1
|
Lu ZF, Hsu CY, Younis NK, Mustafa MA, Matveeva EA, Al-Juboory YHO, Adil M, Athab ZH, Abdulraheem MN. Exploring the significance of microbiota metabolites in rheumatoid arthritis: uncovering their contribution from disease development to biomarker potential. APMIS 2024; 132:382-415. [PMID: 38469726 DOI: 10.1111/apm.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.
Collapse
Affiliation(s)
- Zi-Feng Lu
- Heilongjiang Beidahuang Group General Hospital, Heilongjiang, China
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Kirkuk, Iraq
| | - Elena A Matveeva
- Department of Orthopaedic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
2
|
Wang B, Liu S, Li H, Dong W, Liu H, Zhang J, Tian C, Dong S. Facile Preparation of Carbohydrate-Containing Adjuvants Based on Self-Assembling Glycopeptide Conjugates. Angew Chem Int Ed Engl 2024; 63:e202309140. [PMID: 37950683 DOI: 10.1002/anie.202309140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/13/2023]
Abstract
Carbohydrates are intriguing biomolecules possessing diverse biological activities, including immune stimulating capability. However, their biomedical applications have been limited by their complex and heterogeneous structures. In this study, we have utilized a self-assembling glycopeptide conjugate (GPC) system to produce uniform nanoribbons appending homogeneous oligosaccharides with multivalency. This system successfully translates the nontrivial structural differences of oligomannoses into varied binding affinities to C-type lectin receptors (CLRs). We have shown that GPCs could promote the CLR-mediated endocytosis of ovalbumin (OVA) antigen, and two mannotriose-modified peptides F3m2 and F3m5 exhibit potent activity in inducing antigen-presenting cell maturation, as indicated by increased CD86 and MHCII expression. In vivo studies demonstrated that GPCs, combined with OVA antigen, significantly enhanced OVA-specific antibody production. Specifically, F3m2 and F3m5 exhibited the highest immunostimulatory effects, eliciting both Th1- and Th2-biased immune responses and promoting differentiation of CD4+ and CD8+ T cells. These findings highlight the potential of GPCs as vaccine adjuvants, and showcase their versatility in exploiting the biological functions of carbohydrates.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sijin Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haoting Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haiyun Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chao Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
3
|
Yang W, Yu T, Liu X, Yao S, Khanipov K, Golovko G, Olivares-Villagómez D, Cong Y. Microbial metabolite butyrate modulates granzyme B in tolerogenic IL-10 producing Th1 cells to regulate intestinal inflammation. Gut Microbes 2024; 16:2363020. [PMID: 38841892 PMCID: PMC11164233 DOI: 10.1080/19490976.2024.2363020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
CD4+ T cells play a critical role in regulating autoimmune diseases, and intestinal microbial metabolites control various immune responses. Granzyme B (GzmB)-producing CD4+ T cells have been recently reported to participate in the pathogenesis of autoimmune diseases. Here, we found that GzmbB-deficient CD4+ T cells induced more severe colitis in Rag1-/- mice than wild-type (WT) CD4+ T cells. Germ-free (GF) mice exhibited a lower expression of GzmB in intestinal CD4+ T cells compared to specific pathogen-free (SPF) mice. Intestinal microbial metabolite butyrate increased GzmB expression in CD4+ T cells, especially in IL-10-producing Th1 cells, through HDAC inhibition and GPR43, but not GPR41 and GPR109a. Butyrate-treated GzmB-deficient CD4+ T cells demonstrated more severe colitis compared to butyrate-treated WT CD4+ T cells in the T cell transfer model. Butyrate altered intestinal microbiota composition, but altered microbiota did not mediate butyrate induction of intestinal CD4+ T cell expression of GzmB in mice. Blimp1 was involved in the butyrate induction of GzmB in IL-10-producing Th1 cells. Glucose metabolism, including glycolysis and pyruvate oxidation, mediated butyrate induction of GzmB in Th1 cells. In addition, we found that IKZF3 and NR2F6 regulated GzmB expression induced by butyrate. Together, our studies underscored the critical role of GzmB in mediating gut bacterial metabolite butyrate regulation of T cell tolerance at the mucosal surface.
Collapse
Affiliation(s)
- Wenjing Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tianming Yu
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xia Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Suxia Yao
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX, USA
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Crothers JW, Norton EB. Recent advances in enterotoxin vaccine adjuvants. Curr Opin Immunol 2023; 85:102398. [PMID: 37976963 PMCID: PMC11258862 DOI: 10.1016/j.coi.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Enterotoxin adjuvants have been researched for their ability to promote immunity to co-delivered antigens. Outside of cholera vaccines, however, these proteins have yet to be included in any currently licensed vaccines. They include molecules derived from the bacterial toxins of Vibrio cholerae, cholera toxin, or Escherichia coli, heat-labile toxin, such as detoxified mutants or subunits. This class of adjuvants is distinguished by their delivery possibilities, which include parenteral injection, skin applications, or direct mucosal administration by oral, sublingual, or nasal routes. In addition, inclusion of an enterotoxin adjuvant is associated with development of multifaceted cellular and humoral immune responses to vaccination. Here, we review exciting progress in the past few years in clinical trials for safety and efficacy, preclinical vaccines studies, and new mechanistic insights for enterotoxin adjuvants. This includes recent reports of their use in vaccines targeting microbial infections (bacterial, viral, parasitic) or substance abuse drugs.
Collapse
Affiliation(s)
- Jessica W Crothers
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | | |
Collapse
|
5
|
Qu S, Gao Y, Ma J, Yan Q. Microbiota-derived short-chain fatty acids functions in the biology of B lymphocytes: From differentiation to antibody formation. Biomed Pharmacother 2023; 168:115773. [PMID: 39491858 DOI: 10.1016/j.biopha.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024] Open
Abstract
Gut bacteria produce various metabolites from dietary fiber, the most abundant of which are short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. Many biological functions, such as host metabolism and the immune system, are regulated by SCFAs because they act on a wide variety of cell types. A growing body of documents has shown that microbiota SCFAs directly regulate B-cell growth, proliferation, and immunoglobulin (Ig) production. As histone deacetylase (HDAC) inhibitors, SCFAs alter gene expression to enhance the expression of critical regulators of B cell growth. In particular, microbiota SCFAs increase the production of acetyl coenzyme A (acetyl-CoA), adenosine triphosphate (ATP), and fatty acids in B cells, which provide the energy and building blocks needed for the growth of plasma B cells. SCFAs play a significant role in promoting the involvement of B cells in host immunity during both homeostatic conditions and disease states. In this context, SCFAs stimulate B-cell activation and promote the differentiation of plasma B cells in response to B cell receptor (BCR)-activating antigens or co-stimulatory receptor ligands. The result may be increased production of IgA. Microbiota SCFAs were found to lower both overall and antigen-specific IgE levels, indicating their potential to mitigate IgE-related allergic reactions, much like their effect on class-switch recombination (CSR) towards IgG and IgA. Therefore, in the future, the therapeutic advantage should be to use specific and diffusible chemicals, such as SCFAs, which show a strong immunoregulatory function of B cells. This review focuses on the role of microbiota-produced SCFAs in regulating B cell development and antibody production, both in health and diseases.
Collapse
Affiliation(s)
- Shengming Qu
- Department of Dermatology, the Second Hospital of Jilin University, Changchun 130000, China
| | - Yihang Gao
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
6
|
Han Z, Min Y, Pang K, Wu D. Therapeutic Approach Targeting Gut Microbiome in Gastrointestinal Infectious Diseases. Int J Mol Sci 2023; 24:15654. [PMID: 37958637 PMCID: PMC10650060 DOI: 10.3390/ijms242115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
While emerging evidence highlights the significance of gut microbiome in gastrointestinal infectious diseases, treatments like Fecal Microbiota Transplantation (FMT) and probiotics are gaining popularity, especially for diarrhea patients. However, the specific role of the gut microbiome in different gastrointestinal infectious diseases remains uncertain. There is no consensus on whether gut modulation therapy is universally effective for all such infections. In this comprehensive review, we examine recent developments of the gut microbiome's involvement in several gastrointestinal infectious diseases, including infection of Helicobacter pylori, Clostridium difficile, Vibrio cholerae, enteric viruses, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa Staphylococcus aureus, Candida albicans, and Giardia duodenalis. We have also incorporated information about fungi and engineered bacteria in gastrointestinal infectious diseases, aiming for a more comprehensive overview of the role of the gut microbiome. This review will provide insights into the pathogenic mechanisms of the gut microbiome while exploring the microbiome's potential in the prevention, diagnosis, prediction, and treatment of gastrointestinal infections.
Collapse
Affiliation(s)
- Ziying Han
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| | - Yiyang Min
- Peking Union Medical College, Beijing 100730, China
| | - Ke Pang
- Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| |
Collapse
|
7
|
Wu Q, Zhang Y, Wang C, Hou Y, He W, Wang L, Xiong J, Ren Z, Wang H, Sui B, Zhou D, Zhou M, Fu ZF, Zhao L. Short-Chain Fatty Acids Alleviate Vancomycin-Caused Humoral Immunity Attenuation in Rabies-Vaccinated Mice by Promoting the Generation of Plasma Cells via Akt-mTOR Pathway. J Virol 2023; 97:e0065623. [PMID: 37338411 PMCID: PMC10373539 DOI: 10.1128/jvi.00656-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Mounting evidence suggests that gut microbial composition and its metabolites, including short-chain fatty acids (SCFAs), have beneficial effects in regulating host immunogenicity to vaccines. However, it remains unknown whether and how SCFAs improve the immunogenicity of the rabies vaccine. In this study, we investigated the effect of SCFAs on the immune response to rabies vaccine in vancomycin (Vanco)-treated mice and found that oral gavage with butyrate-producing bacteria (C. butyricum) and butyrate supplementation elevated RABV-specific IgM, IgG, and virus-neutralizing antibodies (VNAs) in Vanco-treated mice. Supplementation with butyrate expanded antigen-specific CD4+ T cells and IFN-γ-secreting cells, augmented germinal center (GC) B cell recruitment, promoted plasma cells (PCs) and RABV-specific antibody-secreting cells (ASCs) generation in Vanco-treated mice. Mechanistically, butyrate enhanced mitochondrial function and activated the Akt-mTOR pathway in primary B cells isolated from Vanco-treated mice, ultimately promoting B lymphocyte-induced maturation protein-1 (Blimp-1) expression and CD138+ PCs generation. These results highlight the important role of butyrate in alleviating Vanco-caused humoral immunity attenuation in rabies-vaccinated mice and maintaining host immune homeostasis. IMPORTANCE The gut microbiome plays many crucial roles in the maintenance of immune homeostasis. Alteration of the gut microbiome and metabolites has been shown to impact vaccine efficacy. SCFAs can act as an energy source for B-cells, thereby promoting both mucosal and systemic immunity in the host by inhibiting HDACs and activation of GPR receptors. This study investigates the impact of orally administered butyrate, an SCFA, on the immunogenicity of rabies vaccines in Vanco-treated mice. The results showed that butyrate ameliorated humoral immunity by facilitating the generation of plasma cells via the Akt-mTOR in Vanco-treated mice. These findings unveil the impact of SCFAs on the immune response of the rabies vaccine and confirm the crucial role of butyrate in regulating immunogenicity to rabies vaccines in antibiotic-treated mice. This study provides a fresh insight into the relationship of microbial metabolites and rabies vaccination.
Collapse
Affiliation(s)
- Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yachun Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yarong Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenna He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jingyi Xiong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zeheng Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Baokun Sui
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Yu T, Yang W, Yao S, Yu Y, Wakamiya M, Golovko G, Cong Y. STING Promotes Intestinal IgA Production by Regulating Acetate-producing Bacteria to Maintain Host-microbiota Mutualism. Inflamm Bowel Dis 2023; 29:946-959. [PMID: 36661414 PMCID: PMC10233729 DOI: 10.1093/ibd/izac268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Intestinal Immunoglobulin A (IgA) is crucial in maintaining host-microbiota mutualism and gut homeostasis. It has been shown that many species of gut bacteria produce cyclic dinucleotides, along with an abundance of microbiota-derived DNA present within the intestinal lumen, which triggers the tonic activation of the cytosolic cGAS-STING pathway. However, the role of STING in intestinal IgA remains poorly understood. We further investigated whether and how STING affects intestinal IgA response. METHODS Intestinal IgA was determined between wild-type (WT) mice and Sting-/- mice in steady conditions and upon enteric Citrobacter rodentium infection. STING agonists were used to stimulating B cells or dendritic cells in vitro. Gut microbiota composition was examined by 16S ribosomal RNA gene sequencing. Bacteria metabolomics functional analyses was performed by PICRUSt2. Fecal short-chain fatty acid (SCFA) was determined by Mass spectrometry and Cedex Bio Analyzer. Gut bacteria from WT mice and Sting-/- mice were transferred into germ-free mice and antibiotic-pretreated mice. RESULTS Intestinal IgA response was impaired in Sting-/- mice. However, STING agonists did not directly stimulate B cells or dendritic cells to induce IgA. Interestingly, Sting-/- mice displayed altered gut microbiota composition with decreased SCFA-producing bacteria and downregulated SCFA fermentation pathways. Transfer of fecal bacteria from Sting-/- mice induced less IgA than that from WT mice in germ-free mice and antibiotic-pretreated mice, which is mediated by GPR43. Acetate, the dominant SCFA, was decreased in Sting-/- mice, and supplementation of acetate restored intestinal IgA production in Sting-/- mice. CONCLUSIONS STING promotes intestinal IgA by regulating acetate-producing gut bacteria.
Collapse
Affiliation(s)
- Tianming Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yanbo Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maki Wakamiya
- Germ-free Mouse Facility, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
9
|
Ney LM, Wipplinger M, Grossmann M, Engert N, Wegner VD, Mosig AS. Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol 2023; 13:230014. [PMID: 36977462 PMCID: PMC10049789 DOI: 10.1098/rsob.230014] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The human intestinal microbiome substantially affects human health and resistance to infections in its dynamic composition and varying release of microbial-derived metabolites. Short-chain fatty acids (SCFA) produced by commensal bacteria through fermentation of indigestible fibres are considered key regulators in orchestrating the host immune response to microbial colonization by regulating phagocytosis, chemokine and central signalling pathways of cell growth and apoptosis, thereby shaping the composition and functionality of the intestinal epithelial barrier. Although research of the last decades provided valuable insight into the pleiotropic functions of SCFAs and their capability to maintain human health, mechanistic details on how SCFAs act across different cell types and other organs are not fully understood. In this review, we provide an overview of the various functions of SCFAs in regulating cellular metabolism, emphasizing the orchestration of the immune response along the gut-brain, the gut-lung and the gut-liver axes. We discuss their potential pharmacological use in inflammatory diseases and infections and highlight new options of relevant human three-dimensional organ models to investigate and validate their biological functions in more detail.
Collapse
Affiliation(s)
- Lisa-Marie Ney
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Maximilian Wipplinger
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Martha Grossmann
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Nicole Engert
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Valentin D Wegner
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
10
|
Huang J, Wu T, Zhong Y, Huang J, Kang Z, Zhou B, Zhao H, Liu D. Effect of curcumin on regulatory B cells in chronic colitis mice involving TLR/MyD88 signaling pathway. Phytother Res 2023; 37:731-742. [PMID: 36196887 DOI: 10.1002/ptr.7656] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Curcumin (Cur) is a natural active phenolic compound extracted from the root of Curcuma Longa L. It has anti-inflammatory, anti-tumor and other pharmacological activities, and is commonly used to treat ulcerative colitis (UC). However, it is not clear whether curcumin regulates the function and differentiation of Breg cells to treat UC. In this study, mice with chronic colitis were induced by dextran sulfate sodium (DSS), and treated with curcumin for 12 days. Curcumin effectively improved the body weight, colonic weight, colonic length, decreased colonic weight index and pathological injury score under colonoscopy in mice with chronic colitis, and significantly inhibited the production of IL-1β, IL-6, IL-33, CCL-2, IFN-γ, TNF-α, and promoted the secretion of IL-4, IL-10, IL-13 and IgA. Importantly, curcumin markedly upregulated CD3- CD19+ CD1d+ , CD3- CD19+ CD25+ , CD3- CD19+ Foxp3+ Breg cells level and significantly down-regulated CD3- CD19+ PD-L1+ , CD3- CD19+ tim-1+ , CD3- CD19+ CD27+ Breg cells level. In addition, our results also showed that curcumin observably inhibited TLR2, TLR4, TLR5, MyD88, IRAK4, p-IRAK4, NF-κB P65, IRAK1, TRAF6, TAB1, TAB2, TAK1, MKK3, MKK6, p38MAPK, p-p38MAPK and CREB expression in TLR/MyD88 signaling pathway. These results suggest that curcumin can regulate the differentiation and function of Breg cell to alleviate DSS-induced colitis, which may be realized by inhibiting TLR/MyD88 pathway.
Collapse
Affiliation(s)
- Jie Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Tiantian Wu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Youbao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Zengping Kang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Bugao Zhou
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
11
|
Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O'Mahony L. Immunomodulation by foods and microbes: Unravelling the molecular tango. Allergy 2022; 77:3513-3526. [PMID: 35892227 PMCID: PMC10087875 DOI: 10.1111/all.15455] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Metabolic health and immune function are intimately connected via diet and the microbiota. Nearly 90% of all immune cells in the body are associated with the gastrointestinal tract and these immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important systemic ramifications. Microbial dysbiosis has consistently been observed in patients with atopic dermatitis, food allergy and asthma and the molecular mechanisms linking changes in microbial populations with disease risk and disease endotypes are being intensively investigated. The discovery of novel bacterial metabolites that impact immune function is at the forefront of host-microbe research. Co-evolution of microbial communities within their hosts has resulted in intertwined metabolic pathways that affect physiological and pathological processes. However, recent dietary and lifestyle changes are thought to negatively influence interactions between microbes and their host. This review provides an overview of some of the critical metabolite-receptor interactions that have been recently described, which may underpin the immunomodulatory effects of the microbiota, and are of relevance for allergy, asthma and infectious diseases.
Collapse
Affiliation(s)
- Brian Forde
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Lu Yao
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Rupin Shaha
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | | | - Nonhlanhla Lunjani
- APC Microbiome Ireland, UCC, Cork, Ireland.,University of Cape Town, Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland.,Department of Medicine, UCC, Cork, Ireland
| |
Collapse
|
12
|
Jordan A, Carding SR, Hall LJ. The early-life gut microbiome and vaccine efficacy. THE LANCET. MICROBE 2022; 3:e787-e794. [PMID: 36088916 DOI: 10.1016/s2666-5247(22)00185-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022]
Abstract
Vaccines are one of the greatest successes of public health, preventing millions of cases of disease and death in children each year. However, the efficacy of many vaccines can vary greatly between infants from geographically and socioeconomically distinct locations. Differences in the composition of the intestinal microbiome have emerged as one of the main factors that can account for variations in immunisation outcomes. In this Review, we assess the influence of the gut microbiota upon early life immunity, focusing on two important members of the microbiota with health-promoting and immunomodulatory properties: Bifidobacterium and Bacteroides. Additionally, we discuss their immune stimulatory microbial properties, interactions with the host, and their effect on vaccine responses and efficacy in infants. We also provide an overview of current microbiota-based approaches to enhance vaccine outcomes, and describe novel microbe-derived components that could lead to safer, more effective vaccines and vaccine adjuvants.
Collapse
Affiliation(s)
- Anne Jordan
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Simon R Carding
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich, UK; Intestinal Microbiome, School of Life Sciences, ZIEL Institute for Food & Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
13
|
Xu J, Moore BN, Pluznick JL. Short-Chain Fatty Acid Receptors and Blood Pressure Regulation: Council on Hypertension Mid-Career Award for Research Excellence 2021. Hypertension 2022; 79:2127-2137. [PMID: 35912645 PMCID: PMC9458621 DOI: 10.1161/hypertensionaha.122.18558] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gut microbiome influences host physiology and pathophysiology through several pathways, one of which is microbial production of chemical metabolites which interact with host signaling pathways. Short-chain fatty acids (SCFAs) are a class of gut microbial metabolites known to activate multiple signaling pathways in the host. Growing evidence indicates that the gut microbiome is linked to blood pressure, that SCFAs modulate blood pressure regulation, and that delivery of exogenous SCFAs lowers blood pressure. Given that hypertension is a key risk factor for cardiovascular disease, the examination of novel contributors to blood pressure regulation has the potential to lead to novel approaches or treatments. Thus, this review will discuss SCFAs with a focus on their host G protein-coupled receptors including GPR41 (G protein-coupled receptor 41), GPR43, and GPR109A, as well as OLFR78 (olfactory receptor 78) and OLFR558. This includes a discussion of the ligand profiles, G protein coupling, and tissue distribution of each receptor. We will also review phenotypes relevant to blood pressure regulation which have been reported to date for Gpr41, Gpr43, Gpr109a, and Olfr78 knockout mice. In addition, we will consider how SCFA signaling influences physiology at baseline, and, how SCFA signaling may contribute to blood pressure regulation in settings of hypertension. In sum, this review will integrate current knowledge regarding how SCFAs and their receptors regulate blood pressure.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Brittni N. Moore
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
14
|
Gao Y, Ma L, Su J. Host and microbial-derived metabolites for Clostridioides difficile infection: Contributions, mechanisms and potential applications. Microbiol Res 2022; 263:127113. [PMID: 35841835 DOI: 10.1016/j.micres.2022.127113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/23/2022]
Abstract
Clostridioides difficile infection (CDI), which mostly occurs in hospitalized patients, is the most common and costly health care-associated disease. However, the biology of C. difficile remains incompletely understood. Current therapeutics are still challenged by the frequent recurrence of CDI. Advances in metabolomics facilitate our understanding of the etiology of CDI, which is not merely an alteration in the structure of the gut microbial community but also a dysbiosis metabolic setting promoting the germination, expansion and virulence of C. difficile. Therefore, we summarized the gut microbial and metabolic profiles for CDI under different conditions, such as those of postantibiotic treatment and postfecal microbiota transplantation. The current understanding of the role of host and gut microbial-derived metabolites as well as other nutrients in preventing or alleviating the disease symptoms of CDI will also be provided in this review. We hope that a specific nutrient-centric dietary strategy or the administration of certain nutrients to the colon could serve as an alternate line of investigation for the prophylaxis and mitigation of CDI in the future. Nevertheless, rigorously designed basic studies and randomized controlled trials need to be conducted to assess the functional mechanisms and effects of such therapeutics.
Collapse
Affiliation(s)
- Yan Gao
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Liyan Ma
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianrong Su
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
15
|
Jasiński M, Biliński J, Basak GW. The Role of the Crosstalk Between Gut Microbiota and Immune Cells in the Pathogenesis and Treatment of Multiple Myeloma. Front Immunol 2022; 13:853540. [PMID: 35432306 PMCID: PMC9009288 DOI: 10.3389/fimmu.2022.853540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
Around 10% of all hematologic malignancies are classified as multiple myeloma (MM), the second most common malignancy within that group. Although massive progress in developing of new drugs against MM has been made in recent years, MM is still an incurable disease, and every patient eventually has relapse refractory to any known treatment. That is why further and non-conventional research elucidating the role of new factors in MM pathogenesis is needed, facilitating discoveries of the new drugs. One of these factors is the gut microbiota, whose role in health and disease is still being explored. This review presents the continuous changes in the gut microbiota composition during our whole life with a particular focus on its impact on our immune system. Additionally, it mainly focuses on the chronic antigenic stimulation of B-cells as the leading mechanism responsible for MM promotion. The sophisticated interactions between microorganisms colonizing our gut, immune cells (dendritic cells, macrophages, neutrophils, T/B cells, plasma cells), and intestinal epithelial cells will be shown. That article summarizes the current knowledge about the initiation of MM cells, emphasizing the role of microorganisms in that process.
Collapse
Affiliation(s)
- Marcin Jasiński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Human Biome Institute, Gdańsk, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Human Biome Institute, Gdańsk, Poland
| |
Collapse
|
16
|
Qiao Z, Wang X, Wang C, Han J, Qi W, Zhang H, Liu Z, You C. Lactobacillus paracasei BD5115-Derived 2-Hydroxy-3-Methylbutyric Acid Promotes Intestinal Epithelial Cells Proliferation by Upregulating the MYC Signaling Pathway. Front Nutr 2022; 9:799053. [PMID: 35369066 PMCID: PMC8968858 DOI: 10.3389/fnut.2022.799053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/08/2022] [Indexed: 01/22/2023] Open
Abstract
Metabolites of probiotics that are beneficial to human health have been isolated from the intestinal tract and natural dairy products. However, many studies on probiotics and prebiotics are limited to the observation of human cohorts and animal phenotypes. The molecular mechanisms by which metabolites of probiotics regulate health are still need further exploration. In this work, we isolated a strain of Lactobacillus Paracasei from human milk samples. We numbered it as Lactobacillus Paracasei BD5115. The mouse model of high-fat diet confirmed that the metabolites of this strain also promotes intestinal epithelial cells (IECs) proliferation. Single-cell sequencing showed that a bZIP transcription factor MAFF was specifically expressed in some IECs. We found that MAFF interacted with MBP1 to regulate the expression of MYC. Analysis of the active components in BD5115 metabolites confirmed that 2-hydroxy-3-methylbutyric acid promotes the expression of the MYC gene. This promotes the proliferation of IECs. Our findings indicate that 2-hydroxy-3-methylbutyric acid regulate MYC gene expression mediated by MAFF/MBP1 interaction. This study not only screened a strain with promoted IECs proliferation, but also discovered a new signal pathway that regulates MYC gene expression.
Collapse
Affiliation(s)
- Zhenyi Qiao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Postdoctoral Workstation of Bright Dairy–Shanghai Jiao Tong University, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Xiaohua Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Chaoyue Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Huanchang Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- *Correspondence: Chunping You
| |
Collapse
|
17
|
Schlatterer K, Peschel A, Kretschmer D. Short-Chain Fatty Acid and FFAR2 Activation - A New Option for Treating Infections? Front Cell Infect Microbiol 2021; 11:785833. [PMID: 34926327 PMCID: PMC8674814 DOI: 10.3389/fcimb.2021.785833] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 01/05/2023] Open
Abstract
The human innate immune system is equipped with multiple mechanisms to detect microbe-associated molecular patterns (MAMPs) to fight bacterial infections. The metabolite short-chain fatty acids (SCFAs) acetate, propionate and butyrate are released by multiple bacteria or are food ingredients. SCFA production, especially acetate production, is usually essential for bacteria, and knockout of pathways involved in acetate production strongly impairs bacterial fitness. Because host organisms use SCFAs as MAMPs and alter immune reactions in response to SCFAs, interventions that modulate SCFA levels can be a new strategy for infection control. The interaction between SCFAs and host cells has been primarily investigated in the intestinal lumen because of the high local levels of SCFAs released by bacterial microbiome members. However, members of not only the intestinal microbiome but also the skin microbiome produce SCFAs, which are known ligands of the seven-transmembrane G-protein-coupled receptor FFAR2. In addition to enterocytes, FFAR2 is expressed on other human cell types, including leukocytes, especially neutrophils. This finding is in line with other research that determined that targeted activation of FFAR2 diminishes susceptibility toward various types of infection by bacteria such as Klebsiella pneumonia, Citrobacter rodentium, and Staphylococcus aureus but also by viruses such as respiratory syncytial and influenza viruses. Thus, our immune system appears to be able to use FFAR2-dependent detection of SCFAs for perceiving and even averting severe infections. We summarize recent advances in understanding the role of SCFAs and FFAR2 in various infection types and propose the manipulation of this receptor as an additional therapeutic strategy to fight infections.
Collapse
Affiliation(s)
- Katja Schlatterer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence Cluster of Excellence (EXC) 2124 Controlling Microbes to Fight Infections, University of Tuebingen, Tübingen, Germany
| | - Andreas Peschel
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence Cluster of Excellence (EXC) 2124 Controlling Microbes to Fight Infections, University of Tuebingen, Tübingen, Germany
| | - Dorothee Kretschmer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence Cluster of Excellence (EXC) 2124 Controlling Microbes to Fight Infections, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
18
|
Ibragimova S, Ramachandran R, Ali FR, Lipovich L, Ho SB. Dietary Patterns and Associated Microbiome Changes that Promote Oncogenesis. Front Cell Dev Biol 2021; 9:725821. [PMID: 34869313 PMCID: PMC8633417 DOI: 10.3389/fcell.2021.725821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The recent increases in cancer incidences have been linked to lifestyle changes that result in obesity and metabolic syndrome. It is now evident that these trends are associated with the profound changes that occur in the intestinal microbiome, producing altered microbial population signatures that interact, directly or indirectly, with potentially pro-carcinogenic molecular pathways of transcription, proliferation, and inflammation. The effects of the entire gut microbial population on overall health are complex, but individual bacteria are known to play important and definable roles. Recent detailed examinations of a large number of subjects show a tight correlation between habitual diets, fecal microbiome signatures, and markers of metabolic health. Diets that score higher in healthfulness or diversity such as plant-based diets, have altered ratios of specific bacteria, including an increase in short-chain fatty acid producers, which in turn have been linked to improved metabolic markers and lowered cancer risk. Contrarily, numerous studies have implicated less healthy, lower-scoring diets such as the Western diet with reduced intestinal epithelial defenses and promotion of specific bacteria that affect carcinogenic pathways. In this review, we will describe how different dietary patterns affect microbial populations in the gut and illustrate the subsequent impact of bacterial products and metabolites on molecular pathways of cancer development, both locally in the gut and systemically in distant organs.
Collapse
Affiliation(s)
- Shakhzada Ibragimova
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Leonard Lipovich
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Samuel B Ho
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE.,Department of Medicine, Mediclinic City Hospital, Dubai Healthcare City, Dubai, UAE
| |
Collapse
|
19
|
Swaminathan G, Citron M, Xiao J, Norton JE, Reens AL, Topçuoğlu BD, Maritz JM, Lee KJ, Freed DC, Weber TM, White CH, Kadam M, Spofford E, Bryant-Hall E, Salituro G, Kommineni S, Liang X, Danilchanka O, Fontenot JA, Woelk CH, Gutierrez DA, Hazuda DJ, Hannigan GD. Vaccine Hyporesponse Induced by Individual Antibiotic Treatment in Mice and Non-Human Primates Is Diminished upon Recovery of the Gut Microbiome. Vaccines (Basel) 2021; 9:vaccines9111340. [PMID: 34835271 PMCID: PMC8619314 DOI: 10.3390/vaccines9111340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence demonstrates a connection between microbiome composition and suboptimal response to vaccines (vaccine hyporesponse). Harnessing the interaction between microbes and the immune system could provide novel therapeutic strategies for improving vaccine response. Currently we do not fully understand the mechanisms and dynamics by which the microbiome influences vaccine response. Using both mouse and non-human primate models, we report that short-term oral treatment with a single antibiotic (vancomycin) results in the disruption of the gut microbiome and this correlates with a decrease in systemic levels of antigen-specific IgG upon subsequent parenteral vaccination. We further show that recovery of microbial diversity before vaccination prevents antibiotic-induced vaccine hyporesponse, and that the antigen specific IgG response correlates with the recovery of microbiome diversity. RNA sequencing analysis of small intestine, spleen, whole blood, and secondary lymphoid organs from antibiotic treated mice revealed a dramatic impact on the immune system, and a muted inflammatory signature is correlated with loss of bacteria from Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. These results suggest that microbially modulated immune pathways may be leveraged to promote vaccine response and will inform future vaccine design and development strategies.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
- Correspondence: (G.S.); (G.D.H.)
| | - Michael Citron
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Jianying Xiao
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - James E. Norton
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Abigail L. Reens
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Begüm D. Topçuoğlu
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Julia M. Maritz
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Keun-Joong Lee
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, MRL, Merck & Co. Inc., Rahway, NJ 07065, USA; (K.-J.L.); (G.S.)
| | - Daniel C. Freed
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Teresa M. Weber
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Cory H. White
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Mahika Kadam
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Erin Spofford
- Safety Assessment and Laboratory Animal Research, MRL, Merck & Co. Inc., Boston, MA 02115, USA; (E.S.); (E.B.-H.)
| | - Erin Bryant-Hall
- Safety Assessment and Laboratory Animal Research, MRL, Merck & Co. Inc., Boston, MA 02115, USA; (E.S.); (E.B.-H.)
| | - Gino Salituro
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, MRL, Merck & Co. Inc., Rahway, NJ 07065, USA; (K.-J.L.); (G.S.)
| | - Sushma Kommineni
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Olga Danilchanka
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Jane A. Fontenot
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70503, USA;
| | - Christopher H. Woelk
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Dario A. Gutierrez
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Daria J. Hazuda
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Geoffrey D. Hannigan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
- Correspondence: (G.S.); (G.D.H.)
| |
Collapse
|
20
|
Estorninos E, Lawenko RB, Palestroque E, Sprenger N, Benyacoub J, Kortman GAM, Boekhorst J, Bettler J, Cercamondi CI, Berger B. Term infant formula supplemented with milk-derived oligosaccharides shifts the gut microbiota closer to that of human milk-fed infants and improves intestinal immune defense: a randomized controlled trial. Am J Clin Nutr 2021; 115:142-153. [PMID: 34617558 PMCID: PMC8755036 DOI: 10.1093/ajcn/nqab336] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bovine milk-derived oligosaccharides (MOS) containing primarily galacto-oligosaccharides with inherent concentrations of sialylated oligosaccharides can be added to infant formula to enhance the oligosaccharide profile. OBJECTIVE To investigate the effects of an MOS-supplemented infant formula on gut microbiota and intestinal immunity. METHODS In a double-blind, randomized, controlled trial, healthy term formula-fed infants aged 21-26 d either received an intact protein cow milk-based formula (control group, CG, n = 112) or the same formula containing 7.2 g MOS/L (experimental group, EG, n = 114) until the age of 6 mo. Exclusively human milk-fed infants (HFI, n = 70) from an observational study served as the reference. Fecal samples collected at baseline, and the ages of 2.5 and 4 mo were assessed for microbiota (16S ribosomal RNA-based approaches), metabolites, and biomarkers of gut health and immune response. RESULTS Aged 2.5 and 4 mo, redundancy analysis (P = 0.002) and average phylogenetic distance (P < 0.05) showed that the overall microbiota composition in EG was different from CG and closer to that of HFI. Similarly, EG caesarean-born infants were different from CG caesarean- or vaginally born infants and approaching HFI vaginally born infants. Relative bifidobacteria abundance was higher in EG compared with CG (P < 0.05) approaching HFI. At the age of 4 mo, counts of Clostridioides difficile and Clostridium perfringens were ∼90% (P < 0.001) and ∼65% (P < 0.01) lower in EG compared with CG, respectively. Geometric LS mean (95% CI) fecal secretory IgA in EG was twice that of CG [70 (57, 85) compared with 34 (28, 42) mg/g, P < 0.001] and closer to HFI. Fecal oral polio vaccine-specific IgA was ∼50% higher in EG compared with CG (P = 0.065). Compared with CG, EG and HFI had lower fecal calcium excretion (by ∼30%, P < 0.005) and fecal pH (P < 0.001), and higher lactate concentration (P < 0.001). CONCLUSIONS Infant formula with MOS shifts the gut microbiota and metabolic signature closer to that of HFI, has a strong bifidogenic effect, reduces fecal pathogens, and improves the intestinal immune response.
Collapse
Affiliation(s)
| | | | | | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | | | | | - Jodi Bettler
- Nestlé Product Technology Center—Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| | | | - Bernard Berger
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
21
|
Significance of the Gut Microbiome for Viral Diarrheal and Extra-Intestinal Diseases. Viruses 2021; 13:v13081601. [PMID: 34452466 PMCID: PMC8402659 DOI: 10.3390/v13081601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
The composition of the mammalian gut microbiome is very important for the health and disease of the host. Significant correlations of particular gut microbiota with host immune responsiveness and various infectious and noninfectious host conditions, such as chronic enteric infections, type 2 diabetes, obesity, asthma, and neurological diseases, have been uncovered. Recently, research has moved on to exploring the causalities of such relationships. The metabolites of gut microbiota and those of the host are considered in a ‘holobiontic’ way. It turns out that the host’s diet is a major determinant of the composition of the gut microbiome and its metabolites. Animal models of bacterial and viral intestinal infections have been developed to explore the interrelationships of diet, gut microbiome, and health/disease phenotypes of the host. Dietary fibers can act as prebiotics, and certain bacterial species support the host’s wellbeing as probiotics. In cases of Clostridioides difficile-associated antibiotic-resistant chronic diarrhea, transplantation of fecal microbiomes has sometimes cured the disease. Future research will concentrate on the definition of microbial/host/diet interrelationships which will inform rationales for improving host conditions, in particular in relation to optimization of immune responses to childhood vaccines.
Collapse
|
22
|
Reens AL, Cabral DJ, Liang X, Norton JE, Therien AG, Hazuda DJ, Swaminathan G. Immunomodulation by the Commensal Microbiome During Immune-Targeted Interventions: Focus on Cancer Immune Checkpoint Inhibitor Therapy and Vaccination. Front Immunol 2021; 12:643255. [PMID: 34054810 PMCID: PMC8155485 DOI: 10.3389/fimmu.2021.643255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence in clinical and preclinical studies indicates that success of immunotherapies can be impacted by the state of the microbiome. Understanding the role of the microbiome during immune-targeted interventions could help us understand heterogeneity of treatment success, predict outcomes, and develop additional strategies to improve efficacy. In this review, we discuss key studies that reveal reciprocal interactions between the microbiome, the immune system, and the outcome of immune interventions. We focus on cancer immune checkpoint inhibitor treatment and vaccination as two crucial therapeutic areas with strong potential for immunomodulation by the microbiota. By juxtaposing studies across both therapeutic areas, we highlight three factors prominently involved in microbial immunomodulation: short-chain fatty acids, microbe-associate molecular patterns (MAMPs), and inflammatory cytokines. Continued interrogation of these models and pathways may reveal critical mechanistic synergies between the microbiome and the immune system, resulting in novel approaches designed to influence the efficacy of immune-targeted interventions.
Collapse
Affiliation(s)
- Abigail L. Reens
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Damien J. Cabral
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - James E. Norton
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Alex G. Therien
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Daria J. Hazuda
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
- Infectious Disease and Vaccine Research, Merck & Co., Inc., West Point, PA, United States
| | - Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| |
Collapse
|
23
|
Yu B, Wang L, Chu Y. Gut microbiota shape B cell in health and disease settings. J Leukoc Biol 2021; 110:271-281. [PMID: 33974295 DOI: 10.1002/jlb.1mr0321-660r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Recent accumulating evidence supports the hypothesis that the intricate interaction between gut microbiota and the immune system profoundly affects health and disease in humans and mice. In this context, microbiota plays an important role in educating and shaping the host immune system which, in turn, regulates gut microbiota diversity and function to maintain homeostasis. Studies have demonstrated that intestinal microbiota participates in shaping B cells in health and disease settings. Herein, we review the recent progress in understanding how microbiota regulates B-cell development, focusing on early-life B-cell repertoire generation in GALT and how microbial products, including microbial antigens and metabolites, affect B-cell activation and differentiation to ultimately regulate B-cell function. We also discuss the interaction between gut microbiota and B cells under pathogenic conditions and highlight new approaches that can be applied to treat various diseases.
Collapse
Affiliation(s)
- Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol Immunol 2021; 18:1161-1171. [PMID: 33850311 PMCID: PMC8093302 DOI: 10.1038/s41423-020-00625-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
A mounting body of evidence indicates that dietary fiber (DF) metabolites produced by commensal bacteria play essential roles in balancing the immune system. DF, considered nonessential nutrients in the past, is now considered to be necessary to maintain adequate levels of immunity and suppress inflammatory and allergic responses. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are the major DF metabolites and mostly produced by specialized commensal bacteria that are capable of breaking down DF into simpler saccharides and further metabolizing the saccharides into SCFAs. SCFAs act on many cell types to regulate a number of important biological processes, including host metabolism, intestinal functions, and immunity system. This review specifically highlights the regulatory functions of DF and SCFAs in the immune system with a focus on major innate and adaptive lymphocytes. Current information regarding how SCFAs regulate innate lymphoid cells, T helper cells, cytotoxic T cells, and B cells and how these functions impact immunity, inflammation, and allergic responses are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology and Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Liu Q, Tian X, Maruyama D, Arjomandi M, Prakash A. Lung immune tone via gut-lung axis: gut-derived LPS and short-chain fatty acids' immunometabolic regulation of lung IL-1β, FFAR2, and FFAR3 expression. Am J Physiol Lung Cell Mol Physiol 2021; 321:L65-L78. [PMID: 33851870 DOI: 10.1152/ajplung.00421.2020] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial metabolites produced by the gut microbiome, e.g. short-chain fatty acids (SCFA), have been found to influence lung physiology and injury responses. However, how lung immune activity is regulated by SCFA is unknown. We examined fresh human lung tissue and observed the presence of SCFA with interindividual variability. In vitro, SCFA were capable of modifying the metabolic programming in LPS-exposed alveolar macrophages (AM). We hypothesized that lung immune tone could be defined by baseline detection of lung intracellular IL-1β. Therefore, we interrogated naïve mouse lungs with intact gut microbiota for IL-1β mRNA expression and localized its presence within alveolar spaces, specifically within AM subsets. We established that metabolically active gut microbiota, which produce SCFA, can transmit LPS and SCFA to the lung and thereby could create primed lung immunometabolic tone. To understand how murine lung cells sensed and upregulated IL-1β in response to gut microbiome-derived factors, we determined that, in vitro, AM and alveolar type II (AT2) cells expressed SCFA receptors, free fatty acid receptor 2 (FFAR2), free fatty acid receptor 3 (FFAR3), and IL-1β but with distinct expression patterns and different responses to LPS. Finally, we observed that IL-1β, FFAR2, and FFAR3 were expressed in isolated human AM and AT2 cells ex vivo, but in fresh human lung sections in situ, only AM expressed IL-1β at rest and after LPS challenge. Together, this translational study using mouse and human lung tissue and cells point to an important role for the gut microbiome and their SCFA in establishing and regulating lung immune tone.
Collapse
Affiliation(s)
- Qing Liu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California.,Department of Anesthesiology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Tian
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California
| | - Daisuke Maruyama
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California
| | - Mehrdad Arjomandi
- Department of Medicine, University of California, San Francisco, California.,Medical Service, San Francisco VA Medical Center, San Francisco, California
| | - Arun Prakash
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California.,San Francisco General Hospital, San Francisco, California
| |
Collapse
|
26
|
Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol 2021; 18:866-877. [PMID: 33707689 PMCID: PMC8115644 DOI: 10.1038/s41423-021-00661-4] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota has a critical role in the maintenance of immune homeostasis. Alterations in the intestinal microbiota and gut microbiota-derived metabolites have been recognized in many immune-related inflammatory disorders. These metabolites can be produced by gut microbiota from dietary components or by the host and can be modified by gut bacteria or synthesized de novo by gut bacteria. Gut microbiota-derived metabolites influence a plethora of immune cell responses, including T cells, B cells, dendritic cells, and macrophages. Some of these metabolites are involved in the pathogenesis of immune-related inflammatory diseases, such as inflammatory bowel diseases, diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Here, we review the role of microbiota-derived metabolites in regulating the functions of different immune cells and the pathogenesis of chronic immune-related inflammatory diseases.
Collapse
|
27
|
Grundmann M, Bender E, Schamberger J, Eitner F. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci 2021; 22:ijms22041763. [PMID: 33578942 PMCID: PMC7916689 DOI: 10.3390/ijms22041763] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.
Collapse
Affiliation(s)
- Manuel Grundmann
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
- Correspondence:
| | - Eckhard Bender
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Jens Schamberger
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Frank Eitner
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
| |
Collapse
|
28
|
Yakabe K, Uchiyama J, Akiyama M, Kim YG. Understanding Host Immunity and the Gut Microbiota Inspires the New Development of Vaccines and Adjuvants. Pharmaceutics 2021; 13:163. [PMID: 33530627 PMCID: PMC7911583 DOI: 10.3390/pharmaceutics13020163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/26/2022] Open
Abstract
Vaccinations improve the mortality and morbidity rates associated with several infections through the generation of antigen-specific immune responses. Adjuvants are often used together with vaccines to improve immunogenicity. However, the immune responses induced by most on-going vaccines and adjuvants approved for human use vary in individuals; this is a limitation that must be overcome to improve vaccine efficacy. Several reports have indicated that the symbiotic bacteria, particularly the gut microbiota, impact vaccine-mediated antigen-specific immune responses and promote the induction of nonspecific responses via the "training" of innate immune cells. Therefore, the interaction between gut microbiota and innate immune cells should be considered to ensure the optimal immunogenicity of vaccines and adjuvants. In this review, we first introduce the current knowledge on the immunological mechanisms of vaccines and adjuvants. Subsequently, we discuss how the gut microbiota influences immunity and highlight the relationship between gut microbes and trained innate immunity, vaccines, and adjuvants. Understanding these complex interactions will provide insights into novel vaccine approaches centered on the gut microbiota.
Collapse
Affiliation(s)
- Kyosuke Yakabe
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Jun Uchiyama
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
| |
Collapse
|
29
|
Yap YA, McLeod KH, McKenzie CI, Gavin PG, Davalos-Salas M, Richards JL, Moore RJ, Lockett TJ, Clarke JM, Eng VV, Pearson JS, Hamilton-Williams EE, Mackay CR, Mariño E. An acetate-yielding diet imprints an immune and anti-microbial programme against enteric infection. Clin Transl Immunology 2021; 10:e1233. [PMID: 33489123 PMCID: PMC7809703 DOI: 10.1002/cti2.1233] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives During gastrointestinal infection, dysbiosis can result in decreased production of microbially derived short‐chain fatty acids (SCFAs). In response to the presence of intestinal pathogens, we examined whether an engineered acetate‐ or butyrate‐releasing diet can rectify the deficiency of SCFAs and lead to the resolution of enteric infection. Methods We tested whether a high acetate‐ or butyrate‐producing diet (HAMSA or HAMSB, respectively) condition Citrobacterrodentium infection in mice and assess its impact on host‐microbiota interactions. We analysed the adaptive and innate immune responses, changes in gut microbiome function, epithelial barrier function and the molecular mechanism via metabolite sensing G protein‐coupled receptor 43 (GPR43) and IL‐22 expression. Results HAMSA diet rectified the deficiency in acetate production and protected against enteric infection. Increased SCFAs affect the expression of pathogen virulence genes. HAMSA diet promoted compositional and functional changes in the gut microbiota during infection similar to healthy microbiota from non‐infected mice. Bacterial changes were evidenced by the production of proteins involved in acetate utilisation, starch and sugar degradation, amino acid biosynthesis, carbohydrate transport and metabolism. HAMSA diet also induced changes in host proteins critical in glycolysis, wound healing such as GPX1 and epithelial architecture such as EZR1 and PFN1. Dietary acetate assisted in rapid epithelial repair, as shown by increased colonic Muc‐2, Il‐22, and anti‐microbial peptides. We found that acetate increased numbers of colonic IL‐22 producing TCRαβ+CD8αβ+ and TCRγδ+CD8αα+ intraepithelial lymphocytes expressing GPR43. Conclusion HAMSA diet may be an effective therapeutic approach for fighting inflammation and enteric infections and offer a safe alternative that may impact on human health.
Collapse
Affiliation(s)
- Yu Anne Yap
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Keiran H McLeod
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Craig I McKenzie
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Patrick G Gavin
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Mercedes Davalos-Salas
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - James L Richards
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Robert J Moore
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia.,School of Science RMIT University Bundoora VIC Australia
| | | | | | - Vik Ven Eng
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia.,Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton, Melbourne VIC Australia
| | - Jaclyn S Pearson
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia.,Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton, Melbourne VIC Australia.,Department of Molecular and Translational Research Monash University Clayton, Melbourne VIC Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Charles R Mackay
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| |
Collapse
|
30
|
Cho JY, Liu R, Macbeth JC, Hsiao A. The Interface of Vibrio cholerae and the Gut Microbiome. Gut Microbes 2021; 13:1937015. [PMID: 34180341 PMCID: PMC8244777 DOI: 10.1080/19490976.2021.1937015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
The bacterium Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. The gut microbiome, or the native community of microorganisms found in the human gastrointestinal tract, is increasingly being recognized as a factor in driving susceptibility to infection, in vivo fitness, and host interactions of this pathogen. Here, we review a subset of the emerging studies in how gut microbiome structure and microbial function are able to drive V. cholerae virulence gene regulation, metabolism, and modulate host immune responses to cholera infection and vaccination. Improved mechanistic understanding of commensal-pathogen interactions offers new perspectives in the design of prophylactic and therapeutic approaches for cholera control.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California, USA
| | - John C. Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
31
|
Effects of Dietary Supplementation with Clostridium butyricum on Growth Performance, Serum Immunity, Intestinal Morphology, and Microbiota as an Antibiotic Alternative in Weaned Piglets. Animals (Basel) 2020; 10:ani10122287. [PMID: 33287332 PMCID: PMC7761722 DOI: 10.3390/ani10122287] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of Clostridium butyricum (C. butyricum) use on growth performance, serum immunity, intestinal morphology, and microbiota as an antibiotic alternative in weaned piglets. Over the course of 28 days, 120 piglets were allocated to four treatments with six replicates of five piglets each. The treatments were: CON (basal diet); AGP (basal diet supplemented with 0.075 g/kg chlortetracycline, 0.055 g/kg kitasamycin, and 0.01 g/kg virginiamycin); CBN (basal diet supplemented with normal dosage of 2.5 × 108 CFU/kg C. butyricum); and CBH (basal diet supplemented with high dosage of 2.5 × 109 CFU/kg C. butyricum). Body weight (BW) and feed consumption were recorded at the beginning and on days 14 and 28 of the experiment, and representative feed samples and fresh feces were collected from each pen between days 26 and 28. Average fecal score of diarrhea was visually assessed each morning during the experimental period. On the morning of days 14 and 28, blood samples were collected to prepare serum for immune and antioxidant parameters measurement. One male piglet close to the average group BW was selected from each replicate and was slaughtered on day 21 of the experiment. Intestinal crypt villi, and colonic microbiota and its metabolites short-chain fatty acids were measured. Compared to the CON group, the CBN and AGP groups significantly decreased (p < 0.05) the ratio of feed to weight gain by 8.86% and 8.37% between days 1 and 14, 3.96% and 13.36% between days 15 and 28, 5.47% and 11.44% between days 1 and 28. Dietary treatment with C. butyricum and AGPs significantly decreased the average fecal score during the experimental period (p < 0.05). The apparent total tract digestibility of dry matter, organic matter, and total carbohydrates in the CBH group were higher respectively at 3.27%, 2.90%, and 2.97%, than those in the CON or AGP groups (p < 0.05). Compared to the CON group, the CBH group significantly increased short-chain fatty acids in colon and villus height in the jejunum (p < 0.05). The CBN group had higher serum levels of immunoglobulins, interleukin 2 (IL-2), and glutathione peroxidase (GSH-PX) activity, but lower serum levels of IL-1β and IL-6, and a lower aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transpeptidase (γ-GT) activity (p < 0.05), while compared to the CON group. Dietary treatment with C. butyricum significantly increased the relative abundance of Streptococcus and Bifidobacterium (p < 0.05). In summary, diet with C. butyricum increased the growth performance and benefited the health of weaned piglets.
Collapse
|
32
|
Xiu W, Chen Q, Wang Z, Wang J, Zhou Z. Microbiota-derived short chain fatty acid promotion of Amphiregulin expression by dendritic cells is regulated by GPR43 and Blimp-1. Biochem Biophys Res Commun 2020; 533:282-288. [PMID: 32958255 DOI: 10.1016/j.bbrc.2020.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DC) are the most important antigen-presenting cells, which guide T cell activation and function, and dysregulated DC function might be one of the crucial causes of inflammatory bowel disease (IBD). It has been well-known that microbiota and their metabolites play an essential role in regulating the biology and function of DC, thus contributing to the pathogenesis of IBD. However, the underlying mechanisms remain largely unknown. Amphiregulin (AREG), a molecule of the epidermal growth factor (EGF) family, is primarily described as an epithelial cell-derived cytokine and recognized as a critical regulator of cell proliferation and tissue repair. Here, we found that DC expression of AREG depended on butyrate (a microbiota-derived short chained fatty acid), which required the interaction between butyrate and G-protein-coupled receptor 43 (GPR43). Furthermore, we found that butyrate-GPR43 interaction failed to induce AREG expression in DC deficient in B lymphocyte induced maturation protein 1 (Blimp-1). Notably, DC-derived AREG was indispensable for the protection against experimental colitis in mice. Additionally, AREG expression was significantly decreased in DC from IBD patients. Our data provide novel evidences to interpret how AREG expression is regulated in DC, and shed new light on the mechanisms whereby microbiota regulate DC function.
Collapse
Affiliation(s)
- Wenbo Xiu
- Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinyuan Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zuo Wang
- Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinxia Wang
- Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhou Zhou
- Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
33
|
Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, Sun J, Pan F, Zhou J, Zhang W, Yao S, Maynard CL, Singh N, Dann SM, Liu Z, Cong Y. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun 2020; 11:4457. [PMID: 32901017 PMCID: PMC7478978 DOI: 10.1038/s41467-020-18262-6] [Citation(s) in RCA: 628] [Impact Index Per Article: 125.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
Innate lymphoid cells (ILCs) and CD4+ T cells produce IL-22, which is critical for intestinal immunity. The microbiota is central to IL-22 production in the intestines; however, the factors that regulate IL-22 production by CD4+ T cells and ILCs are not clear. Here, we show that microbiota-derived short-chain fatty acids (SCFAs) promote IL-22 production by CD4+ T cells and ILCs through G-protein receptor 41 (GPR41) and inhibiting histone deacetylase (HDAC). SCFAs upregulate IL-22 production by promoting aryl hydrocarbon receptor (AhR) and hypoxia-inducible factor 1α (HIF1α) expression, which are differentially regulated by mTOR and Stat3. HIF1α binds directly to the Il22 promoter, and SCFAs increase HIF1α binding to the Il22 promoter through histone modification. SCFA supplementation enhances IL-22 production, which protects intestines from inflammation. SCFAs promote human CD4+ T cell IL-22 production. These findings establish the roles of SCFAs in inducing IL-22 production in CD4+ T cells and ILCs to maintain intestinal homeostasis.
Collapse
MESH Headings
- Animals
- Butyrates/immunology
- Butyrates/metabolism
- Butyrates/pharmacology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/microbiology
- Citrobacter rodentium
- Colitis/immunology
- Colitis/microbiology
- Colitis/prevention & control
- Enterobacteriaceae Infections/immunology
- Enterobacteriaceae Infections/microbiology
- Enterobacteriaceae Infections/prevention & control
- Fatty Acids, Volatile/immunology
- Fatty Acids, Volatile/metabolism
- Fatty Acids, Volatile/pharmacology
- Gastrointestinal Microbiome/immunology
- Gastrointestinal Microbiome/physiology
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunity, Innate
- In Vitro Techniques
- Interleukins/biosynthesis
- Interleukins/deficiency
- Interleukins/genetics
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Lymphocytes/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Promoter Regions, Genetic
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tianming Yu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, 200072, Shanghai, China
| | - Xiangsheng Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Leiqi Xu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yao Lu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Suxia Yao
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Sara M Dann
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, 200072, Shanghai, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
34
|
Zhang Y, Wu Q, Zhou M, Luo Z, Lv L, Pei J, Wang C, Chai B, Sui B, Huang F, Fu ZF, Zhao L. Composition of the murine gut microbiome impacts humoral immunity induced by rabies vaccines. Clin Transl Med 2020; 10:e161. [PMID: 32898335 PMCID: PMC7443138 DOI: 10.1002/ctm2.161] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gut microbiome plays a crucial role in modulating human and animal immune responses. Rabies is a fatal zoonosis causing encephalitis in mammals and vaccination is the most effective method to control and eliminate rabies. The relationship between the gut microbiome and humoral immunity post rabies vaccination has not been investigated yet. METHODS Mice orally administrated with a cocktail of broad-spectrum antibiotics were inoculated with rabies vaccines, and humoral immune response was analyzed at indicated time points. The 16S ribosomal RNA (16S rRNA) gene sequencing was performed on fecal samples from groups in vancomycin-treated and untreated mice. Mice were immunized with rabies vaccines and virus-neutralizing antibody (VNA) levels were measured, resulting in VNA high (H) and low (L) groups. Then 16S rRNA gene sequencing was performed on fecal samples from H and L group mice. RESULTS After antibiotic (Abx) treatment, mice had decreased levels of rabies virus (RABV)-specific IgM, IgG, and virus-neutralizing antibody compared with untreated mice. Abx-treated mice had fewer T follicular helper cells, germinal center B cells, and antibody secreting cells (ASCs) in lymph nodes than did untreated mice. Gut microbiome facilitated secondary immune responses by increasing the generation of ASCs. Treatment with vancomycin alone had a similarly impaired effect on the humoral immune responses compared with Abx-treated mice. From the natural population group of mice received rabies vaccines, VNA titers vary significantly and the abundance of Clostridiales and Lachnospiraceae was positively associated with the antibody titers in mice. CONCLUSIONS Our results provide the evidence that the gut microbiome impacts humoral immunity post rabies vaccination, and further investigation of the mechanism will help the development of novel adjuvants and vaccines.
Collapse
Affiliation(s)
- Yachun Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Qiong Wu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Ming Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Zhaochen Luo
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Lei Lv
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Jie Pei
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Caiqian Wang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Benjie Chai
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Baokun Sui
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Fei Huang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Zhen F. Fu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Ling Zhao
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
35
|
Bolognini D, Dedeo D, Milligan G. Metabolic and inflammatory functions of short-chain fatty acid receptors. ACTA ACUST UNITED AC 2020; 16:1-9. [PMID: 32835130 PMCID: PMC7332907 DOI: 10.1016/j.coemr.2020.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FFA2 and FFA3 are receptors for short-chain fatty acids which are produced in prodigious amounts by fermentation of poorly digested carbohydrates by gut bacteria. Understanding the roles of these receptors in regulating enteroendocrine, metabolic and immune functions has developed with the production and use of novel pharmacological tools and animal models. A complex (patho)physiological scenario is now emerging in which strategic expression of FFA2 and FFA3 in key cell types and selective modulation of their signalling might regulate body weight management, energy homoeostasis and inflammatory disorders.
Collapse
Key Words
- ALDH1A2, aldehyde dehydrogenase 1 family member
- BAFF, B-cell activating factor
- CMTB, 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide
- DREADD, Designer Receptor Exclusively Activated by Designer Drug
- Enteroendocrine
- FFA2
- FFA3
- G protein–coupled receptors
- GLP-1, glucagon-like peptide 1
- GSIS, glucose-stimulated insulin secretion
- GTT, glucose tolerance test
- HFD, high-fat diet
- ILC3, type 3 innate lymphoid cell
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- Immune cells
- KO, knock-out
- PA, (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide
- PNS, peripheral nervous system
- PYY, peptide YY
- Pancreas
- SCA, small carboxylic acid
- SCFA, short-chain fatty acid
- SCG, superior cervical ganglion
- Short-chain fatty acids
Collapse
Affiliation(s)
- Daniele Bolognini
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Domonkos Dedeo
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
36
|
Levade I, Saber MM, Midani FS, Chowdhury F, Khan AI, Begum YA, Ryan ET, David LA, Calderwood SB, Harris JB, LaRocque RC, Qadri F, Shapiro BJ, Weil AA. Predicting Vibrio cholerae Infection and Disease Severity Using Metagenomics in a Prospective Cohort Study. J Infect Dis 2020; 223:342-351. [PMID: 32610345 PMCID: PMC7857355 DOI: 10.1093/infdis/jiaa358] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Susceptibility to Vibrio cholerae infection is affected by blood group, age, and preexisting immunity, but these factors only partially explain who becomes infected. A recent study used 16S ribosomal RNA amplicon sequencing to quantify the composition of the gut microbiome and identify predictive biomarkers of infection with limited taxonomic resolution. METHODS To achieve increased resolution of gut microbial factors associated with V. cholerae susceptibility and identify predictors of symptomatic disease, we applied deep shotgun metagenomic sequencing to a cohort of household contacts of patients with cholera. RESULTS Using machine learning, we resolved species, strains, gene families, and cellular pathways in the microbiome at the time of exposure to V. cholerae to identify markers that predict infection and symptoms. Use of metagenomic features improved the precision and accuracy of prediction relative to 16S sequencing. We also predicted disease severity, although with greater uncertainty than our infection prediction. Species within the genera Prevotella and Bifidobacterium predicted protection from infection, and genes involved in iron metabolism were also correlated with protection. CONCLUSION Our results highlight the power of metagenomics to predict disease outcomes and suggest specific species and genes for experimental testing to investigate mechanisms of microbiome-related protection from cholera.
Collapse
Affiliation(s)
- Inès Levade
- Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Morteza M Saber
- Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Firas S Midani
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, USA,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Fahima Chowdhury
- Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful I Khan
- Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Yasmin A Begum
- Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lawrence A David
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, USA,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Firdausi Qadri
- Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - B Jesse Shapiro
- Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada,McGill Genome Centre, Montreal, Quebec, Canada,Correspondence: B. Jesse Shapiro, McGill University, Montreal, Quebec, Canada ()
| | - Ana A Weil
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
37
|
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines 2020; 8:biomedicines8060154. [PMID: 32521775 PMCID: PMC7344995 DOI: 10.3390/biomedicines8060154] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases.
Collapse
|
38
|
Di Luccia B, Ahern PP, Griffin NW, Cheng J, Guruge JL, Byrne AE, Rodionov DA, Leyn SA, Osterman AL, Ahmed T, Colonna M, Barratt MJ, Delahaye NF, Gordon JI. Combined Prebiotic and Microbial Intervention Improves Oral Cholera Vaccination Responses in a Mouse Model of Childhood Undernutrition. Cell Host Microbe 2020; 27:899-908.e5. [PMID: 32348782 DOI: 10.1016/j.chom.2020.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/18/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Undernourished children in low-income countries often exhibit poor responses to oral vaccination. Perturbed microbiota development is linked to undernutrition, but whether and how microbiota changes affect vaccine responsiveness remains unclear. Here, we show that gnotobiotic mice colonized with microbiota from undernourished Bangladeshi children and fed a Bangladeshi diet exhibited microbiota-dependent differences in mucosal IgA responses to oral vaccination with cholera toxin (CT). Supplementation with a nutraceutical consisting of spirulina, amaranth, flaxseed, and micronutrients augmented CT-IgA production. Mice initially colonized with a microbiota associated with poor CT responses exhibited improved immunogenicity upon invasion of bacterial taxa from cagemates colonized with a more "responsive" microbiota. Additionally, a consortium of five cultured bacterial invaders conferred augmented CT-IgA responses in mice fed the supplemented diet and colonized with the "hypo-responsive" community. These results provide preclinical proof-of-concept that diet and microbiota influence mucosal immune responses to CT vaccination and identify a candidate synbiotic formulation.
Collapse
Affiliation(s)
- Blanda Di Luccia
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip P Ahern
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas W Griffin
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janaki L Guruge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexandra E Byrne
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dmitry A Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Semen A Leyn
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Amadou Amani S, Lang ML. Bacteria That Cause Enteric Diseases Stimulate Distinct Humoral Immune Responses. Front Immunol 2020; 11:565648. [PMID: 33042146 PMCID: PMC7524877 DOI: 10.3389/fimmu.2020.565648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial enteric pathogens individually and collectively represent a serious global health burden. Humoral immune responses following natural or experimentally-induced infections are broadly appreciated to contribute to pathogen clearance and prevention of disease recurrence. Herein, we have compared observations on humoral immune mechanisms following infection with Citrobacter rodentium, the model for enteropathogenic Escherichia coli, Vibrio cholerae, Shigella species, Salmonella enterica species, and Clostridioides difficile. A comparison of what is known about the humoral immune responses to these pathogens reveals considerable variance in specific features of humoral immunity including establishment of high affinity, IgG class-switched memory B cell and long-lived plasma cell compartments. This article suggests that such variance could be contributory to persistent and recurrent disease.
Collapse
|
40
|
Abstract
Vibrio cholerae is a noninvasive pathogen that colonizes the small intestine and produces cholera toxin, causing severe secretory diarrhea. Cholera results in long lasting immunity, and recent studies have improved our understanding of the antigenic repertoire of V. cholerae Interactions between the host, V. cholerae, and the intestinal microbiome are now recognized as factors which impact susceptibility to cholera and the ability to mount a successful immune response to vaccination. Here, we review recent data and corresponding models to describe immune responses to V. cholerae infection and explain how the host microbiome may impact the pathogenesis of V. cholerae In the ongoing battle against cholera, the intestinal microbiome represents a frontier for new approaches to intervention and prevention.
Collapse
|
41
|
Zhang Z, Tang H, Chen P, Xie H, Tao Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther 2019; 4:41. [PMID: 31637019 PMCID: PMC6799818 DOI: 10.1038/s41392-019-0074-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
The trillions of microorganisms in the gut microbiome have attracted much attention recently owing to their sophisticated and widespread impacts on numerous aspects of host pathophysiology. Remarkable progress in large-scale sequencing and mass spectrometry has increased our understanding of the influence of the microbiome and/or its metabolites on the onset and progression of extraintestinal cancers and the efficacy of cancer immunotherapy. Given the plasticity in microbial composition and function, microbial-based therapeutic interventions, including dietary modulation, prebiotics, and probiotics, as well as fecal microbial transplantation, potentially permit the development of novel strategies for cancer therapy to improve clinical outcomes. Herein, we summarize the latest evidence on the involvement of the gut microbiome in host immunity and metabolism, the effects of the microbiome on extraintestinal cancers and the immune response, and strategies to modulate the gut microbiome, and we discuss ongoing studies and future areas of research that deserve focused research efforts.
Collapse
Affiliation(s)
- Ziying Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
- Department of Oncology, Third Xiangya Hospital, Central South University, 410013 Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Hui Xie
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| |
Collapse
|
42
|
Wang K, Cao G, Zhang H, Li Q, Yang C. Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, intestinal morphology, volatile fatty acids, and intestinal flora in a piglet model. Food Funct 2019; 10:7844-7854. [DOI: 10.1039/c9fo01650c] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated the effects of Clostridium butyricum and Enterococcus faecalis (probiotics) in a piglet model.
Collapse
Affiliation(s)
- Kangli Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| | - Guangtian Cao
- College of Standardisation
- China Jiliang University
- Hangzhou 310018
- China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| |
Collapse
|