1
|
Hirakawa T, Taniuchi M, Iguchi Y, Bogahawaththa S, Yoshitake K, Werellagama S, Uemura T, Tsujita T. NF-E2-related factor 1 suppresses the expression of a spermine oxidase and the production of highly reactive acrolein. Sci Rep 2025; 15:12405. [PMID: 40258928 PMCID: PMC12012012 DOI: 10.1038/s41598-025-96388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are among the most abundant intracellular small molecular metabolites, with concentrations at the mM level. The ratios of these three molecules remain constant under physiological conditions. Stress (i.e. polyamine overload, oxidative stress, aging, infection, etc.) triggers the catabolic conversion of spermine to spermidine, ultimately yielding acrolein and hydrogen peroxide. The potential of acrolein to induce DNA damage and protein denaturation is 1,000 times greater than that of reactive oxygen species. We have shown that these polyamine metabolic pathways also involve the nuclear factor erythroid-2-related factor 1 (NRF1) transcription factor. In our chemically-inducible, liver-specific Nrf1-knockout mice, the polyamine catabolic pathway dominated the anabolic pathway, producing free acrolein and accumulating acrolein-conjugated proteins in vivo. This metabolic feature implicates SMOX as an important causative enzyme. Chromatin immunoprecipitation and reporter assays confirmed that NRF1 directly suppressed Smox expression. This effect was also observed in vitro. Ectopic overexpression of SMOX increased the accumulation of free acrolein and acrolein-conjugated proteins. SMOX knockdown reversed the accumulation of free acrolein and acrolein-conjugated proteins. Our results show that NRF1 typically suppresses Smox expression when NRF1 is downregulated, SMOX is upregulated, and polyamine metabolic pathways are altered, producing low molecular weight polyamines and acrolein.
Collapse
Affiliation(s)
- Tomoaki Hirakawa
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Megumi Taniuchi
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
| | - Yoko Iguchi
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
| | - Sudarma Bogahawaththa
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kiko Yoshitake
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
| | - Shanika Werellagama
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
| | - Takeshi Uemura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
2
|
Zhang DD. Thirty years of NRF2: advances and therapeutic challenges. Nat Rev Drug Discov 2025:10.1038/s41573-025-01145-0. [PMID: 40038406 DOI: 10.1038/s41573-025-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 03/06/2025]
Abstract
Over the last 30 years, NRF2 has evolved from being recognized as a transcription factor primarily involved in redox balance and detoxification to a well-appreciated master regulator of cellular proteostasis, metabolism and iron homeostasis. NRF2 plays a pivotal role in diverse pathologies, including cancer, and metabolic, inflammatory and neurodegenerative disorders. It exhibits a Janus-faced duality, safeguarding cellular integrity in normal cells against environmental insults to prevent disease onset, whereas in certain cancers, constitutively elevated NRF2 levels provide a tumour survival advantage, promoting progression, therapy resistance and metastasis. Advances in understanding the mechanistic regulation of NRF2 and its roles in human pathology have propelled the investigation of NRF2-targeted therapeutic strategies. This Review dissects the mechanistic intricacies of NRF2 signalling, its cross-talk with biological processes and its far-reaching implications for health and disease, highlighting key discoveries that have shaped innovative therapeutic approaches targeting NRF2.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Molecular Medicine, Center for Inflammation Science and Systems Medicine, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Merchant HJ, Forteath C, Gallagher JR, Dinkova-Kostova AT, Ashford MLJ, McCrimmon RJ, McNeilly AD. Activation of the Nrf2 Pathway by Sulforaphane Improves Hypoglycaemia-Induced Cognitive Impairment in a Rodent Model of Type 1 Diabetes. Antioxidants (Basel) 2025; 14:308. [PMID: 40227271 PMCID: PMC11939732 DOI: 10.3390/antiox14030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
In diabetes, chronic hyperglycaemia leads to cognitive impairment, neurodegeneration and dementia. In a rodent model of streptozotocin (STZ)-induced type 1 diabetes (STZ-T1D), we previously demonstrated that recurrent hypoglycaemia (RH) further exacerbates this process through a mechanism involving increased oxidative and inflammatory stress that overwhelms the compensatory activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant system, which was insufficient to prevent cognitive impairment. The current study investigated whether the induction of the antioxidant response through pre-treatment with sulforaphane (SFN), a potent Nrf2 inducer, would ameliorate these cognitive deficits. A mouse model of chronic insulin-treated T1D was achieved using STZ (125 mg/kg i.p.) and insulin implants (Linbit®). Diabetic and Control (C57BL6/J) mice were randomly allocated to one of the following seven groups: (i) Control, (ii) STZ-T1D, (iii) Control + RH, (iv) STZ-T1D + RH, (v) Control + RH + SFN, (vi) STZ-T1D + RH + SFN or (vii) STZ-T1D + SFN, and subjected to insulin-induced hypoglycaemia (three episodes per week for four weeks). SFN (50 mg/kg i.p.) or a vehicle (0.1% DMSO/PBS i.p.) were administered 24 h before each hypoglycaemic episode. Cognition was assessed with the Novel Object Recognition (NOR) and spontaneous alternation (SA) tasks. SFN significantly improved the cognitive performance in the 24-h NOR and SA tasks in the STZ-T1D + RH groups. These improvements were absent in the Control or Nrf2-null mice receiving SFN. These studies show, for the first time, that the pharmacological activation of the Nrf2 antioxidant pathway may provide a novel therapeutic target for treating cognitive impairment associated with RH in T1D.
Collapse
Affiliation(s)
- Heather J. Merchant
- Division of Diabetes, Endocrinology and Reproductive Biology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (H.J.M.); (C.F.); (M.L.J.A.); (R.J.M.)
| | - Calum Forteath
- Division of Diabetes, Endocrinology and Reproductive Biology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (H.J.M.); (C.F.); (M.L.J.A.); (R.J.M.)
| | | | | | - Michael L. J. Ashford
- Division of Diabetes, Endocrinology and Reproductive Biology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (H.J.M.); (C.F.); (M.L.J.A.); (R.J.M.)
| | - Rory J. McCrimmon
- Division of Diabetes, Endocrinology and Reproductive Biology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (H.J.M.); (C.F.); (M.L.J.A.); (R.J.M.)
| | - Alison D. McNeilly
- Division of Diabetes, Endocrinology and Reproductive Biology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (H.J.M.); (C.F.); (M.L.J.A.); (R.J.M.)
| |
Collapse
|
4
|
Uesaki S, Yamato M, Ishikado A, Suekawa Y, Tamura Y, Kataoka Y. Liposomal Lactoferrin Reduces Brain Neuroinflammation in Rats and Alleviates Jetlag and Improves Sleep Quality After Long-Haul Travel. NEUROSCI 2025; 6:19. [PMID: 40137863 PMCID: PMC11944617 DOI: 10.3390/neurosci6010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Insufficient sleep and circadian misalignment increase inflammatory agents. This triggers neuroinflammation and can result in health issues including depression, dementia, lifestyle-related diseases, and industrial accidents. Lactoferrin (LF) confers neuroprotective effects, which are derived from its anti-inflammatory, antioxidant, and iron metabolic properties; however, its roles in acute neuroinflammation and circadian rhythm disruption are yet to be elucidated. Therefore, we aimed to test the effects of LF on rat neuroinflammation and sleep and jetlag in humans. Rats received 7 days of an oral liposomal bovine LF (L-bLF) or vehicle followed by polyriboinosinic:polyribocytidylic acid (poly I:C) peritoneal injections (n = 5-6). Compared with the rats given poly I:C only, the rats given L-bLF and poly I:C had lower Il1b, Tnf, Casp1, Nfe212, Gclm, and Sod2 expression in the hippocampus. This open-label pilot study was carried out on tour conductors performing regular international tour responsibilities, and the data were compared between the initial tour without L-bLF intake and the subsequent tour with L-bLF intake. In the tour with L-bLF intake, L-bLF administration started from one week before the trip and was continued during the trip. In both periods, the tour conductors experienced limited sleep; however, both subjective and objective sleep quality was significantly better with the oral L-bLF intake than without. Overall, we found that prophylactic L-bLF supplementation reduced neuroinflammation in rat hippocampi and improved sleep quality and jetlag in tour conductors.
Collapse
Affiliation(s)
- Shoko Uesaki
- R&D Department, Sunstar Inc., 3-1 Asahimachi, Takatsuki 569-1195, Osaka, Japan; (S.U.); (A.I.); (Y.S.)
| | - Masanori Yamato
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan; (M.Y.); (Y.T.)
- Graduate School of Science, Technology and Innovation, Kobe University, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Atsushi Ishikado
- R&D Department, Sunstar Inc., 3-1 Asahimachi, Takatsuki 569-1195, Osaka, Japan; (S.U.); (A.I.); (Y.S.)
| | - Yutaka Suekawa
- R&D Department, Sunstar Inc., 3-1 Asahimachi, Takatsuki 569-1195, Osaka, Japan; (S.U.); (A.I.); (Y.S.)
| | - Yasuhisa Tamura
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan; (M.Y.); (Y.T.)
- Graduate School of Science, Technology and Innovation, Kobe University, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Laboratory of Clinical Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikori-Kita, Tondabayashi 584-8540, Osaka, Japan
| | - Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan; (M.Y.); (Y.T.)
- Graduate School of Science, Technology and Innovation, Kobe University, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
5
|
Kuklin A, Slabber CF, Tortola L, Kwan CL, Liebisch G, Kondylis V, Mair F, Kopf M, Weber A, Werner S. An Nrf2-NF-κB Crosstalk Controls Hepatocyte Proliferation in the Normal and Injured Liver. Cell Mol Gastroenterol Hepatol 2025; 19:101480. [PMID: 39970988 DOI: 10.1016/j.jcmgh.2025.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND & AIMS The liver has remarkable regenerative and detoxification capacities, which require the Nrf2 and NF-κB transcription factors. Although their individual functions in hepatocytes are well characterized, knowledge about their crosstalk in the adult liver is limited. METHODS We performed AAV8-Cre inducible, hepatocyte-specific knockout of Nrf2, the NF-κB subunit p65, or both genes to determine the individual and combined roles of these transcription factors in the intact liver of male adult mice and after acute CCl4 injury. Mice were characterized using histologic and immunohistochemical stainings, serum and liver bile acid analysis, flow cytometry, and RNA sequencing. To distinguish between cell-autonomous and non-cell-autonomous mechanisms, we generated and analyzed knockout and knockdown AML12 liver cells. Clodronate liposome-mediated macrophage depletion was used to determine the role of these immune cells in hepatocyte proliferation after CCl4 injection. RESULTS Loss of p65 alone or p65 in combination with Nrf2 caused spontaneous liver inflammation and necrosis. Gene expression profiling identified individual and common target genes of both transcription factors, including genes involved in the control of cell proliferation. Consistent with the expression of these genes, hepatocyte proliferation was reduced by Nrf2 deficiency under homeostatic conditions and after CCl4 injury, which was rescued by additional loss of p65. The increased hepatocyte proliferation in the double-knockout mice was non-cell-autonomous and correlated with macrophage accumulation in the liver. Depletion of macrophages in these mice suppressed hepatocyte proliferation after CCl4 treatment. CONCLUSIONS These results reveal a crosstalk between Nrf2 and p65 in the control of hepatocyte proliferation and point to a key role of macrophages in this effect.
Collapse
Affiliation(s)
- Andrii Kuklin
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Chan Lap Kwan
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland; Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Vangelis Kondylis
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Florian Mair
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland; Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Fan S, Wang K, Zhang T, Deng D, Shen J, Zhao B, Fu D, Chen X. Mechanisms and Therapeutic Potential of GPX4 in Pain Modulation. Pain Ther 2025; 14:21-45. [PMID: 39503961 PMCID: PMC11751247 DOI: 10.1007/s40122-024-00673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 01/23/2025] Open
Abstract
Pain, a complex symptom encompassing both sensory and emotional dimensions, constitutes a significant global public health issue. Oxidative stress is a pivotal factor in the complex pathophysiology of pain, with glutathione peroxidase 4 (GPX4) recognized as a crucial antioxidant enzyme involved in both antioxidant defense mechanisms and ferroptosis pathways. This review systematically explores GPX4's functions across various pain models, including neuropathic, inflammatory, low back, and cancer-related pain. Specifically, the focus includes GPX4's physiological roles, antioxidant defense mechanisms, regulation of ferroptosis, involvement in signal transduction pathways, and metabolic regulation. By summarizing current research, we highlight the potential of GPX4-targeted therapies in pain management.
Collapse
Affiliation(s)
- Shiwen Fan
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, 832002, China
| | - Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Jiwei Shen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Bowen Zhao
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, 832002, China
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
7
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
8
|
Chen S, Xie Y, Liang Z, Liu J, Wang J, Mao Y, Xing F, Wei X, Wang Z, Yang J, Yuan J. Sleep deprivation affects pain sensitivity by increasing oxidative stress and apoptosis in the medial prefrontal cortex of rats via the HDAC2-NRF2 pathway. Biomed J 2025:100826. [PMID: 39755172 DOI: 10.1016/j.bj.2024.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/03/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Sleep is crucial for sustaining normal physiological functions, and sleep deprivation has been associated with increased pain sensitivity. The histone deacetylases (HDACs) are known to significantly regulate in regulating neuropathic pain, but their involvement in nociceptive hypersensitivity during sleep deprivation is still not fully understood. Utilizing a modified multi-platform water environment technique to establish a sleep deprivation model. We measured the expression levels of HDAC1/2 in the medial prefrontal cortex (mPFC) through immunoblotting and real-time quantitative PCR. The presence of pyroptosis was determined using a TUNEL assay. Suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor employed clinically, was injected into the peritoneal cavity to inhibit HDAC2 expression. Animal pain behaviors were evaluated by measuring paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs). Our findings indicate that sleep deprivation leads to increased nociceptive hypersensitivity, an upregulation of HDAC2 expression in the mPFC, a downregulation of the expression of nuclear factor erythroid 2-related factor 2 (NRF2), and changes in markers of oxidative stress in rats. SAHA, the HDAC inhibitor, enhanced NRF2 expression by inhibiting HDAC2, which consequently ameliorated oxidative stress and mitigated nociceptive hypersensitivity in rats. The incidence of apoptosis was found to be higher in the mPFC tissues of sleep deprivation rats, and the intraperitoneal administration of SAHA decreased this apoptosis. The co-injection of SAHA and the NRF2 inhibitor ML385 into sleep deprivation rats negated the beneficial effects of SAHA. In conclusion, HDAC2 is implicated in the induction of oxidative stress and apoptosis by suppressing NRF2 levels, thereby exacerbating nociceptive hypersensitivity in sleep deprivation rats.
Collapse
Affiliation(s)
- Shuhan Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China
| | - Yanle Xie
- Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China
| | - Zenghui Liang
- Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China
| | - Jing Liu
- Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China
| | - Jingping Wang
- Massachusetts General Hospital Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA
| | - Yuanyuan Mao
- Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China
| | - Fei Xing
- Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China
| | - Xin Wei
- Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China
| | - Zhongyu Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China
| | - Jianjun Yang
- Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China
| | - Jingjing Yuan
- Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China.
| |
Collapse
|
9
|
Li Y, Yang X, Wei Z, Niu H, Wu L, Chen C, Liu H, Cai T, Fan H. Sulforaphane Wrapped in Self-Assembled Nanomicelle Enhances the Effect of Sonodynamic Therapy on Glioma. Pharmaceutics 2024; 17:34. [PMID: 39861683 PMCID: PMC11769538 DOI: 10.3390/pharmaceutics17010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Methods: Through ultrasonic polymerization, the amphiphilic peptides (C18GR7RGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM. Results/Conclusions: SFN@RB@SPM can be internalized by the glioma cells through the tumor-targeting motif RGDS (abbreviated for the peptide sequence composed of arginine, glycine, aspartic acid, and serine), and further executes antitumor function during SDT. Also, SFN@RB@SPM could be easily taken up by U87-MG cells and cross the BBB in glioma-bearing mice during SDT. The mechanism investigation revealed that, compared with the SFN-free nanocomplex (RB@SPM), SFN@RB@SPM induced much more apoptosis of U87-MG cells in an ROS-dependent manner through the depletion of glutathione by SFN and the cavitation effect by SDT. In animal experiments, besides a significant reduction in tumor volume and a delay in losing body weight, H&E staining showed a massive infiltration of neutrophils adjacent to the tumor sites, indicating this novel nanocomplex SFN@RB@SPM can synergistically augment SDT efficacy, partially by enhancing the antitumor function of innate immunity.
Collapse
Affiliation(s)
- Yihong Li
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Xuejie Yang
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Zhen Wei
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
| | - Heng Niu
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
| | - Liyang Wu
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Caijing Chen
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
| | - Huina Liu
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
| | - Ting Cai
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
| | - Huadong Fan
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Dementia and Neurorehabilitation Research, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| |
Collapse
|
10
|
Chu CT, Uruno A, Katsuoka F, Yamamoto M. Role of NRF2 in Pathogenesis of Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1529. [PMID: 39765857 PMCID: PMC11727090 DOI: 10.3390/antiox13121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Alzheimer's disease (AD) is a polygenic, multifactorial neurodegenerative disorder and remains the most prevalent form of dementia, globally. Despite decades of research efforts, there is still no effective cure for this debilitating condition. AD research has increasingly focused on transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) as a potential therapeutic target. NRF2 plays a crucial role in protecting cells and tissues from environmental stressors, such as electrophiles and reactive oxygen species. Recently, an increasing number of studies have demonstrated that NRF2 is a key regulator in AD pathology. NRF2 is highly expressed in microglia, resident macrophages in the central nervous system, and contributes to neuroinflammation, phagocytosis and neurodegeneration in AD. NRF2 has been reported to modulate microglia-induced inflammation and facilitate the transition from homeostatic microglia to a disease-associated microglia subset. Genetic and pharmacological activation of NRF2 has been demonstrated to improve cognitive function. Here, we review the current understanding of the involvement of NRF2 in AD and the critical role that NRF2 plays in microglia in the context of AD. Our aim is to highlight the potential of targeting NRF2 in the microglia as a promising therapeutic strategy for mitigating the progression of AD.
Collapse
Affiliation(s)
- Ching-Tung Chu
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Akira Uruno
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan;
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| |
Collapse
|
11
|
Navarro E, Esteras N. Multitarget Effects of Nrf2 Signalling in the Brain: Common and Specific Functions in Different Cell Types. Antioxidants (Basel) 2024; 13:1502. [PMID: 39765831 PMCID: PMC11673142 DOI: 10.3390/antiox13121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of cellular defence mechanisms, essential for maintaining the brain's health. Nrf2 supports mitochondrial function and protects against oxidative damage, which is vital for meeting the brain's substantial energy and antioxidant demands. Furthermore, Nrf2 modulates glial inflammatory responses, playing a pivotal role in preventing neuroinflammation. This review explores these multifaceted functions of Nrf2 within the central nervous system, focusing on its activity across various brain cell types, including neurons, astrocytes, microglia, and oligodendrocytes. Due to the brain's vulnerability to oxidative stress and metabolic challenges, Nrf2 is emerging as a key therapeutic target to enhance resilience against oxidative stress, inflammation, mitochondrial dysfunction, and demyelination, which are central to many neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Navarro
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Noemí Esteras
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
12
|
Li Y, Qin K, Liang W, Yan W, Fragoulis A, Pufe T, Buhl EM, Zhao Q, Greven J. Kidney Injury in a Murine Hemorrhagic Shock/Resuscitation Model Is Alleviated by sulforaphane's Anti-Inflammatory and Antioxidant Action. Inflammation 2024; 47:2215-2227. [PMID: 39023831 DOI: 10.1007/s10753-024-02106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Hemorrhagic shock/resuscitation (HS/R) can lead to acute kidney injury, mainly manifested as oxidative stress and inflammatory injury in the renal tubular epithelial cells, as well as abnormal autophagy and apoptosis. Sulforaphane (SFN), an agonist of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway, is involved in multiple biological activities, such as anti-inflammatory, antioxidant, autophagy, and apoptosis regulation. This study investigated the effect of SFN on acute kidney injury after HS/R in mice. Hemorrhagic shock was induced in mice by controlling the arterial blood pressure at a range of 35-45 mmHg for 90 min within arterial blood withdrawal. Fluid resuscitation was carried out by reintroducing withdrawn blood and 0.9% NaCl. We found that SFN suppressed the elevation of urea nitrogen and serum creatinine levels in the blood induced by HS/R. SFN mitigated pathological alterations including swollen renal tubules and renal casts in kidney tissue of HS/R mice. Inflammation levels and oxidative stress were significantly downregulated in mouse kidney tissue after SFN administration. In addition, the kidney tissue of HS/R mice showed high levels of autophagosomes as observed by electron microscopy. However, SFN can further enhance the formation of autophagosomes in the HS/R + SFN group. SFN also increased autophagy-related proteins Beclin1 expression and suppressed P62 expression, while increasing the ratio of microtubule-associated protein 1 light chain 3 (LC3)-II and LC3-I (LC3-II/LC3-I). SFN also effectively decreased cleaved caspase-3 level and enhanced the ratio of anti-apoptotic protein B cell lymphoma 2 and Bcl2-associated X protein (Bcl2/Bax). Collectively, SFN effectively inhibited inflammation and oxidative stress, enhanced autophagy, thereby reducing HS/R-induced kidney injury and apoptosis levels in mouse kidneys.
Collapse
Affiliation(s)
- You Li
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Kang Qin
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany.
- Department of Shoulder and Elbow Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| | - Weiqiang Liang
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Weining Yan
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Eva Miriam Buhl
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Electron Microscopy Facility, Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Qun Zhao
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Johannes Greven
- Department of Thoracic Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| |
Collapse
|
13
|
Adil M, Jiba U, Khan A, Shahrukh M, Hasan N, Ahmad FJ. Advancements in ischemic stroke management: Transition from traditional to nanotechnological approaches. J Drug Deliv Sci Technol 2024; 102:106318. [DOI: 10.1016/j.jddst.2024.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
15
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
16
|
Akter KA, Sharma S, Sifat AE, Zhang Y, Patel DK, Cucullo L, Abbruscato TJ. Metformin ameliorates neuroinflammatory environment for neurons and astrocytes during in vitro and in vivo stroke and tobacco smoke chemical exposure: Role of Nrf2 activation. Redox Biol 2024; 75:103266. [PMID: 39094400 PMCID: PMC11345405 DOI: 10.1016/j.redox.2024.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024] Open
Abstract
Despite the protective nature of the blood-brain barrier (BBB) and brain-protecting tissues, some types of CNS injury or stress can cause cerebral cytokine production and profound alterations in brain function. Neuroinflammation, which can also be accompanied by increased cerebral cytokine production, has a remarkable impact on the pathogenesis of many neurological illnesses, including loss of BBB integrity and ischemic stroke, yet effective treatment choices for these diseases are currently lacking. Although little is known about the brain effects of Metformin (MF), a commonly prescribed first-line antidiabetic drug, prior research suggested that it may be useful in preventing BBB deterioration and the increased risk of stroke caused by tobacco smoking (TS). Therefore, reducing neuroinflammation by escalating anti-inflammatory cytokine production and declining pro-inflammatory cytokine production could prove an effective therapeutic strategy for ischemic stroke. Hence, the current investigation was planned to explore the potential role of MF against stroke and TS-induced neuroinflammation and reactive oxygen species (ROS) production. Our studies revealed that MF suppressed releasing pro-inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) by aiming at the nuclear factor kappa B (NF-κB) signaling pathway in primary neurons and astrocytes. MF also upregulated anti-inflammatory mediators, like interleukin-10 (IL-10), and interleukin-4 (IL-4), by upregulating the Nrf2-ARE signaling pathway. Adolescent mice receiving MF along with TS exposure also showed a notable decrease in NF-κB expression compared to the mice not treated with MF and significantly decreased the level of TNF-α, IL-1β, MCP-1, and MIP-2 and increased the levels of IL-10 and IL-4 through the activation of Nrf2-ARE signaling pathway. These results suggest that MF has anti-neuroinflammatory effects via inhibiting NF-κB signaling by activating Nrf2-ARE. These studies support that MF could be a strong candidate drug for treating and or preventing TS-induced neuroinflammation and ischemic stroke.
Collapse
Affiliation(s)
- Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Yong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Dhaval Kumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States.
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| |
Collapse
|
17
|
Lee DH, Han JW, Park H, Hong SJ, Kim CS, Kim YS, Lee IS, Kim GJ. Achyranthis radix Extract Enhances Antioxidant Effect of Placenta-Derived Mesenchymal Stem Cell on Injured Human Ocular Cells. Cells 2024; 13:1229. [PMID: 39056810 PMCID: PMC11274440 DOI: 10.3390/cells13141229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Age-related ocular diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy are major causes of irreversible vision impairment in the elderly. Conventional treatments focus on symptom relief and disease slowdown, often involving surgery, but fall short of providing a cure, leading to substantial vision loss. Regenerative medicine, particularly mesenchymal stem cells (MSCs), holds promise for ocular disease treatment. This study investigates the synergistic potential of combining placenta-derived MSCs (PD-MSCs) with Achyranthis radix extract (ARE) from Achyranthes japonica to enhance therapeutic outcomes. In a 24-h treatment, ARE significantly increased the proliferative capacity of PD-MSCs and delayed their senescence (* p < 0.05). ARE also enhanced antioxidant capabilities and increased the expression of regeneration-associated genes in an in vitro injured model using chemical damages on human retinal pigment epithelial cell line (ARPE-19) (* p < 0.05). These results suggest that ARE-primed PD-MSC have the capability to enhance the activation of genes associated with regeneration in the injured eye via increasing antioxidant properties. Taken together, these findings support the conclusion that ARE-primed PD-MSC may serve as an enhanced source for stem cell-based therapy in ocular diseases.
Collapse
Affiliation(s)
- Dae-Hyun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Ji Woong Han
- Advanced PLAB, PLABiologics Co., Ltd., Seongnam 13522, Republic of Korea;
| | - Hyeri Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Se Jin Hong
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Young Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Ik Soo Lee
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| |
Collapse
|
18
|
Schaftenaar FH, van Dam AD, de Bruin G, Depuydt MA, de Mol J, Amersfoort J, Douna H, Meijer M, Kröner MJ, van Santbrink PJ, Bernabé Kleijn MN, van Puijvelde GH, Florea BI, Slütter B, Foks AC, Bot I, Rensen PC, Kuiper J. Immunoproteasomal Inhibition With ONX-0914 Attenuates Atherosclerosis and Reduces White Adipose Tissue Mass and Metabolic Syndrome in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1346-1364. [PMID: 38660806 PMCID: PMC11188635 DOI: 10.1161/atvbaha.123.319701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit β5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit β1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.
Collapse
MESH Headings
- Animals
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Atherosclerosis/drug therapy
- Atherosclerosis/immunology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Metabolic Syndrome/drug therapy
- Metabolic Syndrome/immunology
- Disease Models, Animal
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/pathology
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Proteasome Endopeptidase Complex/metabolism
- Mice, Inbred C57BL
- Male
- Proteasome Inhibitors/pharmacology
- Apolipoprotein E3/genetics
- Apolipoprotein E3/metabolism
- Aortic Diseases/prevention & control
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/immunology
- Plaque, Atherosclerotic
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice, Knockout, ApoE
- Mice
- Energy Metabolism/drug effects
- Oligopeptides
Collapse
Affiliation(s)
- Frank H. Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Andrea D. van Dam
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Gerjan de Bruin
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Marie A.C. Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jacob Amersfoort
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Hidde Douna
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Menno Meijer
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mara J. Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Peter J. van Santbrink
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mireia N.A. Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Gijs H.M. van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Bogdan I. Florea
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Patrick C.N. Rensen
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| |
Collapse
|
19
|
Morgenstern C, Lastres-Becker I, Demirdöğen BC, Costa VM, Daiber A, Foresti R, Motterlini R, Kalyoncu S, Arioz BI, Genc S, Jakubowska M, Trougakos IP, Piechota-Polanczyk A, Mickael M, Santos M, Kensler TW, Cuadrado A, Copple IM. Biomarkers of NRF2 signalling: Current status and future challenges. Redox Biol 2024; 72:103134. [PMID: 38643749 PMCID: PMC11046063 DOI: 10.1016/j.redox.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/24/2024] [Indexed: 04/23/2024] Open
Abstract
The cytoprotective transcription factor NRF2 regulates the expression of several hundred genes in mammalian cells and is a promising therapeutic target in a number of diseases associated with oxidative stress and inflammation. Hence, an ability to monitor basal and inducible NRF2 signalling is vital for mechanistic understanding in translational studies. Due to some caveats related to the direct measurement of NRF2 levels, the modulation of NRF2 activity is typically determined by measuring changes in the expression of one or more of its target genes and/or the associated protein products. However, there is a lack of consensus regarding the most relevant set of these genes/proteins that best represents NRF2 activity across cell types and species. We present the findings of a comprehensive literature search that according to stringent criteria identifies GCLC, GCLM, HMOX1, NQO1, SRXN1 and TXNRD1 as a robust panel of markers that are directly regulated by NRF2 in multiple cell and tissue types. We assess the relevance of these markers in clinically accessible biofluids and highlight future challenges in the development and use of NRF2 biomarkers in humans.
Collapse
Affiliation(s)
- Christina Morgenstern
- Department of Otorhinolaryngology, Medical University of Vienna, General Hospital of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria; Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010, Graz, Austria
| | - Isabel Lastres-Becker
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid (UAM), Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Andreas Daiber
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Roberta Foresti
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | | | | | - Burak I Arioz
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Monika Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387, Krakow, Poland
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | | | - Michel Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552, Garbatka, Poland
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid (UAM), Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ian M Copple
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
20
|
Ruan J, Shi Z, Cao X, Dang Z, Zhang Q, Zhang W, Wu L, Zhang Y, Wang T. Research Progress on Anti-Inflammatory Effects and Related Mechanisms of Astragalin. Int J Mol Sci 2024; 25:4476. [PMID: 38674061 PMCID: PMC11050484 DOI: 10.3390/ijms25084476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic inflammation is a significant contributor to the development of cancer, cardiovascular disease, diabetes, obesity, autoimmune disease, inflammatory bowel disease, and other illnesses. In the academic field, there is a constant demand for effective methods to alleviate inflammation. Astragalin (AST), a type of flavonoid glycoside that is the primary component in several widely used traditional Chinese anti-inflammatory medications in clinical practice, has garnered attention from numerous experts and scholars. This article focuses on the anti-inflammatory effects of AST and conducts research on relevant literature from 2003 to 2023. The findings indicate that AST demonstrates promising anti-inflammatory potential in various models of inflammatory diseases. Specifically, AST is believed to possess inhibitory effects on inflammation-related factors and protein levels in various in vitro cell models, such as macrophages, microglia, and epithelial cells. In vivo studies have shown that AST effectively alleviates neuroinflammation and brain damage while also exhibiting potential for treating moderate diseases such as depression and stroke; it also demonstrates significant anti-inflammatory effects on both large and small intestinal epithelial cells. Animal experiments have further demonstrated that AST exerts therapeutic effects on colitis mice. Molecular biology studies have revealed that AST regulates complex signaling networks, including NF-κB, MAPK, JAK/STAT pathways, etc. In conclusion, this review will provide insights and references for the development of AST as an anti-inflammatory agent as well as for related drug development.
Collapse
Affiliation(s)
- Jingya Ruan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Zhongwei Shi
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Xiaoyan Cao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
| | - Zhunan Dang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
| | - Qianqian Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Wei Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Lijie Wu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Yi Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Tao Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| |
Collapse
|
21
|
He MT, Park G, Park DH, Choi M, Ku S, Go SH, Lee YG, Song SJ, Ahn CW, Jang YP, Kang KS. So Shiho Tang Reduces Inflammation in Lipopolysaccharide-Induced RAW 264.7 Macrophages and Dextran Sodium Sulfate-Induced Colitis Mice. Biomolecules 2024; 14:451. [PMID: 38672468 PMCID: PMC11047977 DOI: 10.3390/biom14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms, including colon shortening and body weight loss, were attenuated by SSHT. Moreover, representative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured. A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in SSHT preparations.
Collapse
Affiliation(s)
- Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Minsik Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Sejin Ku
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seung Hyeon Go
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Yun Gyo Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seok Jun Song
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Chang-Wook Ahn
- Dr. Ahn’s Surgery Clinic, Osan 18144, Republic of Korea;
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| |
Collapse
|
22
|
Hamouda HA, Sayed RH, Eid NI, El-Sayeh BM. Azilsartan Attenuates 3-Nitropropinoic Acid-Induced Neurotoxicity in Rats: The Role of IĸB/NF-ĸB and KEAP1/Nrf2 Signaling Pathways. Neurochem Res 2024; 49:1017-1033. [PMID: 38184805 PMCID: PMC10901959 DOI: 10.1007/s11064-023-04083-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. Injection of 3-nitropropionic acid (3-NP) is a widely used experimental model for induction of HD. The current study aimed to inspect the potential neuroprotective properties of azilsartan (Azil), an angiotensin II type 1 receptor blocker (ATR1), in 3-NP-induced striatal neurotoxicity in rats. Rats were randomly allocated into five groups and treated for 14 days as follows: group I received normal saline; group II received Azil (10 mg/kg, p.o.); group III received 3-NP (10 mg/kg, i.p); group IV and V received Azil (5 or 10 mg/kg, p.o, respectively) 1 h prior to 3-NP injection. Both doses of Azil markedly attenuated motor and behavioural dysfunction as well as striatal histopathological alterations caused by 3-NP. In addition, Azil balanced striatal neurotransmitters levels as evidenced by the increase of striatal gamma-aminobutyric acid content and the decrease of glutamate content. Azil also amended neuroinflammation and oxidative stress via modulating IĸB/NF-ĸB and KEAP1/Nrf2 downstream signalling pathways, as well as reducing iNOS and COX2 levels. Moreover, Azil demonstrated an anti-apoptotic activity by reducing caspase-3 level and BAX/BCL2 ratio. In conclusion, the present study reveals the neuroprotective potential of Azil in 3-NP-induced behavioural, histopathological and biochemical changes in rats. These findings might be attributed to inhibition of ATR1/NF-κB signalling, modulation of Nrf2/KEAP1 signalling, anti-inflammatory, anti-oxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hend A Hamouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
- School of Pharmacy, Newgiza University, Giza, Egypt.
| | - Nihad I Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Bahia M El-Sayeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
23
|
Kim T, Kim HS, Bang Y, Kwon Y, Kim J, Choi HJ, Suh YG. Identification of novel Nrf2-activating neuroprotective agents: Elucidation of structural congeners of (-)-galiellalactone and congener-based novel Nrf2 activators. Bioorg Chem 2024; 144:107109. [PMID: 38219480 DOI: 10.1016/j.bioorg.2024.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Herein, (-)-galiellalactone 1 congeners responsible for the nuclear factor erythroid 2-related factor 2 (Nrf2)-activating neuroprotective effects were elucidated. Additionally, novel congener-based Nrf2 activators were identified using a drug repositioning strategy. (-)-Galiellalactone, which comprises a tricyclic lactone skeleton, significantly activates antioxidant response element (ARE)-mediated transcription in neuroblastoma SH-SY5Y cells. Interestingly, two cyclohexene-truncated [3.3] bicyclic lactone analogs, which possess an exocyclic α-methylene-γ-butyrolactone moiety, exhibited higher Nrf2/ARE transcriptional activities than the parent (-)-galiellalactone. We confirmed that the cyclohexene moiety embedding the [3.3] bicyclic lactone congener does not play the essential role of (-)-galiellalactone for Nrf2/ARE activation. Nrf2/ARE activation by novel analogs resulted in the upregulation of downstream antioxidative and phase II detoxifying enzymes, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, which are closely related to the cytoprotective effects on neurodegenerative diseases. (-)-Galiellalactone and its [3.3] bicyclic variants 3l and 3p increased the expression of antioxidant genes and exhibited neuroprotective effects against 6-hydroxydopamine-mediated neurotoxicity in the neuroblastoma SH-SY5Y cell line.
Collapse
Affiliation(s)
- Taewoo Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Hyun Su Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Yoonjung Kwon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Jinhee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea.
| | - Young-Ger Suh
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea.
| |
Collapse
|
24
|
Khassafi N, Azami Tameh A, Mirzaei H, Rafat A, Barati S, Khassafi N, Vahidinia Z. Crosstalk between Nrf2 signaling pathway and inflammation in ischemic stroke: Mechanisms of action and therapeutic implications. Exp Neurol 2024; 373:114655. [PMID: 38110142 DOI: 10.1016/j.expneurol.2023.114655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
One of the major causes of long-term disability and mortality is ischemic stroke that enjoys limited treatment approaches. On the one hand, oxidative stress, induced by excessive generation of reactive oxygen species (ROS), plays a critical role in post-stroke inflammatory response. Increased ROS generation is one of the basic factors in the progression of stroke-induced neuroinflammation. Moreover, intravenous (IV) thrombolysis using recombinant tissue plasminogen activator (rtPA) as the only medication approved for patients with acute ischemic stroke who suffer from some clinical restrictions it could not cover the complicated episodes that happen after stroke. Thus, identifying novel therapeutic targets is crucial for successful preparation of new medicines. Recent evidence indicates that the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) contributes significantly to regulating the antioxidant production in cytosol, which causes antiinflammatory effects on neurons. New findings have shown a relationship between activation of the Nrf2 and glial cells, nuclear factor kappa B (NF-κB) pathway, the nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, and expression of inflammatory markers, suggesting induction of Nrf2 activation can represent a promising therapeutic alternative as the modulators of Nrf2 dependent pathways for targeting inflammatory responses in neural tissue. Hence, this review addresses the relationship of Nrf2 signaling with inflammation and Nrf2 activators' potential as therapeutic agents. This review helps to improve required knowledge for focused therapy and the creation of modern and improved treatment choices for patients with ischemic stroke.
Collapse
Affiliation(s)
- Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Negin Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
25
|
Tao L, Yu W, Liu Z, Zhao D, Lin S, Szalóki D, Kicsák M, Kurtán T, Zhang H. JE-133 Suppresses LPS-Induced Neuroinflammation Associated with the Regulation of JAK/STAT and Nrf2 Signaling Pathways. ACS Chem Neurosci 2024; 15:258-267. [PMID: 38181172 DOI: 10.1021/acschemneuro.3c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, and interrupting the microglial-mediated neuroinflammation has been suggested as a promising strategy to delay or prevent the progression of neurodegeneration. In this study, we investigated the effects of JE-133, an optically active isochroman-2H-chromene conjugate containing a 1,3-disubstituted isochroman unit, on lipopolysaccharide (LPS)-induced microglial neuroinflammation and underlying mechanisms both in vitro and in vivo. First, JE-133 treatment decreased LPS-induced overproduction of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nitrite, and nitric oxide synthase (iNOS) in BV2 microglial cells. Further study revealed that JE-133 downregulated the phosphorylation level of JAK/STAT and upregulated the protein level of Nrf2/HO-1 in LPS-stimulated BV2 microglial cells and verified that JE-133 directly bound to Keap1 by a pull-down assay. Next, JE-133 administration also inhibited neuroinflammation in vivo, as indicated by a reduced CD11b protein level and an overexpressed mRNA level of the pro-inflammatory cytokine TNF-α in the hippocampus of LPS-injected mice. Moreover, the regulative effects of JE-133 on the JAK/STAT and Nrf2/HO-1 pathways were also verified in the hippocampus of LPS-injected mice. Taken together, our study for the first time reports that JE-133 exhibits inhibitory effects against LPS-stimulated neuroinflammation both in vitro and in vivo, which might be associated with the simultaneous regulation of the JAK/STAT and Nrf2 pathways. Our findings may provide important clues for the discovery of effective drug leads/candidates against neuroinflammation-associated neurodegeneration.
Collapse
Affiliation(s)
- Lingxue Tao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Weichen Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Nanchang University, Jiangxi 330031, China
| | - Danfeng Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sijin Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dóra Szalóki
- Department of Organic Chemistry, University of Debrecen, Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
| | - Máté Kicsák
- Department of Organic Chemistry, University of Debrecen, Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
| | - Haiyan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Wang J, Cao Y, Lu Y, Zhu H, Zhang J, Che J, Zhuang R, Shao J. Recent progress and applications of small molecule inhibitors of Keap1-Nrf2 axis for neurodegenerative diseases. Eur J Med Chem 2024; 264:115998. [PMID: 38043492 DOI: 10.1016/j.ejmech.2023.115998] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway serves as a crucial regulator against oxidative stress (OS) damage in various cells and organs. It has garnered significant attention as a potential therapeutic target for neurodegenerative diseases (NDD). Although progress has been achieved in strategies to regulate the Keap1-Nrf2 pathway, the availability of Nrf2 activators applicable to NDD is currently limited. Currently, the FDA has approved the Nrf2 activators dimethyl fumarate (DMF) and Omaveloxolone (Omav) as novel first-line oral drugs for the treatment of patients with relapsing forms of multiple sclerosis and Friedreich's ataxia. A promising alternative approach involves the direct inhibition of Keap1-Nrf2 protein-protein interactions (PPI), which offers numerous advantages over the use of electrophilic Nrf2 activators, primarily in avoiding off-target effects. This review examines the compelling evidence supporting the beneficial role of Nrf2 in NDD and explores the potential of Keap1 inhibitors and Keap1-Nrf2 PPI inhibitors as therapeutic agents, with the aim to provide further insights into the development of inhibitors targeting this pathway for the treatment of NDD.
Collapse
Affiliation(s)
- Jing Wang
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Yang Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Huajian Zhu
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jiankang Zhang
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China.
| | - Jiaan Shao
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
27
|
Tonev D, Momchilova A. Oxidative Stress and the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Pathway in Multiple Sclerosis: Focus on Certain Exogenous and Endogenous Nrf2 Activators and Therapeutic Plasma Exchange Modulation. Int J Mol Sci 2023; 24:17223. [PMID: 38139050 PMCID: PMC10743556 DOI: 10.3390/ijms242417223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) suggests that, in genetically susceptible subjects, T lymphocytes undergo activation in the peripheral compartment, pass through the BBB, and cause damage in the CNS. They produce pro-inflammatory cytokines; induce cytotoxic activities in microglia and astrocytes with the accumulation of reactive oxygen species, reactive nitrogen species, and other highly reactive radicals; activate B cells and macrophages and stimulate the complement system. Inflammation and neurodegeneration are involved from the very beginning of the disease. They can both be affected by oxidative stress (OS) with different emphases depending on the time course of MS. Thus, OS initiates and supports inflammatory processes in the active phase, while in the chronic phase it supports neurodegenerative processes. A still unresolved issue in overcoming OS-induced lesions in MS is the insufficient endogenous activation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) pathway, which under normal conditions plays an essential role in mitochondria protection, OS, neuroinflammation, and degeneration. Thus, the search for approaches aiming to elevate endogenous Nrf2 activation is capable of protecting the brain against oxidative damage. However, exogenous Nrf2 activators themselves are not without drawbacks, necessitating the search for new non-pharmacological therapeutic approaches to modulate OS. The purpose of the present review is to provide some relevant preclinical and clinical examples, focusing on certain exogenous and endogenous Nrf2 activators and the modulation of therapeutic plasma exchange (TPE). The increased plasma levels of nerve growth factor (NGF) in response to TPE treatment of MS patients suggest their antioxidant potential for endogenous Nrf2 enhancement via NGF/TrkA/PI3K/Akt and NGF/p75NTR/ceramide-PKCζ/CK2 signaling pathways.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
28
|
Sun J, Wang XH, Song FH, Li DY, Gao SJ, Zhang LQ, Wu JY, Liu DQ, Wang LW, Zhou YQ, Mei W. Inhibition of Brd4 alleviates osteoarthritis pain via suppression of neuroinflammation and activation of Nrf2-mediated antioxidant signalling. Br J Pharmacol 2023; 180:3194-3214. [PMID: 37485568 DOI: 10.1111/bph.16195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoarthritis (OA) pain remains a major clinical problem. It is urgent to identify novel therapeutic approaches for OA pain states. Bromodomain and extra-terminal (BET) protein inhibitors have robust anti-inflammatory effects in several pain models. However, the underlying mechanisms of these inhibitors in OA pain have not been determined. We, therefore, investigated the effects and the underlying mechanism(s) of BET inhibition on pain-related behaviours in a rat model of OA. EXPERIMENTAL APPROACH The OA model was established by intra-articular injection of monosodium iodoacetate (MIA) in rat knees. Pain behaviours were assessed in rats by hindlimb weight-bearing asymmetry, mechanical allodynia and thermal hyperalgesia. Possible mechanisms underlying BET inhibition were explored in the MIA-induced OA pain model in the spinal cord and dorsal root ganglia (DRG). KEY RESULTS Inhibiting bromodomain-containing protein 4 (Brd4) with either JQ1 or MS417, or using AAV2/9-shRNA-Brd4-EGFP-mediated knockdown of Brd4 genes, significantly attenuated MIA-induced pain behaviours. Brd4 inhibition suppressed NF-κB and NF-κB-mediated inflammatory cytokines in both the spinal cord and DRG in rats with MIA-induced OA pain. Brd4 inhibition also attenuated the oxidative stress and promoted nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent antioxidant genes in both the spinal cord and DRG in our odel of MIA-induced OA pain. CONCLUSIONS AND IMPLICATIONS In conclusion, Brd4 inhibition alleviated MIA-induced OA pain in rats, via suppression of neuroinflammation and activation of Nrf2-mediated antioxidant signalling. Although our model does not perfectly represent how OA develops in humans, inhibition of Brd4 may provide novel insights into possible treatments for OA pain.
Collapse
Affiliation(s)
- Jia Sun
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-He Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Fan-He Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan-Yang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Wei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Park JE, Leem YH, Park JS, Kim SE, Kim HS. Astrocytic Nrf2 Mediates the Neuroprotective and Anti-Inflammatory Effects of Nootkatone in an MPTP-Induced Parkinson's Disease Mouse Model. Antioxidants (Basel) 2023; 12:1999. [PMID: 38001852 PMCID: PMC10669233 DOI: 10.3390/antiox12111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study aims to investigate the neuroprotective effects of nootkatone (NKT), a sesquiterpenoid compound isolated from grapefruit, in an MPTP-induced Parkinson's disease (PD) mouse model. NKT restored MPTP-induced motor impairment and dopaminergic neuronal loss and increased the expression of neurotrophic factors like BDNF, GDNF, and PGC-1α. In addition, NKT inhibited microglial and astrocyte activation and the expression of pro-inflammatory markers like iNOS, TNF-α, and IL-1β and oxidative stress markers like 4-HNE and 8-OHdG. NKT increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-driven antioxidant enzymes like HO-1 and NQO-1 in astrocytes, but not in neurons or microglia in MPTP-treated mice. To investigate whether Nrf2 mediates the anti-inflammatory, antioxidant, or neuroprotective effects of NKT, mice were pretreated with Nrf2-specific inhibitor brusatol (BT) prior to NKT treatment. BT attenuated the NKT-mediated inhibition of 4-HNE and 8-OHdG and the number of Nrf2+/HO-1+/NQO1+ cells co-localized with GFAP+ astrocytes in the substantia nigra of MPTP-treated mice. In addition, BT reversed the effects of NKT on dopaminergic neuronal cell death, neurotrophic factors, and pro-/anti-inflammatory cytokines in MPTP-treated mice. Collectively, these data suggest that astrocytic Nrf2 and its downstream antioxidant molecules play pivotal roles in mediating the neuroprotective and anti-inflammatory effects of NKT in an MPTP-induced PD mouse model.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (S.-E.K.)
| | - Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (S.-E.K.)
| | - Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (S.-E.K.)
| | - Seong-Eun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (S.-E.K.)
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (S.-E.K.)
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
30
|
Menegas S, Keller GS, Possamai-Della T, Aguiar-Geraldo JM, Quevedo J, Valvassori SS. Potential mechanisms of action of resveratrol in prevention and therapy for mental disorders. J Nutr Biochem 2023; 121:109435. [PMID: 37669710 DOI: 10.1016/j.jnutbio.2023.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
There is a growing body of evidence about the potential of diet and nutrients to improve the population's mental health and the treatment of psychiatric disorders. Some studies have suggested that resveratrol has therapeutic properties in mental disorders, such as major depressive disorder, bipolar disorder, Alzheimer's disease, and autism. In addition, resveratrol is known to induce several benefits modulated by multiple synergistic pathways, which control oxidative stress, inflammation, and cell death. This review collects the currently available data from animal and human studies and discusses the potential mechanisms of action of resveratrol in prevention and therapy for psychiatric disorders.
Collapse
Affiliation(s)
- Samira Menegas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriela S Keller
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA; Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavior Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
| |
Collapse
|
31
|
Ates I, Yılmaz AD, Buttari B, Arese M, Saso L, Suzen S. A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases. Brain Sci 2023; 13:1532. [PMID: 38002492 PMCID: PMC10669303 DOI: 10.3390/brainsci13111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey
| | - Ayşe Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| |
Collapse
|
32
|
Xie X, Wang F, Ge W, Meng X, Fan L, Zhang W, Wang Z, Ding M, Gu S, Xing X, Sun X. Scutellarin attenuates oxidative stress and neuroinflammation in cerebral ischemia/reperfusion injury through PI3K/Akt-mediated Nrf2 signaling pathways. Eur J Pharmacol 2023; 957:175979. [PMID: 37611841 DOI: 10.1016/j.ejphar.2023.175979] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) seriously threatens human life and health. Scutellarin (Scu) exhibits neuroprotective effects, but little is known about its underlying mechanism. Therefore, we explored its protective effect on CIRI and the underlying mechanism. Our results demonstrated that Scu rescued HT22 cells from cytotoxicity induced by oxygen and glucose deprivation/reoxygenation (OGD/R). Scu also showed antioxidant activity by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, upregulating heme oxygenase-1 (HO-1) expression, increasing superoxide dismutase (SOD) activity, and inhibiting reactive oxygen species (ROS) generation in vitro. Additionally, Scu reduced nuclear factor-kappa B (NF-κB) activity and the levels of pro-inflammatory factors. Interestingly, these effects were abolished by Nrf2 inhibition. Furthermore, Scu reduced infarct volume and blood-brain barrier (BBB) permeability, improved sensorimotor functions and depressive behaviors, and alleviated oxidative stress and neuroinflammation in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Mechanistically, Scu-induced Nrf2 nuclear accumulation and inactivation of NF-κB were accompanied by an enhanced level of phosphorylated protein kinase B (p-AKT) both in vitro and in vivo. Pharmacologically inhibiting the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway blocked Scu-induced Nrf2 nuclear translocation and inactivation of NF-κB, as well as its antioxidant and anti-inflammatory activities. In summary, these results suggest that Scu exhibits antioxidant, anti-inflammatory, and neuroprotective effects in CIRI through Nrf2 activation mediated by the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xueheng Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Wenxiu Ge
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin, 150076, China
| | - Xiangbao Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Lijuan Fan
- Kunming Longjin Pharmaceutical Co., Ltd, Kunming, 650503, China
| | - Wei Zhang
- Kunming Longjin Pharmaceutical Co., Ltd, Kunming, 650503, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Meng Ding
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Shengliang Gu
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| |
Collapse
|
33
|
Hoeferlin GF, Bajwa T, Olivares H, Zhang J, Druschel LN, Sturgill BS, Sobota M, Boucher P, Duncan J, Hernandez-Reynoso AG, Cogan SF, Pancrazio JJ, Capadona JR. Antioxidant Dimethyl Fumarate Temporarily but Not Chronically Improves Intracortical Microelectrode Performance. MICROMACHINES 2023; 14:1902. [PMID: 37893339 PMCID: PMC10609067 DOI: 10.3390/mi14101902] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Intracortical microelectrode arrays (MEAs) can be used in a range of applications, from basic neuroscience research to providing an intimate interface with the brain as part of a brain-computer interface (BCI) system aimed at restoring function for people living with neurological disorders or injuries. Unfortunately, MEAs tend to fail prematurely, leading to a loss in functionality for many applications. An important contributing factor in MEA failure is oxidative stress resulting from chronically inflammatory-activated microglia and macrophages releasing reactive oxygen species (ROS) around the implant site. Antioxidants offer a means for mitigating oxidative stress and improving tissue health and MEA performance. Here, we investigate using the clinically available antioxidant dimethyl fumarate (DMF) to reduce the neuroinflammatory response and improve MEA performance in a rat MEA model. Daily treatment of DMF for 16 weeks resulted in a significant improvement in the recording capabilities of MEA devices during the sub-chronic (Weeks 5-11) phase (42% active electrode yield vs. 35% for control). However, these sub-chronic improvements were lost in the chronic implantation phase, as a more exacerbated neuroinflammatory response occurs in DMF-treated animals by 16 weeks post-implantation. Yet, neuroinflammation was indiscriminate between treatment and control groups during the sub-chronic phase. Although worse for chronic use, a temporary improvement (<12 weeks) in MEA performance is meaningful. Providing short-term improvement to MEA devices using DMF can allow for improved use for limited-duration studies. Further efforts should be taken to explore the mechanism behind a worsened neuroinflammatory response at the 16-week time point for DMF-treated animals and assess its usefulness for specific applications.
Collapse
Affiliation(s)
- George F. Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Tejas Bajwa
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Hannah Olivares
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Jichu Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Lindsey N. Druschel
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Brandon S. Sturgill
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Michael Sobota
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Pierce Boucher
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Jonathan Duncan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Ana G. Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| |
Collapse
|
34
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
35
|
Rakić M, Lunić T, Bekić M, Tomić S, Mitić K, Graovac S, Božić B, Božić Nedeljković B. Vitamin B complex suppresses neuroinflammation in activated microglia: in vitro and in silico approach combined with dynamical modeling. Int Immunopharmacol 2023; 121:110525. [PMID: 37356121 DOI: 10.1016/j.intimp.2023.110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Activated microglia is critically involved in the regulation of neuroinflammation/neurodegradation. Hereby, the anti-inflammatory effects of the vitamin B complex (VBC - B1, B2, B3, B5, B6, and B12) on the function and phenotype of lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined in vitro. Additionally, VBC-treated microglia supernatants were evaluated on SH-SY5Y cells to investigate the effects on neurons' viability. Further, anti-inflammatory mechanisms of VBC were examined by molecular dockingstudies to determine the binding affinity of each VBC component to Toll-like receptor 4 (TLR4) signalling pathway proteins and inducible nitric oxide synthase. In addition, the dynamical model which simulates VBC inhibition of TLR4 signalling pathway proteins activated by LPS has been constructed and excellent agreement with experimental data has been observed (adjR2 = 0.9715 and 0.9909 for TNF-α and IL-6, respectively). The obtained data demonstrated that VBC treatment reduced the inflammatory mediators secreted by LPS-stimulated microglia, diminished their neurotoxic effects against neurons, and induced changes in phenotype profile toward M2 microglia type. Finally, the constructed dynamical model provides deeper insight into the involvement of each VBC component on the VBC inhibitory potential toward the TLR4 signalling pathway and enables optimization of novel VBC formulations as well as inhibitory potential of new putative inhibitors.
Collapse
Affiliation(s)
- Marija Rakić
- University of Belgrade, Faculty of Biology, 11000 Belgrade, Serbia.
| | - Tanja Lunić
- University of Belgrade, Faculty of Biology, 11000 Belgrade, Serbia.
| | - Marina Bekić
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, 11080 Belgrade, Serbia.
| | - Sergej Tomić
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, 11080 Belgrade, Serbia.
| | - Katarina Mitić
- University of Belgrade, Faculty of Biology, 11000 Belgrade, Serbia.
| | - Stefan Graovac
- University of Belgrade, Faculty of Physics, 11000 Belgrade, Serbia.
| | - Bojan Božić
- University of Belgrade, Faculty of Biology, 11000 Belgrade, Serbia.
| | | |
Collapse
|
36
|
Tu XK, Chen PP, Chen JY, Ding YH, Chen Q, Shi SS. GLP-1R knockdown abrogates the protective effects of liraglutide on ischaemic stroke via inhibition of M2 polarisation and activation of NLRP3 inflammasome by reducing Nrf2 activation. Neuropharmacology 2023:109603. [PMID: 37236529 DOI: 10.1016/j.neuropharm.2023.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Liraglutide has been recently discovered to penetrate the blood-brain barrier to exert neuroprotective effects. However, relevant mechanisms of the protective effects of liraglutide on ischaemic stroke remain to be elucidated. This study examined the mechanism of GLP-1R in regulating the protective effect of liraglutide against ischaemic stroke. Middle cerebral artery occlusion (MCAO) male Sprague-Dawley rat model with/without GLP-1R or Nrf2 knockdown was established and subjected to liraglutide treatment. Then neurological deficit and brain oedema of rats was evaluated and brain tissues were subjected to TTC, Nissl, TUNEL and immunofluorescence staining. Rat primary microglial cells firstly underwent lipopolysaccharide (LPS) treatment, then GLP-1R or Nrf2 knockdown treatment, and finally Liraglutide treatment to research the NLRP3 activation. As a result, Liraglutide protected rats' brain tissues after MCAO, which attenuated brain oedema, infarct volume, neurological deficit score, neuronal apoptosis and Iba1 expression but enhanced live neurons. However, GLP-1R knockdown abrogated these protective effects of liraglutide on MCAO rats. According to in vitro experiments, Liraglutide promoted M2 polarisation, activated Nrf2 and inhibited NLRP3 activation in LPS-induced microglial cells, but GLP-1R or Nrf2 knockdown reversed these effects of Liraglutide on LPS-induced microglial cells. Further, Nrf2 knockdown counteracted the protection of liraglutide on MCAO rats, whereas sulforaphane (agonist of Nrf2) counteracted the effect of Nrf2 knockdown on liraglutide-treated MCAO rats. Collectively, GLP-1R knockdown abrogated the protection of liraglutide on MCAO rats by activating NLRP3 via inactivating Nrf2.
Collapse
Affiliation(s)
- Xian-Kun Tu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China.
| | - Ping-Ping Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Jing-Yi Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Yi-Hang Ding
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Quan Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Song-Sheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China
| |
Collapse
|
37
|
Liu Z, Tu K, Zou P, Liao C, Ding R, Huang Z, Huang Z, Yao X, Chen J, Zhang Z. Hesperetin ameliorates spinal cord injury by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Int Immunopharmacol 2023; 118:110103. [PMID: 37001385 DOI: 10.1016/j.intimp.2023.110103] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Neuroinflammation is a prominent feature of traumatic spinal cord injuries (SCIs). Hesperetin exhibits anti-inflammatory effects in neurological disorders; however, the potential neuroprotective effects of hesperetin in cases of SCI remain unclear. Sprague-Dawley rats with C5 hemi-contusion injuries were used as an SCI model. Hesperetin was administered to the experimental rats in order to investigate its neuroprotective effects after SCI, and BV2 cells were pretreated with hesperetin or silencing of nuclear factor erythroid 2-related factor 2 (siNrf2), and then stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP). The therapeutic impact and molecular mechanism of hesperetin were elucidated in a series of in vivo and in vitro investigations conducted using a combination of experiments. The results of the present in vivo experiment indicated that hesperetin improved functional recovery and protected spinal cord tissue after SCI. Hesperetin attenuated oxidative stress and microglial activation, lowered malondialdehyde (MDA) levels, and elevated catalase (CAT), glutathione (GSH)-Px, and superoxide dismutase (SOD) levels. Moreover, hesperetin downregulated the expression of advanced oxygenation protein products (AOPPs), ionized calcium-binding adapter molecule 1 (Iba-1), NOD-like receptor protein 3 (NLRP3), and interleukin-1 beta (IL-1β), but increased the expression of Nrf2. In vitro studies have shown that hesperetin inhibits the generation of reactive oxygen species (ROS), as well as the neuroinflammation associated with the upregulation of Nrf2 and heme oxygenase-1 (HO-1) in BV2 cells. The results of the present study indicated that hesperetin inhibited BV2 cell pyroptosis and significantly blocked the expression of NLRP3 inflammasome proteins (NLRP3 Caspase-1 p10 apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain [ASC]) and pro-inflammatory mediators (IL-18, IL-1β). Furthermore, the silencing of Nrf2 by small interfering ribonucleic acid (siRNA) partially abolished its antioxidant effect in the aforementioned cell experiments. Collectively, these findings illustrate that through an increase in Nrf2 signaling hesperetin reduces oxidative stress and neuroinflammation by suppressing NLRP3 inflammasome activation and pyroptosis.
Collapse
|
38
|
Lee J, Hyun DH. The Interplay between Intracellular Iron Homeostasis and Neuroinflammation in Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12040918. [PMID: 37107292 PMCID: PMC10135822 DOI: 10.3390/antiox12040918] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is essential for life. Many enzymes require iron for appropriate function. However, dysregulation of intracellular iron homeostasis produces excessive reactive oxygen species (ROS) via the Fenton reaction and causes devastating effects on cells, leading to ferroptosis, an iron-dependent cell death. In order to protect against harmful effects, the intracellular system regulates cellular iron levels through iron regulatory mechanisms, including hepcidin-ferroportin, divalent metal transporter 1 (DMT1)-transferrin, and ferritin-nuclear receptor coactivator 4 (NCOA4). During iron deficiency, DMT1-transferrin and ferritin-NCOA4 systems increase intracellular iron levels via endosomes and ferritinophagy, respectively. In contrast, repleting extracellular iron promotes cellular iron absorption through the hepcidin-ferroportin axis. These processes are regulated by the iron-regulatory protein (IRP)/iron-responsive element (IRE) system and nuclear factor erythroid 2-related factor 2 (Nrf2). Meanwhile, excessive ROS also promotes neuroinflammation by activating the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB forms inflammasomes, inhibits silent information regulator 2-related enzyme 1 (SIRT1), and induces pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β). Furthermore, 4-hydroxy-2,3-trans-nonenal (4-HNE), the end-product of ferroptosis, promotes the inflammatory response by producing amyloid-beta (Aβ) fibrils and neurofibrillary tangles in Alzheimer's disease, and alpha-synuclein aggregation in Parkinson's disease. This interplay shows that intracellular iron homeostasis is vital to maintain inflammatory homeostasis. Here, we review the role of iron homeostasis in inflammation based on recent findings.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
39
|
Di Maio R, Keeney MT, Cechova V, Mortimer A, Sekandari A, Rowart P, Greenamyre JT, Freeman BA, Fazzari M. Neuroprotective actions of a fatty acid nitroalkene in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:55. [PMID: 37029127 PMCID: PMC10082007 DOI: 10.1038/s41531-023-00502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
To date there are no therapeutic strategies that limit the progression of Parkinson's disease (PD). The mechanisms underlying PD-related nigrostriatal neurodegeneration remain incompletely understood, with multiple factors modulating the course of PD pathogenesis. This includes Nrf2-dependent gene expression, oxidative stress, α-synuclein pathology, mitochondrial dysfunction, and neuroinflammation. In vitro and sub-acute in vivo rotenone rat models of PD were used to evaluate the neuroprotective potential of a clinically-safe, multi-target metabolic and inflammatory modulator, the electrophilic fatty acid nitroalkene 10-nitro-oleic acid (10-NO2-OA). In N27-A dopaminergic cells and in the substantia nigra pars compacta of rats, 10-NO2-OA activated Nrf2-regulated gene expression and inhibited NOX2 and LRRK2 hyperactivation, oxidative stress, microglial activation, α-synuclein modification, and downstream mitochondrial import impairment. These data reveal broad neuroprotective actions of 10-NO2-OA in a sub-acute model of PD and motivate more chronic studies in rodents and primates.
Collapse
Affiliation(s)
- Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Amanda Mortimer
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ahssan Sekandari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Pascal Rowart
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
40
|
Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology 2023; 31:1117-1147. [PMID: 37022574 DOI: 10.1007/s10787-023-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin-proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.
Collapse
Affiliation(s)
- Sonima Prasad
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, H.N.B. Garhwal University, Srinagar, Garhwal, 246174, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
41
|
Zhang RL, Lei BX, Wu GY, Wang YY, Huang QH. Protective effects of berberine against β-amyloid-induced neurotoxicity in HT22 cells via the Nrf2/HO-1 pathway. Bioorg Chem 2023; 133:106210. [PMID: 36724611 DOI: 10.1016/j.bioorg.2022.106210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023]
Abstract
Neuronal apoptosis has been found to have a pivotal role in the course of Alzheimer's disease (AD). Berberine (BBR), a potent antioxidant, occurs in plants such as Berberis, Phellodendron chinense, and Hydrastis canadensis. In this study, a neuronal apoptotic model was established in vitro using HT22 cells induced by Aβ25-35 to explore whether BBR contributes to protecting neurons against Aβ25-35-induced neurotoxicity, as well as its potential mechanisms. BBR was applied to HT22 cells for 1 h prior to exposing the cells to Aβ25-35 for 24 h. A CCK-8 assay was utilized to assess cell viability, and Annexin V - fluorescein isothiocyanate (FITC)/propidium iodide and Hoechst 33342 fluorescence staining were used to measure the rate of cell apoptosis. Existing scientific literature was also reviewed to further determine the effects of BBR on ROS production and mitochondrial function in HT22 cells. Furthermore, the expressions of proteins, including cytochrome C, cleaved caspase-3, p-p65, p65, and Nrf2/HO-1 antioxidant axis were assessed by Western blotting. The data indicated that BBR markedly improved cell viability, inhibited apoptosis and intracellular ROS levels, improved mitochondrial membrane potentials, decreased the rate of p-p65/p65, cytochrome C, and cleaved caspase-3, and intensified the activity of Nrf2/HO-1 antioxidants in HT22 cells. Overall, the findings indicated that BBR provides a certain level of neuroprotectiveness in HT22 cells exposed to Aβ25-35 via relieving oxidative stress, as well as by restraining the mitochondrial pathway of cellular apoptosis. In addition, the restraint of NF-κB activity and sensitization of the Nrf2/HO-1 antioxidant axis, which together are intimately involved in the neuroprotection of BBR, may be possible mechanisms accounting for its effectiveness against Aβ25-35in vitro.
Collapse
Affiliation(s)
- Ru-Lan Zhang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Bing-Xi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Guo-Yong Wu
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Yuan-Yuan Wang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Qi-Hui Huang
- Department of Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
42
|
Lim HJ, Prajapati R, Seong SH, Jung HA, Choi JS. Antioxidant and Antineuroinflammatory Mechanisms of Kaempferol-3- O-β-d-Glucuronate on Lipopolysaccharide-Stimulated BV2 Microglial Cells through the Nrf2/HO-1 Signaling Cascade and MAPK/NF-κB Pathway. ACS OMEGA 2023; 8:6538-6549. [PMID: 36844518 PMCID: PMC9948190 DOI: 10.1021/acsomega.2c06916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Aglycone- and glycoside-derived forms of flavonoids exist broadly in plants and foods such as fruits, vegetables, and peanuts. However, most studies focus on the bioavailability of flavonoid aglycone rather than its glycosylated form. Kaempferol-3-O-β-d-glucuronate (K3G) is a natural flavonoid glycoside obtained from various plants that have several biological activities, including antioxidant and anti-inflammatory effects. However, the molecular mechanism related to the antioxidant and antineuroinflammatory activity of K3G has not yet been demonstrated. The present study was designed to demonstrate the antioxidant and antineuroinflammatory effect of K3G against lipopolysaccharide (LPS)-stimulated BV2 microglial cells and to evaluate the underlying mechanism. Cell viability was determined by MTT assay. The inhibition rate of reactive oxygen species (ROS) and the production of pro-inflammatory mediators and cytokines were measured by DCF-DA assay, Griess assay, enzyme-linked immunosorbent assay (ELISA), and western blotting. K3G inhibited the LPS-induced release of nitric oxide, interleukin (IL)-6, and tumor necrosis factor-α (TNF-α) as well as the expression of prostaglandin E synthase 2. Additionally, K3G reduced the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) related proteins. Mechanistic studies found that K3G downregulated phosphorylated mitogen-activated protein kinases (MAPKs) and upregulated the Nrf2/HO-1 signaling cascade. In this study, we demonstrated the effects of K3G on antineuroinflammation by inactivating phosphorylation of MPAKs and on antioxidants by upregulating the Nrf2/HO-1 signaling pathway through decreasing ROS in LPS-stimulated BV2 cells.
Collapse
Affiliation(s)
- Hyun Jung Lim
- Institute
of Fisheries Sciences, Pukyong National
University, Busan 46041, Republic of Korea
| | - Ritu Prajapati
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Division
of Natural Products Research, Honam National
Institute of Biological Resource, Mokpo 58762, Republic
of Korea
| | - Hyun Ah Jung
- Department
of Food Science and Human Nutrition, Jeonbuk
National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Institute
of Fisheries Sciences, Pukyong National
University, Busan 46041, Republic of Korea
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| |
Collapse
|
43
|
Barber K, Mendonca P, Soliman KFA. The Neuroprotective Effects and Therapeutic Potential of the Chalcone Cardamonin for Alzheimer's Disease. Brain Sci 2023; 13:145. [PMID: 36672126 PMCID: PMC9856590 DOI: 10.3390/brainsci13010145] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (ND) include a wide range of conditions that result from progressive damage to the neurons. Alzheimer's disease (AD) is one of the most common NDs, and neuroinflammation and oxidative stress (OS) are the major factors in the development and progression of the disease. Many naturally occurring phytochemical compounds exhibit antioxidant and anti-inflammatory activities with potential neuroprotective effects. Several plant species, including Alpinia katsumadai and Alpinia conchigera, contain cardamonin (CD). CD (2',4'-dihydroxy-6'methoxychalcone) has many therapeutic properties, including anticancer, anti-inflammatory, antioxidant, antiviral, and antibiotic activities. CD is a potent compound that can reduce OS and modulate the inflammatory processes that play a significant part in developing neurodegenerative diseases. CD has been shown to modulate a variety of signaling molecules involved in the development and progression of ND, including transcription factors (NF-kB and STAT3), cytokines (TNF-α, IL-1, and IL-6), enzymes (COX-2, MMP-9, and ALDH1), and other proteins and genes (Bcl-2, XIAP, and cyclin D1). Additionally, CD effectively modulates miRNA levels and autophagy-related CD-protective mechanisms against neurodegeneration. In summary, this review provides mechanistic insights into CD's ability to modify multiple oxidative stress-antioxidant system pathways, Nrf2, and neuroinflammation. Additionally, it points to the possible therapeutic potential and preventive utilization of CD in neurodegenerative diseases, most specifically AD.
Collapse
Affiliation(s)
- Kimberly Barber
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
44
|
Zuo C, Cao H, Song Y, Gu Z, Huang Y, Yang Y, Miao J, Zhu L, Chen J, Jiang Y, Wang F. Nrf2: An all-rounder in depression. Redox Biol 2022; 58:102522. [PMID: 36335763 PMCID: PMC9641011 DOI: 10.1016/j.redox.2022.102522] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
The balance between oxidation and antioxidant is crucial for maintaining homeostasis. Once disrupted, it can lead to various pathological outcomes and diseases, such as depression. Oxidative stress can result in or aggravate a battery of pathological processes including mitochondrial dysfunction, neuroinflammation, autophagical disorder and ferroptosis, which have been found to be involved in the development of depression. Inhibition of oxidative stress and related pathological processes can help improve depression. In this regard, the nuclear factor erythroid 2-related factor 2 (Nrf2) in the antioxidant defense system may play a pivotal role. Nrf2 activation can not only regulate the expression of a series of antioxidant genes that reduce oxidative stress and its damages, but also directly regulate the genes related to the above pathological processes to combat the corresponding alterations. Therefore, targeting Nrf2 has great potential for the treatment of depression. Activation of Nrf2 has antidepressant effect, but the specific mechanism remains to be elucidated. This article reviews the key role of Nrf2 in depression, focusing on the possible mechanisms of Nrf2 regulating oxidative stress and related pathological processes in depression treatment. Meanwhile, we summarize some natural and synthetic compounds targeting Nrf2 in depression therapy. All the above may provide new insights into targeting Nrf2 for the treatment of depression and provide a broad basis for clinical transformation.
Collapse
|
45
|
Sánchez-Sanz A, Posada-Ayala M, Sabín-Muñoz J, Fernández-Miranda I, Aladro-Benito Y, Álvarez-Lafuente R, Royuela A, García-Hernández R, la Fuente ORD, Romero J, García-Merino A, Sánchez-López AJ. Endocannabinoid levels in peripheral blood mononuclear cells of multiple sclerosis patients treated with dimethyl fumarate. Sci Rep 2022; 12:20300. [PMID: 36434122 PMCID: PMC9700785 DOI: 10.1038/s41598-022-21807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/04/2022] [Indexed: 11/27/2022] Open
Abstract
The endocannabinoid system (ECS), a signalling network with immunomodulatory properties, is a potential therapeutic target in multiple sclerosis (MS). Dimethyl fumarate (DMF) is an approved drug for MS whose mechanism of action has not been fully elucidated; the possibility exists that its therapeutic effects could imply the ECS. With the aim of studying if DMF can modulate the ECS, the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) were determined by liquid chromatography-mass spectrometry in peripheral blood mononuclear cells from 21 healthy donors (HD) and 32 MS patients at baseline and after 12 and 24 months of DMF treatment. MS patients presented lower levels of 2-AG and PEA compared to HD. 2-AG increased at 24 months, reaching HD levels. AEA and PEA remained stable at 12 and 24 months. OEA increased at 12 months and returned to initial levels at 24 months. Patients who achieved no evidence of disease activity (NEDA3) presented the same modulation over time as EDA3 patients. PEA was modulated differentially between females and males. Our results show that the ECS is dysregulated in MS patients. The increase in 2-AG and OEA during DMF treatment suggests a possible role of DMF in ECS modulation.
Collapse
Affiliation(s)
- Alicia Sánchez-Sanz
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.5515.40000000119578126PhD Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Posada-Ayala
- grid.449795.20000 0001 2193 453XFaculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Julia Sabín-Muñoz
- grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ismael Fernández-Miranda
- grid.5515.40000000119578126PhD Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain ,Lymphoma Research Group, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Yolanda Aladro-Benito
- grid.411244.60000 0000 9691 6072Department of Neurology, Hospital Universitario de Getafe, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- grid.414780.eGrupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Ana Royuela
- Clinical Biostatistics Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ruth García-Hernández
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ofir Rodríguez-De la Fuente
- grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Julián Romero
- grid.449795.20000 0001 2193 453XFaculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain ,grid.5515.40000000119578126Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio José Sánchez-López
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain ,Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|
46
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
47
|
Zhang J, Sun H, Zhu L, Du L, Ma Y, Ma Y, Yu J, Meng A. MicroRNA‑27a Aggravates Ferroptosis during early Ischemic Stroke of Rats Through Nrf2. Neuroscience 2022; 504:10-20. [PMID: 36180007 DOI: 10.1016/j.neuroscience.2022.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
Ischaemic stroke (IS) is characterized by high morbidity, disability and mortality and lacks effective solutions. MiRNA-27a has been implicated in ferroptosis, but evidence that miRNA-27a regulates ferroptosis in ischaemic stroke is lacking. Nrf2 could reduce brain tissue injury in ischaemic stroke and resist ferroptosis. The current study aimed to investigate the relationship between miRNA-27a/Nrf2 and ferroptosis in ischaemic stroke. In this study, IS was simulated using a permanent middle cerebral artery occlusion (pMCAO) model. The degree of brain tissue injury was assessed by conducting TTC staining and neurological function scoring. MiRNA-27a expression levels were altered via the intracerebroventricular injection of miRNA‑27a agonist or antagonist. Glutathione peroxidase 4 (GPX4), glutathione (GSH), Fe and malondialdehyde (MDA) are considered biomarkers for ferroptosis. The expression of GPX4 and Nrf2 was analysed by Western blot assay. The GSH, Fe and MDA contents were detected by detection kits. We found that the expression levels of Fe and MDA were increased, while GPX4 and GSH were decreased in the pMCAO groups compared with the control group. These results indicated that ferroptosis intensified over time during IS. In addition, the miRNA‑27a agonist significantly aggravated ferroptosis and reduced neurological function scores compared with those of the control group. Subsequently, a luciferase reporter gene system verified the targeted binding of miRNA‑27a to Nrf2. The results showed that miRNA‑27a inhibited Nrf2 in a targeted manner, which also exacerbated the extent of ferroptosis. However, the miRNA‑27a antagonist reversed the miR‑27a agonist‑mediated effects. Therefore, the present study indicated that miRNA‑27a may aggravate brain tissue ferroptosis during ischaemic stroke, potentially by inhibiting Nrf2.
Collapse
Affiliation(s)
- Jing Zhang
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Hui Sun
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Lijun Zhu
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Lin Du
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Ye Ma
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Yuqin Ma
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Jiayu Yu
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Aiguo Meng
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China.
| |
Collapse
|
48
|
G Bardallo R, Panisello-Roselló A, Sanchez-Nuno S, Alva N, Roselló-Catafau J, Carbonell T. Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS J 2022; 289:5463-5479. [PMID: 34967991 DOI: 10.1111/febs.16336] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022]
Abstract
In response to stress signal, nuclear factor-erythroid 2-related factor 2 (Nrf2) induces the expression of target genes involved in antioxidant defense and detoxification. Nrf2 activity is strictly regulated through a variety of mechanisms, including regulation of Keap1-Nrf2 stability, transcriptional regulation (NF-ĸB, ATF3, ATF4), and post-transcriptional regulation (miRNA), evidencing that transcriptional responses of Nrf2 are critical for the maintenance of homeostasis. Ischemia-reperfusion (IR) injury is a major cause of graft loss and dysfunction in clinical transplantation and organ resection. During the IR process, the generation of reactive oxygen species (ROS) leads to damage from oxidative stress, oxidation of biomolecules, and mitochondrial dysfunction. Oxidative stress can trigger apoptotic and necrotic cell death. Stress factors also result in the assembly of the inflammasome protein complex and the subsequent activation and secretion of proinflammatory cytokines. After Nrf2 activation, the downstream antioxidant upregulation can act as a primary cellular defense against the cytotoxic effects of oxidative stress and help to promote hepatic recovery during IR. The complex crosstalk between Nrf2 and cellular pathways in liver IR injury and the potential therapeutic target of the Nrf2 inducers will be discussed in the present review.
Collapse
Affiliation(s)
- Raquel G Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, Barcelona, Spain
| | - Sergio Sanchez-Nuno
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, Barcelona, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| |
Collapse
|
49
|
An Y, Li H, Wang M, Xia Z, Ding L, Xia X. Nuclear factor erythroid 2-related factor 2 agonist protects retinal ganglion cells in glutamate excitotoxicity retinas. Biomed Pharmacother 2022; 153:113378. [DOI: 10.1016/j.biopha.2022.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
|
50
|
Guo Y, Qu Y, Li W, Shen H, Cui J, Liu J, Li J, Wu D. Protective effect of Monarda didymaL. essential oil and its main component thymol on learning and memory impairment in aging mice. Front Pharmacol 2022; 13:992269. [PMID: 36105199 PMCID: PMC9464920 DOI: 10.3389/fphar.2022.992269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The aging process of human beings is accompanied by the decline of learning and memory ability and progressive decline of brain function, which induces Alzheimer’s Disease (AD) in serious cases and seriously affects the quality of patient’s life. In recent years, more and more studies have found that natural plant antioxidants can help to improve the learning and memory impairment, reduce oxidative stress injury and aging lesions in tissues. This study aimed to investigate the effect of Monarda didymaL. essential oil and its main component thymol on learning and memory impairment in D-galactose-induced aging mice and its molecular mechanism. The composition of Monarda didymaL. essential oil was analyzed by Gas Chromatography-Mass Spectrometer (GC-MS). A mouse aging model was established by the subcutaneous injection of D-galactose in mice. The behavior changes of the mice were observed by feeding the model mice with essential oil, thymol and donepezil, and the histopathological changes of the hippocampus were observed by HE staining. And the changes of acetylcholinesterase (AchE), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities, and the content of malondialdehyde (MDA) in hippocampal tissues were detected by corresponding kits. The expression of mitogen activated protein kinase (MAPK) and nuclear factor E2 related factor 2 (Nrf2) pathways related proteins were detected by western blot. Animal experimental results showed that compared with model group, the above indexes in Monarda didymaL. essential oil and thymol groups improved significantly in a dose-dependent manner. Monarda didymaL. essential oil and its main active component thymol can improve the learning and memory impairment of aging mice to some extent, and Nrf2 and MAPK pathways may be involved in its action process.
Collapse
Affiliation(s)
- Yingxue Guo
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yan Qu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
| | - Wenpeng Li
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hongkuan Shen
- Jiamusi Inspection and Testing Center, Jiamusi, Heilongjiang, China
| | - Jiwen Cui
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jiguang Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang, China
- *Correspondence: Jiguang Liu, ; Jinlian Li, ; Dongmei Wu,
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- *Correspondence: Jiguang Liu, ; Jinlian Li, ; Dongmei Wu,
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- *Correspondence: Jiguang Liu, ; Jinlian Li, ; Dongmei Wu,
| |
Collapse
|