey L, Zhu J, Davé V, Spuhler LR, Lund JM, Prlic M, Schiffer JT. Tissue-resident T cell-derived cytokines eliminate herpes simplex virus-2-infected cells. J Clin Invest 2020; 130:2903-2919. [PMID: 32125285 PMCID: PMC7260013 DOI: 10.1172/jci132583] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/11/2020] [Indexed: 01/19/2023] Open
Abstract
The mechanisms underlying rapid elimination of herpes simplex virus-2 (HSV-2) in the human genital tract despite low CD8+ and CD4+ tissue-resident T cell (Trm cell) density are unknown. We analyzed shedding episodes during chronic HSV-2 infection; viral clearance always predominated within 24 hours of detection even when viral load exceeded 1 × 107 HSV DNA copies, and surges in granzyme B and IFN-γ occurred within the early hours after reactivation and correlated with local viral load. We next developed an agent-based mathematical model of an HSV-2 genital ulcer to integrate mechanistic observations of Trm cells in in situ proliferation, trafficking, cytolytic effects, and cytokine alarm signaling from murine studies with viral kinetics, histopathology, and lesion size data from humans. A sufficiently high density of HSV-2-specific Trm cells predicted rapid elimination of infected cells, but our data suggest that such Trm cell densities are relatively uncommon in infected tissues. At lower, more commonly observed Trm cell densities, Trm cells must initiate a rapidly diffusing, polyfunctional cytokine response with activation of bystander T cells in order to eliminate a majority of infected cells and eradicate briskly spreading HSV-2 infection.
Collapse
Affiliation(s)
- Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - David A. Swan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth Duke
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jia Zhu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Laura Richert Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
13
|
Shacklett BL, Ferre AL, Kiniry BE. Defining T Cell Tissue Residency in Humans: Implications for HIV Pathogenesis and Vaccine Design. Curr HIV/AIDS Rep 2020; 17:109-117. [PMID: 32052270 PMCID: PMC7072053 DOI: 10.1007/s11904-020-00481-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent literature defining tissue-resident memory T cells (TRM) and discusses implications for HIV pathogenesis, vaccines, and eradication efforts. RECENT FINDINGS Investigations using animal models and human tissues have identified a TRM transcriptional profile and elucidated signals within the tissue microenvironment leading to TRM development and maintenance. TRM are major contributors to host response in infectious diseases and cancer; in addition, TRM contribute to pathogenic inflammation in a variety of settings. Although TRM are daunting to study in HIV infection, recent work has helped define their molecular signatures and effector functions and tested strategies for their mobilization. Exclusive reliance on blood sampling to gain an understanding of host immunity overlooks the contribution of TRM, which differ in significant ways from their counterparts in circulation. It is hoped that greater understanding of these cells will lead to novel approaches to prevent and/or eradicate HIV infection.
Collapse
Affiliation(s)
- Barbara L Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.
- Division of Infectious Disease, Department of Medicine, School of Medicine, University of California, Davis, CA, 95616, USA.
| | - April L Ferre
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Brenna E Kiniry
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Local heroes or villains: tissue-resident memory T cells in human health and disease. Cell Mol Immunol 2020; 17:113-122. [PMID: 31969685 DOI: 10.1038/s41423-019-0359-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident memory T (TRM) cells are increasingly associated with the outcomes of health and disease. TRM cells can mediate local immune protection against infections and cancer, which has led to interest in TRM cells as targets for vaccination and immunotherapies. However, these cells have also been implicated in mediating detrimental pro-inflammatory responses in autoimmune skin diseases such as psoriasis, alopecia areata, and vitiligo. Here, we summarize the biology of TRM cells established in animal models and in translational human studies. We review the beneficial effects of TRM cells in mediating protective responses against infection and cancer and the adverse role of TRM cells in driving pathology in autoimmunity. A further understanding of the breadth and mechanisms of TRM cell activity is essential for the safe design of strategies that manipulate TRM cells, such that protective responses can be enhanced without unwanted tissue damage, and pathogenic TRM cells can be eliminated without losing local immunity.
Collapse
|
15
|
Sandgren KJ, Truong NR, Smith JB, Bertram K, Cunningham AL. Vaccines for Herpes Simplex: Recent Progress Driven by Viral and Adjuvant Immunology. Methods Mol Biol 2020; 2060:31-56. [PMID: 31617171 DOI: 10.1007/978-1-4939-9814-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous. They both cause genital herpes, occasionally severe disease in the immunocompromised, and facilitate much HIV acquisition globally. Despite more than 60 years of research, there is no licensed prophylactic HSV vaccine and some doubt as to whether this can be achieved. Nevertheless, a previous HSV vaccine candidate did have partial success in preventing genital herpes and HSV acquisition and another immunotherapeutic candidate reduced viral shedding and recurrent lesions, inspiring further research. However, the entry pathway of HSV into the anogenital mucosa and the subsequent cascade of immune responses need further elucidation so that these responses could be mimicked or improved by a vaccine, to prevent viral entry and colonization of the neuronal ganglia. For an effective novel vaccine against genital herpes the choice of antigen and adjuvant may be critical. The incorporation of adjuvants of the vaccine candidates in the past, may account for their partial efficacy. It is likely that they can be improved by understanding the mechanisms of immune responses elicited by different adjuvants and comparing these to natural immune responses. Here we review the history of vaccines for HSV, those in development and compare them to successful vaccines for chicken pox or herpes zoster. We also review what is known of the natural immune control of herpes lesions, via interacting innate immunity and CD4 and CD8 T cells and the lessons they provide for development of new, more effective vaccines.
Collapse
Affiliation(s)
- Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Kirstie Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. .,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
16
|
Blockade of PD-1 and LAG-3 Immune Checkpoints Combined with Vaccination Restores the Function of Antiviral Tissue-Resident CD8 + T RM Cells and Reduces Ocular Herpes Simplex Infection and Disease in HLA Transgenic Rabbits. J Virol 2019; 93:JVI.00827-19. [PMID: 31217250 DOI: 10.1128/jvi.00827-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic viruses such as herpes simplex virus 1 (HSV-1) evade the hosts' immune system by inducing the exhaustion of antiviral T cells. In the present study, we found that exhausted HSV-specific CD8+ T cells, with elevated expression of programmed death ligand-1 (PD-1) and lymphocyte activation gene-3 (LAG-3) receptors were frequent in symptomatic patients, with a history of numerous episodes of recurrent corneal herpetic disease, compared to asymptomatic patients who never had corneal herpetic disease. Subsequently, using a rabbit model of recurrent ocular herpes, we found that the combined blockade of PD-1 and LAG-3 pathways with antagonist antibodies significantly restored the function of tissue-resident antiviral CD8+ TRM cells in both the cornea and the trigeminal ganglia (TG). An increased number of functional tissue-resident HSV-specific CD8+ TRM cells in latently infected rabbits was associated with protection against recurrent herpes infection and disease. Compared to the PD-1 or LAG-3 blockade alone, the combined blockade of PD-1 and LAG-3 appeared to have a synergistic effect in generating frequent polyfunctional Ki-67+, IFN-γ+, CD107+, and CD8+ T cells. Moreover, using the human leukocyte antigen (HLA) transgenic rabbit model, we found that dual blockade of PD-1 and LAG-3 reinforced the effect of a multiepitope vaccine in boosting the frequency of HSV-1-specific CD8+ TRM cells and reducing disease severity. Thus, both the PD-1 and the LAG-3 exhaustion pathways play a fundamental role in ocular herpes T cell immunopathology and provide important immune checkpoint targets to combat ocular herpes.IMPORTANCE HSV-specific tissue-resident memory CD8+ TRM cells play a critical role in preventing virus reactivation from latently infected TG and subsequent virus shedding in tears that trigger the recurrent corneal herpetic disease. In this report, we determined how the dual blockade of PD-1 and LAG-3 immune checkpoints, combined with vaccination, improved the function of CD8+ TRM cells associated with a significant reduction in recurrent ocular herpes in HLA transgenic (Tg) rabbit model. The combined blockade of PD-1 and LAG-3 appeared to have a synergistic effect in generating frequent polyfunctional CD8+ TRM cells that infiltrated both the cornea and the TG. The preclinical findings using the established HLA Tg rabbit model of recurrent herpes highlight that blocking immune checkpoints combined with a T cell-based vaccine would provide an important strategy to combat recurrent ocular herpes in the clinic.
Collapse
|
17
|
Truong NR, Smith JB, Sandgren KJ, Cunningham AL. Mechanisms of Immune Control of Mucosal HSV Infection: A Guide to Rational Vaccine Design. Front Immunol 2019; 10:373. [PMID: 30894859 PMCID: PMC6414784 DOI: 10.3389/fimmu.2019.00373] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes Simplex Virus (HSV) is a highly prevalent sexually transmitted infection that aside from causing cold sores and genital lesions, causes complications in the immunocompromised and has facilitated a large proportion of HIV acquisition globally. Despite decades of research, there is no prophylactic HSV vaccine ready for use in humans, leaving many questioning whether a prophylactic vaccine is an achievable goal. A previous HSV vaccine trial did have partial success in decreasing acquisition of HSV2–promising evidence that vaccines can prevent acquisition. However, there is still an incomplete understanding of the immune response pathways elicited by HSV after initial mucosal infection and how best to replicate these responses with a vaccine, such that acquisition and colonization of the dorsal root ganglia could be prevented. Another factor to consider in the rational design of an HSV vaccine is adjuvant choice. Understanding the immune responses elicited by different adjuvants and whether lasting humoral and cell-mediated responses are induced is important, especially when studies of past trial vaccines found that a sufficiently protective cell-mediated response was lacking. In this review, we discuss what is known of the immune control involved in initial herpes lesions and reactivation, including the importance of CD4 and CD8 T cells, and the interplay between innate and adaptive immunity in response to primary infection, specifically focusing on the viral relay involved. Additionally, a summary of previous and current vaccine trials, including the components used, immune responses elicited and the feasibility of prophylactic vaccines looking forward, will also be discussed.
Collapse
Affiliation(s)
- Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Abstract
Viruses are a main cause of disease worldwide and many are without effective therapeutics or vaccines. A lack of understanding about how host responses work to control viral spread is one factor limiting effective management. How different immune components regulate infection dynamics is beginning to be better understood with the help of mathematical models. These models have been key in discriminating between hypotheses and in identifying rates of virus growth and clearance, dynamical control by different host factors and antivirals, and synergistic interactions during multi-pathogen infections. A recent focus in evaluating model predictions in the laboratory and clinic has illuminate the accuracy of models for a variety of viruses and highlighted the critical nature of theoretical approaches in virology. Here, I discuss recent model-driven exploration of host-pathogen interactions that have illustrated the importance of model validation in establishing the model's predictive capability and in defining new biology.
Collapse
|