1
|
Maurice De Sousa D, Perkey E, Le Corre L, Boulet S, Gómez Atria D, Allman A, Duval F, Daudelin JF, Brandstadter JD, Lederer K, Mezrag S, Odagiu L, Ennajimi M, Sarrias M, Decaluwe H, Koch U, Radtke F, Ludewig B, Siebel CW, Maillard I, Labrecque N. Early Notch signals from fibroblastic reticular cells program effector CD8+ T cell differentiation. J Exp Med 2025; 222:e20231758. [PMID: 40111253 PMCID: PMC11925062 DOI: 10.1084/jem.20231758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/06/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
A better understanding of the mechanisms regulating CD8+ T cell differentiation is essential to develop new strategies to fight infections and cancer. Using genetic mouse models and blocking antibodies, we uncovered cellular and molecular mechanisms by which Notch signaling favors the efficient generation of effector CD8+ T cells. Fibroblastic reticular cells from secondary lymphoid organs, but not dendritic cells, were the dominant source of Notch signals in T cells via Delta-like1/4 ligands within the first 3 days of immune responses to vaccination or infection. Using transcriptional and epigenetic studies, we identified a unique Notch-driven T cell-specific signature. Early Notch signals were associated with chromatin opening in regions occupied by bZIP transcription factors, specifically BATF, known to be important for CD8+ T cell differentiation. Overall, we show that fibroblastic reticular cell niches control the ultimate molecular and functional fate of CD8+ T cells after vaccination or infection through the delivery of early Notch signals.
Collapse
Affiliation(s)
- Dave Maurice De Sousa
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Laure Le Corre
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
| | - Daniela Gómez Atria
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anneka Allman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frédéric Duval
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
| | | | | | - Katlyn Lederer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Mezrag
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Livia Odagiu
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Myriam Ennajimi
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Marion Sarrias
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Canada
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Ivan Maillard
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
- Département de Médecine, Université de Montréal, Montreal, Canada
| |
Collapse
|
2
|
Sasse SK, Dahlin A, Sanford L, Gruca MA, Gupta A, Gally F, Wu AC, Iribarren C, Dowell RD, Weiss ST, Gerber AN. Enhancer RNA transcription pinpoints functional genetic variants linked to asthma. Nat Commun 2025; 16:2750. [PMID: 40164603 PMCID: PMC11958640 DOI: 10.1038/s41467-025-57693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bidirectional enhancer RNA (eRNA) transcription is a widespread response to environmental signals and glucocorticoids. We investigated whether single nucleotide polymorphisms (SNPs) within dynamically regulated eRNA-transcribing regions contribute to genetic variation in asthma. Through applying multivariate regression modeling with permutation-based significance thresholding to a large clinical cohort, we identified novel associations between asthma and 35 SNPs located in eRNA-transcribing regions implicated in regulating cellular processes relevant to asthma, including rs258760 (mean allele frequency = 0.34, asthma odds ratio = 0.95; P = 5.04E-03). We show that rs258760 disrupts an active aryl hydrocarbon receptor (AHR) response element linked to transcriptional regulation of the glucocorticoid receptor gene by AHR ligands, which are commonly found in combusted air pollution. The role of rs258760 as a protective variant for asthma was independently validated using UK Biobank data. Our findings establish eRNA signatures as a tool for discovery of functional genetic variants and define a novel association between air pollution, glucocorticoid signaling and asthma.
Collapse
Affiliation(s)
- Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Amber Dahlin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lynn Sanford
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Margaret A Gruca
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Arnav Gupta
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Fabienne Gally
- Department of Medicine, University of Colorado, Aurora, CO, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Ann Chen Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carlos Iribarren
- Kaiser Permanente Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
- Computer Science, University of Colorado, Boulder, CO, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, CO, USA.
- Department of Medicine, University of Colorado, Aurora, CO, USA.
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
3
|
Allman A, Gaudette BT, Kelly S, Alouche N, Carrington LJ, Perkey E, Brandstadter JD, Outen R, Vanderbeck A, Lederer K, Zhou Y, Faryabi RB, Robertson TF, Burkhardt JK, Tikhonova A, Aifantis I, Scarpellino L, Koch U, Radtke F, Lütge M, De Martin A, Ludewig B, Tveriakhina L, Gossler A, Mosteiro L, Siebel CW, Gómez Atria D, Luther SA, Allman D, Maillard I. Splenic fibroblasts control marginal zone B cell movement and function via two distinct Notch2-dependent regulatory programs. Immunity 2025; 58:143-161.e8. [PMID: 39731910 PMCID: PMC11735314 DOI: 10.1016/j.immuni.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024]
Abstract
Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function. Dll1 could not be replaced by the alternative Notch ligand Dll4. Dll1-Notch2 signaling regulated a Myc-dependent gene expression program fostering cell growth and a Myc-independent program controlling cell-movement regulators such as sphingosine-1 phosphate receptor 1 (S1PR1). S1pr1-deficient B cells experienced Notch signaling within B cell follicles without entering the MZ and were retained in the spleen upon Notch deprivation. Key elements of the mouse B cell Notch regulome were preserved in subsets of human memory B cells and B cell lymphomas. Thus, specialized niches program the poised state and patrolling behavior of MZB cells via conserved Myc-dependent and Myc-independent Notch2-regulated mechanisms.
Collapse
Affiliation(s)
- Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha Kelly
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nagham Alouche
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Léolène J Carrington
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Perkey
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua D Brandstadter
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Outen
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Katlyn Lederer
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanner F Robertson
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Anastasia Tikhonova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | | | | | - Mechthild Lütge
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lena Tveriakhina
- Institute for Molecular Biology, Medizinische Hochschule, Hannover, Germany
| | - Achim Gossler
- Institute for Molecular Biology, Medizinische Hochschule, Hannover, Germany
| | | | | | - Daniela Gómez Atria
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Mao K, Lin F, Pan Y, Li J, Ye J. Identification of glycosyltransferase genes for diagnosis of T-cell mediated rejection and prediction of graft loss in kidney transplantation. Transpl Immunol 2024; 87:102114. [PMID: 39243908 DOI: 10.1016/j.trim.2024.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Glycosylation is a complex and fundamental metabolic biosynthetic process orchestrated by multiple glycosyltransferases (GT) and glycosidases enzymes. Functions of GT have been extensively examined in multiple human diseases. Our study investigated the potential role of GT genes in T-cell mediated rejection (TCMR) and possible prediction of graft loss of kidney transplantation. METHODS We downloaded the microarray datasets and GT genes from the GEO and the HUGO Gene Nomenclature Committee (HGNC) databases, respectively. Differentially expressed GT genes (DE-GTGs) were obtained by differential expression and Venn analysis. A TCMR diagnostic model was developed based on the hub DE-GTGs using LASSO regression and XGboost machine learning algorithms. In addition, a predictive model for graft survival was constructed by univariate Cox and LASSO Cox regression analysis. RESULTS We have obtained 15 DE-GTGs. Both GO and KEGG analyses showed that the DE-GTGs were mainly involved in the glycoprotein biosynthetic process. The TCMR diagnostic model exhibited high diagnostic potential with generally highly correlated accuracies [aera under the curve (AUC) of 0.83]. The immune characteristics analysis revealed that higher levels of immune cell infiltration and immune responses were observed in the high-risk group than in the low-risk group. In particular, the Kaplan-Meier survival analysis revealed that renal grafts in the high-risk group have poor prognostic outcomes than the low-risk group. The predictive AUC values of 1-, 2- and 3-year graft survival were 0.76, 0.81, and 0.70, respectively. CONCLUSION Our results indicated that GT genes could be used for diagnosis of TCMR and prediction of graft loss in kidney transplantation. These results provide new perspectives and tools for diagnosing, treating and predicting kidney transplant-related diseases.
Collapse
Affiliation(s)
- Kaifeng Mao
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Fenwang Lin
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yige Pan
- Division of Nephrology, Department of Nursing, The University of Hong Kong-Shenzhen Hospital, Shenzhen City, Guangdong Province, China
| | - Juan Li
- School of Nursing, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Junsheng Ye
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 PMCID: PMC11877277 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
6
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Tran D, Beeler JS, Liu J, Wiley B, Chan IC, Xin Z, Kramer MH, Batchi-Bouyou AL, Zong X, Walter MJ, Petrone GE, Chlamydas S, Ferraro F, Oh ST, Link DC, Busby B, Cao Y, Bolton KL. Plasma Proteomic Signature Predicts Myeloid Neoplasm Risk. Clin Cancer Res 2024; 30:3220-3228. [PMID: 38446993 PMCID: PMC11292192 DOI: 10.1158/1078-0432.ccr-23-3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Clonal hematopoiesis (CH) is thought to be the origin of myeloid neoplasms (MN). Yet, our understanding of the mechanisms driving CH progression to MN and clinical risk prediction of MN remains limited. The human proteome reflects complex interactions between genetic and epigenetic regulation of biological systems. We hypothesized that the plasma proteome might predict MN risk and inform our understanding of the mechanisms promoting MN development. EXPERIMENTAL DESIGN We jointly characterized CH and plasma proteomic profiles of 46,237 individuals in the UK Biobank at baseline study entry. During 500,036 person-years of follow-up, 115 individuals developed MN. Cox proportional hazard regression was used to test for an association between plasma protein levels and MN risk. RESULTS We identified 115 proteins associated with MN risk, of which 30% (N = 34) were also associated with CH. These were enriched for known regulators of the innate and adaptive immune system. Plasma proteomics improved the prediction of MN risk (AUC = 0.85; P = 5×10-9) beyond clinical factors and CH (AUC = 0.80). In an independent group (N = 381,485), we used inherited polygenic risk scores (PRS) for plasma protein levels to validate the relevance of these proteins toMNdevelopment. PRS analyses suggest that most MN-associated proteins we identified are not directly causally linked toMN risk, but rather represent downstream markers of pathways regulating the progression of CH to MN. CONCLUSIONS These data highlight the role of immune cell regulation in the progression of CH to MN and the promise of leveraging multi-omic characterization of CH to improveMN risk stratification. See related commentary by Bhalgat and Taylor, p. 3095.
Collapse
Affiliation(s)
- Duc Tran
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - J. Scott Beeler
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Jie Liu
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Brian Wiley
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Irenaeus C.C. Chan
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Zilan Xin
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Michael H. Kramer
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Armel L. Batchi-Bouyou
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Xiaoyu Zong
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
| | - Matthew J. Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Giulia E.M. Petrone
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | | | - Francesca Ferraro
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Stephen T. Oh
- Division of Hematology, Department of Medicine, WUSM, St. Louis, Missouri.
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Ben Busby
- DNAnexus, Mountain View, California.
| | - Yin Cao
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
| | - Kelly L. Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| |
Collapse
|
8
|
Chiu KY, Ai Y, Tanim-Ai Hassan M, Li X, Gunawardena HP, Chen H. Standards-Free Absolute Quantitation of Oxidizable Glycopeptides by Coulometric Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1441-1450. [PMID: 38815255 DOI: 10.1021/jasms.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Currently, glycopeptide quantitation is mainly based on relative quantitation due to absolute quantitation requiring isotope-labeled or standard glycopeptides which may not be commercially available or are very costly and time consuming to synthesize. To address this grand challenge, coulometric mass spectrometry (CMS), based on the combination of electrochemistry (EC) and mass spectrometry (MS), was utilized to quantify electrochemically active glycopeptides without the need of using standard materials. In this study, we studied tyrosine-containing glycopeptides, NYIVGQPSS(β-GlcNAc)TGNL-OH and NYSVPSS(β-GlcNAc)TGNL-OH, and successfully quantified them directly with CMS with a discrepancy of less than 5% between the CMS measured amount and the theoretical amount. Taking one step further, we applied this approach to quantify glycopeptides generated from the digestion of NIST mAb, a monoclonal antibody reference material. Through HILIC column separation, five N297 glycopeptides resulting from NIST mAb tryptic digestion were successfully separated and quantified by CMS for an absolute amount without the use of any standard materials. This study indicates the potential utility of CMS for quantitative proteomics research.
Collapse
Affiliation(s)
- Kai-Yuan Chiu
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Md Tanim-Ai Hassan
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xuanwen Li
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Harsha P Gunawardena
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Springhouse, Pennsylvania 19002, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
9
|
Gutierrez Reyes CD, Alejo-Jacuinde G, Perez Sanchez B, Chavez Reyes J, Onigbinde S, Mogut D, Hernández-Jasso I, Calderón-Vallejo D, Quintanar JL, Mechref Y. Multi Omics Applications in Biological Systems. Curr Issues Mol Biol 2024; 46:5777-5793. [PMID: 38921016 PMCID: PMC11202207 DOI: 10.3390/cimb46060345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Traditional methodologies often fall short in addressing the complexity of biological systems. In this regard, system biology omics have brought invaluable tools for conducting comprehensive analysis. Current sequencing capabilities have revolutionized genetics and genomics studies, as well as the characterization of transcriptional profiling and dynamics of several species and sample types. Biological systems experience complex biochemical processes involving thousands of molecules. These processes occur at different levels that can be studied using mass spectrometry-based (MS-based) analysis, enabling high-throughput proteomics, glycoproteomics, glycomics, metabolomics, and lipidomics analysis. Here, we present the most up-to-date techniques utilized in the completion of omics analysis. Additionally, we include some interesting examples of the applicability of multi omics to a variety of biological systems.
Collapse
Affiliation(s)
| | - Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA; (G.A.-J.); (B.P.S.)
| | - Benjamin Perez Sanchez
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA; (G.A.-J.); (B.P.S.)
| | - Jesus Chavez Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Damir Mogut
- Department of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Irma Hernández-Jasso
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Denisse Calderón-Vallejo
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - J. Luis Quintanar
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
10
|
Hao Q, Kundu S, Shetty S, Tang H. Runx3 Regulates CD8 + T Cell Local Expansion and CD43 Glycosylation in Mice by H1N1 Influenza A Virus Infection. Int J Mol Sci 2024; 25:4220. [PMID: 38673806 PMCID: PMC11050410 DOI: 10.3390/ijms25084220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
We have recently reported that transcription factor Runx3 is required for pulmonary generation of CD8+ cytotoxic T lymphocytes (CTLs) that play a crucial role in the clearance of influenza A virus (IAV). To understand the underlying mechanisms, we determined the effects of Runx3 knockout (KO) on CD8+ T cell local expansion and phenotypes using an inducible general Runx3 KO mouse model. We found that in contrast to the lungs, Runx3 general KO promoted enlargement of lung-draining mediastinal lymph node (mLN) and enhanced CD8+ and CD4+ T cell expansion during H1N1 IAV infection. We further found that Runx3 deficiency greatly inhibited core 2 O-glycosylation of selectin ligand CD43 on activated CD8+ T cells but minimally affected the cell surface expression of CD43, activation markers (CD44 and CD69) and cell adhesion molecules (CD11a and CD54). Runx3 KO had a minor effect on lung effector CD8+ T cell death by IAV infection. Our findings indicate that Runx3 differently regulates CD8+ T cell expansion in mLNs and lungs by H1N1 IAV infection. Runx3 is required for CD43 core 2 O-glycosylation on activated CD8+ T cells, and the involved Runx3 signal pathway may mediate CD8+ T cell phenotype for pulmonary generation of CTLs.
Collapse
Affiliation(s)
| | | | | | - Hua Tang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA; (Q.H.); (S.K.); (S.S.)
| |
Collapse
|
11
|
Onigbinde S, Peng W, Solomon J, Adeniyi M, Nwaiwu J, Fowowe M, Daramola O, Purba W, Mechref Y. O-Glycome Profiling of Breast Cancer Cell Lines to Understand Breast Cancer Brain Metastasis. J Proteome Res 2024; 23:1458-1470. [PMID: 38483275 PMCID: PMC11299836 DOI: 10.1021/acs.jproteome.3c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Breast cancer is the second leading cause of cancer-related death among women and a major source of brain metastases. Despite the increasing incidence of brain metastasis from breast cancer, the underlying mechanisms remain poorly understood. Altered glycosylation is known to play a role in various diseases including cancer metastasis. However, profiling studies of O-glycans and their isomers in breast cancer brain metastasis (BCBM) are scarce. This study analyzed the expression of O-glycans and their isomers in human breast cancer cell lines (MDA-MB-231, MDA-MB-361, HTB131, and HTB22), a brain cancer cell line (CRL-1620), and a brain metastatic breast cancer cell line (MDA-MB-231BR) using nanoLC-MS/MS, identifying 27 O-glycan compositions. We observed significant upregulation in the expression of HexNAc1Hex1NeuAc2 and HexNAc2Hex3, whereas the expression of HexNAc1Hex1NeuAc1 was downregulated in MDA-MB-231BR compared to other cell lines. In our isomeric analysis, we observed notable alterations in the isomeric forms of the O-glycan structure HexNAc1Hex1NeuAc1 in a comparison of different cell lines. Our analysis of O-glycans and their isomers in cancer cells demonstrated that changes in their distribution can be related to the metastatic process. We believe that our investigation will contribute to an enhanced comprehension of the significance of O-glycans and their isomers in BCBM.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
12
|
Stewart N, Daly J, Drummond-Guy O, Krishnamoorthy V, Stark JC, Riley NM, Williams KC, Bertozzi CR, Wisnovsky S. The glycoimmune checkpoint receptor Siglec-7 interacts with T-cell ligands and regulates T-cell activation. J Biol Chem 2024; 300:105579. [PMID: 38141764 PMCID: PMC10831161 DOI: 10.1016/j.jbc.2023.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023] Open
Abstract
Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is a glycan-binding immune receptor that is emerging as a significant target of interest for cancer immunotherapy. The physiological ligands that bind Siglec-7, however, remain incompletely defined. In this study, we characterized the expression of Siglec-7 ligands on peripheral immune cell subsets and assessed whether Siglec-7 functionally regulates interactions between immune cells. We found that disialyl core 1 O-glycans are the major immune ligands for Siglec-7 and that these ligands are particularly highly expressed on naïve T-cells. Densely glycosylated sialomucins are the primary carriers of these glycans, in particular a glycoform of the cell-surface marker CD43. Biosynthesis of Siglec-7-binding glycans is dynamically controlled on different immune cell subsets through a genetic circuit involving the glycosyltransferase GCNT1. Siglec-7 blockade was found to increase activation of both primary T-cells and antigen-presenting dendritic cells in vitro, indicating that Siglec-7 binds T-cell glycans to regulate intraimmune signaling. Finally, we present evidence that Siglec-7 directly activates signaling pathways in T-cells, suggesting a new biological function for this receptor. These studies conclusively demonstrate the existence of a novel Siglec-7-mediated signaling axis that physiologically regulates T-cell activity. Going forward, our findings have significant implications for the design and implementation of therapies targeting immunoregulatory Siglec receptors.
Collapse
Affiliation(s)
- Natalie Stewart
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Daly
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olivia Drummond-Guy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vignesh Krishnamoorthy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica C Stark
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Nicholas M Riley
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn R Bertozzi
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Griffin EN, Jucius T, Sim SE, Harris BS, Heinz S, Ackerman SL. RREB1 regulates neuronal proteostasis and the microtubule network. SCIENCE ADVANCES 2024; 10:eadh3929. [PMID: 38198538 PMCID: PMC10780896 DOI: 10.1126/sciadv.adh3929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Transcription factors play vital roles in neuron development; however, little is known about the role of these proteins in maintaining neuronal homeostasis. Here, we show that the transcription factor RREB1 (Ras-responsive element-binding protein 1) is essential for neuron survival in the mammalian brain. A spontaneous mouse mutation causing loss of a nervous system-enriched Rreb1 transcript is associated with progressive loss of cerebellar Purkinje cells and ataxia. Analysis of chromatin immunoprecipitation and sequencing, along with RNA sequencing data revealed dysregulation of RREB1 targets associated with the microtubule cytoskeleton. In agreement with the known role of microtubules in dendritic development, dendritic complexity was disrupted in Rreb1-deficient neurons. Analysis of sequencing data also suggested that RREB1 plays a role in the endomembrane system. Mutant Purkinje cells had fewer numbers of autophagosomes and lysosomes and contained P62- and ubiquitin-positive inclusions. Together, these studies demonstrate that RREB1 functions to maintain the microtubule network and proteostasis in mammalian neurons.
Collapse
Affiliation(s)
- Emily N. Griffin
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas Jucius
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Su-Eon Sim
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Sven Heinz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L. Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Schneider M, Allman A, Maillard I. Regulation of immune cell development, differentiation and function by stromal Notch ligands. Curr Opin Cell Biol 2023; 85:102256. [PMID: 37806295 PMCID: PMC10873072 DOI: 10.1016/j.ceb.2023.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
In multicellular organisms, cell-to-cell communication is critical for the regulation of tissue organization. Notch signaling relies on direct interactions between Notch receptors on signal-receiving cells and Notch ligands on adjacent cells. Notch evolved to mediate local cellular interactions that are responsive to spatial cues via dosage-sensitive short-lived signals. Immune cells utilize these unique properties of Notch signaling to direct their development, differentiation, and function. In this review, we explore how immune cells interact through Notch receptors with stromal cells in specialized niches of lymphohematopoietic organs that express Notch-activating ligands. We emphasize factors that control these interactions and focus on how Notch signals communicate spatial, quantitative, and temporal information to program the function of signal-receiving cells in the immune system.
Collapse
Affiliation(s)
- Michael Schneider
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Daramola O, Gutierrez-Reyes CD, Wang J, Nwaiwu J, Onigbinde S, Fowowe M, Dominguez M, Mechref Y. Isomeric separation of native N-glycans using nano zwitterionic- hydrophilic interaction liquid chromatography column. J Chromatogr A 2023; 1705:464198. [PMID: 37442073 DOI: 10.1016/j.chroma.2023.464198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Changes in the expression of glycan isomers have been implicated in the development and progression of several diseases. However, the analysis of structurally diverse isomeric N-glycans by LC-MS/MS is still a major analytical challenge, particularly due to their large number of possible isomeric conformations. Common approaches derivatized the N-glycans to increase their hydrophobicity and to gain better detection in the MS system. Unfortunately, glycan derivatization is time-consuming and, in many cases, adds complexity because of the multiple reaction and cleaning steps, incomplete chemical labeling, possible degradation, and unwanted side reactions. Thus, analysis of native glycans, especially for samples with low abundance by LC-MS/MS, is desirable. Normal phase chromatography, which employs HILIC stationary phase, has been commonly employed for the identification and separation of labeled glycans. In this study, we focused on achieving efficient isomeric separation of native N-glycans using a nano ZIC-HILIC column commonly employed to separate labeled glycans and glycopeptides. Underivatized sialylated and oligomannose N-glycans derived from bovine fetuin and Ribonuclease B were initially utilized to optimize chromatographic conditions, including column temperature, pH of mobile phases, and gradient elution time. The optimized condition was then applied for the isomeric separation of native N-glycans derived from alpha-1 acid glycoprotein, as well as from biological samples. Finally, we confirmed the stability and reproducibility of the ZIC-HILIC column by performing run-to-run comparisons of the full width at half height (FWHM) and retention time on different N-glycans. The variability in FWHM was less than 0.5 min, while that of retention time was less than 1.0 min with %RSD less than 1.0%.
Collapse
Affiliation(s)
- Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Michael Dominguez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| |
Collapse
|
16
|
Tkachev V, Vanderbeck A, Perkey E, Furlan SN, McGuckin C, Atria DG, Gerdemann U, Rui X, Lane J, Hunt DJ, Zheng H, Colonna L, Hoffman M, Yu A, Outen R, Kelly S, Allman A, Koch U, Radtke F, Ludewig B, Burbach B, Shimizu Y, Panoskaltsis-Mortari A, Chen G, Carpenter SM, Harari O, Kuhnert F, Thurston G, Blazar BR, Kean LS, Maillard I. Notch signaling drives intestinal graft-versus-host disease in mice and nonhuman primates. Sci Transl Med 2023; 15:eadd1175. [PMID: 37379368 PMCID: PMC10896076 DOI: 10.1126/scitranslmed.add1175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Notch signaling promotes T cell pathogenicity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) in mice, with a dominant role for the Delta-like Notch ligand DLL4. To assess whether Notch's effects are evolutionarily conserved and to identify the mechanisms of Notch signaling inhibition, we studied antibody-mediated DLL4 blockade in a nonhuman primate (NHP) model similar to human allo-HCT. Short-term DLL4 blockade improved posttransplant survival with durable protection from gastrointestinal GVHD in particular. Unlike prior immunosuppressive strategies tested in the NHP GVHD model, anti-DLL4 interfered with a T cell transcriptional program associated with intestinal infiltration. In cross-species investigations, Notch inhibition decreased surface abundance of the gut-homing integrin α4β7 in conventional T cells while preserving α4β7 in regulatory T cells, with findings suggesting increased β1 competition for α4 binding in conventional T cells. Secondary lymphoid organ fibroblastic reticular cells emerged as the critical cellular source of Delta-like Notch ligands for Notch-mediated up-regulation of α4β7 integrin in T cells after allo-HCT. Together, DLL4-Notch blockade decreased effector T cell infiltration into the gut, with increased regulatory to conventional T cell ratios early after allo-HCT. Our results identify a conserved, biologically unique, and targetable role of DLL4-Notch signaling in intestinal GVHD.
Collapse
Affiliation(s)
- Victor Tkachev
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, MA 02114
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Immunology Graduate Group and Veterinary Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric Perkey
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Daniela Gómez Atria
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ulrike Gerdemann
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Xianliang Rui
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Jennifer Lane
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Daniel J. Hunt
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Hengqi Zheng
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Lucrezia Colonna
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Michelle Hoffman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109
| | - Alison Yu
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Riley Outen
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Samantha Kelly
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ute Koch
- EPFL, 1015 Lausanne, Switzerland
| | | | - Burkhard Ludewig
- Medical Research Center, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Brandon Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Angela Panoskaltsis-Mortari
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Guoying Chen
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591
| | | | | | | | | | - Bruce R. Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Leslie S. Kean
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
17
|
Zagorulya M, Yim L, Morgan DM, Edwards A, Torres-Mejia E, Momin N, McCreery CV, Zamora IL, Horton BL, Fox JG, Wittrup KD, Love JC, Spranger S. Tissue-specific abundance of interferon-gamma drives regulatory T cells to restrain DC1-mediated priming of cytotoxic T cells against lung cancer. Immunity 2023; 56:386-405.e10. [PMID: 36736322 PMCID: PMC10880816 DOI: 10.1016/j.immuni.2023.01.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Local environmental factors influence CD8+ T cell priming in lymph nodes (LNs). Here, we sought to understand how factors unique to the tumor-draining mediastinal LN (mLN) impact CD8+ T cell responses toward lung cancer. Type 1 conventional dendritic cells (DC1s) showed a mLN-specific failure to induce robust cytotoxic T cells responses. Using regulatory T (Treg) cell depletion strategies, we found that Treg cells suppressed DC1s in a spatially coordinated manner within tissue-specific microniches within the mLN. Treg cell suppression required MHC II-dependent contact between DC1s and Treg cells. Elevated levels of IFN-γ drove differentiation Treg cells into Th1-like effector Treg cells in the mLN. In patients with cancer, Treg cell Th1 polarization, but not CD8+/Treg cell ratios, correlated with poor responses to checkpoint blockade immunotherapy. Thus, IFN-γ in the mLN skews Treg cells to be Th1-like effector Treg cells, driving their close interaction with DC1s and subsequent suppression of cytotoxic T cell responses.
Collapse
Affiliation(s)
- Maria Zagorulya
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Leon Yim
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Duncan M Morgan
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Austin Edwards
- Biological Imaging Development CoLab, UCSF, San Francisco, CA 94143, USA
| | - Elen Torres-Mejia
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Chloe V McCreery
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Izabella L Zamora
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Brendan L Horton
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - James G Fox
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Division of Comparative Medicine, MIT, Cambridge, MA 02139, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - J Christopher Love
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Gene expression correlates of advanced epigenetic age and psychopathology in postmortem cortical tissue. Neurobiol Stress 2021; 15:100371. [PMID: 34458511 PMCID: PMC8377489 DOI: 10.1016/j.ynstr.2021.100371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Psychiatric stress has been associated with accelerated epigenetic aging (i.e., when estimates of cellular age based on DNA methylation exceed chronological age) in both blood and brain tissue. Little is known about the downstream biological effects of accelerated epigenetic age on gene expression. In this study we examined associations between DNA methylation-derived estimates of cellular age that range from decelerated to accelerated relative to chronological age (“DNAm age residuals”) and transcriptome-wide gene expression. This was examined using tissue from three post-mortem cortical regions (ventromedial and dorsolateral prefrontal cortex and motor cortex, n = 97) from the VA National PTSD Brain Bank. In addition, we examined how posttraumatic stress disorder (PTSD) and alcohol-use disorders (AUD) moderated the association between DNAm age residuals and gene expression. Transcriptome-wide results across brain regions, psychiatric diagnoses, and cohorts (full sample and male and female subsets) revealed experiment-wide differential expression of 11 genes in association with PTSD or AUD in interaction with DNAm age residuals. This included the inflammation-related genes IL1B, RCOR2, and GCNT1. Candidate gene class analyses and gene network enrichment analyses further supported differential expression of inflammation/immune gene networks as well as glucocorticoid, circadian, and oxidative stress-related genes. Gene co-expression network modules suggested enrichment of myelination related processes and oligodendrocyte enrichment in association with DNAm age residuals in the presence of psychopathology. Collectively, results suggest that psychiatric stress accentuates the association between advanced epigenetic age and expression of inflammation genes in the brain. This highlights the role of inflammatory processes in the pathophysiology of accelerated cellular aging and suggests that inflammatory pathways may link accelerated cellular aging to premature disease onset and neurodegeneration, particularly in stressed populations. This suggests that anti-inflammatory interventions may be an important direction to pursue in evaluating ways to prevent or delay cellular aging and increase resilience to diseases of aging.
Collapse
|
19
|
Rygiel CA, Dolinoy DC, Bakulski KM, Aung MT, Perng W, Jones TR, Solano-González M, Hu H, Tellez-Rojo MM, Schnaas L, Marcela E, Peterson KE, Goodrich JM. DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab005. [PMID: 34141453 PMCID: PMC8206046 DOI: 10.1093/eep/dvab005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 05/08/2023]
Abstract
Early-life lead (Pb) exposure has been linked to adverse neurodevelopmental outcomes. Recent evidence has indicated a critical role of DNA methylation (DNAm) in cognition, and Pb exposure has also been shown to alter DNAm. However, it is unknown whether DNAm is part of the mechanism of Pb neurotoxicity. This longitudinal study investigated the associations between trimester-specific (T1, T2, and T3) maternal blood Pb concentrations, gene-specific DNAm in umbilical cord blood, and infant neurodevelopmental outcomes at 12 and 24 months of age (mental development index, psychomotor development index, and behavioral rating scale of orientation/engagement and emotional regulation) among 85 mother-infant pairs from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) study. In the mediation analysis for this pilot study, P < 0.1 was considered significant. DNAm at a locus in CCSER1 (probe ID cg02901723) mediated the association between T2 Pb on 24-month orientation/engagement [indirect effect estimate 4.44, 95% confidence interval (-0.09, 10.68), P = 0.06] and emotional regulation [3.62 (-0.05, 8.69), P = 0.05]. Cg18515027 (GCNT1) DNAm mediated the association of T1 Pb [-4.94 (-10.6, -0.77), P = 0.01] and T2 Pb [-3.52 (-8.09, -0.36), P = 0.02] with 24-month EMOCI, but there was a positive indirect effect estimate between T2 Pb and 24-month psychomotor development index [1.25 (-0.11, 3.32), P = 0.09]. The indirect effect was significant for cg19703494 (TRAPPC6A) DNAm in the association between T2 Pb and 24-month mental development index [1.54 (0, 3.87), P = 0.05]. There was also an indirect effect of cg23280166 (VPS11) DNAm on T3 Pb and 24-month EMOCI [2.43 (-0.16, 6.38), P = 0.08]. These associations provide preliminary evidence for gene-specific DNAm as mediators between prenatal Pb and adverse cognitive outcomes in offspring.
Collapse
Affiliation(s)
- Christine A Rygiel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Max T Aung
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 490 Illinois Street, San Francisco, CA 94143, USA
| | - Wei Perng
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Epidemiology and the Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center Colorado School of Public Health, University of Colorado Denver Anschutz Medical Center, 12474 East 19th Avenue, Aurora, CO 80045, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Maritsa Solano-González
- Center for Nutrition and Health Research, National Institute of Public Health, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera C.P. 62100, Cuernavaca, Morelos, México
| | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto St., Los Angeles, CA 90033, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera C.P. 62100, Cuernavaca, Morelos, México
| | - Lourdes Schnaas
- National Institute of Perinatology, Mexico City, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Secc, Miguel Hidalgo, 11000 Ciudad de México, CDMX, Mexico
| | - Erika Marcela
- National Institute of Perinatology, Mexico City, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Secc, Miguel Hidalgo, 11000 Ciudad de México, CDMX, Mexico
| | - Karen E Peterson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Allen F, Maillard I. Therapeutic Targeting of Notch Signaling: From Cancer to Inflammatory Disorders. Front Cell Dev Biol 2021; 9:649205. [PMID: 34124039 PMCID: PMC8194077 DOI: 10.3389/fcell.2021.649205] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, the Notch signaling pathway has been investigated as a therapeutic target for the treatment of cancers, and more recently in the context of immune and inflammatory disorders. Notch is an evolutionary conserved pathway found in all metazoans that is critical for proper embryonic development and for the postnatal maintenance of selected tissues. Through cell-to-cell contacts, Notch orchestrates cell fate decisions and differentiation in non-hematopoietic and hematopoietic cell types, regulates immune cell development, and is integral to shaping the amplitude as well as the quality of different types of immune responses. Depriving some cancer types of Notch signals has been shown in preclinical studies to stunt tumor growth, consistent with an oncogenic function of Notch signaling. In addition, therapeutically antagonizing Notch signals showed preclinical potential to prevent or reverse inflammatory disorders, including autoimmune diseases, allergic inflammation and immune complications of life-saving procedures such allogeneic bone marrow and solid organ transplantation (graft-versus-host disease and graft rejection). In this review, we discuss some of these unique approaches, along with the successes and challenges encountered so far to target Notch signaling in preclinical and early clinical studies. Our goal is to emphasize lessons learned to provide guidance about emerging strategies of Notch-based therapeutics that could be deployed safely and efficiently in patients with immune and inflammatory disorders.
Collapse
Affiliation(s)
- Frederick Allen
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Maillard
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Delafield DG, Li L. Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation. Mol Cell Proteomics 2021; 20:100054. [PMID: 32576592 PMCID: PMC8724918 DOI: 10.1074/mcp.r120.002095] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass-spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification, and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
22
|
Sherman BT, Hu X, Singh K, Haine L, Rupert AW, Neaton JD, Lundgren JD, Imamichi T, Chang W, Lane HC. Genome-wide association study of high-sensitivity C-reactive protein, D-dimer, and interleukin-6 levels in multiethnic HIV+ cohorts. AIDS 2021; 35:193-204. [PMID: 33095540 PMCID: PMC7789909 DOI: 10.1097/qad.0000000000002738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/28/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Elevated levels of interleukin-6 (IL-6), D-dimer, and C-reactive protein (hsCRP) are associated with increased incidence of comorbid disease and mortality among people living with HIV (PLWH). Prior studies suggest a genetic basis for these biomarker elevations in the general population. The study objectives are to identify the genetic basis for these biomarkers among PLWH. METHODS Baseline levels of hsCRP, D-dimer, and IL-6, and single nucleotide polymorphisms (SNPs) were determined for 7768 participants in three HIV treatment trials. Single variant analysis was performed for each biomarker on samples from each of three ethnic groups [African (AFR), Admixed American (AMR), European (EUR)] within each trial including covariates relevant to biomarker levels. For each ethnic group, the results were pooled across trials, then further pooled across ethnicities. RESULTS The transethnic analysis identified three, two, and one known loci associated with hsCRP, D-dimer, and IL-6 levels, respectively, and two novel loci, FGB and GCNT1, associated with D-dimer levels. Lead SNPs exhibited similar effects across ethnicities. Additionally, three novel, ethnic-specific loci were identified: CATSPERG associated with D-dimer in AFR and PROX1-AS1 and TRAPPC9 associated with IL-6 in AFR and AMR, respectively. CONCLUSION Eleven loci associated with three biomarker levels were identified in PLWH from the three studies including six loci known in the general population and five novel loci associated with D-dimer and IL-6 levels. These findings support the hypothesis that host genetics may partially contribute to chronic inflammation in PLWH and help to identify potential targets for intervention of serious non-AIDS complications.
Collapse
Affiliation(s)
- Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Xiaojun Hu
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Kanal Singh
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Lillian Haine
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Adam W. Rupert
- AIDS Monitoring Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James D. Neaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Jens D. Lundgren
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
23
|
Caracciolo D, Riillo C, Ballerini A, Gaipa G, Lhermitte L, Rossi M, Botta C, Duroyon E, Grillone K, Gallo Cantafio ME, Buracchi C, Alampi G, Gulino A, Belmonte B, Conforti F, Golino G, Juli G, Altomare E, Polerà N, Scionti F, Arbitrio M, Iannone M, Martino M, Correale P, Talarico G, Ghelli Luserna di Rorà A, Ferrari A, Concolino D, Sestito S, Pensabene L, Giordano A, Hildinger M, Di Martino MT, Martinelli G, Tripodo C, Asnafi V, Biondi A, Tagliaferri P, Tassone P. Therapeutic afucosylated monoclonal antibody and bispecific T-cell engagers for T-cell acute lymphoblastic leukemia. J Immunother Cancer 2021; 9:e002026. [PMID: 33597219 PMCID: PMC7893666 DOI: 10.1136/jitc-2020-002026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a poor cure rate for relapsed/resistant patients. Due to the lack of T-cell restricted targetable antigens, effective immune-therapeutics are not presently available and the treatment of chemo-refractory T-ALL is still an unmet clinical need. To develop novel immune-therapy for T-ALL, we generated an afucosylated monoclonal antibody (mAb) (ahuUMG1) and two different bispecific T-cell engagers (BTCEs) against UMG1, a unique CD43-epitope highly and selectively expressed by T-ALL cells from pediatric and adult patients. METHODS UMG1 expression was assessed by immunohistochemistry (IHC) on a wide panel of normal tissue microarrays (TMAs), and by flow cytometry on healthy peripheral blood/bone marrow-derived cells, on 10 different T-ALL cell lines, and on 110 T-ALL primary patient-derived cells. CD43-UMG1 binding site was defined through a peptide microarray scanning. ahuUMG1 was generated by Genetic Glyco-Engineering technology from a novel humanized mAb directed against UMG1 (huUMG1). BTCEs were generated as IgG1-(scFv)2 constructs with bivalent (2+2) or monovalent (2+1) CD3ε arms. Antibody dependent cellular cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP) and redirected T-cell cytotoxicity assays were analysed by flow cytometry. In vivo antitumor activity of ahUMG1 and UMG1-BTCEs was investigated in NSG mice against subcutaneous and orthotopic xenografts of human T-ALL. RESULTS Among 110 T-ALL patient-derived samples, 53 (48.1%) stained positive (24% of TI/TII, 82% of TIII and 42.8% of TIV). Importantly, no expression of UMG1-epitope was found in normal tissues/cells, excluding cortical thymocytes and a minority (<5%) of peripheral blood T lymphocytes. ahUMG1 induced strong ADCC and ADCP on T-ALL cells in vitro, which translated in antitumor activity in vivo and significantly extended survival of treated mice. Both UMG1-BTCEs demonstrated highly effective killing activity against T-ALL cells in vitro. We demonstrated that this effect was specifically exerted by engaged activated T cells. Moreover, UMG1-BTCEs effectively antagonized tumor growth at concentrations >2 log lower as compared with ahuUMG1, with significant mice survival advantage in different T-ALL models in vivo. CONCLUSION Altogether our findings, including the safe UMG1-epitope expression profile, provide a framework for the clinical development of these innovative immune-therapeutics for this still orphan disease.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | | | - Giuseppe Gaipa
- Centro Ricerca M. Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Ospedale San Gerardo, Monza, Italy
| | - Ludovic Lhermitte
- Université de Paris, Institut Necker-Enfants Malades, Institut National de Recherche Médicale U1151, Paris, France
- Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Cirino Botta
- Hematology Unit, Annunziata Hospital, Cosenza, Italy
| | - Eugénie Duroyon
- Université de Paris, Institut Necker-Enfants Malades, Institut National de Recherche Médicale U1151, Paris, France
- Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | | | - Chiara Buracchi
- Centro Ricerca M. Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Ospedale San Gerardo, Monza, Italy
| | - Greta Alampi
- Centro Ricerca M. Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Ospedale San Gerardo, Monza, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo, Palermo, Italy
| | | | - Gaetanina Golino
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | | | | | - Massimo Martino
- Stem Cell Transplant Program, Clinical Section, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Gabriella Talarico
- Immunotransfusion Service Unit, Pugliese-Ciaccio Hospital, Catanzaro, Italy
| | | | - Anna Ferrari
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Daniela Concolino
- Department of Medical and Surgical Sciences, Pediatric Unit, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Simona Sestito
- Department of Medical and Surgical Sciences, Pediatric Unit, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Licia Pensabene
- Department of Medical and Surgical Sciences, Pediatric Unit, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo, Palermo, Italy
| | - Vahid Asnafi
- Université de Paris, Institut Necker-Enfants Malades, Institut National de Recherche Médicale U1151, Paris, France
- Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Andrea Biondi
- Centro Ricerca M. Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Ospedale San Gerardo, Monza, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Abstract
Objectives: CD43 can be useful in routine flow cytometry. We conducted a systematic review aiming to describe when CD43 is used by flow cytometry in malignant hematology and to determine its value in these settings. Methods: Systematic review of MEDLINE (search 'CD43' AND 'flow cytometry,' starting in 2010). Results: Twenty-one of 103 entries retrieved were included in this systematic review. CD43 is used in three settings: 1) in the classification of mature B cell lymphoproliferative disorders, 2) as part of a strategy to quantify residual disease in chronic lymphocytic leukemia (CLL) and 3) to help classify CD10-positive B cell populations. In this section, the published data is summarized, the clinical usefulness in each of these settings is evaluated and illustrative cases are shown. Conclusion: CD43 has a growing role in the diagnosis and management of B cell malignancies; it has become essential for the classification of B cell lymphoproliferative disorders and may be of help in the differential diagnosis of CD10-positive lymphomas by FC. It is also required for optimal quantification of CLL residual disease, which will soon be used to guide therapeutic decisions.
Collapse
Affiliation(s)
- Marc Sorigue
- Hematology Laboratory, ICO-Hospital Germans Trias I Pujol, Functional Cytomics- IJC, Universitat Autònoma De Barcelona , Badalona, Spain
| |
Collapse
|