1
|
Spatola Rossi T, Gallia M, Erijman L, Figuerola E. Biotic and abiotic factors acting on community assembly in parallel anaerobic digestion systems from a brewery wastewater treatment plant. ENVIRONMENTAL TECHNOLOGY 2025; 46:135-150. [PMID: 38686914 DOI: 10.1080/09593330.2024.2343797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Anaerobic digestion is a complex microbial process that mediates the transformation of organic waste into biogas. The performance and stability of anaerobic digesters relies on the structure and function of the microbial community. In this study, we asked whether the deterministic effect of wastewater composition outweighs the effect of reactor configuration on the structure and dynamics of anaerobic digester archaeal and bacterial communities. Biotic and abiotic factors acting on microbial community assembly in two parallel anaerobic digestion systems, an upflow anaerobic sludge blanket digestor (UASB) and a closed digester tank with a solid recycling system (CDSR), from a brewery WWTP were analysed utilizing 16S rDNA and mcrA amplicon sequencing and genome-centric metagenomics. This study confirmed the deterministic effect of the wastewater composition on bacterial community structure, while the archaeal community composition resulted better explained by organic loading rate (ORL) and volatile free acids (VFA). According to the functions assigned to the differentially abundant metagenome-assembled genomes (MAGs) between reactors, CDSR was enriched in genes related to methanol and methylamines methanogenesis, protein degradation, and sulphate and alcohol utilization. Conversely, the UASB reactor was enriched in genes associated with carbohydrate and lipid degradation, as well as amino acid, fatty acid, and propionate fermentation. By comparing interactions derived from the co-occurrence network with predicted metabolic interactions of the prokaryotic communities in both anaerobic digesters, we conclude that the overall community structure is mainly determined by habitat filtering.
Collapse
Affiliation(s)
| | - Mateo Gallia
- IB3- Institute of Biosciences, Biotechnology and Translational Biology- University of Buenos Aires Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr Héctor N. Torres' (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eva Figuerola
- IB3- Institute of Biosciences, Biotechnology and Translational Biology- University of Buenos Aires Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Shi Z, Zhang C, Sun M, Usman M, Cui Y, Zhang S, Ni B, Luo G. Syntrophic propionate degradation in anaerobic digestion facilitated by hydrochar: Microbial insights as revealed by genome-centric metatranscriptomics. ENVIRONMENTAL RESEARCH 2024; 261:119717. [PMID: 39094895 DOI: 10.1016/j.envres.2024.119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Propionate is a model substrate for studying energy-limited syntrophic communities in anaerobic digestion, and syntrophic bacteria usually catalyze its degradation in syntrophy with methanogens. In the present study, metagenomics and metatranscriptomics were used to study the effect of the supportive material (e.g., hydrochar) on the key members of propionate degradation and their cooperation mechanism. The results showed that hydrochar increased the methane production rate (up to 57.1%) from propionate. The general transcriptional behavior of the microbiome showed that both interspecies H2 transfer (IHT) and direct interspecies electron transfer (DIET) played essential roles in the hydrochar-mediated methanation of propionate. Five highly active syntrophic propionate-oxidizing bacteria were identified by genome-centric metatranscriptomics. H85pel, a member of the family Pelotomaculaceae, was specifically enriched by hydrochar. Hydrochar enhanced the expression of the flagellum subunit, which interacted with methanogens and hydrogenases in H85pel, indicating that IHT was one of the essential factors promoting propionate degradation. Hydrochar also enriched H162tha belonging to the genus of Thauera. Hydrochar induced the expression of genes related to the complete propionate oxidation pathway, which did not produce acetate. Hydrochar and e-pili-mediated DIET were enhanced, which was another factor promoting propionate degradation. These findings improved the understanding of metabolic traits and cooperation between syntrophic propionate oxidizing bacteria (SPOB) and co-metabolizing partners and provided comprehensive transcriptional insights on function in propionate methanogenic systems.
Collapse
Affiliation(s)
- Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| | - Chao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Meichen Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Yong Cui
- Shanghai Wujiaochang Environmental Protection Technology Co., Ltd., Shanghai, 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Bingjie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
3
|
Mamimin C, O-Thong S, Reungsang A. Enhancing biogas production from hemp biomass residue through hydrothermal pretreatment and co-digestion with cow manure: Insights into methane yield, microbial communities, and metabolic pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123039. [PMID: 39461148 DOI: 10.1016/j.jenvman.2024.123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
This study investigates the enhancement of biogas production from hemp biomass residue (HBR) through hydrothermal pretreatment and co-digestion with cow manure (CM). Hydrothermal pretreatment at 200 °C for 15 min significantly improved the methane yield from 311.5 to 434.3 mL-CH4/g-VSadded (p ≤ 0.05) from HBR at 10% total solids (TS) loading, a 39% increase. Co-digestion with CM at an optimum ratio of 80:20 further increased the methane yield (738.7 mL-CH4/g-VSadded), representing a 70% improvement over pretreated HBR alone and a 137% increase compared to untreated HBR. Microbial community analysis revealed the dominance of Methanosaeta, comprising 83-93% of archaeal genera across samples. Gene expression analysis showed acetoclastic methanogenesis as the dominant pathway, accounting for 80% of methanogenesis sequences. Hydrogenotrophic methanogenesis and CO2 reduction with H2 pathways contributed 10% each. The optimized process achieved a biodegradation efficiency of 94% for hydrothermally pretreated HBR, compared to 68% for untreated HBR. Mass balance analysis demonstrated that combining hydrothermal pretreatment with anaerobic digestion increased biogas yield from 79% for untreated HBR to 86% for pre-treated HBR (PHBR) co-digested with CM. Integrating hydrothermal pretreatment and co-digestion enhances biogas production from lignocellulosic agricultural residues, contributing to sustainable waste management and renewable energy production.
Collapse
Affiliation(s)
- Chonticha Mamimin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, A. Muang, Khon Kaen, 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, A. Muang, Khon Kaen, 40002, Thailand
| | - Sompong O-Thong
- Biofuel and Biocatalysis Innovation Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, A. Muang, Khon Kaen, 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, A. Muang, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Wu Z, Ji Y, Liu G, Yu X, Shi K, Liang B, Freilich S, Jiang J. Electro-stimulation modulates syntrophic interactions in methanogenic toluene-degrading microbiota for enhanced functionality. WATER RESEARCH 2024; 260:121898. [PMID: 38865893 DOI: 10.1016/j.watres.2024.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Syntrophy achieved via microbial cooperation is vital for anaerobic hydrocarbon degradation and methanogenesis. However, limited understanding of the metabolic division of labor and electronic interactions in electro-stimulated microbiota has impeded the development of enhanced biotechnologies for degrading hydrocarbons to methane. Here, compared to the non-electro-stimulated methanogenic toluene-degrading microbiota, electro-stimulation at 800 mV promoted toluene degradation and methane production efficiencies by 11.49 %-14.76 % and 75.58 %-290.11 %, respectively. Hydrocarbon-degrading gene bamA amplification and metagenomic sequencing analyses revealed that f_Syntrophobacteraceae MAG116 may act as a toluene degrader in the non-electro-stimulated microbiota, which was proposed to establish electron syntrophy with the acetoclastic methanogen Methanosarcina spp. (or Methanothrix sp.) through e-pili or shared acetate. In the electro-stimulated microbiota, 37.22 ± 4.33 % of Desulfoprunum sp. (affiliated f_Desulfurivibrionaceae MAG10) and 58.82 ± 3.74 % of the hydrogenotrophic methanogen Methanobacterium sp. MAG74 were specifically recruited to the anode and cathode, respectively. The potential electrogen f_Desulfurivibrionaceae MAG10 engaged in interspecies electron transfer with both syntroph f_Syntrophobacteraceae MAG116 and the anode, which might be facilitated by c-type cytochromes (e.g., ImcH, OmcT, and PilZ). Moreover, upon capturing electrons from the external circuit, the hydrogen-producing electrotroph Aminidesulfovibrio sp. MAG60 could share electrons and hydrogen with the methanogen Methanobacterium sp. MAG74, which uniquely harbored hydrogenase genes ehaA-R and ehbA-P. This study elucidates the microbial interaction mechanisms underlying the enhanced metabolic efficiency of the electro-stimulated methanogenic toluene-degrading microbiota, and emphasizes the significance of metabolic and electron syntrophic interactions in maintaining the stability of microbial community functionality.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiri Freilich
- Newe-Ya'ar Research Center, Agricultural Research Organization, Ministry of Agriculture, Israel
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Shi Z, Zhang C, Tan X, Xie L, Luo G. Syntrophic microbes involved in the oxidation of short-chain fatty acids in continuous-flow anaerobic digesters treating waste activated sludge with hydrochar. Appl Environ Microbiol 2024; 90:e0204723. [PMID: 38205997 PMCID: PMC10880590 DOI: 10.1128/aem.02047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The rapid degradation of short-chain fatty acids (SCFAs) is an essential issue of anaerobic digestion (AD), in which SCFA oxidizers could generally metabolize in syntrophy with methanogens. The dynamic responses of active metagenome-assembled genomes to low concentrations of propionate and acetate were analyzed to identify specific syntrophic SCFA oxidizers and their metabolic characteristics in continuous-flow AD systems treating waste activated sludge with and without hydrochar. In this study, hydrochar increased methane production by 19%, possibly due to hydrochar enhancing acidification and methanogenesis processes. A putative syntrophic propionate oxidizer and two acetate oxidizers contributed substantially to the syntrophic degradation of SCFAs, and hydrochar positively regulated their functional gene expressions. A significant relationship was established between the replication rate of SCFA oxidizers and their stimulation-related transcriptional activity. Acetate was degraded in the hydrochar group, which might be mainly through the syntrophic acetate oxidizer from the genus Desulfallas and methanogens from the genus Methanosarcina.IMPORTANCEShort-chain fatty acid (SCFA) degradation is an important process in the methanogenic ecosystem. However, current knowledge of this microbial mechanism is mainly based on studies on a few model organisms incubated as mono- or co-cultures or in enrichments, which cannot provide appropriate evidence in complex environments. Here, this study revealed the microbial mechanism of a hydrochar-mediated anaerobic digestion (AD) system promoting SCFA degradation at the species level and identified key SCFA oxidizing bacteria. Our analysis provided new insights into the SCFA oxidizers involved in the AD of waste activated sludge facilitated by hydrochar.
Collapse
Affiliation(s)
- Zhijian Shi
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Chen Zhang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Gang Luo
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
6
|
Treitli SC, Hanousková P, Beneš V, Brune A, Čepička I, Hampl V. Hydrogenotrophic methanogenesis is the key process in the obligately syntrophic consortium of the anaerobic ameba Pelomyxa schiedti. THE ISME JOURNAL 2023; 17:1884-1894. [PMID: 37634049 PMCID: PMC10579272 DOI: 10.1038/s41396-023-01499-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Pelomyxa is a genus of anaerobic amoebae that live in consortia with multiple prokaryotic endosymbionts. Although the symbionts represent a large fraction of the cellular biomass, their metabolic roles have not been investigated. Using single-cell genomics and transcriptomics, we have characterized the prokaryotic community associated with P. schiedti, which is composed of two bacteria, Candidatus Syntrophus pelomyxae (class Deltaproteobacteria) and Candidatus Vesiculincola pelomyxae (class Clostridia), and a methanogen, Candidatus Methanoregula pelomyxae. Fluorescence in situ hybridization and electron microscopy showed that Ca. Vesiculincola pelomyxae is localized inside vesicles, whereas the other endosymbionts occur freely in the cytosol, with Ca. Methanoregula pelomyxae enriched around the nucleus. Genome and transcriptome-based reconstructions of the metabolism suggests that the cellulolytic activity of P. schiedti produces simple sugars that fuel its own metabolism and the metabolism of a Ca. Vesiculincola pelomyxae, while Ca. Syntrophus pelomyxae energy metabolism relies on degradation of butyrate and isovalerate from the environment. Both species of bacteria and the ameba use hydrogenases to transfer the electrons from reduced equivalents to hydrogen, a process that requires a low hydrogen partial pressure. This is achieved by the third endosymbiont, Ca. Methanoregula pelomyxae, which consumes H2 and formate for methanogenesis. While the bacterial symbionts can be successfully eliminated by vancomycin treatment without affecting the viability of the amoebae, treatment with 2-bromoethanesulfonate, a specific inhibitor of methanogenesis, killed the amoebae, indicating the essentiality of the methanogenesis for this consortium.
Collapse
Affiliation(s)
- Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42, Vestec, Czech Republic.
| | - Pavla Hanousková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Vladimír Beneš
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Brune
- RG Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42, Vestec, Czech Republic.
| |
Collapse
|
7
|
Jin Y, Lu Y. Syntrophic Propionate Oxidation: One of the Rate-Limiting Steps of Organic Matter Decomposition in Anoxic Environments. Appl Environ Microbiol 2023; 89:e0038423. [PMID: 37097179 PMCID: PMC10231205 DOI: 10.1128/aem.00384-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Syntrophic propionate oxidation is one of the rate-limiting steps during anaerobic decomposition of organic matter in anoxic environments. Syntrophic propionate-oxidizing bacteria (SPOB) are members of the "rare biosphere" living at the edge of the thermodynamic limit in most natural habitats. Hitherto, only 10 bacterial species capable of syntrophic propionate oxidization have been identified. SPOB employ different metabolisms for propionate oxidation (e.g., methylmalonyl-CoA pathway and C6 dismutation pathway) and show diverse life strategies (e.g., obligately and facultatively syntrophic lifestyle). The flavin-based electron bifurcation/confurcation (FBEB/C) systems have been proposed to help solve the thermodynamic dilemma during the formation of the low-potential products H2 and formate. Molecular ecological approaches, such as DNA stable isotope probing (DNA-SIP) and metagenomics, have been used to detect SPOB in natural environments. Furthermore, the biogeographical pattern of SPOB has been recently described in paddy soils. A comprehensive understanding of SPOB is essential for better predicting and managing organic matter decomposition and carbon cycling in anoxic environments. In this review, we described the critical role of syntrophic propionate oxidation in anaerobic decomposition of organic matter, phylogenetic and metabolic diversity, life strategies and ecophysiology, composition of syntrophic partners, and pattern of biogeographic distribution of SPOB in natural environments. We ended up with a few perspectives for future research.
Collapse
Affiliation(s)
- Yidan Jin
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Becker D, Popp D, Bonk F, Kleinsteuber S, Harms H, Centler F. Metagenomic Analysis of Anaerobic Microbial Communities Degrading Short-Chain Fatty Acids as Sole Carbon Sources. Microorganisms 2023; 11:microorganisms11020420. [PMID: 36838385 PMCID: PMC9959488 DOI: 10.3390/microorganisms11020420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Analyzing microbial communities using metagenomes is a powerful approach to understand compositional structures and functional connections in anaerobic digestion (AD) microbiomes. Whereas short-read sequencing approaches based on the Illumina platform result in highly fragmented metagenomes, long-read sequencing leads to more contiguous assemblies. To evaluate the performance of a hybrid approach of these two sequencing approaches we compared the metagenome-assembled genomes (MAGs) resulting from five AD microbiome samples. The samples were taken from reactors fed with short-chain fatty acids at different feeding regimes (continuous and discontinuous) and organic loading rates (OLR). Methanothrix showed a high relative abundance at all feeding regimes but was strongly reduced in abundance at higher OLR, when Methanosarcina took over. The bacterial community composition differed strongly between reactors of different feeding regimes and OLRs. However, the functional potential was similar regardless of feeding regime and OLR. The hybrid sequencing approach using Nanopore long-reads and Illumina MiSeq reads improved assembly statistics, including an increase of the N50 value (on average from 32 to 1740 kbp) and an increased length of the longest contig (on average from 94 to 1898 kbp). The hybrid approach also led to a higher share of high-quality MAGs and generated five potentially circular genomes while none were generated using MiSeq-based contigs only. Finally, 27 hybrid MAGs were reconstructed of which 18 represent potentially new species-15 of them bacterial species. During pathway analysis, selected MAGs revealed similar gene patterns of butyrate degradation and might represent new butyrate-degrading bacteria. The demonstrated advantages of adding long reads to metagenomic analyses make the hybrid approach the preferable option when dealing with complex microbiomes.
Collapse
Affiliation(s)
- Daniela Becker
- UFZ—Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr 15, 04318 Leipzig, Germany
- IAV GmbH, Kauffahrtei 23-25, 09120 Chemnitz, Germany
| | - Denny Popp
- UFZ—Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr 15, 04318 Leipzig, Germany
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Fabian Bonk
- UFZ—Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr 15, 04318 Leipzig, Germany
- VERBIO Vereinigte Bioenergie AG, Thura Mark 18, 06780 Zörbig, Germany
| | - Sabine Kleinsteuber
- UFZ—Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr 15, 04318 Leipzig, Germany
| | - Hauke Harms
- UFZ—Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr 15, 04318 Leipzig, Germany
| | - Florian Centler
- UFZ—Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr 15, 04318 Leipzig, Germany
- School of Life Sciences, University of Siegen, 57076 Siegen, Germany
- Correspondence:
| |
Collapse
|
9
|
Kim M, Rhee C, Wells M, Shin J, Lee J, Shin SG. Key players in syntrophic propionate oxidation revealed by metagenome-assembled genomes from anaerobic digesters bioaugmented with propionic acid enriched microbial consortia. Front Microbiol 2022; 13:968416. [DOI: 10.3389/fmicb.2022.968416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Propionic acid (HPr) is frequently accumulated in anaerobic digesters due to its thermodynamically unfavorable degradation reaction. Here, we identify key players in HPr oxidation and organic overloading recovery from metagenome-assembled genomes (MAGs) recovered from anaerobic digesters inoculated with HPr-enriched microbial consortia before initiating organic overloading. Two independent HPr-enrichment cultures commonly selected two uncultured microorganisms represented with high relative abundance: Methanoculleus sp002497965 and JABUEY01 sp013314815 (a member of the Syntrophobacteraceae family). The relative abundance of JABUEY01 sp013314815 was 60 times higher in bioaugmented bioreactors compared to their unaugmented counterparts after recovery from organic overloading. Genomic analysis of JABUEY01 sp013314815 revealed its metabolic potential for syntrophic propionate degradation when partnered with hydrogenotrophic methanogens (e.g., Methanoculleus sp002497965) via the methylmalonyl-CoA pathway. Our results identified at least two key species that are responsible for efficient propionate removal and demonstrate their potential applications as microbial cocktails for stable AD operation.
Collapse
|
10
|
Qiao W, Liu G, Li M, Su X, Lu L, Ye S, Wu J, Edwards EA, Jiang J. Complete Reductive Dechlorination of 4-Hydroxy-chlorothalonil by Dehalogenimonas Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12237-12246. [PMID: 35951369 DOI: 10.1021/acs.est.2c02574] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile, TePN) is one of the most widely used fungicides all over the world. Its major environmental transformation product 4-hydroxy-chlorothalonil (4-hydroxy-2,5,6-trichloroisophthalonitrile, 4-OH-TPN) is more persistent, mobile, and toxic and is frequently detected at a higher concentration in various habitats compared to its parent compound TePN. Further microbial transformation of 4-OH-TPN has never been reported. In this study, we demonstrated that 4-OH-TPN underwent complete microbial reductive dehalogenation to 4-hydroxy-isophthalonitrile via 4-hydroxy-dichloroisophthalonitrile and 4-hydroxy-monochloroisophthalonitrile. 16S rRNA gene amplicon sequencing demonstrated that Dehalogenimonas species was enriched from 6% to 17-22% after reductive dechlorination of 77.24 μmol of 4-OH-TPN. Meanwhile, Dehalogenimonas copies increased by one order of magnitude and obtained a yield of 1.78 ± 1.47 × 108 cells per μmol Cl- released (N = 6), indicating that 4-OH-TPN served as the terminal electron acceptor for organohalide respiration of Dehalogenimonas species. A draft genome of Dehalogenimonas species was assembled through metagenomic sequencing, which harbors 30 putative reductive dehalogenase genes. Syntrophobacter, Acetobacterium, and Methanosarcina spp. were found to be the major non-dechlorinating populations in the microbial community, who might play important roles in the reductive dechlorination of 4-OH-TPN by the Dehalogenimonas species. This study first reports that Dehalogenimonas sp. can also respire on the seemingly dead-end product of TePN, paving the way to complete biotransformation of the widely present TePN and broadening the substrate spectrum of Dehalogenimonas sp. to polychlorinated hydroxy-benzonitrile.
Collapse
Affiliation(s)
- Wenjing Qiao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengya Li
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojing Su
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianghua Lu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Shujun Ye
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Westerholm M, Calusinska M, Dolfing J. Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol Rev 2022; 46:fuab057. [PMID: 34875063 PMCID: PMC8892533 DOI: 10.1093/femsre/fuab057] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes.
Collapse
Affiliation(s)
- Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, SE-75007 Uppsala, Sweden
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, rue du Brill 41, L-4422 Belvaux, Luxembourg
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Wynne Jones 2.11, Ellison Place, Newcastle-upon-Tyne NE1 8QH, UK
| |
Collapse
|
12
|
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. Influence of cosubstrate and hydraulic retention time on the removal of drugs and hygiene products in sanitary sewage in an anaerobic Expanded Granular Sludge Bed reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113532. [PMID: 34614559 DOI: 10.1016/j.jenvman.2021.113532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF), ibuprofen (IBU), propranolol (PRO), triclosan (TCS) and linear alkylbenzene sulfonate (LAS) can be recalcitrant in Wastewater Treatment Plants (WWTP). The removal of these compounds was investigated in scale-up (69 L) Expanded Granular Sludge Bed (EGSB) reactor, fed with sanitary sewage from the São Carlos-SP (Brazil) WWTP and 200 mg L-1 of ethanol. The EGSB was operated in three phases: (I) hydraulic retention time (HRT) of 36±4 h; (II) HRT of 20±2 h and (III) HRT of 20±2 h with ethanol. Phases I and II showed no significant difference in the removal of LAS (63 ± 11-65 ± 12 %), DCF (37 ± 18-35 ± 11 %), IBU (43 ± 18-44 ± 16 %) and PRO (46 ± 25-51 ± 23 %) for 13±2-15 ± 2 mg L-1, 106 ± 32-462 ± 294 μg L-1, 166 ± 55-462 ± 213 μg L-1 and 201 ± 113-250 ± 141 μg L-1 influent, respectively. Higher TCS removal was obtained in phase I (72 ± 17 % for 127 ± 120 μg L-1 influent) when compared to phase II (51 ± 13 % for 135 ± 119 μg L-1 influent). This was due to its greater adsorption (40 %) in the initial phase. Phase III had higher removal of DCF (42 ± 10 % for 107 ± 26 μg L-1 influent), IBU (50 ± 15 % for 164 ± 47 μg L-1 influent) and TCS (85 ± 15 % for 185 ± 148 μg L-1 influent) and lower removal of LAS (35 ± 14 % for 12 ± 3 mg L-1 influent) and PRO (-142 ± 177 % for 188 ± 88 μg L-1 influent). Bacteria similar to Syntrophobacter, Smithella, Macellibacteroides, Syntrophus, Blvii28_wastewater-sludge_group and Bacteroides were identified in phase I with relative abundance of 3.1 %-4.7 %. Syntrophobacter was more abundant (15.4 %) in phase II, while in phase III, it was Smithella (12.7 %) and Caldisericum (15.1 %). Regarding the Archaea Domain, Methanosaeta was more abundant in phases I (84 %) and II (67 %), while in phase III it was Methanobacterium (86 %).
Collapse
Affiliation(s)
- Caroline F Granatto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| | - Guilherme M Grosseli
- Federal University of São Carlos, Washington LuizHighway, Km 235, Zipcode 13565-905, São Carlos, SP, Brazil.
| | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| | - Pedro S Fadini
- Federal University of São Carlos, Washington LuizHighway, Km 235, Zipcode 13565-905, São Carlos, SP, Brazil.
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Mollaei M, Suarez-Diez M, Sedano-Nunez VT, Boeren S, Stams AJM, Plugge CM. Proteomic Analysis of a Syntrophic Coculture of Syntrophobacter fumaroxidans MPOB T and Geobacter sulfurreducens PCA T. Front Microbiol 2021; 12:708911. [PMID: 34950111 PMCID: PMC8691401 DOI: 10.3389/fmicb.2021.708911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
We established a syntrophic coculture of Syntrophobacter fumaroxidans MPOBT (SF) and Geobacter sulfurreducens PCAT (GS) growing on propionate and Fe(III). Neither of the bacteria was capable of growth on propionate and Fe(III) in pure culture. Propionate degradation by SF provides acetate, hydrogen, and/or formate that can be used as electron donors by GS with Fe(III) citrate as electron acceptor. Proteomic analyses of the SF-GS coculture revealed propionate conversion via the methylmalonyl-CoA (MMC) pathway by SF. The possibility of interspecies electron transfer (IET) via direct (DIET) and/or hydrogen/formate transfer (HFIT) was investigated by comparing the differential abundance of associated proteins in SF-GS coculture against (i) SF coculture with Methanospirillum hungatei (SF-MH), which relies on HFIT, (ii) GS pure culture growing on acetate, formate, hydrogen as propionate products, and Fe(III). We noted some evidence for DIET in the SF-GS coculture, i.e., GS in the coculture showed significantly lower abundance of uptake hydrogenase (43-fold) and formate dehydrogenase (45-fold) and significantly higher abundance of proteins related to acetate metabolism (i.e., GltA; 62-fold) compared to GS pure culture. Moreover, SF in the SF-GS coculture showed significantly lower abundance of IET-related formate dehydrogenases, Fdh3 (51-fold) and Fdh5 (29-fold), and the rate of propionate conversion in SF-GS was 8-fold lower than in the SF-MH coculture. In contrast, compared to GS pure culture, we found lower abundance of pilus-associated cytochrome OmcS (2-fold) and piliA (5-fold) in the SF-GS coculture that is suggested to be necessary for DIET. Furthermore, neither visible aggregates formed in the SF-GS coculture, nor the pili-E of SF (suggested as e-pili) were detected. These findings suggest that the IET mechanism is complex in the SF-GS coculture and can be mediated by several mechanisms rather than one discrete pathway. Our study can be further useful in understanding syntrophic propionate degradation in bioelectrochemical and anaerobic digestion systems.
Collapse
Affiliation(s)
- Monir Mollaei
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Caroline M. Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
14
|
Li WL, Dong X, Lu R, Zhou YL, Zheng PF, Feng D, Wang Y. Microbial ecology of sulfur cycling near the sulfate-methane transition of deep-sea cold seep sediments. Environ Microbiol 2021; 23:6844-6858. [PMID: 34622529 DOI: 10.1111/1462-2920.15796] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate-methane transition zone (SMTZ) of deep-sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur-oxidizing bacteria (SOB) and sulfur-reducing bacteria (SRB) strains were identified from three SMTZ-bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near-surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO2 fixation by Wood-Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep-sea environments.
Collapse
Affiliation(s)
- Wen-Li Li
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Rui Lu
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Li Zhou
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng-Fei Zheng
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| | - Dong Feng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Yong Wang
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| |
Collapse
|
15
|
Wu Y, Wu J, Wu Z, Zhou J, Zhou L, Lu Y, Liu X, Wu W. Groundwater contaminated with short-chain chlorinated paraffins and microbial responses. WATER RESEARCH 2021; 204:117605. [PMID: 34488140 DOI: 10.1016/j.watres.2021.117605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The vertical migrations of toxic and persistent short-chain chlorinated paraffins (SCCPs) in soils as well as the microbial responses have been reported, however, there is a paucity of data on the resulting groundwater contamination. Here, we determined the concentration and congener profile of SCCPs in the groundwater beneath a production plant of chlorinated paraffins (CPs) and characterized the microbial community to explore their responses to SCCPs. Results showed that SCCPs ranged from not detected to 70.3 μg/L, with C13-CPs (11.2-65.8%) and Cl7-CPs (27.2-50.6%), in mass ratio, as the dominant groups. Similar to the distribution pattern in soils, SCCPs in groundwater were distributed in hotspot pattern. CP synthesis was the source of SCCPs in groundwater and the entire contamination plume significantly migrated downgradient, while there was an apparent hysteresis of C13-CP migration. Groundwater microbial community was likely shaped by both hydrogeological condition (pH and depth) and SCCPs. Specifically, the microbial community responded to the contamination by forming a co-occurrence network with "small world" feature, where Desulfobacca, Desulfomonile, Ferritrophicum, Methylomonas, Syntrophobacter, Syntrophorhabdus, Syntrophus, and Thermoanaerobaculum were the keystone taxa. Furthermore, the interrelations between bacterial taxa and SCCPs indicated that the microbial community might cooperate to achieve the dechlorination and mineralization of SCCPs through either anaerobic organohalide respiration mainly functioned by the keystone taxa, or cometabolic degradation processes functioned by Aquabacterium and Hydrogenophaga. Results of this study would provide a better understanding of the environmental behavior and ecological effects of SCCPs in groundwater systems.
Collapse
Affiliation(s)
- Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Zhuohao Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Lingli Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Yang Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Xiaowen Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China.
| |
Collapse
|
16
|
Cai G, Zhu G, Zhou M, Lv N, Wang R, Li C, Li J, Pan X. Syntrophic butyrate-oxidizing methanogenesis promoted by anthraquinone-2-sulfonate and cysteine: Distinct tendencies towards the enrichment of methanogens and syntrophic fatty-acid oxidizing bacteria. BIORESOURCE TECHNOLOGY 2021; 332:125074. [PMID: 33838452 DOI: 10.1016/j.biortech.2021.125074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Interspecies electron transfer (IET) between syntrophic fatty-acid oxidizing bacteria (SFOBs) and methanogens decided the performance of anaerobic digestion. Electron shuttles, as potential IET accelerators, were controversial concerning their influences on methanogenesis. In this study, concentration-dependent effects of anthraquinone-2-sulfonate (AQS) and cysteine on glucose digestion were firstly demonstrated: low dosage of AQS and cysteine (50 and 100 µM, respectively) had highest methane yield (133.5% and 148.6%, respectively). Using butyrate as substrate, distinct tendencies towards the enrichment of methanogenic community were further revealed. Cysteine just acted as a reductant which lowered ORP quickly and enriched most methanogens. It benefited methanogenesis right until methanogenic substrates accumulated. AQS, however, showed characteristic features of electron shuttles: it was firstly oxidized by SFOBs and then reduced by hydrogenotrophic methanogens, which accelerated methanogenic butyrate degradation. This study showed wide spectrum of SFOBs and methanogens benefited from the addition of electron shuttles, which laid foundation for future application.
Collapse
Affiliation(s)
- Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gefu Zhu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China.
| | - Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
17
|
C Campbell B, Gong S, Greenfield P, J Midgley D, T Paulsen I, C George S. Aromatic compound-degrading taxa in an anoxic coal seam microbiome from the Surat Basin, Australia. FEMS Microbiol Ecol 2021; 97:6206826. [PMID: 33791788 DOI: 10.1093/femsec/fiab053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Methane is an important energy resource internationally, and a large proportion of this methane is produced by microbial communities living in coal seams. Despite the value of this resource for human energy security, our understanding of the metabolic roles played by specific taxa during the biodegradation of coal to methane in situ is quite limited. In order to develop a greater understanding of microbial catabolism on coal, a community from a coal seam in the Surat Basin, Australia, was incubated on 10 different aromatic organic compounds: coronene, benzo[a]pyrene, pyrene, phenanthrene, naphthalene, ethylbenzene, phenol, benzoate, vanillate and syringate. Each of these aromatic compounds either occurs in coal or is a possible product of the coal biodegradation process. 16S rRNA sequencing revealed substantial changes to each community in response to each aromatic carbon substrate provided. Abundant taxa from these substrate-specific communities were identified and their probable catabolic roles proposed based on literature searches of related taxa. This study is the first to link specific coal seam taxa to aromatic substrates available in coal seam environments. Two conceptual models of the putative degradation pathways and key taxa responsible are proposed.
Collapse
Affiliation(s)
- Bronwyn C Campbell
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia.,Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Se Gong
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Paul Greenfield
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - David J Midgley
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Simon C George
- Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
18
|
Microbial community compositions and sulfate-reducing bacterial profiles in malodorous urban canal sediments. Arch Microbiol 2021; 203:1981-1993. [PMID: 33528590 DOI: 10.1007/s00203-020-02157-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023]
Abstract
Anthropogenically impacted urban canals represent distinct freshwater ecosystems that could shape microbial communities in underlying sediments; however, knowledge of the relationships between environmental factors and microbial community compositions and their functions in such an environment is limited. This study characterized the microbial community compositions of malodorous canal sediments at six locations along the Saen Saep Canal in Thailand. 16S rRNA gene amplicon sequencing (MiSeq, Illumina) revealed dominant genera classified as fermentative bacteria, methanogens, and sulfate-reducing bacteria (SRB), all of which emphasized anaerobic environments. SRB, as the primary producers of malodorous hydrogen sulfide, accounted for 8.2-30.4% of the total sequences. dsrB gene clone libraries further identified the SRB species. A constrained correspondence analysis demonstrated a spatial pattern of SRB that correlated with physicochemical parameters in which nitrate and sulfate in sediments were the most influencing factors. Overall, a better understanding of the SRB and other related microorganisms in canal sediments can assist in the future implementation of appropriate olfactory abatement and management methodologies in urban canals.
Collapse
|
19
|
Chen YT, Zeng Y, Li J, Zhao XY, Yi Y, Gou M, Kamagata Y, Narihiro T, Nobu MK, Tang YQ. Novel Syntrophic Isovalerate-Degrading Bacteria and Their Energetic Cooperation with Methanogens in Methanogenic Chemostats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9618-9628. [PMID: 32667198 DOI: 10.1021/acs.est.0c01840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Isovalerate is an important intermediate in anaerobic degradation of proteins/amino acids. Little is known about how this compound is degraded due to challenges in cultivation and characterization of isovalerate-degrading bacteria, which are thought to symbiotically depend on methanogenic archaea. In this study, we successfully enriched novel syntrophic isovalerate degraders (uncultivated Clostridiales and Syntrophaceae members) through operation of mesophilic and thermophilic isovalerate-fed anaerobic reactors. Metagenomics- and metatranscriptomics-based metabolic reconstruction of novel putative syntrophic isovalerate metabolizers uncovered the catabolic pathway and byproducts (i.e., acetate, H2, and formate) of isovalerate degradation, mechanisms for electron transduction from isovalerate degradation to H2 and formate generation (via electron transfer flavoprotein; ETF), and biosynthetic metabolism. The identified organisms tended to prefer formate-based interspecies electron transfer with methanogenic partners. The byproduct acetate was further converted to CH4 and CO2 by either Methanothrix (mesophilic) and Methanosarcina (thermophilic), which employed different approaches for acetate degradation. This study presents insights into novel mesophilic and thermophilic isovalerate degraders and their interactions with methanogens.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, Sichuan 610207, China
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Jie Li
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Xin-Yu Zhao
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yue Yi
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Masaru Konishi Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
20
|
Chen YT, Zeng Y, Wang HZ, Zheng D, Kamagata Y, Narihiro T, Nobu MK, Tang YQ. Different Interspecies Electron Transfer Patterns during Mesophilic and Thermophilic Syntrophic Propionate Degradation in Chemostats. MICROBIAL ECOLOGY 2020; 80:120-132. [PMID: 31982930 DOI: 10.1007/s00248-020-01485-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Propionate is one of the major intermediates in anaerobic digestion of organic waste to CO2 and CH4. In methanogenic environments, propionate is degraded through a mutualistic interaction between symbiotic propionate oxidizers and methanogens. Although temperature heavily influences the microbial ecology and performance of methanogenic processes, its effect on syntrophic interaction during propionate degradation remains poorly understood. In this study, metagenomics and metatranscriptomics were employed to compare mesophilic and thermophilic propionate degradation communities. Mesophilic propionate degradation involved multiple syntrophic organisms (Syntrophobacter, Smithella, and Syntrophomonas), pathways, interactions, and preference toward formate-based electron transfer to methanogenic partners (i.e., Methanoculleus). In thermophilic propionate degradation, one syntrophic organism predominated (Pelotomaculum), interspecies H2 transfer played a major role, and phylogenetically and metabolically diverse H2-oxidizing methanogens were present (i.e., Methanoculleus, Methanothermobacter, and Methanomassiliicoccus). This study showed that microbial interactions, metabolic pathways, and niche diversity are distinct between mesophilic and thermophilic microbial communities responsible for syntrophic propionate degradation.
Collapse
Affiliation(s)
- Ya-Ting Chen
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, 610207, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Hui-Zhong Wang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Dan Zheng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masaru Konishi Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
21
|
Sampaio GF, Dos Santos AM, da Costa PR, Rodriguez RP, Sancinetti GP. High rate of biological removal of sulfate, organic matter, and metals in UASB reactor to treat synthetic acid mine drainage and cheese whey wastewater as carbon source. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:245-254. [PMID: 31472092 DOI: 10.1002/wer.1235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The anaerobic biological treatment of sulfate-rich effluents, such as acid mine drainage (AMD), is mediated by sulfate-reducing bacteria (SRB). This process involves the reduction of sulfates in the presence of an electron donor. Complex carbon compounds can be used as electron donors. In the present study, was used an upflow anaerobic sludge blanket (UASB) reactor to co-treat a low-pH synthetic AMD and cheese whey wastewater (CWW). Were observed higher sulfate and COD removal rates (1,114 ± 88 and 1,214 ± 128 mg L-1 day-1 , respectively) at higher sulfate and applied COD loading rates (1,500 mg L-1 day-1 ). The overall pH of the effluent remained above 6.4 without any bicarbonate supplementation. Almost 100% of the Fe, Zn, and Cu was removed and the presence of metals improved the process. The use of a single reactor to treat AMD and CWW is promising. PRACTITIONER POINTS: Wastewater cheese whey was electron donor for treating acid mine drainage in an UASB reactor. Metals additions in the system indicated an increased removal of COD. About 99% of the metals were removed with the treatment.
Collapse
Affiliation(s)
| | | | - Patricia R da Costa
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de Alfenas (UNIFAL), Poços de Caldas, Brazil
| | - Renata P Rodriguez
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de Alfenas (UNIFAL), Poços de Caldas, Brazil
| | - Giselle P Sancinetti
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de Alfenas (UNIFAL), Poços de Caldas, Brazil
| |
Collapse
|
22
|
Crispim JS, Dias RS, Laguardia CN, Araújo LC, da Silva JD, Vidigal PMP, de Sousa MP, da Silva CC, Santana MF, de Paula SO. Desulfovibrio alaskensis prophages and their possible involvement in the horizontal transfer of genes by outer membrane vesicles. Gene 2019; 703:50-57. [DOI: 10.1016/j.gene.2019.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
|
23
|
Lu Z, Xu Z, Shen Z, Tian Y, Shen H. Dietary Energy Level Promotes Rumen Microbial Protein Synthesis by Improving the Energy Productivity of the Ruminal Microbiome. Front Microbiol 2019; 10:847. [PMID: 31057531 PMCID: PMC6479175 DOI: 10.3389/fmicb.2019.00847] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Improving the yield of rumen microbial protein (MCP) has significant importance in the promotion of animal performance and the reduction of protein feed waste. The amount of energy supplied to rumen microorganisms is an important factor affecting the amount of protein nitrogen incorporated into rumen MCP. Substrate-level phosphorylation (SLP) and electron transport phosphorylation (ETP) are two major mechanisms of energy generation within microbial cells. However, the way that energy and protein levels in the diet impact the energy productivity of the ruminal microbiome and, thereafter, rumen MCP yields is not known yet. In present study, we have investigated, by animal experiments and metagenome shotgun sequencing, the effects of energy-rich and protein-rich diets on rumen MCP yields, as well as SLP-coupled and ETP-coupled energy productivity of the ruminal microbiome. We have found that an energy-rich diet induces a significant increase in rumen MCP yield, whereas a protein-rich diet has no significant impacts on it. Based on 10 reconstructed pathways related to the energy metabolism of the ruminal microbiome, we have determined that the energy-rich diet induces significant increases in the total abundance of SLP enzymes coupled to the nicotinamide adenine dinucleotide (NADH) oxidation in the glucose fermentation and F-type ATPase of the electron transporter chain, whereas the protein-rich diet has no significant impact in the abundance of these enzymes. At the species level, the energy-rich diet induces significant increases in the total abundance of 15 ETP-related genera and 40 genera that have SLP-coupled fermentation pathways, whereas the protein-rich diet has no significant impact on the total abundance of these genera. Our results suggest that an increase in dietary energy levels promotes rumen energy productivity and MCP yield by improving levels of ETP and SLP coupled to glucose fermentation in the ruminal microbiome. But, an increase in dietary protein level has no such effects.
Collapse
Affiliation(s)
- Zhongyan Lu
- The Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhihui Xu
- College of Life Science, Nanjing Agricultural University, Nanjing, China.,Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Zanming Shen
- The Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanchun Tian
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hong Shen
- College of Life Science, Nanjing Agricultural University, Nanjing, China.,Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Kosaka T, Goda M, Inoue M, Yakushi T, Yamada M. Flagellum-mediated motility in Pelotomaculum thermopropionicum SI. Biosci Biotechnol Biochem 2019; 83:1362-1371. [PMID: 30919743 DOI: 10.1080/09168451.2019.1597618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The basic functions of a propionate-oxidizing bacterium Pelotomaculum thermopropionicum flagellum, such as motility and chemotaxis, have not been studied. To investigate its motility, we compared with that of Syntrophobacter fumaroxidans, an aflagellar propionate-oxidizing bacterium, in soft agar medium. P. thermopropionicum cells spread, while S. fumaroxidans cells moved downward slightly, indicating flagellum-dependent motility in P. thermopropionicum SI. The motility of P. thermopropionicum was inhibited by the addition of carbonyl cyanide m-chlorophenyl hydrazone, a proton uncoupler, which is consistent with the fact that stator protein, MotB of P. thermopropionicum, shared sequence homology with proton-type stators. In addition, 5-N-ethyl-N-isopropyl amiloride, an Na+ channel blocker, showed no inhibitory effect on the motility. Furthermore, motAB of P. thermopropionicum complemented the defective swimming ability of Escherichia coli ∆motAB. These results suggest that the motility of P. thermopropionicum SI depends on the proton-type flagellar motor.
Collapse
Affiliation(s)
- Tomoyuki Kosaka
- a Department of Biological Chemistry, College of Agriculture, Graduate school of Science and Technology for Innovation , Yamaguchi University , Yamaguchi , Japan.,b Research Center for Thermotolerant Microbial Resources , Yamaguchi University , Yamaguchi , Japan
| | - Mutsumi Goda
- a Department of Biological Chemistry, College of Agriculture, Graduate school of Science and Technology for Innovation , Yamaguchi University , Yamaguchi , Japan
| | - Manami Inoue
- a Department of Biological Chemistry, College of Agriculture, Graduate school of Science and Technology for Innovation , Yamaguchi University , Yamaguchi , Japan
| | - Toshiharu Yakushi
- a Department of Biological Chemistry, College of Agriculture, Graduate school of Science and Technology for Innovation , Yamaguchi University , Yamaguchi , Japan.,b Research Center for Thermotolerant Microbial Resources , Yamaguchi University , Yamaguchi , Japan
| | - Mamoru Yamada
- a Department of Biological Chemistry, College of Agriculture, Graduate school of Science and Technology for Innovation , Yamaguchi University , Yamaguchi , Japan.,b Research Center for Thermotolerant Microbial Resources , Yamaguchi University , Yamaguchi , Japan
| |
Collapse
|
25
|
Hidalgo-Ahumada CAP, Nobu MK, Narihiro T, Tamaki H, Liu WT, Kamagata Y, Stams AJM, Imachi H, Sousa DZ. Novel energy conservation strategies and behaviour of Pelotomaculum schinkii driving syntrophic propionate catabolism. Environ Microbiol 2018; 20:4503-4511. [PMID: 30126076 DOI: 10.1111/1462-2920.14388] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 11/29/2022]
Abstract
Under methanogenic conditions, short-chain fatty acids are common byproducts from degradation of organic compounds and conversion of these acids is an important component of the global carbon cycle. Due to the thermodynamic difficulty of propionate degradation, this process requires syntrophic interaction between a bacterium and partner methanogen; however, the metabolic strategies and behaviour involved are not fully understood. In this study, the first genome analysis of obligately syntrophic propionate degraders (Pelotomaculum schinkii HH and P. propionicicum MGP) and comparison with other syntrophic propionate degrader genomes elucidated novel components of energy metabolism behind Pelotomaculum propionate oxidation. Combined with transcriptomic examination of P. schinkii behaviour in co-culture with Methanospirillum hungatei, we found that formate may be the preferred electron carrier for P. schinkii syntrophy. Propionate-derived menaquinol may be primarily re-oxidized to formate, and energy was conserved during formate generation through newly proposed proton-pumping formate extrusion. P. schinkii did not overexpress conventional energy metabolism associated with a model syntrophic propionate degrader Syntrophobacter fumaroxidans MPOB (i.e., CoA transferase, Fix and Rnf). We also found that P. schinkii and the partner methanogen may also interact through flagellar contact and amino acid and fructose exchange. These findings provide new understanding of syntrophic energy acquisition and interactions.
Collapse
Affiliation(s)
- Catalina A P Hidalgo-Ahumada
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, Wageningen, The Netherlands
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Ave, Urbana, IL, 61801, USA
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, Wageningen, The Netherlands.,Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, Wageningen, The Netherlands
| |
Collapse
|
26
|
Marozava S, Vargas-López R, Tian Y, Merl-Pham J, Braster M, Meckenstock RU, Smidt H, Röling WFM, Westerhoff HV. Metabolic flexibility of a prospective bioremediator: Desulfitobacterium hafniense Y51 challenged in chemostats. Environ Microbiol 2018; 20:2652-2669. [PMID: 29921035 DOI: 10.1111/1462-2920.14295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 05/19/2018] [Indexed: 11/30/2022]
Abstract
Desulfitobacterium hafniense Y51 has been widely used in investigations of perchloroethylene (PCE) biodegradation, but limited information exists on its other physiological capabilities. We investigated how D. hafniense Y51 confronts the debilitating limitations of not having enough electron donor (lactate), or electron acceptor (fumarate) during cultivation in chemostats. The residual concentrations of the substrates supplied in excess were much lower than expected. Transcriptomics, proteomics and fluxomics were integrated to investigate how this phenomenon was regulated. Through diverse regulation at both transcriptional and translational levels, strain Y51 turned to fermenting the excess lactate and disproportionating the excess fumarate under fumarate- and lactate-limiting conditions respectively. Genes and proteins related to the utilization of a variety of alternative electron donors and acceptors absent from the medium were induced, apparently involving the Wood-Ljungdahl pathway. Through this metabolic flexibility, D. hafniense Y51 may be able to switch between different metabolic capabilities under limiting conditions.
Collapse
Affiliation(s)
- Sviatlana Marozava
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Raquel Vargas-López
- Molecular Cell Physiology, Faculty of Science, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Ye Tian
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Juliane Merl-Pham
- Core Facility Proteomics, Helmholtz Zentrum München, Heidemannstraße 1, 80939, München, Germany
| | - Martin Braster
- Molecular Cell Physiology, Faculty of Science, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Rainer U Meckenstock
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Wilfred F M Röling
- Molecular Cell Physiology, Faculty of Science, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Hans V Westerhoff
- Molecular Cell Physiology, Faculty of Science, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.,Synthetic Systems Biology, SILS, University of Amsterdam, Amsterdam, The Netherlands.,Manchester Centre for Integrative Systems Biology, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Sedano-Núñez VT, Boeren S, Stams AJM, Plugge CM. Comparative proteome analysis of propionate degradation by Syntrophobacter fumaroxidans in pure culture and in coculture with methanogens. Environ Microbiol 2018; 20:1842-1856. [PMID: 29611893 PMCID: PMC5947623 DOI: 10.1111/1462-2920.14119] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 11/28/2022]
Abstract
Syntrophobacter fumaroxidans is a sulfate-reducing bacterium able to grow on propionate axenically or in syntrophic interaction with methanogens or other sulfate-reducing bacteria. We performed a proteome analysis of S. fumaroxidans growing with propionate axenically with sulfate or fumarate, and in syntrophy with Methanospirillum hungatei, Methanobacterium formicicum or Desulfovibrio desulfuricans. Special attention was put on the role of hydrogen and formate in interspecies electron transfer (IET) and energy conservation. Formate dehydrogenase Fdh1 and hydrogenase Hox were the main confurcating enzymes used for energy conservation. In the periplasm, Fdh2 and hydrogenase Hyn play an important role in reverse electron transport associated with succinate oxidation. Periplasmic Fdh3 and Fdh5 were involved in IET. The sulfate reduction pathway was poorly regulated and many enzymes associated with sulfate reduction (Sat, HppA, AprAB, DsrAB and DsrC) were abundant even at conditions where sulfate was not present. Proteins similar to heterodisulfide reductases (Hdr) were abundant. Hdr/Flox was detected in all conditions while HdrABC/HdrL was exclusively detected when sulfate was available; these complexes most likely confurcate electrons. Our results suggest that S. fumaroxidans mainly used formate for electron release and that different confurcating mechanisms were used in its sulfidogenic metabolism.
Collapse
Affiliation(s)
- Vicente T Sedano-Núñez
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands.,Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands
| |
Collapse
|
28
|
Müller N, Timmers P, Plugge CM, Stams AJM, Schink B. Syntrophy in Methanogenic Degradation. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2018. [DOI: 10.1007/978-3-319-98836-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Leng L, Yang P, Singh S, Zhuang H, Xu L, Chen WH, Dolfing J, Li D, Zhang Y, Zeng H, Chu W, Lee PH. A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. BIORESOURCE TECHNOLOGY 2018; 247:1095-1106. [PMID: 28958887 DOI: 10.1016/j.biortech.2017.09.103] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/09/2017] [Accepted: 09/15/2017] [Indexed: 05/24/2023]
Abstract
The exploration of the energetics of anaerobic digestion systems can reveal how microorganisms cooperate efficiently for cell growth and methane production, especially under low-substrate conditions. The establishment of a thermodynamically interdependent partnership, called anaerobic syntrophy, allows unfavorable reactions to proceed. Interspecies electron transfer and the concentrations of electron carriers are crucial for maintaining this mutualistic activity. This critical review summarizes the functional microorganisms and syntroph partners, particularly in the metabolic pathways and energy conservation of syntrophs. The kinetics and thermodynamics of propionate degradation to methane, reversibility of the acetate oxidation process, and estimation of microbial growth are summarized. The various routes of interspecies electron transfer, reverse electron transfer, and Poly-β-hydroxyalkanoate formation in the syntrophic community are also reviewed. Finally, promising and critical directions of future research are proposed. Fundamental insight in the activities and interactions involved in AD systems could serve as a guidance for engineered systems optimization and upgrade.
Collapse
Affiliation(s)
- Ling Leng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Peixian Yang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Shubham Singh
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Linji Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wen-Hsing Chen
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Jan Dolfing
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle NE1 7RU, UK
| | - Dong Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
30
|
Liu P, Pommerenke B, Conrad R. Identification ofSyntrophobacteraceaeas major acetate-degrading sulfate reducing bacteria in Italian paddy soil. Environ Microbiol 2017; 20:337-354. [DOI: 10.1111/1462-2920.14001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Pengfei Liu
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10; Marburg 35043 Germany
| | - Bianca Pommerenke
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10; Marburg 35043 Germany
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10; Marburg 35043 Germany
| |
Collapse
|
31
|
Nobu MK, Narihiro T, Liu M, Kuroda K, Mei R, Liu WT. Thermodynamically diverse syntrophic aromatic compound catabolism. Environ Microbiol 2017; 19:4576-4586. [PMID: 28892300 DOI: 10.1111/1462-2920.13922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/19/2017] [Indexed: 11/28/2022]
Abstract
Specialized organotrophic Bacteria 'syntrophs' and methanogenic Archaea 'methanogens' form a unique metabolic interaction to accomplish cooperative mineralization of organic compounds to CH4 and CO2 . Due to challenges in cultivation of syntrophs, mechanisms for how their organotrophic catabolism circumvents thermodynamic restrictions remain unclear. In this study, we investigate two communities hosting diverse syntrophic aromatic compound metabolizers (Syntrophus, Syntrophorhabdus, Pelotomaculum and an uncultivated Syntrophorhabdacaeae member) to uncover their catabolic diversity and flexibility. Although syntrophs have been generally presumed to metabolize aromatic compounds to acetate, CO2 , H2 and formate, combined metagenomics and metatranscriptomics show that uncultured syntrophs utilize unconventional alternative metabolic pathways in situ producing butyrate, cyclohexanecarboxylate and benzoate as catabolic byproducts. In addition, we also find parallel utilization of diverse H2 and formate generating pathways to facilitate interactions with partner methanogens. Based on thermodynamic calculations, these pathways may enable syntrophs to combat thermodynamic restrictions. In addition, when fed with specific substrates (i.e., benzoate, terephthalate or trimellitate), each syntroph population expresses different pathways, suggesting ecological diversification among syntrophs. These findings suggest we may be drastically underestimating the biochemical capabilities, strategies and diversity of syntrophic bacteria thriving at the thermodynamic limit.
Collapse
Affiliation(s)
- Masaru Konishi Nobu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Ave, Urbana, IL 61801, USA
| | - Takashi Narihiro
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Ave, Urbana, IL 61801, USA.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Miaomiao Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Ave, Urbana, IL 61801, USA
| | - Kyohei Kuroda
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Ave, Urbana, IL 61801, USA
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Ave, Urbana, IL 61801, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Ave, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Qin QS, Feng DS, Liu PF, He Q, Li X, Liu AM, Zhang H, Hu GQ, Cheng L. Metagenomic Characterization of Candidatus Smithella cisternae Strain M82_1, a Syntrophic Alkane-Degrading Bacteria, Enriched from the Shengli Oil Field. Microbes Environ 2017; 32:234-243. [PMID: 28781346 PMCID: PMC5606693 DOI: 10.1264/jsme2.me17022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The methanogenic degradation of hydrocarbons plays an important role in hydrocarbon-contaminated environments in the absence of an external electron acceptor. Members of Syntrophaceae sublineages were previously reported to be responsible for syntrophic alkane degradation. However, limited information is currently available on their physiological capabilities in nature because it is very challenging to cultivate these as-yet uncultured microbes. We herein performed metagenomic sequencing of the methanogenic hexadecane-degrading culture M82 and recovered a nearly complete genome (2.75 Mb, estimated completeness ≥97%) belonging to Syntrophaceae sublineage II. The assembly genome was tentatively named “Candidatus Smithella cisternae strain M82_1”. Genes encoding alkylsuccinate synthase for alkane activation were identified, suggesting that this organism is capable of oxidizing alkanes through fumarate addition. This capability was further supported by the detection of methyl pentadecyl succinic acid and methyl tetradecyl succinic acid in cultures amended with hexadecane and pentadecane, respectively. Genes encoding enzymes for the β-oxidation of long-chain fatty acids and butyrate were also identified. The electron transfer flavoprotein/DUF224 complex is presumed to link electron flow from acyl-CoA dehydrogenase to a membrane hydrogenase or formate dehydrogenase. Although no indications of Rnf complexes were detected, genes encoding electron-confurcating hydrogenase and formate dehydrogenase were proposed to couple the thermodynamically favorable oxidation of ferredoxin to generate H2 and formate from NADH. Strain M82_1 synthesized ATP from acetyl-CoA by substrate-level phosphorylation or F1F0-ATP synthases. These results provide an insight into the potential metabolic traits and ecophysiological roles of the syntrophic alkane degrader Syntrophaceae.
Collapse
Affiliation(s)
- Qian-Shan Qin
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | | | - Peng-Fei Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Qiao He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Xia Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | | | - Hui Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Guo-Quan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| |
Collapse
|
33
|
Wang HL, Zhang J, Sun QL, Lian C, Sun L. A comparative study revealed first insights into the diversity and metabolisms of the microbial communities in the sediments of Pacmanus and Desmos hydrothermal fields. PLoS One 2017; 12:e0181048. [PMID: 28704556 PMCID: PMC5507547 DOI: 10.1371/journal.pone.0181048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 06/26/2017] [Indexed: 12/02/2022] Open
Abstract
Currently, little is known about the microbial diversity in the sediments of Pacmanus and Desmos hydrothermal fields in Manus Basin. In this study, Illumina-based sequencing of 16S rRNA gene amplicons and metagenomic analysis were conducted to investigate the microbial populations and metabolic profiles in the sediments from four different regions in Pacmanus and Desmos hydrothermal fields. It was found that Gammaproteobacteria and Thaumarchaeota were the most abundant bacterial and archaeal populations, respectively. The autotrophic prokaryotes in the four communities probably fixed CO2 via four major pathways, i.e. Calvin-Benson-Bassham cycle, reductive acetyl-CoA cycle, rTCA cycle, and 3-hydroxypropionate/4-hydroxybutyrate cycle. Ammonia-oxidizing Thaumarchaeota, nitrifiers, denitrifiers, and sulfur oxidizers belonging to the subgroups of Proteobacteria (e.g., alpha, beta, gamma, and epsilon), Nitrospira, and Nitrospina, and sulfate-reducing Desulfobacterales likely played critical roles in nitrogen and sulfur cycling, in which ammonia, sulfur compounds, and hydrogen could be utilized as potential energy sources. These findings revealed new insights into the operational mechanism of the microbial communities associated with Pacmanus and Desmos hydrothermal fields.
Collapse
Affiliation(s)
- Hai-liang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing-lei Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chao Lian
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
34
|
Pereira RA, Salvador AF, Dias P, Pereira MFR, Alves MM, Pereira L. Perspectives on carbon materials as powerful catalysts in continuous anaerobic bioreactors. WATER RESEARCH 2016; 101:441-447. [PMID: 27295618 DOI: 10.1016/j.watres.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The catalytic effect of commercial microporous activated carbon (AC) and macroporous carbon nanotubes (CNT) is investigated in reductive bioreactions in continuous high rate anaerobic reactors, using the azo dye Acid Orange 10 (AO10) as model compound as electron acceptor and a mixture of VFA as electron donor. Size and concentration of carbon materials (CM) and hydraulic retention time (HRT) are assessed. CM increased the biological reduction rate of AO10, resulting in significantly higher colour removal, as compared to the control reactors. The highest efficiency, 98%, was achieved with a CNT diameter (d) lower than 0.25 mm, at a CNT concentration of 0.12 g per g of volatile solids (VS), a HRT of 10 h and resulted in a chemical oxygen demand (COD) removal of 85%. Reducing the HRT to 5 h, colour and COD removal in CM-mediated bioreactors were above 90% and 80%, respectively. In the control reactor, thought similar COD removal was achieved, AO10 decolourisation was just approximately 20%, demonstrating the ability of CM to significantly accelerate the reduction reactions in continuous bioreactors. AO10 reduction to the correspondent aromatic amines was proved by high performance liquid chromatography (HPLC). Colour decrease in the reactor treating a real effluent with CNT was the double comparatively to the reactor operated without CNT. The presence of AC in the reactor did not affect the microbial diversity, as compared to the control reactor, evidencing that the efficient reduction of AO10 was mainly due to AC rather than attributed to changes in the composition of the microbial communities.
Collapse
Affiliation(s)
- R A Pereira
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - A F Salvador
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - P Dias
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M F R Pereira
- Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Departamento de Engenharia Química, Faculdade Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M M Alves
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - L Pereira
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
35
|
Liu T, Ahn H, Sun W, McGuinness LR, Kerkhof LJ, Häggblom MM. Identification of a Ruminococcaceae Species as the Methyl tert-Butyl Ether (MTBE) Degrading Bacterium in a Methanogenic Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1455-1464. [PMID: 26727046 DOI: 10.1021/acs.est.5b04731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The widespread use of methyl tert-butyl ether (MTBE) has caused major contamination of groundwater sources and is a concern due to its taste and odor problems, as well as its toxicity. MTBE can be degraded anaerobically which makes bioremediation of contaminated aquifers a potential solution. Nevertheless, the organisms and mechanisms that are responsible for anaerobic MTBE degradation are still unknown. The aim of our research was to identify the organisms actively degrading MTBE. For this purpose we characterized an anaerobic methanogenic culture enriched with MTBE as the sole carbon source from the New Jersey Arthur Kill intertidal strait sediment. The cultures were analyzed using stable isotope probing (SIP) combined with terminal restriction fragment length polymorphism (T-RFLP), high-throughput sequencing and clone library analysis of bacterial 16S rRNA genes. The sequence data indicated that phylotypes belonging to the Ruminococcaceae in the Firmicutes were predominant in the methanogenic cultures. SIP experiments also showed sequential incorporation of the (13)C labeled MTBE by the bacterial community with a bacterium most closely related to Saccharofermentans acetigenes identified as the bacterium active in O-demethylation of MTBE. Identification of the microorganisms responsible for the activity will help us better understand anaerobic MTBE degradation processes in the field and determine biomarkers for monitoring natural attenuation.
Collapse
Affiliation(s)
- Tong Liu
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Hyeri Ahn
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Weimin Sun
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Lora R McGuinness
- Department of Marine and Coastal Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Lee J Kerkhof
- Department of Marine and Coastal Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| |
Collapse
|
36
|
Complete genome sequence of Methanospirillum hungatei type strain JF1. Stand Genomic Sci 2016; 11:2. [PMID: 26744606 PMCID: PMC4704411 DOI: 10.1186/s40793-015-0124-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/22/2015] [Indexed: 12/02/2022] Open
Abstract
Methanospirillum hungatei strain JF1 (DSM 864) is a methane-producing archaeon and is the type species of the genus Methanospirillum, which belongs to the family Methanospirillaceae within the order Methanomicrobiales. Its genome was selected for sequencing due to its ability to utilize hydrogen and carbon dioxide and/or formate as a sole source of energy. Ecologically, M. hungatei functions as the hydrogen- and/or formate-using partner with many species of syntrophic bacteria. Its morphology is distinct from other methanogens with the ability to form long chains of cells (up to 100 μm in length), which are enclosed within a sheath-like structure, and terminal cells with polar flagella. The genome of M. hungatei strain JF1 is the first completely sequenced genome of the family Methanospirillaceae, and it has a circular genome of 3,544,738 bp containing 3,239 protein coding and 68 RNA genes. The large genome of M. hungatei JF1 suggests the presence of unrecognized biochemical/physiological properties that likely extend to the other Methanospirillaceae and include the ability to form the unusual sheath-like structure and to successfully interact with syntrophic bacteria.
Collapse
|
37
|
Juste-Poinapen NMS, Turner MS, Rabaey K, Virdis B, Batstone DJ. Evaluating the potential impact of proton carriers on syntrophic propionate oxidation. Sci Rep 2015; 5:18364. [PMID: 26670292 PMCID: PMC4680937 DOI: 10.1038/srep18364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023] Open
Abstract
Anaerobic propionic acid degradation relies on interspecies electron transfer (IET) between propionate oxidisers and electron acceptor microorganisms, via either molecular hydrogen, formate or direct transfers. We evaluated the possibility of stimulating direct IET, hence enhancing propionate oxidation, by increasing availability of proton carriers to decrease solution resistance and reduce pH gradients. Phosphate was used as a proton carrying anion, and chloride as control ion together with potassium as counter ion. Propionic acid consumption in anaerobic granules was assessed in a square factorial design with ratios (1:0, 2:1, 1:1, 1:2 and 0:1) of total phosphate (TP) to Cl(-), at 1X, 10X, and 30X native conductivity (1.5 mS.cm(-1)). Maximum specific uptake rate, half saturation, and time delay were estimated using model-based analysis. Community profiles were analysed by fluorescent in situ hybridisation and 16S rRNA gene pyrosequencing. The strongest performance was at balanced (1:1) ratios at 10X conductivity where presumptive propionate oxidisers namely Syntrophobacter and Candidatus Cloacamonas were more abundant. There was a shift from Methanobacteriales at high phosphate, to Methanosaeta at low TP:Cl ratios and low conductivity. A lack of response to TP, and low percentage of presumptive electroactive organisms suggested that DIET was not favoured under the current experimental conditions.
Collapse
Affiliation(s)
| | - Mark S. Turner
- The University of Queensland, School of Agriculture and Food Sciences, St. Lucia, QLD 4072, Australia
| | - Korneel Rabaey
- Ghent University, Laboratory of Microbial Ecology and Technology (LabMET), 9000 Ghent, Belgium
| | - Bernardino Virdis
- The University of Queensland, Advanced Water Management Centre, St. Lucia, QLD 4072, Australia
- The University of Queensland, Centre for Microbial Electrochemical Systems, St. Lucia, QLD 4072, Australia
| | - Damien J. Batstone
- The University of Queensland, Advanced Water Management Centre, St. Lucia, QLD 4072, Australia
| |
Collapse
|
38
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
39
|
Hamilton JJ, Calixto Contreras M, Reed JL. Thermodynamics and H2 Transfer in a Methanogenic, Syntrophic Community. PLoS Comput Biol 2015; 11:e1004364. [PMID: 26147299 PMCID: PMC4509577 DOI: 10.1371/journal.pcbi.1004364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
Microorganisms in nature do not exist in isolation but rather interact with other species in their environment. Some microbes interact via syntrophic associations, in which the metabolic by-products of one species serve as nutrients for another. These associations sustain a variety of natural communities, including those involved in methanogenesis. In anaerobic syntrophic communities, energy is transferred from one species to another, either through direct contact and exchange of electrons, or through small molecule diffusion. Thermodynamics plays an important role in governing these interactions, as the oxidation reactions carried out by the first community member are only possible because degradation products are consumed by the second community member. This work presents the development and analysis of genome-scale network reconstructions of the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. The models were used to verify proposed mechanisms of ATP production within each species. We then identified additional constraints and the cellular objective function required to match experimental observations. The thermodynamic S. fumaroxidans model could not explain why S. fumaroxidans does not produce H2 in monoculture, indicating that current methods might not adequately estimate the thermodynamics, or that other cellular processes (e.g., regulation) play a role. We also developed a thermodynamic coculture model of the association between the organisms. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which H2 and formate produced by S. fumaroxidans would be fully consumed by M. hungatei. Natural and engineered microbial communities can contain up to hundreds of interacting microbes. These interactions may be positive, negative, or neutral, as well as obligate or facultative. Syntrophy is an obligate, positive interaction, in which one species lives off the metabolic by-products of another. Syntrophic associations play an important role in sustaining a variety of natural communities, including those involved in the breakdown and conversion of short-chain fatty acids (e.g., propionate) to methane. In many syntrophic communities, electrons are transferred from one species to the other through small molecule diffusion. In this work, we expand the study of a two-member syntrophic, methanogenic community through the development and analysis of computational models for both species: the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. These models were used to analyze energy conservation mechanisms within each species, as well as small molecule exchange between the two organisms in coculture. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which these molecules would be fully metabolized within the community.
Collapse
Affiliation(s)
- Joshua J. Hamilton
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Montserrat Calixto Contreras
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer L. Reed
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
40
|
Analysis of a microbial community associated with polychlorinated biphenyl degradation in anaerobic batch reactors. Biodegradation 2014; 25:797-810. [DOI: 10.1007/s10532-014-9700-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/18/2014] [Indexed: 11/26/2022]
|
41
|
A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:2004-2016. [PMID: 24973598 DOI: 10.1016/j.bbabio.2014.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022]
Abstract
In sulfate-reducing and methanogenic environments complex biopolymers are hydrolyzed and degraded by fermentative micro-organisms that produce hydrogen, carbon dioxide and short chain fatty acids. Degradation of short chain fatty acids can be coupled to methanogenesis or to sulfate-reduction. Here we study from a genome perspective why some of these micro-organisms are able to grow in syntrophy with methanogens and others are not. Bacterial strains were selected based on genome availability and upon their ability to grow on short chain fatty acids alone or in syntrophic association with methanogens. Systematic functional domain profiling allowed us to shed light on this fundamental and ecologically important question. Extra-cytoplasmic formate dehydrogenases (InterPro domain number; IPR006443), including their maturation protein FdhE (IPR024064 and IPR006452) is a typical difference between syntrophic and non-syntrophic butyrate and propionate degraders. Furthermore, two domains with a currently unknown function seem to be associated with the ability of syntrophic growth. One is putatively involved in capsule or biofilm production (IPR019079) and a second in cell division, shape-determination or sporulation (IPR018365). The sulfate-reducing bacteria Desulfobacterium autotrophicum HRM2, Desulfomonile tiedjei and Desulfosporosinus meridiei were never tested for syntrophic growth, but all crucial domains were found in their genomes, which suggests their possible ability to grow in syntrophic association with methanogens. In addition, profiling domains involved in electron transfer mechanisms revealed the important role of the Rnf-complex and the formate transporter in syntrophy, and indicate that DUF224 may have a role in electron transfer in bacteria other than Syntrophomonas wolfei as well. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).
Collapse
|
42
|
Nobu MK, Narihiro T, Hideyuki T, Qiu YL, Sekiguchi Y, Woyke T, Goodwin L, Davenport KW, Kamagata Y, Liu WT. The genome ofSyntrophorhabdus aromaticivoransstrain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. Environ Microbiol 2014; 17:4861-72. [DOI: 10.1111/1462-2920.12444] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Masaru K. Nobu
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; Urbana IL USA
| | - Takashi Narihiro
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; Urbana IL USA
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
| | - Tamaki Hideyuki
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; Urbana IL USA
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
| | - Yan-Ling Qiu
- Key Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong Province China
| | - Yuji Sekiguchi
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
| | - Tanja Woyke
- DOE Joint Genome Institute; Walnut Creek CA USA
| | | | | | - Yoichi Kamagata
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Toyohira-ku Sapporo Hokkaido Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; Urbana IL USA
| |
Collapse
|
43
|
Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells. PLoS One 2013; 8:e77443. [PMID: 24223712 PMCID: PMC3815305 DOI: 10.1371/journal.pone.0077443] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 11/30/2022] Open
Abstract
In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.
Collapse
|