1
|
Jones PC, Von Hoff DD. Vitamin A Metabolism and Resistance of Hepatic Metastases to Immunotherapy. Mol Cancer Ther 2025; 24:345-353. [PMID: 39363636 PMCID: PMC11876961 DOI: 10.1158/1535-7163.mct-24-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
The liver is an immune-tolerant organ, allowing for organ transplantation with less immune suppression compared with other organs. It also provides fertile soil for tumor metastases, which tend to be more resistant to checkpoint blockade immunotherapy than metastases in other organs. This resistance may result from the sum of incremental evolutionary adaptions in various cell types to prevent overaction to antigens absorbed from the gut into the portal circulation or it might involve a central mechanism. Here, we propose that metabolism of vitamin A, which is highly concentrated in the liver, is a root source of tolerance and resistance of hepatic metastases to checkpoint blockade. Suppression of retinoic acid synthesis from vitamin A with disulfiram may mitigate tolerance and produce enhanced immunotherapy treatment results for patients with liver metastases.
Collapse
Affiliation(s)
| | - Daniel D. Von Hoff
- HonorHealth Research Institute (HHRI), Scottsdale, Arizona
- Translational Genomics Research Institute (TGen) a Part of City of Hope, Phoenix, Arizona
| |
Collapse
|
2
|
Altomare A, Giovanetti M, Baldaro F, Ciccozzi M, Cicala M, Guarino MPL. The Prevention of Viral Infections: The Role of Intestinal Microbiota and Nutritional Factors. Nutrients 2024; 16:2445. [PMID: 39125326 PMCID: PMC11314041 DOI: 10.3390/nu16152445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Viral infections pose significant global challenges due to their rapid transmissibility. Therefore, preventing and treating these infections promptly is crucial to curbing their spread. This review focuses on the vital link between nutrition and viral infections, underscoring how dietary factors influence immune system modulation. Malnutrition, characterized by deficiencies in essential nutrients such as vitamins A, C, D, E, and zinc, can impair the immune system, thereby increasing vulnerability to viral infections and potentially leading to more severe health outcomes that complicate recovery. Additionally, emerging evidence highlights the role of commensal microbiota in immune regulation, which can affect hosts' susceptibility to infections. Specific dietary components, including bioactive compounds, vitamins, and probiotics, can beneficially modify gut microbiota, thus enhancing immune response and offering protection against viral infections. This review aims to elucidate the mechanisms by which dietary adjustments and gut microbiota impact the pathogenesis of viral infections, with a particular focus on strengthening the immune system.
Collapse
Affiliation(s)
- Annamaria Altomare
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.A.); (M.G.)
- Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.P.L.G.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.A.); (M.G.)
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Bairro Floresta 31110-370, Brazil
| | - Francesca Baldaro
- Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.P.L.G.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Michele Cicala
- Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.P.L.G.)
- Unit of Gastroenterology and Digestive Endoscopy, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Michele Pier Luca Guarino
- Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.P.L.G.)
- Unit of Gastroenterology and Digestive Endoscopy, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
3
|
Wilfahrt D, Delgoffe GM. Metabolic waypoints during T cell differentiation. Nat Immunol 2024; 25:206-217. [PMID: 38238609 DOI: 10.1038/s41590-023-01733-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
This Review explores the interplay between T cell activation and cell metabolism and highlights how metabolites serve two pivotal functions in shaping the immune response. Traditionally, T cell activation has been characterized by T cell antigen receptor-major histocompatibility complex interaction (signal 1), co-stimulation (signal 2) and cytokine signaling (signal 3). However, recent research has unveiled the critical role of metabolites in this process. Firstly, metabolites act as signal propagators that aid in the transmission of core activation signals, such as specific lipid species that are crucial at the immune synapse. Secondly, metabolites also function as unique signals that influence immune differentiation pathways, such as amino acid-induced mTORC1 signaling. Metabolites also play a substantial role in epigenetic remodeling, by directly modifying histones, altering gene expression and influencing T cell behavior. This Review discusses how T cells integrate nutrient sensing with activating stimuli to shape their differentiation and sensitivity to metabolites. We underscore the integration of immunological and metabolic inputs in T cell function and suggest that metabolite availability is a fundamental determinant of adaptive immune responses.
Collapse
Affiliation(s)
- Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center and Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Kotsou K, Chatzimitakos T, Athanasiadis V, Bozinou E, Adamaki-Sotiraki C, Rumbos CI, Athanassiou CG, Lalas SI. Waste Orange Peels as a Feed Additive for the Enhancement of the Nutritional Value of Tenebrio molitor. Foods 2023; 12:foods12040783. [PMID: 36832858 PMCID: PMC9956125 DOI: 10.3390/foods12040783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Lately, additional attention is being placed on edible insects, since they constitute an excellent, cost-efficient source of proteins with a low ecological footprint. Tenebrio molitor was the first insect that was considered edible by EFSA in 2021. This species can replace conventional protein sources and thus, it has the potential to be used in many different food products. In the present study, a food by-product that is commonly produced (i.e., albedo orange peel waste) was used as a feed additive for T. molitor larvae, in an effort to further improve the circular economy and enhance the nutritional value of the insects. To this end, bran, which is commonly used as feed for T. molitor larvae, was fortified with the albedo orange peel waste (up to 25% w/w). Larval performance, in terms of larval survival and growth, as well as the larval nutritional value, i.e., the content of protein, fat, carbohydrates, ash, carotenoids, vitamins A and C, and polyphenols, was evaluated. Based on the results, the increase in the percentage of orange peel albedos in T. molitor feed resulted in a subsequent increase in the content of larvae in carotenoids and vitamin A up to 198%, in vitamin C up to 46%, and an increase in the protein and ash content up to 32% and 26.5%, respectively. Therefore, the use of albedo orange peel waste for feeding of T. molitor larvae is highly recommended, since it results in larvae with enhanced nutritional value and at the same time, the utilization of this feeding substrate further lowers the cost of insect farming.
Collapse
Affiliation(s)
- Konstantina Kotsou
- Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Theodoros Chatzimitakos
- Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Vassilis Athanasiadis
- Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Eleni Bozinou
- Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Christina Adamaki-Sotiraki
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Phytokou Str., 38446 Volos, Greece
| | - Christos I. Rumbos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Phytokou Str., 38446 Volos, Greece
| | - Christos G. Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Phytokou Str., 38446 Volos, Greece
| | - Stavros I. Lalas
- Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
- Correspondence:
| |
Collapse
|
5
|
Immune Impairment Associated with Vitamin A Deficiency: Insights from Clinical Studies and Animal Model Research. Nutrients 2022; 14:nu14235038. [PMID: 36501067 PMCID: PMC9738822 DOI: 10.3390/nu14235038] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Vitamin A (VA) is critical for many biological processes, including embryonic development, hormone production and function, the maintenance and modulation of immunity, and the homeostasis of epithelium and mucosa. Specifically, VA affects cell integrity, cytokine production, innate immune cell activation, antigen presentation, and lymphocyte trafficking to mucosal surfaces. VA also has been reported to influence the gut microbiota composition and diversity. Consequently, VA deficiency (VAD) results in the imbalanced production of inflammatory and immunomodulatory cytokines, intestinal inflammation, weakened mucosal barrier functions, reduced reactive oxygen species (ROS) and disruption of the gut microbiome. Although VAD is primarily known to cause xerophthalmia, its role in the impairment of anti-infectious defense mechanisms is less defined. Infectious diseases lead to temporary anorexia and lower dietary intake; furthermore, they adversely affect VA status by interfering with VA absorption, utilization and excretion. Thus, there is a tri-directional relationship between VAD, immune response and infections, as VAD affects immune response and predisposes the host to infection, and infection decreases the intestinal absorption of the VA, thereby contributing to secondary VAD development. This has been demonstrated using nutritional and clinical studies, radiotracer studies and knockout animal models. An in-depth understanding of the relationship between VAD, immune response, gut microbiota and infections is critical for optimizing vaccine efficacy and the development of effective immunization programs for countries with high prevalence of VAD. Therefore, in this review, we have comprehensively summarized the existing knowledge regarding VAD impacts on immune responses to infections and post vaccination. We have detailed pathological conditions associated with clinical and subclinical VAD, gut microbiome adaptation to VAD and VAD effects on the immune responses to infection and vaccines.
Collapse
|
6
|
Zhu X, Trimarco JD, Williams CA, Barrera A, Reddy TE, Heaton NS. ZBTB7A promotes virus-host homeostasis during human coronavirus 229E infection. Cell Rep 2022; 41:111540. [PMID: 36243002 PMCID: PMC9533670 DOI: 10.1016/j.celrep.2022.111540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular fate after infection with human coronaviruses (HCoVs) is typically death. Previous data suggest, however, that the transcriptional state of an individual cell may sometimes allow additional outcomes of infection. Here, to probe the range of interactions a permissive cell type can have with a HCoV, we perform a CRISPR activation screen with HCoV-229E. The screen identified the transcription factor ZBTB7A, which strongly promotes cell survival after infection. Rather than suppressing viral infection, ZBTB7A upregulation allows the virus to induce a persistent infection and homeostatic state with the cell. We also find that control of oxidative stress is a primary driver of cellular survival during HCoV-229E infection. These data illustrate that, in addition to the nature of the infecting virus and the type of cell that it encounters, the cellular gene expression profile prior to infection can affect the eventual fate.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph D. Trimarco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Courtney A. Williams
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Alejandro Barrera
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Timothy E. Reddy
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA,Corresponding author
| |
Collapse
|
7
|
Wang X, Liang Y, Wang H, Zhang B, Soong L, Cai J, Yi P, Fan X, Sun J. The Protective Role of IL-36/IL-36R Signal in Con A-Induced Acute Hepatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:861-869. [PMID: 35046104 PMCID: PMC8830780 DOI: 10.4049/jimmunol.2100481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022]
Abstract
The IL-36 family, including IL-36α, IL-36β, IL-36γ, and IL-36R antagonist, belong to the IL-1 superfamily. It was reported that IL-36 plays a role in immune diseases. However, it remains unclear how IL-36 regulates inflammation. To determine the role of IL-36/IL-36R signaling pathways, we established an acute hepatitis mouse model (C57BL/6) by i.v. injection of the plant lectin Con A. We found that the levels of IL-36 were increased in the liver after Con A injection. Our results demonstrated the infiltrated neutrophils, but not the hepatocytes, were the main source of IL-36 in the liver. Using the IL-36R-/- mouse model (H-2b), we surprisingly found that the absence of IL-36 signals led to aggravated liver injury, as evidenced by increased mortality, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and severe liver pathological changes. Further investigations demonstrated that a lack of IL-36 signaling induced intrahepatic activation of CD4+ and CD8+ T lymphocytes and increased the production of inflammatory cytokines. In addition, IL-36R-/- mice had reduced T regulatory cell numbers and chemokines in the liver. Together, our results from the mouse model suggested a vital role of IL-36 in regulating T cell function and homeostasis during liver inflammation.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Biao Zhang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China; and
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China;
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China;
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX;
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
8
|
Pu J, Chen D, Tian G, He J, Huang Z, Zheng P, Mao X, Yu J, Luo J, Luo Y, Yan H, Yu B. All-Trans Retinoic Acid Attenuates Transmissible Gastroenteritis Virus-Induced Inflammation in IPEC-J2 Cells via Suppressing the RLRs/NF-κB Signaling Pathway. Front Immunol 2022; 13:734171. [PMID: 35173714 PMCID: PMC8841732 DOI: 10.3389/fimmu.2022.734171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/06/2022] [Indexed: 01/03/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) infection can cause transmissible gastroenteritis (TGE), especially in suckling piglets, resulting in a significant economic loss for the global pig industry. The pathogenesis of TGEV infection is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) has anti-inflammatory activity and immunomodulatory properties, but it is unclear whether ATRA can attenuate the inflammatory response induced by TGEV. This study aimed to investigate the protective effect of ATRA on TGEV-induced inflammatory injury in intestinal porcine epithelial cells (IPEC-J2) and to explore the underlying molecular mechanism. The results showed that TGEV infection triggered inflammatory response and damaged epithelial barrier integrity in IPEC-J2 cells. However, ATRA attenuated TGEV-induced inflammatory response by inhibiting the release of pro-inflammatory cytokines, including IL-1β, IL-6, IL-8 and TNF-α. ATRA also significantly reversed the reduction of ZO-1 and Occludin protein levels induced by TGEV infection and maintained epithelial barrier integrity. Moreover, ATRA treatment significantly prevented the upregulation of IкBα and NF-κB p65 phosphorylation levels and the nuclear translocation of NF-кB p65 induced by TGEV. On the other hand, treatment of TGEV-infected IPEC-J2 cells with the NF-κB inhibitors (BAY11-7082) significantly decreased the levels of inflammatory cytokines. Furthermore, ATRA treatment significantly downregulated the mRNA abundance and protein levels of TLR3, TLR7, RIG-I and MDA5, and downregulated their downstream signaling molecules TRIF, TRAF6 and MAVS mRNA expressions in TGEV-infected IPEC-J2 cells. However, the knockdown of RIG-I and MDA5 but not TLR3 and TLR7 significantly reduced the NF-κB p65 phosphorylation level and inflammatory cytokines levels in TGEV-infected IPEC-J2 cells. Our results indicated that ATRA attenuated TGEV-induced IPEC-J2 cells damage via suppressing inflammatory response, the mechanism of which is associated with the inhibition of TGEV-mediated activation of the RLRs/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Powell DA, Hsu AP, Butkiewicz CD, Trinh HT, Frelinger JA, Holland SM, Galgiani JN, Shubitz LF. Vaccine Protection of Mice With Primary Immunodeficiencies Against Disseminated Coccidioidomycosis. Front Cell Infect Microbiol 2022; 11:790488. [PMID: 35071044 PMCID: PMC8777018 DOI: 10.3389/fcimb.2021.790488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Disseminated coccidioidomycosis (DCM), often a severe and refractory disease leading to poor outcomes, is a risk for people with certain primary immunodeficiencies (PID). Several DCM-associated PID (STAT4, STAT3, IFNγ, and Dectin-1) are modeled in mice. To determine if vaccination could provide these mice protection, mice with mutations in Stat4, Stat3, Ifngr1, Clec7a (Dectin-1), and Rag-1 (T- and B-cell deficient) knockout (KO) mice were vaccinated with the live, avirulent, Δcps1 vaccine strain and subsequently challenged intranasally with pathogenic Coccidioides posadasii Silveira strain. Two weeks post-infection, vaccinated mice of all strains except Rag-1 KO had significantly reduced lung and spleen fungal burdens (p<0.05) compared to unvaccinated control mice. Splenic dissemination was prevented in most vaccinated immunodeficient mice while all unvaccinated B6 mice and the Rag-1 KO mice displayed disseminated disease. The mitigation of DCM by Δcps1 vaccination in these mice suggests that it could also benefit humans with immunogenetic risks of severe disease.
Collapse
Affiliation(s)
- Daniel A. Powell
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Amy P. Hsu
- Laboratory of Clinical and Infectious Diseases, National Institutes of Allergy and Infectious Disease, Bethesda, MD, United States
| | | | - Hien T. Trinh
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| | - Jeffrey A. Frelinger
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| | - Steven M. Holland
- Laboratory of Clinical and Infectious Diseases, National Institutes of Allergy and Infectious Disease, Bethesda, MD, United States
| | - John N. Galgiani
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Lisa F. Shubitz
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr 2021; 126:1663-1672. [PMID: 33468263 PMCID: PMC7884725 DOI: 10.1017/s0007114521000246] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
SARS-CoV2 infects respiratory epithelial cells via its cellular receptor angiotensin-converting enzyme 2, causing a viral pneumonia with pronounced inflammation resulting in significant damage to the lungs and other organ systems, including the kidneys, though symptoms and disease severity are quite variable depending on the intensity of exposure and presence of underlying conditions that may affect the immune response. The resulting disease, coronavirus disease 2019 (COVID-19), can cause multi-organ system dysfunction in patients requiring hospitalisation and intensive care treatment. Serious infections like COVID-19 often negatively affect nutritional status, and the resulting nutritional deficiencies may increase disease severity and impair recovery. One example is the viral infection measles, where associated vitamin A (VA) deficiency increases disease severity and appropriately timed supplementation during recovery reduces mortality and hastens recovery. VA may play a similar role in COVID-19. First, VA is important in maintaining innate and adaptive immunity to promote clearance of a primary infection as well as minimise risks from secondary infections. Second, VA plays a unique role in the respiratory tract, minimising damaging inflammation, supporting repair of respiratory epithelium and preventing fibrosis. Third, VA deficiency may develop during COVID-19 due to specific effects on lung and liver stores caused by inflammation and impaired kidney function, suggesting that supplements may be needed to restore adequate status. Fourth, VA supplementation may counteract adverse effects of SARS-CoV2 on the angiotensin system as well as minimises adverse effects of some COVID-19 therapies. Evaluating interactions of SARS-CoV2 infection with VA metabolism may thus provide improved COVID-19 therapy.
Collapse
Affiliation(s)
- C. B. Stephensen
- Immunity and Disease Prevention Research Unit, USDA Western Human Nutrition Research Center, and Nutrition Department, University of California, Davis, CA, USA
| | - G. Lietz
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| |
Collapse
|
11
|
Martin BR, Richardson J. An exploratory review of Potential Adjunct Therapies for the Treatment of Coronavirus Infections. J Chiropr Med 2021; 20:199-217. [PMID: 34924893 PMCID: PMC8664662 DOI: 10.1016/j.jcm.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 10/31/2022] Open
Abstract
Objective The purpose of this exploratory review c, including vitamin D, zinc, vitamin A, elderberry (S nigra), garlic (A sativum), licorice (G glabra), stinging nettle (U dioica), N-acetylcysteine, quercetin and selenium as potential adjunct therapies for the treatment of coronavirus infections. Methods A search of PubMed was performed for articles published from 2005 to 2021. Key words searched were zinc, vitamin A, vitamin D, Sambucus nigra, Allium sativum, Glycyrrhiza glabra, Urtica dioica, N-Acetylcysteine, quercetin, selenium and coronavirus. Results There were 47 articles selected for this review. Findings included that vitamin D, zinc, vitamin A, S nigra, A sativum, G glabra, U dioica, N-acetylcysteine, quercetin and selenium have been shown to produce anti-inflammatory, immunostimulatory or antiviral effects that may enhance the actions of standard therapeutics for the treatment of CoV infections. We found only research articles related to the effects of vitamin D, zinc, G glabra, quercetin and selenium against COVID-19. Conclusion We identified non-pharmaceutical supplements (Vitamin D, zinc, vitamin A, S nigra, A sativum, G glabra and U dioica) which may have potential to provide support for those with coronavirus infections. However, rigorous clinical studies need to be performed before any clinical recommendations can be made at this time.
Collapse
Affiliation(s)
- Brett R Martin
- National University of Health Sciences Basic Science Department, Pinellas Park, Fl, USA
| | | |
Collapse
|
12
|
Kim HK, Park CY, Han SN. Nutrient modulation of viral infection-implications for COVID-19. Nutr Res Pract 2021; 15:S1-S21. [PMID: 34909129 PMCID: PMC8636392 DOI: 10.4162/nrp.2021.15.s1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 11/04/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has put focus on the importance of a healthy immune system for recovery from infection and effective response to vaccination. Several nutrients have been under attention because their nutritional statuses showed associations with the incidence or severity of COVID-19 or because they affect several aspects of immune function. Nutritional status, immune function, and viral infection are closely interrelated. Undernutrition impairs immune function, which can lead to increased susceptibility to viral infection, while viral infection itself can result in changes in nutritional status. Here, we review the roles of vitamins A, C, D, and E, and zinc, iron, and selenium in immune function and viral infection and their relevance to COVID-19.
Collapse
Affiliation(s)
- Hye-Keong Kim
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon, Korea
| | - Chan Yoon Park
- Department of Food and Nutrition, College of Health Science, The University of Suwon, Hwaseong, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
13
|
Sarohan AR, Kızıl M, İnkaya AÇ, Mahmud S, Akram M, Cen O. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cell Signal 2021; 87:110121. [PMID: 34438017 PMCID: PMC8380544 DOI: 10.1016/j.cellsig.2021.110121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
The SARS-CoV-2 virus has caused a worldwide COVID-19 pandemic. In less than a year and a half, more than 200 million people have been infected and more than four million have died. Despite some improvement in the treatment strategies, no definitive treatment protocol has been developed. The pathogenesis of the disease has not been clearly elucidated yet. A clear understanding of its pathogenesis will help develop effective vaccines and drugs. The immunopathogenesis of COVID-19 is characteristic with acute respiratory distress syndrome and multiorgan involvement with impaired Type I interferon response and hyperinflammation. The destructive systemic effects of COVID-19 cannot be explained simply by the viral tropism through the ACE2 and TMPRSS2 receptors. In addition, the recently identified mutations cannot fully explain the defect in all cases of Type I interferon synthesis. We hypothesize that retinol depletion and resulting impaired retinoid signaling play a central role in the COVID-19 pathogenesis that is characteristic for dysregulated immune system, defect in Type I interferon synthesis, severe inflammatory process, and destructive systemic multiorgan involvement. Viral RNA recognition mechanism through RIG-I receptors can quickly consume a large amount of the body's retinoid reserve, which causes the retinol levels to fall below the normal serum levels. This causes retinoid insufficiency and impaired retinoid signaling, which leads to interruption in Type I interferon synthesis and an excessive inflammation. Therefore, reconstitution of the retinoid signaling may prove to be a valid strategy for management of COVID-19 as well for some other chronic, degenerative, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Aziz Rodan Sarohan
- Department of Obstetrics and Gynecology, Medicina Plus Medical Center, 75. Yıl Mah., İstiklal Cad. 1305 Sk., No: 16 Sultangazi, İstanbul, Turkey.
| | - Murat Kızıl
- Department of Chemistry, Faculty of Science, Dicle University. Diyarbakır, Turkey
| | - Ahmet Çağkan İnkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
| | - Shokhan Mahmud
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Muhammad Akram
- Department of Eastern Medicine Government College, University Faisalabad, Pakistan
| | - Osman Cen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America; Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, United States of America
| |
Collapse
|
14
|
Liang Y, Wang X, Wang H, Yang W, Yi P, Soong L, Cong Y, Cai J, Fan X, Sun J. IL-33 activates mTORC1 and modulates glycolytic metabolism in CD8 + T cells. Immunology 2021; 165:61-73. [PMID: 34411293 DOI: 10.1111/imm.13404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin (IL)-33, a member in the IL-1 family, plays a central role in innate and adaptive immunity; however, how IL-33 mediates cytotoxic T-cell regulation and the downstream signals remain elusive. In this study, we found increased mouse IL-33 expression in CD8+ T cells following cell activation via anti-CD3/CD28 stimulation in vitro or lymphocytic choriomeningitis virus (LCMV) infection in vivo. Our cell adoptive transfer experiment demonstrated that extracellular, but not nuclear, IL-33 contributed to the activation and proliferation of CD8+ , but not CD4+ T effector cells in LCMV infection. Importantly, IL-33 induced mTORC1 activation in CD8+ T cells as evidenced by increased phosphorylated S6 ribosomal protein (p-S6) levels both in vitro and in vivo. Meanwhile, this IL-33-induced CD8+ T-cell activation was suppressed by mTORC1 inhibitors. Furthermore, IL-33 elevated glucose uptake and lactate production in CD8+ T cells in both dose- and time-dependent manners. The results of glycolytic rate assay demonstrated the increased glycolytic capacity of IL-33-treated CD8+ T cells compared with that of control cells. Our mechanistic study further revealed the capacity of IL-33 in promoting the expression of glucose transporter 1 (Glut1) and glycolytic enzymes via mTORC1, leading to accelerated aerobic glucose metabolism Warburg effect and increased effector T-cell activation. Together, our data provide new insights into IL-33-mediated regulation of CD8+ T cells, which might be beneficial for therapeutic strategies of inflammatory and infectious diseases in the future.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiaofang Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
15
|
Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021; 22:ijms22084183. [PMID: 33920735 PMCID: PMC8073329 DOI: 10.3390/ijms22084183] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regulating responses to environmental stress and inflammation. There is an ever-increasing plethora of physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division and embryonic development to the control of a multitude of diseases including retinal, cardiovascular, and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has only been characterized during pathophysiological stimulation. Recent studies have linked atypical signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes, complications during pregnancy, and bacterial and viral infections. Additional studies are required to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively inhibit pathological p38 signaling in a wide array of diseases.
Collapse
|
16
|
Thirumdas R, Kothakota A, Pandiselvam R, Bahrami A, Barba FJ. Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: A review. Trends Food Sci Technol 2021; 110:66-77. [PMID: 33558789 PMCID: PMC7857987 DOI: 10.1016/j.tifs.2021.01.069] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The viral infections can be highly contagious and easily transmissible, which even can lead to a pandemic, like the recent COVID-19 outbreak, causing massive deaths worldwide. While, still the best practical way to prevent the transmission of viruses is to practice self-sanitation and follow social distancing principles, enhancing the individual's immunity through the consumption of proper foods containing balanced nutrients can have significant result against viral infections. Foods containing nutrients such as vitamins, minerals, fatty acids, few polysaccharides, and some non-nutrients (i.e. polyphenols) have shown therapeutic potential against the function of viruses and can increase the immunity of people. SCOPE AND APPROACH The results of conducted works aiming for studying the potential antiviral characteristics of diverse groups of foods and food's nutrients (in terms of polysaccharides, proteins, lipids, vitamins, and minerals) are critically discussed. KEY FINDINGS AND CONCLUSION Nutrients, besides playing an important role in maintaining normal physiology of human's body and healthiness, are also required for enhancing the immunity of the body and can be effective against viral infections. They can present antiviral capacity either by entering into the defensive mechanism directly through interfering with the target viruses, or indirectly through activating the cells associated with the adaptive immune system. During the current situation of COVID-19 pandemic (the lack of proper curative viral drug), enhancing the immunity of individual's body through proposing the appropriate diet (rich in both macro and micro-nutrients) is one of few practical preventive measures available in fighting against Coronaviruses, this significant health-threatening virus, as well as other viruses in general.
Collapse
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology, College of Food Science & Technology, PJTSAU, Telangana, India
| | - Anjinelyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124, Kerala, India
| | - Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, València, Spain
| |
Collapse
|