1
|
Castro ÍA, Yang Y, Gnazzo V, Kim DH, Van Dyken SJ, López CB. Murine parainfluenza virus persists in lung innate immune cells sustaining chronic lung pathology. Nat Microbiol 2024; 9:2803-2816. [PMID: 39358466 DOI: 10.1038/s41564-024-01805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/06/2024] [Indexed: 10/04/2024]
Abstract
Common respiratory viruses, including the human parainfluenza viruses, threaten human health seasonally and associate with the development of chronic lung diseases. Evidence suggests that these viruses can persist, but the sources of viral products in vivo and their impact on chronic respiratory diseases remain unknown. Using the murine parainfluenza virus Sendai, we demonstrate that viral protein and RNA persist in lung macrophages, type 2 innate lymphoid cells (ILC2s) and dendritic cells long after the infectious virus is cleared. Cells containing persistent viral protein expressed Th2 inflammation-related transcriptomic signatures associated with the development of chronic lung diseases, including asthma. Lineage tracing demonstrated that distinct functional groups of cells contribute to the chronic pathology. Importantly, targeted ablation of infected cells significantly ameliorated chronic lung disease. Overall, we identified persistent infection of innate immune cells as a key factor in the progression from acute to chronic lung disease after infection with parainfluenza virus.
Collapse
Affiliation(s)
- Ítalo Araújo Castro
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yanling Yang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Victoria Gnazzo
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carolina B López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Zhang Y, Wu K, Mao D, Iberg CA, Yin-Declue H, Sun K, Wikfors HA, Keeler SP, Li M, Young D, Yantis J, Crouch EC, Chartock JR, Han Z, Byers DE, Brody SL, Romero AG, Holtzman MJ. A first-in-kind MAPK13 inhibitor that can correct stem cell reprogramming and post-injury disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608990. [PMID: 39229202 PMCID: PMC11370402 DOI: 10.1101/2024.08.21.608990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The stress kinase MAPK13 (aka p38δ-MAPK) is an attractive entry point for therapeutic intervention because it regulates the structural remodeling that can develop after epithelial barrier injury in the lung and likely other tissue sites. However, a selective, safe, and effective MAPK13 inhibitor is not yet available for experimental or clinical application. Here we identify a first-in-kind MAPK13 inhibitor using structure-based drug design combined with a screening funnel for cell safety and molecular specificity. This inhibitor (designated NuP-4) down-regulates basal-epithelial stem cell reprogramming, structural remodeling, and pathophysiology equivalently to Mapk13 gene-knockout in mouse and mouse organoid models of post-viral lung disease. This therapeutic benefit persists after stopping treatment as a sign of disease modification and attenuates key aspects of inflammation and remodeling as an indication of disease reversal. Similarly, NuP-4 treatment can directly control cytokine-stimulated growth, immune activation, and mucinous differentiation in human basal-cell organoids. The data thereby provide a new tool and potential fix for long-term stem cell reprogramming after viral injury and related conditions that require MAPK13 induction-activation.
Collapse
Affiliation(s)
- Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua R Chartock
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhenfu Han
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
3
|
Wu K, Zhang Y, Mao D, Iberg CA, Yin-Declue H, Sun K, Keeler SP, Wikfors HA, Young D, Yantis J, Austin SR, Byers DE, Brody SL, Crouch EC, Romero AG, Holtzman MJ. MAPK13 controls structural remodeling and disease after epithelial injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596863. [PMID: 38895360 PMCID: PMC11185504 DOI: 10.1101/2024.05.31.596863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
All living organisms are charged with repair after injury particularly at epithelial barrier sites, but in some cases this response leads instead to structural remodeling and long-term disease. Identifying the molecular and cellular control of this divergence is key to disease modification. In that regard, stress kinase control of epithelial stem cells is a rational entry point for study. Here we examine the potential for mitogen-activated protein kinase 13 (MAPK13) regulation of epithelial stem cells using models of respiratory viral injury and post-viral lung disease. We show that Mapk13 gene-knockout mice handle acute infectious illness as expected but are protected against structural remodeling manifest as basal-epithelial stem cell (basal-ESC) hyperplasia-metaplasia, immune activation, and mucinous differentiation. In corresponding cell models, Mapk13-deficiency directly attenuates basal-ESC growth and organoid formation. Extension to human studies shows marked induction/activation of basal-cell MAPK13 in clinical samples of comparable remodeling found in asthma and COPD. Here again, MAPK13 gene-knockdown inhibits human basal-ESC growth in culture. Together, the data identify MAPK13 as a control for structural remodeling and disease after epithelial injury and as a suitable target for down-regulation as a disease-modifying strategy.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A. Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A. Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen R. Austin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C. Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G. Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
4
|
Wu K, Zhang Y, Yin-DeClue H, Sun K, Mao D, Yang K, Austin SR, Crouch EC, Brody SL, Byers DE, Hoffmann CM, Hughes ME, Holtzman MJ. A correctable immune niche for epithelial stem cell reprogramming and post-viral lung diseases. J Clin Invest 2024; 134:e183092. [PMID: 39052353 PMCID: PMC11405052 DOI: 10.1172/jci183092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
Epithelial barriers are programmed for defense and repair but are also the site of long-term structural remodeling and disease. In general, this paradigm features epithelial stem cells (ESCs) that are called on to regenerate damaged tissues but can also be reprogrammed for detrimental remodeling. Here we identified a Wfdc21-dependent monocyte-derived dendritic cell (moDC) population that functioned as an early sentinel niche for basal ESC reprogramming in mouse models of epithelial injury after respiratory viral infection. Niche function depended on moDC delivery of ligand GPNMB to the basal ESC receptor CD44 so that properly timed antibody blockade of ligand or receptor provided long-lasting correction of reprogramming and broad disease phenotypes. These same control points worked directly in mouse and human basal ESC organoids. Together, the findings identify a mechanism to explain and modify what is otherwise a stereotyped but sometimes detrimental response to epithelial injury.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kuangying Yang
- Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | - Steven L Brody
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Michael E Hughes
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Genetics, and
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Holtzman MJ, Zhang Y, Wu K, Romero AG. Mitogen-activated protein kinase-guided drug discovery for post-viral and related types of lung disease. Eur Respir Rev 2024; 33:230220. [PMID: 38417971 PMCID: PMC10900067 DOI: 10.1183/16000617.0220-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 03/01/2024] Open
Abstract
Respiratory viral infections are a major public health problem, with much of their morbidity and mortality due to post-viral lung diseases that progress and persist after the active infection is cleared. This paradigm is implicated in the most common forms of chronic lung disease, such as asthma and COPD, as well as other virus-linked diseases including progressive and long-term coronavirus disease 2019. Despite the impact of these diseases, there is a lack of small-molecule drugs available that can precisely modify this type of disease process. Here we will review current progress in understanding the pathogenesis of post-viral and related lung disease with characteristic remodelling phenotypes. We will also develop how this data leads to mitogen-activated protein kinase (MAPK) in general and MAPK13 in particular as key druggable targets in this pathway. We will also explore recent advances and predict the future breakthroughs in structure-based drug design that will provide new MAPK inhibitors as drug candidates for clinical applications. Each of these developments point to a more effective approach to treating the distinct epithelial and immune cell based mechanisms, which better account for the morbidity and mortality of post-viral and related types of lung disease. This progress is vital given the growing prevalence of respiratory viruses and other inhaled agents that trigger stereotyped progression to acute illness and chronic disease.
Collapse
Affiliation(s)
- Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- NuPeak Therapeutics Inc., St. Louis, MO, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Arthur G Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Keeler SP, Wu K, Zhang Y, Mao D, Li M, Iberg CA, Austin SR, Glaser SA, Yantis J, Podgorny S, Brody SL, Chartock JR, Han Z, Byers DE, Romero AG, Holtzman MJ. A potent MAPK13-14 inhibitor prevents airway inflammation and mucus production. Am J Physiol Lung Cell Mol Physiol 2023; 325:L726-L740. [PMID: 37847710 PMCID: PMC11068410 DOI: 10.1152/ajplung.00183.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively downregulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.NEW & NOTEWORTHY This study describes the discovery of a potent mitogen-activated protein kinase 13-14 (MAPK13-14) inhibitor and its effectiveness in models of respiratory airway disease. The findings thereby provide a scheme for pathogenesis and therapy of lung diseases [e.g., asthma, chronic obstructive pulmonary disease (COPD), Covid-19, postviral, and allergic respiratory disease] and related conditions that implicate MAPK13-14 function. The findings also refine a hypothesis for epithelial and immune cell functions in respiratory disease that features MAPK13 as a possible component of this disease process.
Collapse
Affiliation(s)
- Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Dailing Mao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Ming Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Courtney A Iberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | | | - Samuel A Glaser
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jennifer Yantis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Stephanie Podgorny
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Joshua R Chartock
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Zhenfu Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Arthur G Romero
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
- NuPeak Therapeutics Inc., St. Louis, Missouri, United States
| |
Collapse
|
7
|
Castro ÍA, Yang Y, Gnazzo V, Kim DH, Van Dyken SJ, López CB. Murine Parainfluenza Virus Persists in Lung Innate Immune Cells Sustaining Chronic Lung Pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566103. [PMID: 37986974 PMCID: PMC10659393 DOI: 10.1101/2023.11.07.566103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory viruses including the human parainfluenza viruses (hPIVs) are a constant burden to human health, with morbidity and mortality frequently increased after the acute phase of the infection. Although is proven that respiratory viruses can persist in vitro, the mechanisms of virus or viral products persistence, their sources, and their impact on chronic respiratory diseases in vivo are unknown. Here, we used Sendai virus (SeV) to model hPIV infection in mice and test whether virus persistence associates with the development of chronic lung disease. Following SeV infection, virus products were detected in lung macrophages, type 2 innate lymphoid cells (ILC2s) and dendritic cells for several weeks after the infectious virus was cleared. Cells containing viral protein showed strong upregulation of antiviral and type 2 inflammation-related genes that associate with the development of chronic post-viral lung diseases, including asthma. Lineage tracing of infected cells or cells derived from infected cells suggests that distinct functional groups of cells contribute to the chronic pathology. Importantly, targeted ablation of infected cells or those derived from infected cells significantly ameliorated chronic lung disease. Overall, we identified persistent infection of innate immune cells as a critical factor in the progression from acute to chronic post viral respiratory disease.
Collapse
Affiliation(s)
- Ítalo Araujo Castro
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Yanling Yang
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Victoria Gnazzo
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Do-Hyun Kim
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Steven J Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Carolina B López
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
8
|
Keeler SP, Wu K, Zhang Y, Mao D, Li M, Iberg CA, Austin SR, Glaser SA, Yantis J, Podgorny S, Brody SL, Chartock JR, Han Z, Byers DE, Romero AG, Holtzman MJ. A potent MAPK13-14 inhibitor prevents airway inflammation and mucus production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542451. [PMID: 37292761 PMCID: PMC10246002 DOI: 10.1101/2023.05.26.542451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively down-regulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.
Collapse
Affiliation(s)
- Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A. Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Samuel A. Glaser
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephanie Podgorny
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua R. Chartock
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhenfu Han
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G. Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
9
|
Martin RA, Keeler SP, Wu K, Shearon WJ, Patel D, Li J, Hoang M, Hoffmann CM, Hughes ME, Holtzman MJ. An alternative mechanism for skeletal muscle dysfunction in long-term post-viral lung disease. Am J Physiol Lung Cell Mol Physiol 2023; 324:L870-L878. [PMID: 37130808 PMCID: PMC10259859 DOI: 10.1152/ajplung.00338.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023] Open
Abstract
Chronic lung disease is often accompanied by disabling extrapulmonary symptoms, notably skeletal muscle dysfunction and atrophy. Moreover, the severity of respiratory symptoms correlates with decreased muscle mass and in turn lowered physical activity and survival rates. Previous models of muscle atrophy in chronic lung disease often modeled chronic obstructive pulmonary disease (COPD) and relied on cigarette smoke exposure and LPS stimulation, but these conditions independently affect skeletal muscle even without accompanying lung disease. Moreover, there is an emerging and pressing need to understand the extrapulmonary manifestations of long-term post-viral lung disease (PVLD) as found in COVID-19. Here, we examine the development of skeletal muscle dysfunction in the setting of chronic pulmonary disease caused by infection due to the natural pathogen Sendai virus using a mouse model of PVLD. We identify a significant decrease in myofiber size when PVLD is maximal at 49 days after infection. We find no change in the relative types of myofibers, but the greatest decrease in fiber size is localized to fast-twitch-type IIB myofibers based on myosin heavy chain immunostaining. Remarkably, all biomarkers of myocyte protein synthesis and degradation (total RNA, ribosomal abundance, and ubiquitin-proteasome expression) were stable throughout the acute infectious illness and chronic post-viral disease process. Together, the results demonstrate a distinct pattern of skeletal muscle dysfunction in a mouse model of long-term PVLD. The findings thereby provide new insights into prolonged limitations in exercise capacity in patients with chronic lung disease after viral infections and perhaps other types of lung injury.NEW & NOTEWORTHY Our study used a mouse model of post-viral lung disease to study the impact of chronic lung disease on skeletal muscle. The model reveals a decrease in myofiber size that is selective for specific types of myofibers and an alternative mechanism for muscle atrophy that might be independent of the usual markers of protein synthesis and degradation. The findings provide a basis for new therapeutic strategies to correct skeletal muscle dysfunction in chronic respiratory disease.
Collapse
Affiliation(s)
- Ryan A Martin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - William J Shearon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Devin Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jiajia Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - My Hoang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Christy M Hoffmann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Michael E Hughes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
10
|
Wu K, Zhang Y, Austin SR, Yin-Declue H, Byers DE, Crouch EC, Holtzman MJ. Lung Remodeling Regions in Long-Term Coronavirus Disease 2019 Feature Basal Epithelial Cell Reprogramming. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:680-689. [PMID: 36868468 PMCID: PMC9977469 DOI: 10.1016/j.ajpath.2023.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023]
Abstract
Respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can trigger chronic lung disease that persists and even progresses after expected clearance of infectious virus. To gain an understanding of this process, the current study examined a series of consecutive fatal cases of coronavirus disease 2019 (COVID-19) that came to autopsy at 27 to 51 days after hospital admission. In each patient, a stereotyped bronchiolar-alveolar pattern of lung remodeling was identified with basal epithelial cell hyperplasia, immune activation, and mucinous differentiation. Remodeling regions featured macrophage infiltration and apoptosis and a marked depletion of alveolar type 1 and 2 epithelial cells. This pattern closely resembled findings from an experimental model of post-viral lung disease that requires basal-epithelial stem cell growth, immune activation, and differentiation. Together, these results provide evidence of basal epithelial cell reprogramming in long-term COVID-19 and thereby yield a pathway for explaining and correcting lung dysfunction in this type of disease.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Stephen R Austin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Erika C Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
11
|
Martin RA, Keeler SP, Wu K, Shearon WJ, Patel D, Hoang M, Hoffmann CM, Hughes ME, Holtzman MJ. An alternative mechanism for skeletal muscle dysfunction in long-term post-viral lung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.07.511313. [PMID: 36238722 PMCID: PMC9558431 DOI: 10.1101/2022.10.07.511313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chronic lung disease is often accompanied by disabling extrapulmonary symptoms, notably skeletal muscle dysfunction and atrophy. Moreover, the severity of respiratory symptoms correlates with decreased muscle mass and in turn lowered physical activity and survival rates. Previous models of muscle atrophy in chronic lung disease often modeled COPD and relied on cigarette smoke exposure and LPS-stimulation, but these conditions independently affect skeletal muscle even without accompanying lung disease. Moreover, there is an emerging and pressing need to understand the extrapulmonary manifestations of long-term post-viral lung disease (PVLD) as found in Covid-19. Here, we examine the development of skeletal muscle dysfunction in the setting of chronic pulmonary disease using a mouse model of PVLD caused by infection due to the natural pathogen Sendai virus. We identify a significant decrease in myofiber size when PVLD is maximal at 49 d after infection. We find no change in the relative types of myofibers, but the greatest decrease in fiber size is localized to fast-twitch type IIB myofibers based on myosin heavy chain immunostaining. Remarkably, all biomarkers of myocyte protein synthesis and degradation (total RNA, ribosomal abundance, and ubiquitin-proteasome expression) were stable throughout the acute infectious illness and chronic post-viral disease process. Together, the results demonstrate a distinct pattern of skeletal muscle dysfunction in a mouse model of long-term PVLD. The findings thereby provide new insight into prolonged limitations in exercise capacity in patients with chronic lung disease after viral infections and perhaps other types of lung injury.
Collapse
Affiliation(s)
- Ryan A. Martin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - William J. Shearon
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Devin Patel
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - My Hoang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Christy M. Hoffmann
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael E. Hughes
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
12
|
Wu K, Zhang Y, Austin SR, Declue HY, Byers DE, Crouch EC, Holtzman MJ. Lung remodeling regions in long-term Covid-19 feature basal epithelial cell reprogramming. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.09.17.22280043. [PMID: 36172126 PMCID: PMC9516857 DOI: 10.1101/2022.09.17.22280043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Respiratory viruses, including SARS-CoV-2, can trigger chronic lung disease that persists and even progresses after expected clearance of infectious virus. To gain an understanding of this process, we examined a series of consecutive fatal cases of Covid-19 that came to autopsy at 27-51 d after hospital admission. In each patient, we identify a stereotyped bronchiolar-alveolar pattern of lung remodeling with basal epithelial cell hyperplasia and mucinous differentiation. Remodeling regions also feature macrophage infiltration and apoptosis and a marked depletion of alveolar type 1 and 2 epithelial cells. This entire pattern closely resembles findings from an experimental model of post-viral lung disease that requires basal-epithelial stem cell growth, immune activation, and differentiation. The present results thereby provide evidence of possible basal epithelial cell reprogramming in long-term Covid-19 as well and thereby a pathway for explaining and correcting lung dysfunction in this type of disease.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Stephen R. Austin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Huqing Yin Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Erika C. Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
13
|
Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity 2022; 55:1564-1580. [PMID: 36103853 DOI: 10.1016/j.immuni.2022.08.010] [Citation(s) in RCA: 262] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
Tissue-resident alveolar and interstitial macrophages and recruited macrophages are critical players in innate immunity and maintenance of lung homeostasis. Until recently, assessing the differential functional contributions of tissue-resident versus recruited macrophages has been challenging because they share overlapping cell surface markers, making it difficult to separate them using conventional methods. This review describes how scRNA-seq and spatial transcriptomics can separate these subpopulations and help unravel the complexity of macrophage biology in homeostasis and disease. First, we provide a guide to identifying and distinguishing lung macrophages from other mononuclear phagocytes in humans and mice. Second, we outline emerging concepts related to the development and function of the various lung macrophages in the alveolar, perivascular, and interstitial niches. Finally, we describe how different tissue states profoundly alter their functions, including acute and chronic lung disease, cancer, and aging.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
14
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022; 156:155891. [DOI: 10.1016/j.cyto.2022.155891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022]
|
15
|
Narasimhan H, Wu Y, Goplen NP, Sun J. Immune determinants of chronic sequelae after respiratory viral infection. Sci Immunol 2022; 7:eabm7996. [DOI: 10.1126/sciimmunol.abm7996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The acute effects of various respiratory viral infections have been well studied, with extensive characterization of the clinical presentation as well as viral pathogenesis and host responses. However, over the course of the recent COVID-19 pandemic, the incidence and prevalence of chronic sequelae after acute viral infections have become increasingly appreciated as a serious health concern. Post-acute sequelae of COVID-19, alternatively described as “long COVID-19,” are characterized by symptoms that persist for longer than 28 days after recovery from acute illness. Although there exists substantial heterogeneity in the nature of the observed sequelae, this phenomenon has also been observed in the context of other respiratory viral infections including influenza virus, respiratory syncytial virus, rhinovirus, severe acute respiratory syndrome coronavirus, and Middle Eastern respiratory syndrome coronavirus. In this Review, we discuss the various sequelae observed following important human respiratory viral pathogens and our current understanding of the immunological mechanisms underlying the failure of restoration of homeostasis in the lung.
Collapse
Affiliation(s)
- Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Wu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nick P. Goplen
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, MN 55905, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Keeler SP, Yantis J, Gerovac BJ, Youkilis SL, Podgorny S, Mao D, Zhang Y, Whitworth KM, Redel B, Samuel MS, Wells KD, Prather RS, Holtzman MJ. Chloride channel accessory 1 gene deficiency causes selective loss of mucus production in a new pig model. Am J Physiol Lung Cell Mol Physiol 2022; 322:L842-L852. [PMID: 35438004 PMCID: PMC9142155 DOI: 10.1152/ajplung.00443.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022] Open
Abstract
Morbidity and mortality of respiratory diseases are linked to airway obstruction by mucus but there are still no specific, safe, and effective drugs to correct this phenotype. The need for better treatment requires a new understanding of the basis for mucus production. In that regard, studies of human airway epithelial cells in primary culture show that a mucin granule constituent known as chloride channel accessory 1 (CLCA1) is required for inducible expression of the inflammatory mucin MUC5AC in response to potent type 2 cytokines. However, it remained uncertain whether CLCLA1 is necessary for mucus production in vivo. Conventional approaches to functional biology using targeted gene knockout were difficult due to the functional redundancy of additional Clca genes in mice not found in humans. We reasoned that CLCA1 function might be better addressed in pigs that maintain the same four-member CLCA gene locus and the corresponding mucosal and submucosal populations of mucous cells found in humans. Here we develop to our knowledge the first CLCA1-gene-deficient (CLCA1-/-) pig and show that these animals exhibit loss of MUC5AC+ mucous cells throughout the airway mucosa of the lung without affecting comparable cells in the tracheal mucosa or MUC5B+ mucous cells in submucosal glands. Similarly, CLCA1-/- pigs exhibit loss of MUC5AC+ mucous cells in the intestinal mucosa without affecting MUC2+ mucous cells. These data establish CLCA1 function for controlling MUC5AC expression as a marker of mucus production and provide a new animal model to study mucus production at respiratory and intestinal sites.
Collapse
Affiliation(s)
- Shamus P Keeler
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer Yantis
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Benjamin J Gerovac
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel L Youkilis
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Stephanie Podgorny
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Dailing Mao
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yong Zhang
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kristin M Whitworth
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Bethany Redel
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Melissa S Samuel
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Kevin D Wells
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Randall S Prather
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Michael J Holtzman
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Hazan G, Eubanks A, Gierasch C, Atkinson J, Fox C, Hernandez-Leyva A, Rosen AL, Kau AL, Agapov E, Alexander-Brett J, Steinberg D, Kelley D, White M, Byers D, Wu K, Keeler SP, Zhang Y, Koenitzer JR, Eiden E, Anderson N, Holtzman MJ, Haspel J. Age-Dependent Reduction in Asthmatic Pathology through Reprogramming of Postviral Inflammatory Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1467-1482. [PMID: 35173037 PMCID: PMC8917060 DOI: 10.4049/jimmunol.2101094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022]
Abstract
Asthma is a chronic disease of childhood, but for unknown reasons, disease activity sometimes subsides as children mature. In this study, we present clinical and animal model evidence suggesting that the age dependency of childhood asthma stems from an evolving host response to respiratory viral infection. Using clinical data, we show that societal suppression of respiratory virus transmission during coronavirus disease 2019 lockdown disrupted the traditional age gradient in pediatric asthma exacerbations, connecting the phenomenon of asthma remission to virus exposure. In mice, we show that asthmatic lung pathology triggered by Sendai virus (SeV) or influenza A virus is highly age-sensitive: robust in juvenile mice (4-6 wk old) but attenuated in mature mice (>3 mo old). Interestingly, allergen induction of the same asthmatic traits was less dependent on chronological age than viruses. Age-specific responses to SeV included a juvenile bias toward type 2 airway inflammation that emerged early in infection, whereas mature mice exhibited a more restricted bronchiolar distribution of infection that produced a distinct type 2 low inflammatory cytokine profile. In the basal state, aging produced changes to lung leukocyte burden, including the number and transcriptional landscape of alveolar macrophages (AMs). Importantly, depleting AMs in mature mice restored post-SeV pathology to juvenile levels. Thus, aging influences chronic outcomes of respiratory viral infection through regulation of the AM compartment and type 2 inflammatory responses to viruses. Our data provide insight into how asthma remission might develop in children.
Collapse
Affiliation(s)
- Guy Hazan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO.,Division of Pediatric Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Anna Eubanks
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Carrie Gierasch
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey Atkinson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Carolyn Fox
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ariel Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Anne L Rosen
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Eugene Agapov
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jennifer Alexander-Brett
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Deborah Steinberg
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Diane Kelley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael White
- Department of Pathology/Immunology, Washington University School of Medicine, St. Louis, MO
| | - Derek Byers
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey R Koenitzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Elise Eiden
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO; and
| | - Neil Anderson
- Division of Laboratory and Genomic Medicine, Department of Pathology, Washington University School of Medicine, St. Louis, MO
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO;
| |
Collapse
|
18
|
Wu K, Kamimoto K, Zhang Y, Yang K, Keeler SP, Gerovac BJ, Agapov EV, Austin SP, Yantis J, Gissy KA, Byers DE, Alexander-Brett J, Hoffmann CM, Wallace M, Hughes ME, Crouch EC, Morris SA, Holtzman MJ. Basal epithelial stem cells cross an alarmin checkpoint for postviral lung disease. J Clin Invest 2021; 131:e149336. [PMID: 34343135 PMCID: PMC8483760 DOI: 10.1172/jci149336] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial cells are charged with protection at barrier sites, but whether this normally beneficial response might sometimes become dysfunctional still needs definition. Here, we recognized a pattern of imbalance marked by basal epithelial cell growth and differentiation that replaced normal airspaces in a mouse model of progressive postviral lung disease due to the Sendai virus. Single-cell and lineage-tracing technologies identified a distinct subset of basal epithelial stem cells (basal ESCs) that extended into gas-exchange tissue to form long-term bronchiolar-alveolar remodeling regions. Moreover, this cell subset was selectively expanded by crossing a cell-growth and survival checkpoint linked to the nuclear-localized alarmin IL-33 that was independent of IL-33 receptor signaling and instead connected to autocrine chromatin accessibility. This mechanism creates an activated stem-progenitor cell lineage with potential for physiological or pathological function. Thus, conditional loss of Il33 gene function in basal epithelial cells disrupted the homeostasis of the epithelial barrier at skin and gut sites but also markedly attenuated postviral disease in the lung based on the downregulation of remodeling and inflammation. Thus, we define a basal ESC strategy to deploy innate immune machinery that appears to overshoot the primordial goal of self-defense. Our findings reveal new targets to stratify and correct chronic and often deadly postviral disease.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kenji Kamimoto
- Department of Genetics
- Department of Developmental Biology
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kuangying Yang
- Pulmonary and Critical Care Medicine, Department of Medicine
- Division of Biostatistics
| | | | | | | | | | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kelly A. Gissy
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Jennifer Alexander-Brett
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Pathology and Immunology
| | | | - Matthew Wallace
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Michael E. Hughes
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Genetics
| | | | | | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
19
|
Wu Y, Goplen NP, Sun J. Aging and respiratory viral infection: from acute morbidity to chronic sequelae. Cell Biosci 2021; 11:112. [PMID: 34158111 PMCID: PMC8218285 DOI: 10.1186/s13578-021-00624-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The altered immune response in aged hosts play a vital role in contributing to their increased morbidity and mortality during respiratory virus infections. The aged hosts display impaired antiviral immune response as well as increased risk for long-term pulmonary sequelae post virus clearance. However, the underlying cellular and molecular mechanisms driving these alterations of the immune compartment have not been fully elucidated. During the era of COVID-19 pandemic, a better understanding of such aspects is urgently needed to provide insight that will benefit the geriatric patient care in prevention as well as treatment. Here, we review the current knowledge about the unique immune characteristics of aged hosts during homeostasis and respiratory virus infections.
Collapse
Affiliation(s)
- Yue Wu
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nick P Goplen
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jie Sun
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
20
|
Wang X, Wu K, Keeler SP, Mao D, Agapov EV, Zhang Y, Holtzman MJ. TLR3-Activated Monocyte-Derived Dendritic Cells Trigger Progression from Acute Viral Infection to Chronic Disease in the Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1297-1314. [PMID: 33514511 PMCID: PMC7946811 DOI: 10.4049/jimmunol.2000965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/01/2021] [Indexed: 11/19/2022]
Abstract
Acute infection is implicated as a trigger for chronic inflammatory disease, but the full basis for this switch is uncertain. In this study, we examine this issue using a mouse model of chronic lung disease that develops after respiratory infection with a natural pathogen (Sendai virus). We investigate this model using a combination of TLR3-deficient mice and adoptive transfer of immune cells into these mice versus the comparable responses in wild-type mice. We found that acute and transient expression of TLR3 on monocyte-derived dendritic cells (moDCs) was selectively required to induce long-term expression of IL-33 and consequent type 2 immune-driven lung disease. Unexpectedly, moDC participation was not based on canonical TLR3 signaling and relied instead on a trophic effect to expand the alveolar epithelial type 2 cell population beyond repair of tissue injury and thereby provide an enriched and persistent cell source of IL-33 required for progression to a disease phenotype that includes lung inflammation, hyperreactivity, excess mucus production, and remodeling. The findings thereby provide a framework wherein viral infection activates TLR3 in moDCs as a front-line immune cell niche upstream of lung epithelial cells to drive the type 2 immune response, leading to chronic inflammatory diseases of the lung (such as asthma and chronic obstructive pulmonary disease in humans) and perhaps progressive and long-term postviral disease in general.
Collapse
Affiliation(s)
- Xinyu Wang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene V Agapov
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|