1
|
Li J, Xu J, Guo X, Xu H, Huang C, Nie Y, Zhou Y. Odoribacter splanchnicus-A Next-Generation Probiotic Candidate. Microorganisms 2025; 13:815. [PMID: 40284651 PMCID: PMC12029356 DOI: 10.3390/microorganisms13040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
As an important intestinal microorganism, Odoribacter splanchnicus frequently appears in high-throughput sequencing analyses, although pure culture research on this microorganism is not as advanced. It is widely present in the mammalian gut and is closely associated with the health status of the host and the incidence of various diseases. In recent years, changes in the abundance of O. splanchnicus have been found to be positively or negatively correlated with health issues, such as obesity, metabolic syndrome, diabetes, and intestinal inflammation. It may exhibit a dual protective or promotional role in specific diseases. Thus, it may play an important role in regulating host metabolism, immune response, and intestinal homeostasis. Additional research has revealed that O. splanchnicus can synthesize various metabolites, especially short-chain fatty acids (SCFAs), which play a key role in promoting intestinal health, enhancing energy metabolism, improving insulin resistance, and regulating immune responses in the host. Therefore, O. splanchnicus is a strong candidate for "next-generation probiotics", and its potential probiotic function provides novel ideas for the development of functional foods and the prevention and treatment of metabolic and intestinal inflammatory diseases. These findings can help develop new biological treatment strategies and optimize health management plans.
Collapse
Affiliation(s)
- Jianhong Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Xue Guo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
2
|
D’Alessandro M, Gottardi D, Arboleya S, Alvarado-Jasso GM, Parolin C, Vitali B, Lanciotti R, Gueimonde M, Patrignani F. Impact of Fermented Soy Beverages Containing Selected Vaginal Probiotics on the In Vitro Fecal Microbiota of Post-Menopausal Women. Foods 2025; 14:1022. [PMID: 40232047 PMCID: PMC11942071 DOI: 10.3390/foods14061022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
The gut microbiome of women can change after menopause, and during this phase women can also be more susceptible to vaginal dysbiosis. Recent studies have explored the probiotic potential of Lactobacillus crispatus BC4 and Lactobacillus gasseri BC9 against various pathogens and their use as co-starters in foods. However, their effects on the gut microbiota of post-menopausal women, who are more prone to dysbiosis, have not been examined. This study investigated the effects of predigested soy beverages (INFOGEST) containing BC4 and BC9 (encapsulated or not) on the composition and metabolic activity of the gut microbiota in post-menopausal women, using a fecal batch culture model. Parameters such as pH, gas, SCFAs, and microbiota composition (targeted qPCR and 16S rRNA gene sequencing) were assessed. The study, while highlighting a strong variability among donors, showed differences in gut microbiota response to the tested products. For instance, donor 2 showed a significant increase in bifidobacteria with BC4 + BC9 and E-BC9, while BC4 increased Ruminococcaceae in donors 1 and 3, and E-BC4 and E-BC9 enhanced Akkermansia in donor 1. BC4, E-BC4, E-BC9, and E-BC4 + BC9 significantly impacted metabolic activity, as measured by SCFAs, compared to other samples. However, no significant differences in gas production were observed.
Collapse
Affiliation(s)
- Margherita D’Alessandro
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
| | - Davide Gottardi
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Guadalupe Monserrat Alvarado-Jasso
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (C.P.); (B.V.)
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (C.P.); (B.V.)
| | - Rosalba Lanciotti
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Francesca Patrignani
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
3
|
Zhou R, Liu T, Qin Y, Xie J, Zhang S, Xie Y, Lao J, He W, Zeng H, Tang X, Tian X, Qin Y. Polygonatum cyrtonema Hua polysaccharides alleviate muscle atrophy and fat lipolysis by regulating the gut microenvironment in chemotherapy-induced cachexia. Front Pharmacol 2025; 16:1503785. [PMID: 40129936 PMCID: PMC11931129 DOI: 10.3389/fphar.2025.1503785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction: Polygonatum cyrtonema Hua (PC) is an essential herbal medicine in China, known for improving muscle quality and enhancing physical function; its active ingredients are polysaccharides (PCPs). A previous study revealed the anti-atrophy effects of PCPs in cachectic mice. However, whether the effects of PCPs on anti-atrophy are associated with gut microenvironment remain elusive. This research endeavored to assess the medicinal efficacy of PCPs in alleviating muscle atrophy and fat lipolysis and explore the potential mechanisms. Methods: A cancer cachexia model was induced by male C57BL/6 mice bearing Lewis lung tumor cells and chemotherapy. The pharmacodynamics of PCPs (32 and 64 mg/kg/day) was investigated through measurements of tumor-free body weight, gastrocnemius muscle weight, soleus muscle weight, epididymal fat weight, tissue histology analysis, and pro-inflammatory cytokines. Immunohistochemistry and Western blotting assays were further used to confirm the effects of PCPs. 16S rRNA sequencing, LC-MS and GC-MS-based metabolomics were used to analyze the gut microbiota composition and metabolite alterations. Additionally, the agonist of free fatty acid receptor 2 (FFAR2)-a crucial short-chain fatty acid (SCFA) signaling molecule-was used to investigate the role of gut microbiota metabolites, specifically SCFAs, in the treatment of cancer cachexia, with comparisons to PCPs. Results: This study demonstrated that PCPs significantly mitigated body weight loss, restored muscle fiber atrophy and mitochondrial disorder, alleviated adipose tissue wasting, strengthened the intestinal barrier integrity, and decreased the intestinal inflammation in chemotherapy-induced cachexia. Furthermore, the reversal of specific bacterial taxa including Klebsiella, Akkermansia, norank_f__Desulfovibrionaceae, Enterococcus, NK4A214_group, Eubacterium_fissicatena_group, Eubacterium_nodatum_group, Erysipelatoclostridium, Lactobacillus, Monoglobus, Ruminococcus, Odoribacter, and Enterorhabdus, along with alterations in metabolites such as amino acids (AAs), eicosanoids, lactic acid and (SCFAs), contributed to the therapeutic effects of PCPs. Conclusion: Our findings suggest that PCPs can be used as prebiotic drugs targeting the microbiome-metabolomics axis in cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Rongrong Zhou
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng, China
| | - Tingting Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - You Qin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jing Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Shuihan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yi Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jia Lao
- The ResGreen Group, Changsha, China
| | - Wei He
- The ResGreen Group, Changsha, China
| | - Hongliang Zeng
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xueyang Tang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
| | - Yuhui Qin
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Zhuang J, Zhuang Z, Chen B, Yang Y, Chen H, Guan G. Odoribacter splanchnicus-derived extracellular vesicles alleviate inflammatory bowel disease by modulating gastrointestinal inflammation and intestinal barrier function via the NLRP3 inflammasome suppression. Mol Med 2025; 31:56. [PMID: 39934686 PMCID: PMC11816829 DOI: 10.1186/s10020-025-01063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from specific bacteria exert therapeutic potential on inflammatory diseases. Previous reports suggest the protective role of Odoribacter splanchnicus (O.splanchnicus) in inflammatory bowel disease (IBD). The effect of EVs derived from O.splanchnicus (Os-EVs) and the underlying mechanism on IBD were surveyed here. METHODS Os-EVs were derived with ultracentrifugation before characterization by transmission electron microscopy and nanoparticle tracking analysis. Based on IBD model mice induced by dextran sulfate sodium (DSS), the effects of Os-EVs on IBD symptoms, intestinal barrier dysfunction, and colonic apoptosis, inflammation as well as NLRP3 inflammasome activation were analyzed. NLRP3 knockout mice were exploited to judge the role of NLRP3 in Os-EVs against IBD. RESULTS Os-EVs were typically shaped as a double concave disc (average diameter = 95 nm). The administration of Os-EVs attenuated DSS-induced body weight loss, colon shortening, disease activity index score, and histological injury in mice. Os-EVs could also relieve intestinal barrier dysfunction and colonic apoptosis, as evidenced by the up-regulation of zona occludens-1 and Occludin and the decrease of TUNEL-positive staining in colonic tissues of IBD mice. Os-EVs downregulated the expression of the interleukin-1β (IL-1β), tumor necrosis factor-α, and IL-6, and elevated IL-10, accompanied by blockage of the NLRP3 inflammasome activation in DSS-induced mice. Furthermore, NLRP3 knockout mice experiments revealed that the protective role of Os-EVs in IBD relies on regulating NLRP3. CONCLUSION Our finding indicated that Os-EVs effectively ameliorated IBD through repressing NLRP3, strongly supporting the potential of probiotic-derived EVs for alleviating IBD.
Collapse
Affiliation(s)
- Jinfu Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China
| | - Zhicheng Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China
| | - Bin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China
| | - Yuanfeng Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China
| | - Hengkai Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China.
| | - Guoxian Guan
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China.
| |
Collapse
|
5
|
Wang R, Ren Y, Javad HU, Zhou Z, Jiang W, Shu X. Dietary Dihydromyricetin Zinc Chelate Supplementation Improves the Intestinal Health of Magang Geese. Biol Trace Elem Res 2024; 202:5219-5234. [PMID: 38263355 DOI: 10.1007/s12011-024-04065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
To fulfill the nutritional requirements of poultry, effective Zn supplementation is required due to Zn deficiency in basic feed. In this study, we investigated the effects of DMY-Zn (dihydromyricetin zinc chelate) on the growth performance, morphology, and biochemical indices; the expression of intestinal barrier-related genes; the intestinal microflora; and the cecum metabolome of Magang geese. A total of 300 14-day-old Magang geese (equal number of males and females) with an average body weight of 0.82 ± 0.08 kg were randomly divided into five groups and fed a basal diet; these groups were given DMY-Zn (low, medium, or high level of DMY-Zn with 30, 55, or 80 mg/kg Zn added to the basal diet) or ZnSO4 (80 mg/kg Zn added) for 4 weeks. Our results revealed that DMY-Zn significantly impacts growth and biochemical indices and plays a significant role in regulating the intestinal barrier and microflora. DMY-Zn is involved in the upregulation of intestinal barrier gene (ZO1 and MUC2) expression, as well as upregulated Zn-related gene expression (ZIP5). On the other hand, a low concentration of DMY-Zn increased the ɑ diversity index and the abundance of Lactobacillus and Faecalibacterium. Additionally, a cecal metabolomics study showed that the main metabolic pathways affected by DMY-Zn were the pentose phosphate pathway, the biosynthesis of different alkaloids, and the metabolism of sphingolipids. In conclusion, DMY-Zn can reduce feed intake, increase the expression of intestinal barrier-related genes, help maintain the intestinal microflora balance, and increase the abundance of beneficial bacteria in the intestine to improve intestinal immunity.
Collapse
Affiliation(s)
- Renkai Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanli Ren
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hafiz Umer Javad
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, 24 East Sand Street, Guangzhou, 510225, China
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Zhiqing Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weiyin Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, 24 East Sand Street, Guangzhou, 510225, China.
| |
Collapse
|
6
|
Wakamori C, De Velasco MA, Sakai K, Kura Y, Matsushita M, Fujimoto S, Hatano K, Nonomura N, Fujita K, Nishio K, Uemura H. A cross-species analysis of fecal microbiomes in humans and mice reveals similarities and dissimilarities associated with prostate cancer risk. Prostate 2024; 84:1375-1386. [PMID: 39113216 DOI: 10.1002/pros.24776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Prostate cancer is a complex disease that develops over time and is influenced by several lifestyle factors that also impact gut microbes. Gut dysbiosis is intricately linked to prostate carcinogenesis, but the precise mechanisms remain poorly understood. Mice are crucial for studying the relationships between gut microbes and prostate cancer, but discovering similarities between humans and mice may aid in elucidating new mechanisms. METHODS We used 16s rRNA sequencing data from stool samples of tumor-bearing prostate-specific conditional Pten-knockout mice, disease-free wildtype mice, and a human cohort suspected of having prostate cancer to conduct taxonomic and metagenomic profiling. Features were associated with prostate cancer status and low risk (a negative biopsy of Gleason grade <2) or high risk (Gleason grade ≥2) in humans. RESULTS In both humans and mice, community composition differed between individuals with and without prostate cancer. Odoribacter spp. and Desulfovibrio spp. were taxa associated with prostate cancer in mice and humans. Metabolic pathways associated with cofactor and vitamin synthesis were common in mouse and human prostate cancer, including bacterial synthesis of folate (vitamin B9), ubiquinone (CoQ10), phylloquinone (vitamin K1), menaquinone (vitamin K2), and tocopherol (vitamin E). CONCLUSIONS Our study provides valuable data that can help bridge the gap between human and mouse microbiomes. Our findings provide evidence to support the notion that certain bacterial-derived metabolites may promote prostate cancer, as well as a preclinical model that can be used to characterize biological mechanisms and develop preventive interventions.
Collapse
Affiliation(s)
- Chisato Wakamori
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Department of Medicine, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Marco A De Velasco
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yurie Kura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Saizo Fujimoto
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
7
|
Tang J, Huang M. Genetic causal association between gut microbiota and sepsis: Evidence from a two-sample bidirectional Mendelian randomization analysis. JOURNAL OF INTENSIVE MEDICINE 2024; 4:362-367. [PMID: 39035611 PMCID: PMC11258504 DOI: 10.1016/j.jointm.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/27/2023] [Accepted: 11/11/2023] [Indexed: 07/23/2024]
Abstract
Background Sepsis is a severe and potentially life-threatening condition characterized by a dysregulated host response and organ dysfunction. The causal relationship between intestinal microbiota and sepsis is unclear. Methods A two-sample Mendelian randomization (MR) study was performed to proxy the causal association between gut microbiota and sepsis. The genome-wide association study (GWAS) data of sepsis and gut microbiome were collected from the Integrative Epidemiology Unit (IEU) OpenGWAS, with summary-level data obtained from the UK Biobank. Five traditional methods were used to estimate the potential causal relationships between gut microbiota and sepsis, including the inverse-variance weighted method, weighted median method, MR-Egger regression, simple mode, and weighted mode. Reverse MR analysis was performed on the bacteria that were found to be causally associated with sepsis in forward MR analysis. Cochran's Q statistic was used to quantify the heterogeneity of instrumental variables. Results The inverse-variance weighted estimate suggested that class Lentisphaeria (odds ratio [OR]=0.86, 95% confidence interval [CI]: 0.78 to 0.94, P=0.0017, q=0.1596) and order Victivallales (OR=0.86, 95% CI: 0.78 to 0.94, P=0.0017, q=0.1596) have a protective effect on sepsis. The genus Eubacterium eligens group (OR=1.34, 95% CI: 1.11 to 1.63, P=0.0029, q=0.1881) was positively associated with the risk of sepsis. Sepsis may be a significant risk factor for genus Odoribacter (OR=1.18, 95% CI: 1.10 to 1.39, P=0.0415, q=0.9849) and Phascolarctobacterium (OR=1.21, 95% CI: 1.00 to 1.46, P=0.0471, q=0.9849), but this effect was not statistically significant after false discovery rate correction. There was a suggestive association between sepsis and Faecalibacterium (OR=0.85, 95% CI: 0.73 to 0.98, P=0.0278) and Ruminococcus 1 (OR=0.85, 95% CI: 0.73 to 1.00, P=0.0439), which were not significant after false discovery rate correction (q>0.2). Conclusions This study found that class Lentisphaeria, order Victivallales, and genus Eubacterium eligens group may have a causal relationship with the risk of sepsis.
Collapse
Affiliation(s)
- Jungen Tang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Jiang J, Guo T, Wang J, Sun A, Chen X, Xu X, Dai S, Qin Z. A novel microbial community restructuring strategy for enhanced hydrogen production using multiple pretreatments and CSTR operation. ENVIRONMENTAL RESEARCH 2024; 251:118725. [PMID: 38518915 DOI: 10.1016/j.envres.2024.118725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
To achieve rapid enrichment of the targeted hydrogen-producing bacterial population and reconstruction of the microbial community in the biological hydrogen-producing reactor, the activated sludge underwent multiple pretreatments using micro-aeration, alkaline treatment, and heat treatment. The activated sludge obtained from the multiple pretreatments was inoculated into the continuous stirred tank reactor (CSTR) for continuous operations. The community structure alteration and hydrogen-producing capability of the activated sludge were analyzed throughout the operation of the reactor. We found that the primary phyla in the activated sludge population shifted to Proteobacteria, Firmicutes, and Bacteroidetes, which collectively accounted for 96.69% after undergoing several pretreatments. This suggests that the multiple pretreatments facilitated in achieving the selective enrichment of the fermentation hydrogen-producing microorganisms in the activated sludge. The CSTR start-up and continuous operation of the biological hydrogen production reactor resulted in the reactor entering a highly efficient hydrogen production stage at influent COD concentrations of 4000 mg/L and 5000 mg/L, with the highest hydrogen production rate reaching 8.19 L/d and 9.33 L/d, respectively. The main genus present during the efficient hydrogen production stage in the reactor was Ethanoligenens, accounting for up to 33% of the total population. Ethanoligenens exhibited autoaggregation capabilities and a superior capacity for hydrogen production, leading to its prevalence in the reactor and contribution to efficient hydrogen production. During high-efficiency hydrogen production, flora associated with hydrogen production exhibited up to 46.95% total relative abundance. In addition, redundancy analysis (RDA) indicated that effluent pH and COD influenced the distribution of the primary hydrogen-producing bacteria, including Ethanoligenens, Raoultella, and Pectinatus, as well as other low abundant hydrogen-producing bacteria in the activated sludge. The data indicates that the multiple pretreatments and reactor's operation has successfully enriched the hydrogen-producing genera and changed the community structure of microbial hydrogen production.
Collapse
Affiliation(s)
- Jishan Jiang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tielan Guo
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jingyuan Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ao Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xingping Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoxiao Xu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
9
|
Tyagi S, Katara P. A metagenome-wide association study of gut microbiome in patients with AMD, ASD, RA, T2D & VKH diseases. Comput Biol Chem 2024; 110:108076. [PMID: 38678728 DOI: 10.1016/j.compbiolchem.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Clinical studies have already illustrated the associations between gut microbes and diseases, yet fundamental questions remain unclear that how we can universalize this knowledge. Considering the important role of human gut microbial composition in maintaining overall health, it is important to understand the microbial diversity and altered disease conditions of the human gut. Metagenomics provides a way to analyze and understand the microbes and their role in a community manner. It provides qualitative as well as quantitative measurements, in terms of relative abundance. Various studies are already going on to find out the association between microbes and diseases; still, the mined knowledge is limited. Considering the current scenario, using the targeted metagenomics approach, we analyzed the gut microbiome of 99 samples from healthy and diseased individuals. Our metagenomic analysis mainly targeted five diseased microbiomes (i.e., Age-related macular degeneration, Autism spectrum disorder, Rheumatoid arthritis, Type 2 diabetes and Vogt-Koyanagi harada), with compare to healthy microbiome, and reported disease-associated microbiome shift in different conditions.
Collapse
Affiliation(s)
- Shivani Tyagi
- Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj 211002, India
| | - Pramod Katara
- Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
10
|
Rao Z, Li Y, Yang X, Guo Y, Zhang W, Wang Z. Diet xylo-oligosaccharide supplementation improves growth performance, immune function, and intestinal health of broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:165-176. [PMID: 38779325 PMCID: PMC11109738 DOI: 10.1016/j.aninu.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 05/25/2024]
Abstract
The effects of xylo-oligosaccharides (XOS) on broiler growth performance, immune function, and intestinal health were investigated. A total of 540 one-d-old Arbor Acres Plus broilers were randomly divided into 5 groups with 6 replicates per group and 18 chickens per replicate. Broilers in the control (CON) group received a corn-soybean meal based basal diet, those in the antibiotics (ANT) group received the basal diet plus 500 mg/kg oxytetracycline, and those in XOS groups received the basal diet plus 150, 300, or 450 mg/kg XOS. Compared with CON, the body weight at 42 d and average daily gain from 1 to 42 d were significantly increased in the 150, 450 mg/kg XOS-added and ANT groups (P = 0.018), and the relative expression of claudin-1 and ZO-1 mRNA in the ileum was significantly higher in the 300 and 450 mg/kg XOS-added groups (P < 0.001). The feed conversion ratios (P < 0.001) and abdominal fat rates (P = 0.012) of broilers from 1 to 42 d of age were significantly lower in all XOS-added groups than in the control group. Splenic index (P = 0.036) and bursa of Fabricius index (P = 0.009) were significantly better in the ANT group and each XOS-added group than in the control group. Compared to CON and ANT, serum IgA (P = 0.007) and IgG (P = 0.002) levels were significantly higher in the 300 mg/kg XOS-added group, and the relative abundance of short-chain fatty acid-producing genera (Alistipes) was also significantly higher (P < 0.001). Meanwhile, ileal villus height (P < 0.001) and ratio of villus height to crypt depth (V:C) (P = 0.001) were significantly increased in XOS-added broilers. In analysis of relationships between cecal microbes and the physical barrier of the gut, [Ruminococcus]_torques_group was positively correlated with mRNA expression of ileal ZO-1 and claudin-1 (P < 0.05), and Bacteroides was positively correlated with increased ileal villus height and V:C (P < 0.05). Overall, XOS addition to broiler diets improved growth performance, promoted intestinal health by enhancing intestinal barrier function and regulating cecal microbiota diversity, and had positive effects on immunity.
Collapse
Affiliation(s)
- Zhiyong Rao
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Li
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaopeng Yang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongpeng Guo
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Zhang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhixiang Wang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
11
|
Sasi S, Nair AP, Doiphode S, Gutti TS, Kolleri J, Al-Maslamani M. Odoribacter splanchnicus bacteremia secondary to acute appendicitis: a case report with review of literature. J Surg Case Rep 2024; 2024:rjae328. [PMID: 38800504 PMCID: PMC11126336 DOI: 10.1093/jscr/rjae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
This report describes a rare instance of Odoribacter splanchnicus bacteremia secondary to acute appendicitis in a young man. Initially presenting with symptoms typical of appendicitis, he was diagnosed through clinical examination, laboratory tests, and computed tomography imaging, which confirmed an inflamed appendix with sealed perforation and abscess. O. splanchnicus, a Gram-negative anaerobe commonly found in the human gut, was identified as the causative agent through blood culture. The patient underwent successful laparoscopic appendectomy and was treated with intravenous amoxicillin-clavulanate, leading to a full recovery. This case highlights the potential of O. splanchnicus to act as an opportunistic pathogen in the context of intra-abdominal inflammation. It underscores the diagnostic challenges posed by O. splanchnicus, and the efficacy of advanced diagnostic tools like matrix-assisted laser desorption/ionization-time of flight mass spectrometry in identifying such rare infections.
Collapse
Affiliation(s)
- Sreethish Sasi
- Infectious Diseases Division, Department of Internal Medicine, Hamad Medical Corporation, Doha 3050, Qatar
- Infectious Diseases Division, Department of Internal Medicine, Communicable Diseases Center, Hamad Medical Corporation, Doha 3050, Qatar
| | - Arun Prabhakaran Nair
- Infectious Diseases Division, Department of Internal Medicine, Hamad Medical Corporation, Doha 3050, Qatar
- Infectious Diseases Division, Department of Internal Medicine, Communicable Diseases Center, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sanjay Doiphode
- Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha 3050, Qatar
| | - Tejeswi Shashidhar Gutti
- Department of Surgery, Hazem Mubaireek General Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Jouhar Kolleri
- Department of Clinical Imaging, Hamad Medical Corporation, Doha 3050, Qatar
| | - Muna Al-Maslamani
- Infectious Diseases Division, Department of Internal Medicine, Hamad Medical Corporation, Doha 3050, Qatar
- Infectious Diseases Division, Department of Internal Medicine, Communicable Diseases Center, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
12
|
Lee SU, Jang BS, Na YR, Lee SH, Han S, Chang JH, Kim HJ. Effect of Lactobacillus Rhamnosus GG for Regulation of Inflammatory Response in Radiation-Induced Enteritis. Probiotics Antimicrob Proteins 2024; 16:636-648. [PMID: 37072632 DOI: 10.1007/s12602-023-10071-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
The purpose of this study was to investigate the role of Lactobacillus rhamnosus GG (LGG) probiotics in radiation enteritis using in vivo mice. A total of 40 mice were randomly assigned to four groups: control, probiotics, radiotherapy (RT), and RT + probiotics. For the group of probiotics, 0.2 mL of solution that contained 1.0 × 108 colony-forming units (CFU) of LGG was used and orally administered daily until sacrifice. For RT, a single dose of 14 Gy was administered using a 6 mega-voltage photon beam to the abdominopelvic area. Mice were sacrifice at day 4 (S1) and day 7 (S2) after RT. Their jejunum, colon, and stool were collected. A multiplex cytokine assay and 16 s ribosomal RNA amplicon sequencing were then performed. Regarding cytokine concentrations in tissues, pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein-1, showed significantly decreased protein levels in colon tissues of the RT + probiotics group than in the RT alone group (all p < 0.05). As for comparing microbial abundance through alpha-diversity and beta-diversity, no significant differences were observed between the RT + probiotics and RT alone groups, except for an increase in alpha-diversity in the stool of the RT + probiotics group. Upon analysis of differential microbes based on treatment, the dominance of anti-inflammatory-related microbes, such as Porphyromonadaceae, Bacteroides acidifaciens, and Ruminococcus, was observed in the jejunum, colon, and stool of the RT + probiotics group. With regard to predicted metabolic pathway abundances, the pathways associated with anti-inflammatory processes, such as biosynthesis of pyrimidine nucleotides, peptidoglycans, tryptophan, adenosylcobalamin, and propionate, were differentially identified in the RT + probiotics group compared to the RT alone group. Protective effects of probiotics on radiation enteritis were potentially derived from dominant anti-inflammation-related microbes and metabolites.
Collapse
Affiliation(s)
- Sung Uk Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Sun Hwa Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Sunwoo Han
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea.
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
13
|
Xiao H, Song C, Chen Z, Jian M, Yuan C, Li Y, Zou Y. The first case of Odoribacter splanchnicus bacteremia isolated from a patient in China. Heliyon 2024; 10:e23465. [PMID: 38187241 PMCID: PMC10770558 DOI: 10.1016/j.heliyon.2023.e23465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background Odoribacter splanchnicus is an extremely rare pathogen of human infection. This case reports bacteremia infection of O. splanchnicus, which is highly likely to result in misdiagnosis if inappropriate diagnostic method are used. Case presentation A 29-year-old Chinese male patient with no underlying disease was hospitalized twice for injuries caused by a car accident. During the second hospitalization, abdominal surgery was performed and high fever developed after the surgery. A strain of O. splanchnicus was isolated from the blood and confirmed by MALDI-TOF-MS and 16S rRNA gene analysis. Finally, the patient recovered successfully by using antibiotics, fluid replacement and albumin input. Conclusions This is the first case of O. splanchnicus bacteremia in China. We present a brief review of the cases concerning O. splanchnicus infection in humans. O. splanchnicus, as part of the normal intestinal flora, is well known for its anti-tumor and immune regulating properties, it is rarely isolated from clinical samples. This case illustrates the potential of O. splanchnicus as a pathogen and suggests attention to the use of new and advanced methods like MALDI-TOF MS and 16S rRNA gene sequencing to identify rarely isolated species from clinical samples.
Collapse
Affiliation(s)
- Hualiang Xiao
- Department of Clinical Laboratory, Deyang People's Hospital, Sichuan Province, China
| | - Chunjiao Song
- Department of Clinical Laboratory, Deyang People's Hospital, Sichuan Province, China
| | - Zongyao Chen
- Department of Clinical Laboratory, Deyang People's Hospital, Sichuan Province, China
| | - Miaomiao Jian
- Department of Clinical Laboratory, Deyang People's Hospital, Sichuan Province, China
| | - Chengliang Yuan
- Department of Clinical Laboratory, Deyang People's Hospital, Sichuan Province, China
| | - Yiman Li
- Department of Clinical Laboratory, Deyang People's Hospital, Sichuan Province, China
| | - Yanjiao Zou
- Department of Clinical Laboratory, Deyang People's Hospital, Sichuan Province, China
| |
Collapse
|
14
|
Dicks LMT. Our Mental Health Is Determined by an Intrinsic Interplay between the Central Nervous System, Enteric Nerves, and Gut Microbiota. Int J Mol Sci 2023; 25:38. [PMID: 38203207 PMCID: PMC10778721 DOI: 10.3390/ijms25010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteria in the gut microbiome play an intrinsic part in immune activation, intestinal permeability, enteric reflex, and entero-endocrine signaling. The gut microbiota communicates with the central nervous system (CNS) through the production of bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT), and histamine. A vast number of signals generated in the gastrointestinal tract (GIT) reach the brain via afferent fibers of the vagus nerve (VN). Signals from the CNS are returned to entero-epithelial cells (EES) via efferent VN fibers and communicate with 100 to 500 million neurons in the submucosa and myenteric plexus of the gut wall, which is referred to as the enteric nervous system (ENS). Intercommunications between the gut and CNS regulate mood, cognitive behavior, and neuropsychiatric disorders such as autism, depression, and schizophrenia. The modulation, development, and renewal of nerves in the ENS and changes in the gut microbiome alter the synthesis and degradation of neurotransmitters, ultimately influencing our mental health. The more we decipher the gut microbiome and understand its effect on neurotransmission, the closer we may get to developing novel therapeutic and psychobiotic compounds to improve cognitive functions and prevent mental disorders. In this review, the intricate control of entero-endocrine signaling and immune responses that keep the gut microbiome in a balanced state, and the influence that changing gut bacteria have on neuropsychiatric disorders, are discussed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
15
|
Bosch B, Moutaharrik S, Gazzaniga A, Hiippala K, Santos HA, Maroni A, Satokari R. Development of a time-dependent oral colon delivery system of anaerobic Odoribacter splanchnicus for bacteriotherapy. Eur J Pharm Biopharm 2023; 190:73-80. [PMID: 37479064 DOI: 10.1016/j.ejpb.2023.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Odoribacter (O.) splanchnicus is an anaerobic member of the human intestinal microbiota. Its decrease in abundance has been associated with inflammatory bowel disease (IBD), non-alcoholic fatty liver, and cystic fibrosis. Considering the anti-inflammatory properties of O. splanchnicus and its possible use for IBD, intestinal isolate O. splanchnicus 57 was here formulated for oral colonic release based on a time-dependent strategy. Freeze-drying protocol was determined to ensure O. splanchnicus 57 viability during the process. Disintegrating tablets, containing the freeze-dried O. splanchnicus 57, were manufactured by direct compression and coated by powder-layering technique with hydroxypropyl methylcellulose (Methocel™ E50) in a tangential-spray fluid bed. Eudragit® L was then applied by spray-coating in a top-spray fluid bed. Double-coated tablets were tested for release, showing gastric resistance properties and, as desired, lag phases of reproducible duration prior to release in phosphate buffer pH 6.8. The cell viability and anti-inflammatory activity of the strain were assessed after the main manufacturing steps. While freeze-drying did not affect bacterial viability, the tableting and coating processes were more stressful. Nonetheless, O. splanchnicus 57 cells survived manufacturing and the final formulations had 106-107 CFU/g of viable cells. The strain kept its anti-inflammatory properties after tableting and coating, reducing Escherichia coli lipopolysaccharide-induced interleukin-8 cytokine release from HT-29 cells. Overall, O. splanchnicus 57 strain was formulated successfully for oral colon delivery, opening new ways to formulate pure cultures of single anaerobic strains or mixtures for oral delivery.
Collapse
Affiliation(s)
- Berta Bosch
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Saliha Moutaharrik
- Sez. di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy.
| | - Andrea Gazzaniga
- Sez. di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Kaisa Hiippala
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen 9713 AV, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Alessandra Maroni
- Sez. di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Osawa M, Handa O, Fukushima S, Matsumoto H, Umegaki E, Inoue R, Naito Y, Shiotani A. Reduced abundance of butyric acid-producing bacteria in the ileal mucosa-associated microbiota of ulcerative colitis patients. J Clin Biochem Nutr 2023; 73:77-83. [PMID: 37534095 PMCID: PMC10390811 DOI: 10.3164/jcbn.22-86] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 08/04/2023] Open
Abstract
Compositional changes in the microbiota are associated with various inflammatory diseases, including ulcerative colitis (UC). Aim: This study aimed to investigate the mucosa-associated microbiota (MAM) in patients with UC and its difference related with disease activity and classification. Brush samples were collected from the terminal ileum and sigmoid colon during endoscopic procedures. The microbiota of samples was profiled using the Illumina MiSeq platform. The V3-V4 regions of the gene encoding 16S rRNA (460 bp) were amplified using PCR. Fifty UC patients and twenty healthy controls were enrolled. UC patients displayed significantly reduced α-diversity in both the ileum and sigmoid colon compared to controls. A difference in β-diversity in the unweighted analysis was observed between the two groups. The abundance of Lactobacillus and Veillonella was significantly higher and that of Butyricicoccus, Ruminococcus and Lachnospiraceae was significantly lower in the ileum of UC patients than in controls. The abundance of Odoribacter in the ileum was significantly lower in left-sided colitis and pancolitis patients than in proctitis patients and lower in patients with highly severe disease activity than with mild disease activity. The reduction in abundance of butyric acid-producing bacteria, especially Odoribacter, in ileal MAM may play an important role in the pathophysiology of UC.
Collapse
Affiliation(s)
- Motoyasu Osawa
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Osamu Handa
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Shinya Fukushima
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Hiroshi Matsumoto
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Eiji Umegaki
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Ryo Inoue
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji Agaru, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Akiko Shiotani
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
17
|
Ma RX, Hu JQ, Fu W, Zhong J, Cao C, Wang CC, Qi SQ, Zhang XL, Liu GH, Gao YD. Intermittent fasting protects against food allergy in a murine model via regulating gut microbiota. Front Immunol 2023; 14:1167562. [PMID: 37228621 PMCID: PMC10205017 DOI: 10.3389/fimmu.2023.1167562] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Background The prevalence of food allergy (FA) is increasing. Decreases in the diversity of gut microbiota may contribute to the pathogenesis of FA by regulating IgE production of B cells. Intermittent fasting (IF) is a popular diet with the potential to regulate glucose metabolism, boosting immune memory and optimizing gut microbiota. The potential effect of long-term IF on the prevention and treatment of FA is still unknown. Methods Two IF protocols (16 h fasting/8 h feeding and 24 h fasting/24 h feeding) were conducted on mice for 56 days, while the control mice were free to intake food (free diet group, FrD). To construct the FA model, all mice were sensitized and intragastrical challenged with ovalbumin (OVA) during the second half of IF (day 28 to day 56). Rectal temperature reduction and diarrhea were recorded to evaluate the symptoms of FA. Levels of serum IgE, IgG1, Th1/Th2 cytokines, mRNA expression of spleen T cell related transcriptional factors, and cytokines were examined. H&E, immunofluorescence, and toluidine blue staining were used to assess the structural changes of ileum villi. The composition and abundance of gut microbiota were analyzed by 16srRNA sequencing in cecum feces. Results The diarrhea score and rectal temperature reduction were lower in the two fasting groups compared to the FrD groups. Fasting was associated with lower levels of serum OVA-sIgE, OVA-sIgG1, interleukin (IL)-4 and IL-5, and mRNA expression of IL-4, IL-5, and IL-10 in the spleen. While no significant association was observed in interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-6, IL-2 levels. Less mast cell infiltration in ileum was observed in the 16h/8h fasting group compared to the FrD group. ZO-1 expression in the ileum of the two fasting groups was higher in IF mice. The 24h/24h fasting reshaped the gut microbiota, with a higher abundance of Alistipes and Rikenellaceae strains compared to the other groups. Conclusion In an OVA-induced mice FA model, long-term IF may attenuate FA by reducing Th2 inflammation, maintaining the integrity of the intestinal epithelial barrier, and preventing gut dysbiosis.
Collapse
Affiliation(s)
- Ru-xue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia-qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang-chang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shi-quan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| | - Guang-hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ya-dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Wang X, Hao W, Huang X, Duan Z. Lower blood lipid level from the administration of plant tannins via altering the gut microbiota diversity and structure. Food Funct 2023; 14:4847-4858. [PMID: 37129242 DOI: 10.1039/d2fo03206f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Twenty-four Tan sheep were randomly assigned into 4 groups to study the capability of tannin supplementation (0.5% in dietary DM) to lower blood lipid levels mediated through the gut microbiota. The control (NC) group was offered a basic diet, while the 3 treatment groups were the TA group, which received supplementary tannic acid (TA); GSPE group, which received supplementary procyanidins (GSPE); and the TA + GSPE group, which received supplementary TA and GSPE, besides being supplied with the basic diet for 8 weeks feeding. At the end of the experiment, the serum glucose, insulin, lipids, and cytokines were measured, and the short-chain fatty acids (SCFAs) in the colon were tested by GC/MS. Moreover, the jejunal and colonic microbiota were detected by 16S rRNA sequencing. Significant reductions in serum triacylglycerol, cholesterol, and high density lipoprotein were found in all treatments. The total SCFAs decreased, while the iso-acids were significantly increased in the TA and TA + GSPE groups. The sheep showed noticeably lower MCP-1 and higher COX-2 levels in the GSPE group than that in the NC group. IL-6 was increased in the sheep fed with TA. The tannins still caused a noticeable shift in the colonic microbiota, with significant increases in the abundances of Adlercreutzia and Oscillospira. Ultimately, it was found that the diet with low levels of tannin could reduce blood triacylglycerol and cholesterol in sheep significantly by affecting the composition of the gut microbiota.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenjing Hao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xinyi Huang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ziyuan Duan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
19
|
Awosile B, Crasto C, Rahman MK, Daniel I, Boggan S, Steuer A, Fritzler J. Fecal Microbial Diversity of Coyotes and Wild Hogs in Texas Panhandle, USA. Microorganisms 2023; 11:1137. [PMID: 37317111 DOI: 10.3390/microorganisms11051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
The ecology of infectious diseases involves wildlife, yet the wildlife interface is often neglected and understudied. Pathogens related to infectious diseases are often maintained within wildlife populations and can spread to livestock and humans. In this study, we explored the fecal microbiome of coyotes and wild hogs in the Texas panhandle using polymerase chain reactions and 16S sequencing methods. The fecal microbiota of coyotes was dominated by members of the phyla Bacteroidetes, Firmicutes, and Proteobacteria. At the genus taxonomic level, Odoribacter, Allobaculum, Coprobacillus, and Alloprevotella were the dominant genera of the core fecal microbiota of coyotes. While for wild hogs, the fecal microbiota was dominated by bacterial members of the phyla Bacteroidetes, Spirochaetes, Firmicutes, and Proteobacteria. Five genera, Treponema, Prevotella, Alloprevotella, Vampirovibrio, and Sphaerochaeta, constitute the most abundant genera of the core microbiota of wild hogs in this study. Functional profile of the microbiota of coyotes and wild hogs identified 13 and 17 human-related diseases that were statistically associated with the fecal microbiota, respectively (p < 0.05). Our study is a unique investigation of the microbiota using free-living wildlife in the Texas Panhandle and contributes to awareness of the role played by gastrointestinal microbiota of wild canids and hogs in infectious disease reservoir and transmission risk. This report will contribute to the lacking information on coyote and wild hog microbial communities by providing insights into their composition and ecology which may likely be different from those of captive species or domesticated animals. This study will contribute to baseline knowledge for future studies on wildlife gut microbiomes.
Collapse
Affiliation(s)
- Babafela Awosile
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Chiquito Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Md Kaisar Rahman
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Ian Daniel
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - SaraBeth Boggan
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Ashley Steuer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Jason Fritzler
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
20
|
Park MG, Cho S, Oh MM. Menopausal Changes in the Microbiome-A Review Focused on the Genitourinary Microbiome. Diagnostics (Basel) 2023; 13:diagnostics13061193. [PMID: 36980501 PMCID: PMC10047399 DOI: 10.3390/diagnostics13061193] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
A balanced interaction between the host and its microbiome is crucial to health. Research regarding the significance of the gut and vaginal microbiomes in female health is substantial. However, less data regarding the urinary microbiome are available. Interactions between the gut, vaginal, and urinary microbiomes are also currently being researched. Hormone-induced dysbiosis after menopause is believed to have effects on physical changes and health consequences. Postmenopausal changes in the gut microbiome are associated with increased short-chain fatty acids and hydrogen sulfide levels. Increased vaginal pH caused by reduced estrogen alters the vaginal microbiome, resulting in reduced levels of Lactobacillus. Such changes influence the vaginal structure and functions, contributing to the onset of genitourinary syndrome of menopause. A dysbiosis of the urinary microbiome is associated with urgency and urinary incontinence and also related to interstitial cystitis/bladder pain syndrome and neuropathic bladder. As these diseases commonly affect postmenopausal women, hormone-induced changes in the microbiome may play a role. Menopause increases the alpha diversity of the urinary microbiome and lowers the percentage of Lactobacillus in urine, and such changes precede recurrent cystitis. More research regarding the effects of changes in the urinary microbiome due to menopause on urinary tract diseases is needed.
Collapse
Affiliation(s)
- Min Gu Park
- Department of Urology, Inje University Seoul Paik Hospital, 9 Mareunnae-ro, Jung-gu, Seoul 04551, Republic of Korea
| | - Seok Cho
- Department of Urology, Inje University Ilsan Paik Hospital, 170 Juhwa-ro, Ilsanseo-gu, Goyang-si 10380, Republic of Korea
| | - Mi Mi Oh
- Department of Urology, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| |
Collapse
|
21
|
He XY, Zhu YX, Jiang XQ, Zhu FR, Luo YJ, Qiu YY, Huang ZR, Liu B, Zeng F. Probiotics-Fermented Grifola frondosa Total Active Components: Better Antioxidation and Microflora Regulation for Alleviating Alcoholic Liver Damage in Mice. Int J Mol Sci 2023; 24:ijms24021406. [PMID: 36674921 PMCID: PMC9862899 DOI: 10.3390/ijms24021406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Alcoholic liver damage is caused by long-term drinking, and it further develops into alcoholic liver diseases. In this study, we prepared a probiotic fermentation product of Grifola frondosa total active components (PFGF) by fermentation with Lactobacillus acidophilus, Lactobacillus rhamnosus, and Pediococcus acidilactici. After fermentation, the total sugar and protein content in the PFGF significantly decreased, while the lactic acid level and antioxidant activity of the PFGF increased. Afterward, we investigated the alleviating effect of PFGF on alcoholic liver injury in alcohol-fed mice. The results showed that the PFGF intervention reduced the necrosis of the liver cells, attenuated the inflammation of the liver and intestines, restored the liver function, increased the antioxidant factors of the liver, and maintained the cecum tissue barrier. Additionally, the results of the 16S rRNA sequencing analysis indicated that the PFGF intervention increased the relative abundance of beneficial bacteria, such as Lactobacillus, Ruminococcaceae, Parabacteroids, Parasutterella, and Alistipes, to attenuate intestinal inflammation. These results demonstrate that PFGF can potentially alleviate alcoholic liver damage by restoring the intestinal barrier and regulating the intestinal microflora.
Collapse
Affiliation(s)
- Xiao-Yu He
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Yu-Xian Zhu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao-Qin Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu-Rong Zhu
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Yi-Juan Luo
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Yu-Yang Qiu
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Zi-Rui Huang
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (B.L.); (F.Z.)
| | - Feng Zeng
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Centre of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (B.L.); (F.Z.)
| |
Collapse
|
22
|
Chew W, Lim YP, Lim WS, Chambers ES, Frost G, Wong SH, Ali Y. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Front Med (Lausanne) 2023; 9:1065365. [PMID: 36698827 PMCID: PMC9868714 DOI: 10.3389/fmed.2022.1065365] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Our gastrointestinal system functions to digest and absorb ingested food, but it is also home to trillions of microbes that change across time, nutrition, lifestyle, and disease conditions. Largely commensals, these microbes are gaining prominence with regards to how they collectively affect the function of important metabolic organs, from the adipose tissues to the endocrine pancreas to the skeletal muscle. Muscle, as the biggest utilizer of ingested glucose and an important reservoir of body proteins, is intricately linked with homeostasis, and with important anabolic and catabolic functions, respectively. Herein, we provide a brief overview of how gut microbiota may influence muscle health and how various microbes may in turn be altered during certain muscle disease states. Specifically, we discuss recent experimental and clinical evidence in support for a role of gut-muscle crosstalk and include suggested underpinning molecular mechanisms that facilitate this crosstalk in health and diseased conditions. We end with a brief perspective on how exercise and pharmacological interventions may interface with the gut-muscle axis to improve muscle mass and function.
Collapse
Affiliation(s)
- Weixuan Chew
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yen Peng Lim
- Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore,Department of Nutrition and Dietetics, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Wee Shiong Lim
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore
| | - Edward S. Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Sunny Hei Wong
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Yusuf Ali
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Singapore General Hospital, Singapore Eye Research Institute (SERI), Singapore, Singapore,Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, Singapore,*Correspondence: Yusuf Ali ✉
| |
Collapse
|
23
|
Cao C, Wang L, Ai C, Gong G, Wang Z, Huang L, Song S, Zhu B. Impact of Lycium barbarum arabinogalactan on the fecal metabolome in a DSS-induced chronic colitis mouse model. Food Funct 2022; 13:8703-8716. [PMID: 35912853 DOI: 10.1039/d2fo01283a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) is often accompanied by the dysbiosis of gut microbiota and metabolism. Our previous study indicated that arabinogalactan from Lycium barbarum (LBP-3) could markedly attenuate the symptoms of chronic UC in mice by modulating the structure of gut microbiota. This study explored the impact of LBP-3 on the fecal metabolomic profiling of the same cohort of mice by HPLC-TripleTOF/MS. Untargeted metabolomic analyses indicated that supplementation with LBP-3 markedly reversed 18 of the 48 differential metabolites (mainly belonging to amino acids and organic acids) disturbed by DSS. Targeted metabolomics revealed that the lower levels of tryptophan, lysine, diiodothyronine, kynurenine, and betaine and higher levels of phenylalanine, leucine, glutamine, isoleucine, homoserine, (S)-2-hydroxyglutarate, 2-isopropylmalic acid, ascorbic acid, gluconic acid, and taurine, which were caused by DSS induction, were reversed by LBP-3 treatment. In addition, pathway analysis showed that the pentose phosphate pathway, phenylalanine metabolism, ascorbate and aldarate metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis were strongly affected by LBP-3. More importantly, the above amino acids, organic acids, and metabolic pathways changed by LBP-3 were correlated with the abundance of gut microbiota such as Turicibacter, Lactobacillus, Parasutterella, Odoribacter, Veillonella, Faecalibacterium, and Ruminococcaceae. This study advances our understanding of the interaction between the microbiome and metabolomics in DSS-induced chronic colitis after LBP-3 treatment.
Collapse
Affiliation(s)
- Cui Cao
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China. .,National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China.,Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, P. R. China.
| | - Linlin Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China. .,National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chunqing Ai
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China. .,National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, P. R. China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, P. R. China.
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, P. R. China.
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China. .,National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Beiwei Zhu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China. .,National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
24
|
Systematic Review and Meta-analysis: Changes of Gut Microbiota before and after Menopause. DISEASE MARKERS 2022; 2022:3767373. [PMID: 35923245 PMCID: PMC9343210 DOI: 10.1155/2022/3767373] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022]
Abstract
Objective. To systematically evaluate the differences in intestinal flora before and after menopause. To provide a possible mechanism for perimenopausal syndrome and provide a basis for probiotics as adjuvant therapy. Methods. MEDLINE, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), CNKI, Wanfang, and VIP databases were searched. The included studies were case-control studies. Results. Three case-control studies were included, with a total of 156 people. At the phylum level, there were no differences between premenopausal and postmenopausal women. At the genus level, the relative abundances of A. odoratum and B. cholerae were higher in postmenopausal women than in premenopausal women, with no differences among other genera. The Shannon diversity index increased after menopause, but no differences were found. Only one study found a positive association of estradiol with Gammaproteobacteria and Myxococcales and a negative association with Prevotellaceae. Conclusions. On the basis of previous studies, it was found that there was no significant difference at the phylum level between postmenopausal women and premenopausal women, but Odoribacter and Bilophila increased at the genus level in postmenopausal women. The class of Gammaproteobacteria may be positively correlated with estradiol. Limited by the number of included studies, more high-quality clinical studies are needed for validation.
Collapse
|
25
|
Hu M, Zhang X, Li J, Chen L, He X, Sui T. Fucosyltransferase 2: A Genetic Risk Factor for Intestinal Diseases. Front Microbiol 2022; 13:940196. [PMID: 35923409 PMCID: PMC9339987 DOI: 10.3389/fmicb.2022.940196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022] Open
Abstract
The fucosyltransferase 2 gene (FUT2) mediates the synthesis of histoblood group antigens (HBGA) that occur in vivo from multiple organs, particularly on the surface of intestinal epithelial cells and body fluids. To date, many studies have demonstrated that the interaction of HBGA with the host microbiota is the cause of pathogenesis of intestinal diseases, making FUT2 non-secretor a risk factor for inflammatory bowel disease (IBD) due to the lack of HBGA. As HBGA also acts as an attachment site for norovirus (NoV) and rotavirus (RV), the non-secretor becomes a protective factor for both viral infections. In addition, the interaction of norovirus and rotavirus with symbiotic bacteria has been found to play an important role in regulating enteroviral infection in IBD. Given the current incomplete understanding of the complex phenomenon and the underlying pathogenesis of intestinal diseases such as IBD, it has recently been hypothesized that the FUT2 gene regulates intestinal bacteria through attachment sites, may help to unravel the role of FUT2 and intestinal flora in the mechanism of intestinal diseases in the future, and provide new ideas for the prevention and treatment of intestinal diseases through more in-depth studies.
Collapse
|
26
|
Thu Thuy Nguyen V, Endres K. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer's disease. Adv Drug Deliv Rev 2022; 188:114418. [PMID: 35787390 DOI: 10.1016/j.addr.2022.114418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota came into focus within the last years regarding being associated with or even underlying neuropsychiatric diseases. The existence of the gut-brain-axis makes it highly plausible that bacterial metabolites or toxins that escape the intestinal environment or approach the vagal connections towards the brain, exert devastating effects on the central nervous system. In Alzheimer's disease (AD), growing evidence for dysbiotic changes in the gut microbiota is obtained, even though the question for cause or consequence remains open. Nevertheless, using modulation of microbiota to address inflammatory processes seems an attractive therapeutic approach as certain microbial products such as short chain fatty acids have been proven to exert beneficial cognitive effects. In this review, we summarize, contemporary knowledge on neuroinflammation and inflammatory processes within the brain and even more detailed in the gut in AD, try to conclude whom to target regarding human microbial commensals and report on current interventional trials.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany.
| |
Collapse
|
27
|
The Role of the Gut Microbiota in the Effects of Early-Life Stress and Dietary Fatty Acids on Later-Life Central and Metabolic Outcomes in Mice. mSystems 2022; 7:e0018022. [PMID: 35695433 PMCID: PMC9238388 DOI: 10.1128/msystems.00180-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Early-life stress (ELS) leads to increased vulnerability for mental and metabolic disorders. We have previously shown that a low dietary ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Due to the importance of the gut microbiota as a determinant of long-term health, we here study the impact of ELS and dietary PUFAs on the gut microbiota and how this relates to the previously described cognitive, metabolic, and fatty acid profiles. Male mice were exposed to ELS via the limited bedding and nesting paradigm (postnatal day (P)2 to P9 and to an early diet (P2 to P42) with an either high (15) or low (1) ω-6 linoleic acid to ω-3 alpha-linolenic acid ratio. 16S rRNA was sequenced and analyzed from fecal samples at P21, P42, and P180. Age impacted α- and β-diversity. ELS and diet together predicted variance in microbiota composition and affected the relative abundance of bacterial groups at several taxonomic levels in the short and long term. For example, age increased the abundance of the phyla Bacteroidetes, while it decreased Actinobacteria and Verrucomicrobia; ELS reduced the genera RC9 gut group and Rikenella, and the low ω-6/ω-3 diet reduced the abundance of the Firmicutes Erysipelotrichia. At P42, species abundance correlated with body fat mass and circulating leptin (e.g., Bacteroidetes and Proteobacteria taxa) and fatty acid profiles (e.g., Firmicutes taxa). This study gives novel insights into the impact of age, ELS, and dietary PUFAs on microbiota composition, providing potential targets for noninvasive (nutritional) modulation of ELS-induced deficits. IMPORTANCE Early-life stress (ELS) leads to increased vulnerability to develop mental and metabolic disorders; however, the biological mechanisms leading to such programming are not fully clear. Increased attention has been given to the importance of the gut microbiota as a determinant of long-term health and as a potential target for noninvasive nutritional strategies to protect against the negative impact of ELS. Here, we give novel insights into the complex interaction between ELS, early dietary ω-3 availability, and the gut microbiota across ages and provide new potential targets for (nutritional) modulation of the long-term effects of the early-life environment via the microbiota.
Collapse
|
28
|
Crosstalk between gut microbiota and lung inflammation in murine toxicity models of respiratory exposure or co-exposure to carbon nanotube particles and cigarette smoke extract. Toxicol Appl Pharmacol 2022; 447:116066. [PMID: 35595072 DOI: 10.1016/j.taap.2022.116066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022]
Abstract
Carbon nanotubes (CNTs) are emerging environmental and occupational toxicants known to induce lung immunotoxicity. While the underlying mechanisms are evolving, it is yet unknown whether inhaled CNTs would cause abnormalities in gut microbiota (dysbiosis), and if such microbiota alteration plays a role in the modulation of CNT-induced lung immunotoxicity. It is also unknown whether co-exposure to tobacco smoke will modulate CNT effects. We compared the effects of lung exposure to multi-wall CNT, cigarette smoke extract (CSE), and their combination (CNT + CSE) in a 4-week chronic toxicity mouse model. The exposures induced differential perturbations in gut microbiome as evidenced by altered microbial α- and β- diversity, indicating a lung-to-gut communication. The gut dysbiosis due to CNTs, unlike CSE, was characterized by an increase in Firmicutes/Bacteroidetes ratio typically associated with proinflammatory condition. Notably, while all three exposures reduced Proteobacteria, the CNT exposure and co-exposure induced appearance of Tenericutes and Cyanobacteria, respectively, implicating them as potential biomarkers of exposure. CNTs differentially induced certain lung proinflammatory mediators (TNF-α, IL-1β, CCL2, CXCL5) whereas CNTs and CSE commonly induced other mediators (CXCL1 and TGF-β). The co-exposure showed either a component-dominant effect or a summative effect for both dysbiosis and lung inflammation. Depletion of gut microbiota attenuated both the differentially-induced and commonly-induced (TGF-β) lung inflammatory mediators as well as granulomas implying gut-to-lung communication and a modulatory role of gut dysbiosis. Taken together, the results demonstrated gut dysbiosis as a systemic effect of inhaled CNTs and provided the first evidence of a bidirectional gut-lung crosstalk modulating CNT lung immunotoxicity.
Collapse
|
29
|
Yan J, Chen Q, Tian L, Li K, Lai W, Bian L, Han J, Jia R, Liu X, Xi Z. Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota-host co-metabolites and intestinal barrier damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153279. [PMID: 35074372 DOI: 10.1016/j.scitotenv.2022.153279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 05/28/2023]
Abstract
The wide use of TiO2 particles in food and the high exposure risk to children have prompted research into the health risks of TiO2. We used the microbiome and targeted metabolomics to explore the potential mechanism of intestinal toxicity of foodborne TiO2 micro-/nanoparticles after oral exposure for 28 days in juvenile mice. Results showed that the gut microbiota-including the abundance of Bacteroides, Bifidobacterium, Lactobacillus, and Prevotella-changed dynamically during exposure. The organic inflammatory response was activated, and lipopolysaccharide levels increased. Intestinal toxicity manifested as increased mucosal permeability, impaired intestinal barrier, immune damage, and pathological changes. The expression of antimicrobial peptides, occludin, and ZO-1 significantly reduced, while that of JNK2 and Src/pSrc increased. Compared with micro-TiO2 particles, the nano-TiO2 particles had strong toxicity. Fecal microbiota transplant confirmed the key role of gut microbiota in intestinal toxicity. The levels of gut microbiota-host co-metabolites, including pyroglutamic acid, L-glutamic acid, phenylacetic acid, and 3-hydroxyphenylacetic acid, changed significantly. Significant changes were observed in the glutathione and propanoate metabolic pathways. There was a significant correlation between the changes in gut microbiota, metabolites, and intestinal cytokine levels. These, together with the intestinal barrier damage signaling pathway, constitute the network mechanism of the intestinal toxicity of TiO2 particles.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Jie Han
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Rui Jia
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| |
Collapse
|
30
|
Dynamics of Changes in the Gut Microbiota of Healthy Mice Fed with Lactic Acid Bacteria and Bifidobacteria. Microorganisms 2022; 10:microorganisms10051020. [PMID: 35630460 PMCID: PMC9144108 DOI: 10.3390/microorganisms10051020] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Probiotics are living microorganisms that provide numerous health benefits for their host. Probiotics have various effects on the body; for example, they change gut microbiota, improve the integrity of the epithelial barrier and have anti-inflammatory effects. The use of probiotic supplements that are based on lactic acid bacteria and bifidobacteria is one of the approaches that are used to balance gut microflora. In our study, we evaluated the effects of supplements, which were based on members of the Lactobacillaceae family and bifidobacteria, on the gut microbiome of healthy mice using the 16S rRNA sequencing method. The data that were obtained demonstrated that when mice received the probiotic supplements, statistically significant changes occurred in the composition of the microbiome at the phylum level, which were characterized by an increase in the number of Actinobacteriota, Bacteroidota, Verrucomicrobia and Proteobacteria, all of which have potentially positive effects on health. At the generic level, a decrease in the abundance of members of the Nocardioides, Helicobacter and Mucispirillum genus, which are involved in inflammatory processes, was observed for the group of mice that was fed with lactic acid bacteria. For the group of mice that was fed with bifidobacteria, a decrease was seen in the number of members of the Tyzzerella and Akkermansia genus. The results of our study contribute to the understanding of changes in the gut microbiota of healthy mice under the influence of probiotics. It was shown that probiotics that are based on members of the Lactobacillaceae family have a more positive effect on the gut microbiome than probiotics that are based on bifidobacteria.
Collapse
|
31
|
Leeuwendaal NK, Stanton C, O’Toole PW, Beresford TP. Fermented Foods, Health and the Gut Microbiome. Nutrients 2022; 14:nu14071527. [PMID: 35406140 PMCID: PMC9003261 DOI: 10.3390/nu14071527] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Fermented foods have been a part of human diet for almost 10,000 years, and their level of diversity in the 21st century is substantial. The health benefits of fermented foods have been intensively investigated; identification of bioactive peptides and microbial metabolites in fermented foods that can positively affect human health has consolidated this interest. Each fermented food typically hosts a distinct population of microorganisms. Once ingested, nutrients and microorganisms from fermented foods may survive to interact with the gut microbiome, which can now be resolved at the species and strain level by metagenomics. Transient or long-term colonization of the gut by fermented food strains or impacts of fermented foods on indigenous gut microbes can therefore be determined. This review considers the primary food fermentation pathways and microorganisms involved, the potential health benefits, and the ability of these foodstuffs to impact the gut microbiome once ingested either through compounds produced during the fermentation process or through interactions with microorganisms from the fermented food that are capable of surviving in the gastro-intestinal transit. This review clearly shows that fermented foods can affect the gut microbiome in both the short and long term, and should be considered an important element of the human diet.
Collapse
Affiliation(s)
| | - Catherine Stanton
- Teagasc Food Research Centre, P61 C996 Cork, Ireland; (N.K.L.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
| | - Paul W. O’Toole
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Tom P. Beresford
- Teagasc Food Research Centre, P61 C996 Cork, Ireland; (N.K.L.); (C.S.)
- Correspondence:
| |
Collapse
|
32
|
Xu C, Wei F, Yang X, Feng Y, Liu D, Hu Y. Lactobacillus salivarius CML352 Isolated from Chinese Local Breed Chicken Modulates the Gut Microbiota and Improves Intestinal Health and Egg Quality in Late-Phase Laying Hens. Microorganisms 2022; 10:microorganisms10040726. [PMID: 35456777 PMCID: PMC9029475 DOI: 10.3390/microorganisms10040726] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lactobacillus strains with fine probiotic properties are continuously needed in the laying hen industry to improve the animals’ gut health and production performance. In this study, we isolated 57 Lactobacillus strains from the gut microbiota of 17 different chicken breeds in China. We characterized the probiotic features of these isolates, and evaluated the effects of a selected strain, Lactobacillus salivarius CML352, on the production performance and gut health of the late-phase laying hens. The results showed that the isolates varied much in probiotic properties, among which L. salivarius CML352 displayed high acid and bile salt tolerance, high hydrophobicity, auto-aggregation, and antibacterial activities. Whole genome sequencing analysis showed that CML352 was closely related to a strain isolated from human fecal samples, but had different functional potentials. Dietary supplementary of L. salivarius CML352 significantly reduced the Firmicutes to Bacteroidetes ratio, increased the expression of Muc-2, and decreased the expression of MyD88, IFN-γ, and TLR-4. Furthermore, strain CML352 reduced the birds’ abdominal fat deposition, and improved egg quality. Taken together, this study indicated that the newly isolated L. salivarius strain might be a worthy probiotic with positive impacts on the intestinal health and production performance of late-phase laying hens.
Collapse
|
33
|
Dong Y, Wang P, Jiao J, Yang X, Chen M, Li J. Antihypertensive Therapy by ACEI/ARB Is Associated With Intestinal Flora Alterations and Metabolomic Profiles in Hypertensive Patients. Front Cell Dev Biol 2022; 10:861829. [PMID: 35399511 PMCID: PMC8986158 DOI: 10.3389/fcell.2022.861829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ACEI/ARB) are the first-line drugs for the treatment of essential hypertension (HTN), one of the most important risk factors for cardiovascular and cerebrovascular diseases. Intestinal flora and microbial metabolites have been demonstrated to play important roles in blood pressure (BP) regulation and HTN development. However, it remains elusive that intestinal bacteria and metabolites are associated with the protective effects of ACEI/ARB anti-hypertensive drugs against HTN. In this study, we evaluated the effect of ACEI/ARB on gut microbiome and metabolites in patients suffering from HTN. We performed 16S rRNA sequencing and fecal metabolomic analysis of 36 HTN patients placed on ACEI/ARB therapy and 19 newly diagnosed HTN patients with no history of anti-hypertensive treatment. Patients under medication treatment were further classified into well-controlled (n = 24) and poor-controlled (n = 12) groups according to their BP levels. The ACEI/ARB improved the intestinal microbiome of the HTN patients by reducing potentially pathogenic bacteria such as Enterobacter and Klebsiella and increasing beneficial bacteria such as Odoribacter. Moreover, ACEI/ARB therapy was correlated with significant metabolomic changes in the HTN patients, including progressively enhanced inositol from poor-controlled to well-controlled groups. The profiles of gut bacteria were linked to the production of metabolites, and inositol was negatively correlated with Klebsiella, Enterobacter, and Proteobacteria. Our study suggests that ACEI/ARB modulates gut microbial composition and functions and alters microbial metabolites in HTN patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Li
- *Correspondence: Jing Li, ; Mulei Chen,
| |
Collapse
|
34
|
Li G, Wu X, Gao X, Lin R, Chen L, Sun M, Jia J, Liu Z, Fang L, Wu W. Long-term exclusive enteral nutrition remodels gut microbiota and alleviates TNBS-induced colitis in mice. Food Funct 2022; 13:1725-1740. [PMID: 35085377 DOI: 10.1039/d1fo03579g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exclusive enteral nutrition (EEN) provides an effective strategy for the induction of clinical remission in pediatric Crohn’s disease. However, the feasibility of long-term EEN in management of disease and the...
Collapse
Affiliation(s)
- Gengfeng Li
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchang Road, Shanghai 200072, China.
| | - Xiaohan Wu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchang Road, Shanghai 200072, China.
| | - Xiang Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchang Road, Shanghai 200072, China.
| | - Ritian Lin
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchang Road, Shanghai 200072, China.
| | - Liang Chen
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchang Road, Shanghai 200072, China.
| | - Mingming Sun
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchang Road, Shanghai 200072, China.
| | - Junwan Jia
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchang Road, Shanghai 200072, China.
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchang Road, Shanghai 200072, China.
| | - Leilei Fang
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchang Road, Shanghai 200072, China.
| | - Wei Wu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
35
|
Wang G, Song J, Huang Y, Li X, Wang H, Zhang Y, Suo H. Lactobacillus plantarum SHY130 isolated from yak yogurt attenuates hyperglycemia in C57BL/6J mice by regulating the enteroinsular axis. Food Funct 2021; 13:675-687. [PMID: 34935020 DOI: 10.1039/d1fo02387j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes, one of the most serious and common chronic metabolic diseases affecting people worldwide in the 21st century, has become a major problem that needs to be addressed urgently. This study was designed to elucidate the anti-diabetic effect of yak yogurt-derived Lactobacillus (L.) plantarum SHY130 on C57BL/6J mice fed high-fat diet and streptozotocin (HFD/STZ), and the potential regulatory mechanisms involved. Mice were divided into 3 groups: normal control, diabetes, and diabetes treated with L. plantarum SHY130 (SHY130). Treatment with L. plantarum SHY130 had a regulatory effect on blood glucose and clearly ameliorated insulin resistance in T2DM mice. L. plantarum SHY130 inhibited the reduction in β-cell mass and α-cell proliferation in the pancreas and increased the expression of the short-chain fatty acid (SCFA) receptors GPR43 and GPR41 in the colon of T2DM mice. Furthermore, L. plantarum SHY130 treatment readjusted intestinal flora structure, enhanced the abundance of SCFA-producing bacteria, such as Faecalibaculum, Odoribacter, Alistipes, and increased the levels of SCFAs in diabetic mice. In summary, L. plantarum SHY130 ameliorated hyperglycemia in HFD/STZ-induced diabetic mice by regulating the enteroinsular axis.
Collapse
Affiliation(s)
- Guangqi Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Xueqiong Li
- Chongqing Agricultural Product Quality and Safety Center, Chongqing 400020, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
36
|
Gut Bacteria and Neuropsychiatric Disorders. Microorganisms 2021; 9:microorganisms9122583. [PMID: 34946184 PMCID: PMC8708963 DOI: 10.3390/microorganisms9122583] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteria in the gut microbiome plays an intrinsic part in immune activation, intestinal permeability, enteric reflex, and entero-endocrine signaling. Apart from physiological and structural changes brought about by gut bacteria on entero-epithelial cells and mucus layers, a vast number of signals generated in the gastro-intestinal tract (GIT) reaches the brain via the vagus nerve. Research on the gut–brain axis (GBA) has mostly been devoted to digestive functions and satiety. Less papers have been published on the role gut microbiota play in mood, cognitive behavior and neuropsychiatric disorders such as autism, depression and schizophrenia. Whether we will be able to fully decipher the connection between gut microbiota and mental health is debatable, especially since the gut microbiome is diverse, everchanging and highly responsive to external stimuli. Nevertheless, the more we discover about the gut microbiome and the more we learn about the GBA, the greater the chance of developing novel therapeutics, probiotics and psychobiotics to treat gastro-intestinal disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), but also improve cognitive functions and prevent or treat mental disorders. In this review we focus on the influence gut bacteria and their metabolites have on neuropsychiatric disorders.
Collapse
|
37
|
Sheng S, Chen J, Zhang Y, Qin Q, Li W, Yan S, Wang Y, Li T, Gao X, Tang L, Li A, Ding S. Structural and Functional Alterations of Gut Microbiota in Males With Hyperuricemia and High Levels of Liver Enzymes. Front Med (Lausanne) 2021; 8:779994. [PMID: 34869502 PMCID: PMC8640097 DOI: 10.3389/fmed.2021.779994] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 02/04/2023] Open
Abstract
Objective: To investigate the correlation between the structure and function alterations of gut microbiota and biochemical indicators in males with hyperuricemia (HUA) and high levels of liver enzymes, in order to provide new evidences and therapeutic targets for the clinical diagnosis and treatment of HUA. Methods: A total of 69 patients with HUA (HUA group) and 118 healthy controls were enrolled in this study. Their age, height, waist circumference, weight, and pressure were measured. The clinical parameters such as fasting plasma glucose (FBG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum uric acid (SUA), serum creatinine (Scr), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), white blood cell (WBC), platelet (PLT), and absolute value of neutrophils (NEUT) were examined. We used whole-genome shotgun sequencing technology and HUMAnN2 MetaCyc pathway database to detect the composition and pathways of the gut microbiota. The main statistical methods were student's t test, chi-square tests, and Wilcoxon rank sum test. The correlations among bacterial diversity, microbial pathways, and biochemical indicators were evaluated by the R function "cor.test" with spearman method. Results: The gut bacterial diversity in HUA group reduced significantly and the community of the microbiota was of significant difference between the two groups. The pathways that can produce 5-aminoimidazole ribonucleotide (PWY-6122, PWY-6277, and PWY-6121), aromatic amino acids, and chorismate (COMPLETE-ARO-PWY, ARO-PWY, and PWY-6163) were enriched in the HUA group; while the pathways that can produce short-chain fatty acids (SCFAs, such as CENTFERM-PWY and PWY-6590) and the gut microbiotas that can produce SCFAs (Roseburia hominis, Odoribacter splanchnicus, Ruminococcus callidus, Lachnospiraceae bacterium 3_1_46FAA, Bacteroides uniformis, Butyricimonas synergistica) and equol (Adlercreutzia equolifaciens) were enriched in healthy controls. Conclusion: The structure and function of the gut microbiota in males with HUA and high levels of liver enzymes have altered apparently. In-depth study of related mechanisms may provide new ideas for the treatment of HUA.
Collapse
Affiliation(s)
- Shifeng Sheng
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuheng Zhang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Qin
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weikang Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Yan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Youxiang Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tiantian Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Gao
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Marfil-Sánchez A, Seelbinder B, Ni Y, Varga J, Berta J, Hollosi V, Dome B, Megyesfalvi Z, Dulka E, Galffy G, Weiss GJ, Panagiotou G, Lohinai Z. Gut microbiome functionality might be associated with exercise tolerance and recurrence of resected early-stage lung cancer patients. PLoS One 2021; 16:e0259898. [PMID: 34793492 PMCID: PMC8601557 DOI: 10.1371/journal.pone.0259898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Impaired exercise tolerance and lung function is a marker for increased mortality in lung cancer patients undergoing lung resection surgery. Recent data suggest that the gut-lung axis regulates systemic metabolic and immune functions, and microbiota might alter exercise tolerance. Here, we aimed to evaluate the associations between gut microbiota and outcomes in lung cancer patients who underwent lung resection surgery. We analysed stool samples, from 15 early-stage lung cancer patients, collected before and after surgical resection using shotgun metagenomic and Internal Transcribed Spacer (ITS) sequencing. We analysed microbiome and mycobiome associations with post-surgery lung function and cardiopulmonary exercise testing (CPET) to assess the maximum level of work achieved. There was a significant difference, between pre- and post-surgical resection samples, in microbial community functional profiles and several species from Alistipes and Bacteroides genus, associated with the production of SCFAs, increased significantly in abundance. Interestingly, an increase in VO2 coincides with an increase in certain species and the "GABA shunt" pathway, suggesting that treatment outcome might improve by enriching butyrate-producing species. Here, we revealed associations between specific gut bacteria, fungi, and their metabolic pathways with the recovery of lung function and exercise capacity.
Collapse
Affiliation(s)
- Andrea Marfil-Sánchez
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Bastian Seelbinder
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Yueqiong Ni
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Janos Varga
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Berta
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Virag Hollosi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | | | - Glen J. Weiss
- MiRanostics Consulting, Oro Valley, Arizona, United States of America
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- * E-mail:
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
39
|
Oleuropein Ameliorates Advanced Stage of Type 2 Diabetes in db/ db Mice by Regulating Gut Microbiota. Nutrients 2021; 13:nu13072131. [PMID: 34206641 PMCID: PMC8308455 DOI: 10.3390/nu13072131] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of type 2 diabetes. However, the efficacy of OP on the advanced stage of type 2 diabetes has not been investigated, and the relationship between OP and intestinal flora has not been studied. Therefore, in this study, to explore the relieving effects of OP intake on the advanced stage of type 2 diabetes and the regulatory effects of OP on intestinal microbes, diabetic db/db mice (17-week-old) were treated with OP at the dose of 200 mg/kg for 15 weeks. We found that OP has a significant effect in decreasing fasting blood glucose levels, improving glucose tolerance, lowering the homeostasis model assessment–insulin resistance index, restoring histopathological features of tissues, and promoting hepatic protein kinase B activation in db/db mice. Notably, OP modulates gut microbiota at phylum level, increases the relative abundance of Verrucomicrobia and Deferribacteres, and decreases the relative abundance of Bacteroidetes. OP treatment increases the relative abundance of Akkermansia, as well as decreases the relative abundance of Prevotella, Odoribacter, Ruminococcus, and Parabacteroides at genus level. In conclusion, OP may ameliorate the advanced stage of type 2 diabetes through modulating the composition and function of gut microbiota. Our findings provide a promising therapeutic approach for the treatment of advanced stage type 2 diabetes.
Collapse
|
40
|
C Campbell B, Gong S, Greenfield P, J Midgley D, T Paulsen I, C George S. Aromatic compound-degrading taxa in an anoxic coal seam microbiome from the Surat Basin, Australia. FEMS Microbiol Ecol 2021; 97:6206826. [PMID: 33791788 DOI: 10.1093/femsec/fiab053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Methane is an important energy resource internationally, and a large proportion of this methane is produced by microbial communities living in coal seams. Despite the value of this resource for human energy security, our understanding of the metabolic roles played by specific taxa during the biodegradation of coal to methane in situ is quite limited. In order to develop a greater understanding of microbial catabolism on coal, a community from a coal seam in the Surat Basin, Australia, was incubated on 10 different aromatic organic compounds: coronene, benzo[a]pyrene, pyrene, phenanthrene, naphthalene, ethylbenzene, phenol, benzoate, vanillate and syringate. Each of these aromatic compounds either occurs in coal or is a possible product of the coal biodegradation process. 16S rRNA sequencing revealed substantial changes to each community in response to each aromatic carbon substrate provided. Abundant taxa from these substrate-specific communities were identified and their probable catabolic roles proposed based on literature searches of related taxa. This study is the first to link specific coal seam taxa to aromatic substrates available in coal seam environments. Two conceptual models of the putative degradation pathways and key taxa responsible are proposed.
Collapse
Affiliation(s)
- Bronwyn C Campbell
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia.,Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Se Gong
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Paul Greenfield
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - David J Midgley
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Simon C George
- Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
41
|
Axarlis K, Daskalaki MG, Michailidou S, Androulaki N, Tsoureki A, Mouchtaropoulou E, Kolliniati O, Lapi I, Dermitzaki E, Venihaki M, Kousoulaki K, Argiriou A, Marsni ZE, Tsatsanis C. Diet Supplementation with Fish-Derived Extracts Suppresses Diabetes and Modulates Intestinal Microbiome in a Murine Model of Diet-Induced Obesity. Mar Drugs 2021; 19:268. [PMID: 34064922 PMCID: PMC8151984 DOI: 10.3390/md19050268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome-related diseases affect millions of people worldwide. It is well established that changes in nutritional habits and lifestyle can improve or prevent metabolic-related pathologies such as type-2 diabetes and obesity. Previous reports have shown that nutritional supplements have the capacity to limit glucose intolerance and suppress diabetes development. In this study, we investigated the effect of dietary supplementation with fish-derived extracts on obesity and type 2 diabetes and their impact on gut microbial composition. We showed that nutritional supplements containing Fish Complex (FC), Fish Complex combined with Cod Powder (FC + CP), or Cod Powder combined with Collagen (CP + C) improved glucose intolerance, independent of abdominal fat accumulation, in a mouse model of diet-induced obesity and type 2 diabetes. In addition, collagen-containing supplements distinctly modulate the gut microbiome in high-fat induced obesity in mice. Our results suggest that fish-derived supplements suppress diet-induced type 2 diabetes, which may be partly mediated through changes in the gut microbiome. Thus, fish-derived supplements and particularly the ones containing fish collagen have potential beneficial properties as dietary supplements in managing type 2 diabetes and metabolic syndrome via modulation of the gut microbiome.
Collapse
Affiliation(s)
- Konstantinos Axarlis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (K.A.); (M.G.D.); (N.A.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Maria G. Daskalaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (K.A.); (M.G.D.); (N.A.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Sofia Michailidou
- Institute of Applied Biosciences (INAB), CERTH, Thermi, 57001 Thessaloniki, Greece; (S.M.); (A.T.); (E.M.); (A.A.)
| | - Nikolais Androulaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (K.A.); (M.G.D.); (N.A.); (O.K.); (I.L.); (E.D.); (M.V.)
| | - Antiopi Tsoureki
- Institute of Applied Biosciences (INAB), CERTH, Thermi, 57001 Thessaloniki, Greece; (S.M.); (A.T.); (E.M.); (A.A.)
| | - Evangelia Mouchtaropoulou
- Institute of Applied Biosciences (INAB), CERTH, Thermi, 57001 Thessaloniki, Greece; (S.M.); (A.T.); (E.M.); (A.A.)
| | - Ourania Kolliniati
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (K.A.); (M.G.D.); (N.A.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Ioanna Lapi
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (K.A.); (M.G.D.); (N.A.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Eirini Dermitzaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (K.A.); (M.G.D.); (N.A.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Maria Venihaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (K.A.); (M.G.D.); (N.A.); (O.K.); (I.L.); (E.D.); (M.V.)
| | - Katerina Kousoulaki
- Department of Nutrition and Feed Technology, Nofima AS, 5141 Bergen, Norway;
| | - Anagnostis Argiriou
- Institute of Applied Biosciences (INAB), CERTH, Thermi, 57001 Thessaloniki, Greece; (S.M.); (A.T.); (E.M.); (A.A.)
- Department of Food Science and Nutrition, University of the Aegean, Myrina, 81400 Lemnos, Greece
| | | | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (K.A.); (M.G.D.); (N.A.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| |
Collapse
|
42
|
Li W, Sun Y, Dai L, Chen H, Yi B, Niu J, Wang L, Zhang F, Luo J, Wang K, Guo R, Li L, Zou Q, Ma ZS, Miao Y. Ecological and network analyses identify four microbial species with potential significance for the diagnosis/treatment of ulcerative colitis (UC). BMC Microbiol 2021; 21:138. [PMID: 33947329 PMCID: PMC8097971 DOI: 10.1186/s12866-021-02201-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is one of the primary types of inflammatory bowel disease (IBD), the occurrence of which has been increasing worldwide. Although IBD is an intensively studied human microbiome-associated disease, research on Chinese populations remains relatively limited, particularly on the mucosal microbiome. The present study aimed to analyze the changes in the mucosal microbiome associated with UC from the perspectives of medical ecology and complex network analysis. RESULTS In total, 56 mucosal microbiome samples were collected from 28 Chinese UC patients and their healthy family partners, followed by amplicon sequencing. Based on sequencing data, we analyzed species diversity, shared species, and inter-species interactions at the whole community, main phyla, and core/periphery species levels. We identified four opportunistic "pathogens" (i.e., Clostridium tertium, Odoribacter splanchnicus, Ruminococcus gnavus, and Flavonifractor plautii) with potential significance for the diagnosis and treatment of UC, which were inhibited in healthy individuals, but unrestricted in the UC patients. In addition, we also discovered in this study: (i) The positive-to-negative links (P/N) ratio, which measures the balance of species interactions or inhibition effects in microbiome networks, was significantly higher in UC patients, indicating loss of inhibition against potentially opportunistic "pathogens" associated with dysbiosis. (ii) Previous studies have reported conflicting evidence regarding species diversity and composition between UC patients and healthy controls. Here, significant differences were found at the major phylum and core/periphery scales, but not at the whole community level. Thus, we argue that the paradoxical results found in existing studies are due to the scale effect. CONCLUSIONS Our results reveal changes in the ecology and network structure of the gut mucosal microbiome that might be associated with UC, and these changes might provide potential therapeutic mechanisms of UC. The four opportunistic pathogens that were identified in the present study deserve further investigation in future studies.
Collapse
Affiliation(s)
- Wendy Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Lin Dai
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Hongju Chen
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China.,College of Mathematics, Honghe University, Mengzi, Yunnan Province, China
| | - Bin Yi
- College of Mathematics, Honghe University, Mengzi, Yunnan Province, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Lan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Fengrui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Kunhua Wang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Rui Guo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Lianwei Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China.
| |
Collapse
|
43
|
Zhang B, Zhang H, Yu Y, Zhang R, Wu Y, Yue M, Yang C. Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poult Sci 2021; 100:101168. [PMID: 33975039 PMCID: PMC8131733 DOI: 10.1016/j.psj.2021.101168] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the effects of Bacillus coagulans (B. coagulans) as an alternative to antibiotics on growth performance, antioxidant capacity, immunity function and gut health in broilers. A total of 480 one-day-old broilers were randomly divided into 3 treatments with 8 replicates comprising 20 broilers each. The experiment lasted 42 d. Treatments included: basal diet without antibiotics (NCO); basal diet supplemented with 75 mg/kg chlortetracycline (ANT); basal diet supplemented with 5 × 109 CFU/kg B. coagulans(BC). The B. coagulans enhanced body weight (BW) and average daily gain compared with the NCO group (P < 0.05). However, there were no significant differences in average daily feed intake and feed: gain ratio (F: G) among three groups (P > 0.05). The B. coagulans significantly increased catalase, superoxide dismutase, and glutathione peroxidase levels and reduced malondialdehyde levels (P < 0.05). The serum immunoglobulins (IgA, IgM, and IgY) were significantly higher in the BC group when compared to the NCO and ANT groups (P < 0.05). The B. coagulans also markedly reduced serum levels of proinflammatory factors (IL-1β, IL-6, and TNF-α) and enhanced anti-inflammatory factor (IL-10) concentrations compared with control group (P < 0.05). Moreover, compared with the control group, BC significantly inhibited serum xanthine oxidase activity (P < 0.05). The levels of acetic acid, propionic acid, butyrate, isobutyric acid and valerate in BC group were significantly increased on d 42 compared with the NCO and ANT groups (P < 0.05). Furthermore, BC significantly altered cecal microbiota by reducing Desulfovibrio and Parasutterella, and by increasing Alistipes and Odoribacter (P < 0.05, P < 0.05, P < 0.001, P < 0.01, respectively). In conclusion, dietary B. coagulans, when used as an alternative to antibiotics, improved body weight, average daily gain, antioxidant capacity, immunity function and gut health in broilers.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Min Yue
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China.
| |
Collapse
|
44
|
Yang F, Zou Q, Gao B. GutBalance: a server for the human gut microbiome-based disease prediction and biomarker discovery with compositionality addressed. Brief Bioinform 2021; 22:6123951. [PMID: 33515036 DOI: 10.1093/bib/bbaa436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
The compositionality of the microbiome data is well-known but often neglected. The compositional transformation pertains to the supervised learning of microbiome data and is a critical step that decides the performance and reliability of the disease classifiers. We value the excellent performance of the distal discriminative balance analysis (DBA) method, which selects distal balances of pairs and trios of bacteria, in addressing the classification of high-dimensional microbiome data. By applying this method to the species-level abundances of all the disease phenotypes in the GMrepo database, we build a balance-based model repository for the classification of human gut microbiome-related diseases. The model repository supports the prediction of disease risks for new sample(s). More importantly, we highlight the concept of balance-disease associations rather than the conventional microbe-disease associations and develop the human Gut Balance-Disease Association Database (GBDAD). Each predictable balance for each disease model indicates a potential biomarker-disease relationship and can be interpreted as a bacteria ratio positively or negatively correlated with the disease. Furthermore, by linking the balance-disease associations to the evidenced microbe-disease associations in MicroPhenoDB, we surprisingly found that most species-disease associations inferred from the shotgun metagenomic datasets can be validated by external evidence beyond MicroPhenoDB. The balance-based species-disease association inference will accelerate the generation of new microbe-disease association hypotheses in gastrointestinal microecology research and clinical trials. The model repository and the GBDAD database are deployed on the GutBalance server, which supports interactive visualization and systematic interrogation of the disease models, disease-related balances and disease-related species of interest.
Collapse
Affiliation(s)
- Fenglong Yang
- University of Electronic Science and Technology of China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou 571158, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
45
|
Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, Bowers JR, Lemmer D, Engelthaler DM, Eklund KK, Facciotti F, Satokari R. Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro. Front Microbiol 2020; 11:575455. [PMID: 33281770 PMCID: PMC7689251 DOI: 10.3389/fmicb.2020.575455] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Odoribacter splanchnicus, belonging to the order Bacteroidales, is a common, short-chain fatty acid producing member of the human intestinal microbiota. A decreased abundance of Odoribacter has been linked to different microbiota-associated diseases, such as non-alcoholic fatty liver disease, cystic fibrosis and inflammatory bowel disease (IBD). The type strain of O. splanchnicus has been genome-sequenced, but otherwise very little is known about this anaerobic bacterium. The species surfaces in many microbiota studies and, consequently, comprehension on its interactions with the host is needed. In this study, we isolated a novel strain of O. splanchnicus from a healthy fecal donor, identified it by genome sequencing and addressed its adhesive, epithelium reinforcing and immunoregulatory properties. Our results show that O. splanchnicus strain 57 is non-adherent to enterocytes or mucus, does not reinforce nor compromise Caco-2 monolayer integrity and most likely harbors penta-acylated, less endotoxic lipid A as part of its lipopolysaccharide (LPS) structure based on the lack of gene lpxM and in vitro results on low-level NF-κB activity. The studies by transmission electron microscopy revealed that O. splanchnicus produces outer membrane vesicles (OMV). O. splanchnicus cells, culture supernatant i.e., spent medium or OMVs did not induce interleukin-8 (IL-8) response in HT-29 enterocyte cells suggesting a very low proinflammatory capacity. On the contrary, the treatment of HT-29 cells with O. splanchnicus cells, spent medium or OMVs prior to exposure to Escherichia coli LPS elicited a significant decrease in IL-8 production as compared to E. coli LPS treatment alone. Moreover, O. splanchnicus spent supernatant induced IL-10 production by immune cells, suggesting anti-inflammatory activity. Our in vitro findings indicate that O. splanchnicus and its effector molecules transported in OMVs could potentially exert anti-inflammatory action in the gut epithelium. Taken together, O. splanchnicus seems to be a commensal with a primarily beneficial interaction with the host.
Collapse
Affiliation(s)
- Kaisa Hiippala
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Gonçalo Barreto
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Claudia Burrello
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Angelica Diaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Maiju Suutarinen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veera Kainulainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jolene R Bowers
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, Arizona, AZ, United States
| | - Darrin Lemmer
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, Arizona, AZ, United States
| | - David M Engelthaler
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, Arizona, AZ, United States
| | - Kari K Eklund
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Helsinki University and Helsinki University Hospital, Department of Rheumatology, Helsinki, Finland and ORTON Orthopedic Hospital of the Orton Foundation, Helsinki, Finland
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Kazemian N, Ramezankhani M, Sehgal A, Khalid FM, Kalkhoran AHZ, Narayan A, Wong GKS, Kao D, Pakpour S. The trans-kingdom battle between donor and recipient gut microbiome influences fecal microbiota transplantation outcome. Sci Rep 2020; 10:18349. [PMID: 33110112 PMCID: PMC7591866 DOI: 10.1038/s41598-020-75162-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023] Open
Abstract
Fundamental restoration ecology and community ecology theories can help us better understand the underlying mechanisms of fecal microbiota transplantation (FMT) and to better design future microbial therapeutics for recurrent Clostridioides difficile infections (rCDI) and other dysbiosis-related conditions. In this study, stool samples were collected from donors and rCDI patients one week prior to FMT (pre-FMT), as well as from patients one week following FMT (post-FMT). Using metagenomic sequencing and machine learning, our results suggested that FMT outcome is not only dependent on the ecological structure of the recipients, but also the interactions between the donor and recipient microbiomes at the taxonomical and functional levels. We observed that the presence of specific bacteria in donors (Clostridioides spp., Desulfovibrio spp., Odoribacter spp. and Oscillibacter spp.) and the absence of fungi (Yarrowia spp.) and bacteria (Wigglesworthia spp.) in recipients prior to FMT could predict FMT success. Our results also suggested a series of interlocked mechanisms for FMT success, including the repair of the disturbed gut ecosystem by transient colonization of nexus species followed by secondary succession of bile acid metabolizers, sporulators, and short chain fatty acid producers.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Milad Ramezankhani
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Aarushi Sehgal
- Department of Computer Science and Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India
| | | | | | - Apurva Narayan
- Department of Computer Science, University of British Columbia, Kelowna, BC, Canada
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
47
|
Three Candidate Probiotic Strains Impact Gut Microbiota and Induce Anergy in Mice with Cow's Milk Allergy. Appl Environ Microbiol 2020; 86:AEM.01203-20. [PMID: 32826221 PMCID: PMC7580549 DOI: 10.1128/aem.01203-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
We showed previously that three probiotic strains, i.e., Lactobacillus rhamnosus LA305, L. salivarius LA307, and Bifidobacterium longum subsp. infantis LA308, exerted different preventive effects in a mouse model of cow’s milk allergy. In this study, we evaluated their potential benefits in a curative mouse model of cow’s milk allergy. When administered for 3 weeks after the sensitization process and a first allergic reaction, none of the strains modified the levels of sensitization and allergic markers. However, all three strains affected gut bacterium communities and modified immune and inflammatory responses, leading to a tolerogenic profile. Interestingly, all three strains exerted a direct effect on dendritic cells, which are known to play a major role in food sensitization through their potentially tolerogenic properties and anergic responses. Taken together, these data indicate a potentially beneficial role of the probiotic strains tested in this model of cow’s milk allergy with regard to tolerance acquisition. Cow’s milk allergy is a worldwide public health issue, especially since there is no effective treatment, apart from milk and dairy product avoidance. The aim of this study was to assess the beneficial role of three probiotic strains previously selected for their prophylactic properties in a mouse model of β-lactoglobulin allergy. Administration of Lactobacillus rhamnosus LA305, L. salivarius LA307, or Bifidobacterium longum subsp. infantis LA308 for 3 weeks post–sensitization and challenge modified the composition of the gut microbiota, with an increase in the Prevotella NK3B31 group and a decrease in Marvinbryantia, belonging to the Lachnospiraceae family. Although no impact on markers of sensitization was detected, modifications of foxp3, tgfβ, and il10 ileal gene expression, as well as plasma metabolomic alterations in the tryptophan pathway, were observed. Moreover, ex vivo studies showed that all probiotic strains induced significant decreases in cytokine production by β-lactoglobulin-stimulated splenocytes. Taken together, these results suggest that the three probiotic strains tested lead to alterations in immune responses, i.e., induction of a tolerogenic anergy and anti-inflammatory responses. This anergy could be linked to cecal microbiota modifications, although no impact on fecal short-chain fatty acid (SCFA) concentrations was detected. Anergy could also be linked to a direct impact of probiotic strains on dendritic cells, since costimulatory molecule expression was decreased following coincubation of these strains with bone marrow-derived dendritic cells (BMDCs). To conclude, all three candidate probiotic strains induced strain-specific gut microbiota and metabolic changes, which could potentially be beneficial for general health, as well as anergy, which could contribute to oral tolerance acquisition. IMPORTANCE We showed previously that three probiotic strains, i.e., Lactobacillus rhamnosus LA305, L. salivarius LA307, and Bifidobacterium longum subsp. infantis LA308, exerted different preventive effects in a mouse model of cow’s milk allergy. In this study, we evaluated their potential benefits in a curative mouse model of cow’s milk allergy. When administered for 3 weeks after the sensitization process and a first allergic reaction, none of the strains modified the levels of sensitization and allergic markers. However, all three strains affected gut bacterium communities and modified immune and inflammatory responses, leading to a tolerogenic profile. Interestingly, all three strains exerted a direct effect on dendritic cells, which are known to play a major role in food sensitization through their potentially tolerogenic properties and anergic responses. Taken together, these data indicate a potentially beneficial role of the probiotic strains tested in this model of cow’s milk allergy with regard to tolerance acquisition.
Collapse
|
48
|
Schierová D, Březina J, Mrázek J, Fliegerová KO, Kvasnová S, Bajer L, Drastich P. Gut Microbiome Changes in Patients with Active Left-Sided Ulcerative Colitis after Fecal Microbiome Transplantation and Topical 5-aminosalicylic Acid Therapy. Cells 2020; 9:cells9102283. [PMID: 33066233 PMCID: PMC7602113 DOI: 10.3390/cells9102283] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease, and intestinal bacteria are implicated in the pathogenesis of this disorder. The administration of aminosalicylates (5-ASA) is a conventional treatment that targets the mucosa, while fecal microbial transplantation (FMT) is a novel treatment that directly targets the gut microbiota. The aim of this study was to identify changes in fecal bacterial composition after both types of treatments and evaluate clinical responses. Sixteen patients with active left-sided UC underwent enema treatment using 5-ASA (n = 8) or FMT (n = 8) with a stool from a single donor. Fecal microbiota were analyzed by 16S rDNA high-throughput sequencing, and clinical indices were used to assess the efficacy of treatments. 5-ASA therapy resulted in clinical remission in 50% (4/8) of patients, but no correlation with changes in fecal bacteria was observed. In FMT, remission was achieved in 37.5% (3/8) of patients and was associated with a significantly increased relative abundance of the families Lachnospiraceae, Ruminococcaceae, and Clostridiaceae of the phylum Firmicutes, and Bifidobacteriaceae and Coriobacteriaceae of the phylum Actinobacteria. At the genus level, Faecalibacterium, Blautia, Coriobacteria, Collinsela, Slackia, and Bifidobacterium were significantly more frequent in patients who reached clinical remission. However, the increased abundance of beneficial taxa was not a sufficient factor to achieve clinical improvement in all UC patients. Nevertheless, our preliminary results indicate that FMT as non-drug-using method is thought to be a promising treatment for UC patients.
Collapse
Affiliation(s)
- Dagmar Schierová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
- Correspondence: (D.S.); (J.M.); Tel.: +420-2-6709-0509 (D.S.); +420-2-6709-0506 (J.M.)
| | - Jan Březina
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
- Correspondence: (D.S.); (J.M.); Tel.: +420-2-6709-0509 (D.S.); +420-2-6709-0506 (J.M.)
| | - Kateřina Olša Fliegerová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
| | - Simona Kvasnová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
| | - Lukáš Bajer
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| | - Pavel Drastich
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| |
Collapse
|
49
|
The Relationship between Urinary Stones and Gut Microbiomeby 16S Sequencing. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1582187. [PMID: 33083452 PMCID: PMC7556066 DOI: 10.1155/2020/1582187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
Objective To understand the relationship between urinary stones and the gut microbiome and to screen for microbial species that may be involved in stone formation. Methods Stool samples were collected from patients with urolithiasis and healthy patients between March and December 2017. The samples were analyzed by 16S sequencing to determine differences in the microbiome profiles between the two groups. The mouse model was established and was divided into two groups. Fecal samples were collected from the mice before gavage and three weeks postgavage for microbiome analysis. The microbial population of each group was analyzed to screen for microbial species that may affect the formation of urinary stones. Differences in the number of crystals in the renal tubules of the mice were examined by necropsy. Results The microbial composition was different between urolithiasis patients and healthy controls. The urolithiasis patients had significantly reduced microbial abundance; however, increased proportions of Bacteroidetes and Actinobacteria were detected compared to healthy controls. Furthermore, the abundance of Alistipesindistinctus and Odoribactersplanchnicus was significantly increased in the urolithiasis patients compared to the healthy controls. In addition, the incidence of urolithiasis was much higher in the experimental mouse group (stone solution + urolithiasis patient stool) than in the control mouse group. However, the microbial abundance before gavage was not significantly different from that seen three weeks postgavage. Conclusion Theurolithiasis patients in this study had a different gut microbiome when compared with that of healthy individuals. The altered microbiome increased the rate of crystal formation in renal tubules and accelerated urinary stone formation in the mouse model of urolithiasis.
Collapse
|
50
|
Turna J, Grosman Kaplan K, Anglin R, Patterson B, Soreni N, Bercik P, Surette MG, Van Ameringen M. The gut microbiome and inflammation in obsessive-compulsive disorder patients compared to age- and sex-matched controls: a pilot study. Acta Psychiatr Scand 2020; 142:337-347. [PMID: 32307692 DOI: 10.1111/acps.13175] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To compare the gut microbiome profile (by way of taxon analysis and indices of β- and α-diversity) and inflammatory markers (C-reactive protein [CRP], interleukin-6[IL-6] and tumour necrosis factor-α [TNF-α]) of obsessive-compulsive disorder (OCD) outpatients and non-psychiatric community controls. METHODS We collected morning stool and blood samples from 21 non-depressed, medication-free OCD patients and 22 age- and sex-matched non-psychiatric community controls. Microbiota analysis was performed using Illumina sequencing of the V3 region of 16S rRNA; serum CRP samples were analysed using immunoturbidimetry and plasma IL-6/TNF-α were examined by high-sensitivity ELISA. Multiple comparisons were corrected for using the false discovery rate (α = 0.05). RESULTS Compared to controls, the OCD group presented lower species richness/evenness (α-diversity, Inverse Simpson) and lower relative abundance of three butyrate producing genera (Oscillospira, Odoribacter and Anaerostipes). Compared to controls, mean CRP, but not IL-6 and TNF-α, was elevated OCD patients. CRP revealed moderate to strong associations with psychiatric symptomatology. CONCLUSION To our knowledge, this is the first investigation of the gut microbiome in OCD. In addition, our findings lend further support for the potential association of inflammation and OCD. These results suggest the gut microbiome may be a potential pathway of interest for future OCD research.
Collapse
Affiliation(s)
- J Turna
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada.,MacAnxiety Research Centre, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - K Grosman Kaplan
- MacAnxiety Research Centre, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - R Anglin
- School of Medicine, University of Notre Dame, Fiona Stanley Hospital, University of Western Australia, Crawley, WA, Australia
| | - B Patterson
- MacAnxiety Research Centre, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - N Soreni
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - P Bercik
- Farncombe Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - M G Surette
- Farncombe Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - M Van Ameringen
- MacAnxiety Research Centre, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|