1
|
Khan IU, Saqib M, Amin A, Manzoor S, Ahmed I, Liu RR, Jiao JY, Zhi XY, Li WJ. Phylogenomic analyses and comparative genomic studies of Thermus strains isolated from Tengchong and Tibet Hot Springs, China. Antonie Van Leeuwenhoek 2024; 117:103. [PMID: 39042225 DOI: 10.1007/s10482-024-02001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Genus Thermus is the main focus of researcher among the thermophiles. Members of this genus are the inhabitants of both natural and artificial thermal environments. We performed phylogenomic analyses and comparative genomic studies to unravel the genomic diversity among the strains belonging to the genus Thermus in geographically different thermal springs. Sixteen Thermus strains were isolated and sequenced from hot springs, Qucai hot springs in Tibet and Tengchong hot springs in Yunnan, China. 16S rRNA gene based phylogeny and phylogenomic analyses based on concatenated set of 971 Orthologous Protein Families (supermatrix and gene content methods) revealed a mixed distribution of the Thermus strains. Whole genome based phylogenetic analysis showed, all 16 Thermus strains belong to five species; Thermus oshimai (YIM QC-2-109, YIM 1640, YIM 1627, 77359, 77923, 77838), Thermus antranikianii (YIM 73052, 77412, 77311, 71206), Thermus brokianus (YIM 73518, 71318, 72351), Thermus hydrothermalis (YIM 730264 and 77927) and one potential novel species 77420 forming clade with Thermus thalpophilus SYSU G00506T. Although the genomes of different strains of Thermus of same species were highly similar in their metabolic pathways, but subtle differences were found. CRISPR loci were detected through genome-wide screening, which showed that Thermus isolates from two different thermal locations had well developed defense system against viruses and adopt similar strategy for survival. Additionally, comparative genome analysis screened competence loci across all the Thermus genomes which could be helpful to acquire DNA from environment. In the present study it was found that Thermus isolates use two mechanism of incomplete denitrification pathway, some Thermus strains produces nitric oxide while others nitrious oxide (dinitrogen oxide), which show the heterotrophic lifestyle of Thermus genus. All isolated organisms encoded complete pathways for glycolysis, tricarboxylic acid and pentose phosphate. Calvin Benson Bassham cycle genes were identified in genomes of T. oshimai and T. antranikianii strains, while genomes of all T. brokianus strains and organism 77420 were lacking. Arsenic, cadmium and cobalt-zinc-cadmium resistant genes were detected in genomes of all sequenced Thermus strains. Strains 77,420, 77,311, 73,518, 77,412 and 72,351 genomes were found harboring genes for siderophores production. Sox gene clusters were identified in all sequenced genomes, except strain YIM 730264, suggesting a mode of chemolithotrophy. Through the comparative genomic analysis, we also identified 77420 as the genome type species and its validity as novel organism was confirmed by whole genome sequences comparison. Although isolate 77420 had 99.0% 16S rRNA gene sequence similarity with T. thalpophilus SYSU G00506T but based on ANI 95.86% (Jspecies) and digital DDH 68.80% (GGDC) values differentiate it as a potential novel species. Similarly, in the phylogenomic tree, the novel isolate 77,420 forming a separate branch with their closest reference type strain T. thalpophilus SYSU G00506T.
Collapse
Affiliation(s)
- Inam Ullah Khan
- Faculty of Veterinary and Animal Sciences, Institute of Microbiology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, 29050, Pakistan
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Muhammad Saqib
- Department of Zoology, Gomal University, Tank Campus, 29050, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Arshia Amin
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, 45500, Pakistan
| | - Sadia Manzoor
- Institute of Microbial Culture Collection of Pakistan (IMCCP), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Iftikhar Ahmed
- Institute of Microbial Culture Collection of Pakistan (IMCCP), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Rui-Rui Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao-Yang Zhi
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China.
| |
Collapse
|
2
|
Chi B, Huang Y, Xiong Z, Tan J, Zhou W, Yang Z, Zhou K, Duan X, Chen A, Zha R, Gui K. Investigation of lysing excess sludge slurry using hydrolase secreting thermophilic bacterial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119562. [PMID: 37952379 DOI: 10.1016/j.jenvman.2023.119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Sludge reduction is a critical challenge in biological wastewater treatment. Combining excess sludge slurry lysis technology with traditional activated sludge processes is a promising approach for in-situ sludge reduction. Here, a strategy for excess sludge slurry lysis based on thermophilic bacterial communities (LTBC) was proposed. This investigation focused on the process of excess sludge slurry lysis dominated by thermophilic bacterial communities domesticated at different temperatures (55-75 °C). The evolution of sludge lysate was analyzed, and the mechanism of excess sludge slurry lysis under the action of thermophilic bacterial communities was elucidated through amplicon sequencing analysis. The results demonstrated that the aerobic thermophilic bacterial communities adapted to 75 °C exhibit the highest efficiency in sludge slurry lysis. During LTBC process, the removal efficiency of volatile suspended solids reached 53.9 ± 1.8% within 2 h, and 97.0 ± 1.0% of the protein and 96.0 ± 1.0% of the polysaccharide in the extracellular polymers was solubilized, and bacterial cell walls in sludge were disrupted. Fourier transform infrared spectroscopy and excitation-emission matrix spectroscopy of the sludge lysate demonstrated that the LTBC process was accompanied by humification process. The accumulation of humic acid primarily occurred at 55 °C and 65 °C, while fulvic acid occurred at 75 °C. The thermophilic bacterial communities adapted to 75 °C were dominated by Thermus and Thermaerobacter. Phylogenetic studies showed that the LTBC hydrolase system comprises enzymes related to protein hydrolysis, carbohydrate hydrolysis, and peptidoglycan hydrolysis, including metalopeptidase MepB, neutral α-glucosidase C, N-acetyl Muramyl-L-alanine amidase, and others enzymes. These results provide a theoretical basis for the application of LTBC technology in the reduction of sludge which generated in traditional waste water activated sludge processes.
Collapse
Affiliation(s)
- Baoyan Chi
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Ying Huang
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Zhenfeng Xiong
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Jiali Tan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Weidong Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, PR China
| | - Zhuo Yang
- Central & South China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, PR China
| | - Kemei Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, PR China
| | - Xinxin Duan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Ao Chen
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Rong Zha
- Zhenjiang Esther Environment Protection Technology Co., Ltd., Jurong City, 212400, PR China
| | - Keting Gui
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
3
|
Chi B, Huang Y, Xiong Z, Tan J, Zhou W, Yang Z, Zhou K, Duan X, Chen A, Gui K. Combination of sequencing batch reactor activated sludge process with sludge lysis using thermophilic bacterial community for minimizing excess sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118902. [PMID: 37713770 DOI: 10.1016/j.jenvman.2023.118902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/17/2023]
Abstract
Sludge reduction is a major challenge in biological wastewater treatment. Hydrolytic enzymes secreted by thermophilic bacteria can lyse sludge and thus achieve sludge reduction, and the indigenous thermophilic community in sludge can lyse sludge more effectively. In this study, the feasibility of combining a sludge lysis reactor based on thermophilic bacteria community (LTBC reactor, 75 °C) with a conventional sequencing batch activated sludge reactor (SBR) for sludge reduction (i.e., LTBC-SBR process) was systematically investigated first time. The effect of lysed sludge returning to the biochemical tank on pollutant removal efficiency, sludge flocculation, sludge settling, and microbial community and function of the LTBC-SBR process was studied. In the LTBC1-SBR process, a sludge growth rate of 0.71 g TSS/day was observed when the lysed sludge reflux ratio (LRR) was 1, and the sludge generation was reduced by 81.5% compared to the conventional SBR reactor. In the LTBC1-SBR process, the removal efficiencies of chemical oxygen demand and total nitrogen were 94.0% and 80.5%, respectively. There was no significant difference in the sludge volume index from the SBR to the LTBC1-SBR stage, however, the effluent suspended solids concentration increased from 35.2 ± 2.1 mg/L to 80.1 ± 5.3 mg/L. This was attributed to the reflux of sludge lysate. In addition, the changes in extracellular polymers content and composition resulted in poor sludge flocculation performance. Heterotrophic bacteria associated with Actinobacteria and Patescibacteria enriched in LTBC1-SBR with relative abundance of 28.51 ± 1.25% and 20.01 ± 1.21%, respectively, which decomposed the macromolecules in the refluxed lysed sludge and contributed to the sludge reduction. Furthermore, due to the inhibition of nitrite-oxidizing bacteria, the nitrite concentration in the effluent of the LTBC1-SBR system reached 4.7 ± 1.1 mg/L, and part of the denitrification process was achieved by short-cut nitrification and simultaneous denitrification. These results indicate that in-situ sludge reduction technology based on lyse sludge lysing by thermophilic community has considerable potential to be widely used in wastewater treatment.
Collapse
Affiliation(s)
- Baoyan Chi
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ying Huang
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Zhenfeng Xiong
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiali Tan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China
| | - Weidong Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, People's Republic of China
| | - Zhuo Yang
- Nanjing Branch of China Municipal Engineering Central South Design and Research Institute Co., Ltd., Nanjing, 210012, People's Republic of China
| | - Kemei Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, People's Republic of China
| | - Xinxin Duan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ao Chen
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| | - Keting Gui
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
4
|
Valenzuela B, Solís-Cornejo F, Araya R, Zamorano P. Isolation and Characterization of Thermus thermophilus Strain ET-1: An Extremely Thermophilic Bacterium with Extracellular Thermostable Proteolytic Activity Isolated from El Tatio Geothermal Field, Antofagasta, Chile. Int J Mol Sci 2023; 24:14512. [PMID: 37833960 PMCID: PMC10572604 DOI: 10.3390/ijms241914512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
The present study describes the isolation of an extremely thermophilic bacterium from El Tatio, a geyser field in the high planes of Northern Chile. The thermophile bacterium named Thermus thermophilus strain ET-1 showed 99% identity with T. thermophilus SGO.5JP 17-16 (GenBank accession No. CP002777) by 16S rDNA gene analysis. Morphologically, the cells were non-sporeforming Gram-negative rods that formed colonies with yellow pigmentation. This strain is able to proliferate between 55 and 80 °C with a pH range of 6-10, presenting an optimum growth rate at 80 °C and pH 8. The bacterium produces an extracellular protease activity. Characterization of this activity in a concentrated enzyme preparation revealed that extracellular protease had an optimal enzymatic activity at 80 °C at pH 10, a high thermostability with a half-life at 80 °C of 10 h, indicating that this enzyme can be classified as an alkaline protease. The proteolytic enzyme exhibits great stability towards chelators, divalent ions, organic solvents, and detergents. The enzyme was inhibited by phenylmethylsulfonyl fluoride (PMSF), implying that it was a serine protease. The high thermal and pH stability and the resistance to chelators/detergents suggest that the protease activity from this T. thermophilus. strain could be of interest in biotechnological applications.
Collapse
Affiliation(s)
- Bernardita Valenzuela
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile;
| | - Francisco Solís-Cornejo
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile;
| | - Rubén Araya
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile;
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile;
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta; Antofagasta 1240000, Chile
| |
Collapse
|
5
|
Mefferd CC, Zhou E, Seymour CO, Bernardo NA, Srivastava S, Bengtson AJ, Jiao JY, Dong H, Li WJ, Hedlund BP. Incomplete denitrification phenotypes in diverse Thermus species from diverse geothermal spring sediments and adjacent soils in southwest China. Extremophiles 2022; 26:23. [PMID: 35802188 PMCID: PMC9270275 DOI: 10.1007/s00792-022-01272-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023]
Abstract
A few members of the bacterial genus Thermus have been shown to be incomplete denitrifiers, terminating with nitrite (NO2-) or nitrous oxide (N2O). However, the denitrification abilities of the genus as a whole remain poorly characterized. Here, we describe diverse denitrification phenotypes and genotypes of a collection of 24 strains representing ten species, all isolated from a variety of geothermal systems in China. Confirmed terminal products of nitrate reduction were nitrite or N2O, while nitric oxide (NO) was inferred as the terminal product in some strains. Most strains produced N2O; complete denitrification was not observed. Denitrification phenotypes were largely consistent with the presence of denitrification genes, and strains of the same species often had the same denitrification phenotypes and largely syntenous denitrification gene clusters. Genes for nirS and nirK coexisted in three Thermus brockianus and three Thermus oshimai genomes, which is a unique hallmark of some denitrifying Thermus strains and may be ecologically important. These results show that incomplete denitrification phenotypes are prominent, but variable, within and between Thermus species. The incomplete denitrification phenotypes described here suggest Thermus species may play important roles in consortial denitrification in high-temperature terrestrial biotopes where sufficient supply of oxidized inorganic nitrogen exists.
Collapse
Affiliation(s)
| | - Enmin Zhou
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
- School of Earth Sciences, Yunnan University, Kunming, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Noel A Bernardo
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Shreya Srivastava
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Amanda J Bengtson
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
- SWCA Environmental Consultants, Las Vegas, NV, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Nevada Institute for Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
6
|
Buessecker S, Palmer M, Lai D, Dimapilis J, Mayali X, Mosier D, Jiao JY, Colman DR, Keller LM, St John E, Miranda M, Gonzalez C, Gonzalez L, Sam C, Villa C, Zhuo M, Bodman N, Robles F, Boyd ES, Cox AD, St Clair B, Hua ZS, Li WJ, Reysenbach AL, Stott MB, Weber PK, Pett-Ridge J, Dekas AE, Hedlund BP, Dodsworth JA. An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea. Nat Commun 2022; 13:3773. [PMID: 35773279 PMCID: PMC9246946 DOI: 10.1038/s41467-022-31452-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Trace metals have been an important ingredient for life throughout Earth's history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredoxin oxidoreductases that are expressed during growth. Catalyzed reporter deposition-fluorescence in-situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) show that W. gerlachensis preferentially assimilates xylose. Phylogenetic analyses of 78 high-quality Wolframiiraptoraceae MAGs from terrestrial and marine hydrothermal systems suggest that tungsten-associated enzymes were present in the last common ancestor of extant Wolframiiraptoraceae. Our observations imply a crucial role for tungsten-dependent metabolism in the origin and evolution of this lineage, and hint at a relic metabolic dependence on this trace metal in early anaerobic thermophiles.
Collapse
Affiliation(s)
- Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, CA, USA.
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Joshua Dimapilis
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Damon Mosier
- Department of Biology, California State University, San Bernardino, CA, USA
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Emily St John
- Department of Biology, Portland State University, Portland, OR, USA
| | - Michelle Miranda
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Cristina Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Lizett Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Christian Sam
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Christopher Villa
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Madeline Zhuo
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Nicholas Bodman
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Fernando Robles
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Alysia D Cox
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Brian St Clair
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- College of Fisheries, Henan Normal University, Xinxiang, PR China
| | | | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of Merced, Merced, CA, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA.
| |
Collapse
|
7
|
Lin H, Yuan Q, Yu Q, Chen Z, Ma J. Plants Mitigate Nitrous Oxide Emissions from Antibiotic-Contaminated Agricultural Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4950-4960. [PMID: 35274945 DOI: 10.1021/acs.est.1c06508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vegetable production systems are hotspots of nitrous oxide (N2O) emissions and antibiotic pollution. However, little is known about the interconnections among N2O emissions, vegetable growth, and antibiotic contamination. To understand how plants regulate N2O emissions from enrofloxacin (ENR)-contaminated soils, in situ N2O emissions were measured in pot experiments with cherry radish and pakchoi. Gross N2O production and consumption processes were discriminated based on an acetylene inhibition experiment. Results indicated that vegetable growth decreased the cumulative N2O flux from 0.71 to -0.29 kg ha-1 and mitigated the ENR-induced increase in N2O emissions. Radish displayed better mitigation of N2O emissions than pakchoi. By combining the analysis of N2O flux with soil physicochemical and microbiological properties, we demonstrated that growing vegetables could either promote gross N2O consumption or decrease gross N2O production, primarily by interacting with soil nitrate, clade II nosZ (nosZII)-carrying bacteria, and Deinococcus-Thermus. ENR inhibited N2O consumption more than N2O production, with the nosZII-carrying bacteria, represented by Gemmatimonadetes, as the main inhibition target. However, increasing nosZII-carrying bacteria by growing radish offsets the inhibitory effect of ENR. These findings provide new insights into N2O emissions and antibiotic pollution in vegetable-soil ecosystems and broaden the options for mitigating N2O emissions.
Collapse
Affiliation(s)
- Hui Lin
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Qianyu Yuan
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, P. R. China
| | - Qiaogang Yu
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Zhaoming Chen
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Junwei Ma
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| |
Collapse
|
8
|
Palmer M, Sutcliffe I, Venter S, Hedlund B. It is time for a new type of type to facilitate naming the microbial world. New Microbes New Infect 2022; 47:100991. [PMID: 35800027 PMCID: PMC9253472 DOI: 10.1016/j.nmni.2022.100991] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Since January 1, 2001, the only acceptable nomenclatural type for species under the International Code of Nomenclature of Prokaryotes (ICNP) has been pure cultures. Here, we argue that this requirement is discordant with the more inclusive nature of nomenclatural types accepted under other codes of nomenclature and posit that the unique rigidity of the ICNP has failed to serve the broad research community and has stifled progress. This case is based on the axiom that many archaea and bacteria are interdependent in nature and therefore difficult, if not impossible, to grow, preserve, and distribute as pure cultures. As such, a large proportion of Earth's biodiversity cannot be named under the current system, which limits our ability to communicate about microbial diversity within and beyond the microbiology research community. Genome sequence data are now encouraged for valid publication of new taxa in microbial systematics journals, and metagenome-assembled genomes and single cell-amplified genomes are being generated rapidly from every biome on Earth. Thus, genome sequences are available for both cultivated and uncultivated microorganisms and can readily serve as a new category of nomenclatural type, allowing for a unified nomenclature for all archaea and bacteria, whether or not they are available as pure cultures. Ideally this would be under a single code of nomenclature but, as we review here, the newly established SeqCode will operate in parallel with the ICNP as a first step toward this goal.
Collapse
Affiliation(s)
- M. Palmer
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA
| | - I. Sutcliffe
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - S.N. Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - B.P. Hedlund
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA
| |
Collapse
|
9
|
Yuan C, Li P, Qing C, Kou Z, Wang H. Different Regulatory Strategies of Arsenite Oxidation by Two Isolated Thermus tengchongensis Strains From Hot Springs. Front Microbiol 2022; 13:817891. [PMID: 35359718 PMCID: PMC8963470 DOI: 10.3389/fmicb.2022.817891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a ubiquitous constituent in geothermal fluids. Thermophiles represented by Thermus play vital roles in its transformation in geothermal fluids. In this study, two Thermus tengchongensis strains, named as 15Y and 15W, were isolated from arsenic-rich geothermal springs and found different arsenite oxidation behaviors with different oxidation strategies. Arsenite oxidation of both strains occurred at different growth stages, and two enzyme-catalyzed reaction kinetic models were observed. The arsenite oxidase of Thermus strain 15W performed better oxidation activity, exhibiting typical Michaelis–Menten kinetics. The kinetic parameter of arsenite oxidation in whole cell showed a Vmax of 18.48 μM min–1 and KM of 343 μM. Both of them possessed the arsenite oxidase-coding genes aioB and aioA. However, the expression of gene aioBA was constitutive in strain 15W, whereas it was induced by arsenite in strain 15Y. Furthermore, strain 15Y harbored an intact aio operon including the regulatory gene of the ArsR family, whereas a genetic inversion of an around 128-kbp fragment produced the inactivation of this regulator in strain 15W, leading to the constitutive expression of aioBA genes. This study provides a valuable insight into the adaption of thermophiles to extreme environments.
Collapse
Affiliation(s)
- Changguo Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
- *Correspondence: Ping Li,
| | - Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Zhu Kou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| |
Collapse
|
10
|
DeCastro ME, Escuder-Rodríguez JJ, Becerra M, Rodríguez-Belmonte E, González-Siso MI. Comparative Metagenomic Analysis of Two Hot Springs From Ourense (Northwestern Spain) and Others Worldwide. Front Microbiol 2021; 12:769065. [PMID: 34899652 PMCID: PMC8661477 DOI: 10.3389/fmicb.2021.769065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
With their circumneutral pH and their moderate temperature (66 and 68°C, respectively), As Burgas and Muiño da Veiga are two important human-use hot springs, previously studied with traditional culture methods, but never explored with a metagenomic approach. In the present study, we have performed metagenomic sequence-based analyses to compare the taxonomic composition and functional potential of these hot springs. Proteobacteria, Deinococcus-Thermus, Firmicutes, Nitrospirae, and Aquificae are the dominant phyla in both geothermal springs, but there is a significant difference in the abundance of these phyla between As Burgas and Muiño da Veiga. Phylum Proteobacteria dominates As Burgas ecosystem while Aquificae is the most abundant phylum in Muiño da Veiga. Taxonomic and functional analyses reveal that the variability in water geochemistry might be shaping the differences in the microbial communities inhabiting these geothermal springs. The content in organic compounds of As Burgas water promotes the presence of heterotrophic populations of the genera Acidovorax and Thermus, whereas the sulfate-rich water of Muiño da Veiga favors the co-dominance of genera Sulfurihydrogenibium and Thermodesulfovibrio. Differences in ammonia concentration exert a selective pressure toward the growth of nitrogen-fixing bacteria such as Thermodesulfovibrio in Muiño da Veiga. Temperature and pH are two important factors shaping hot springs microbial communities as was determined by comparative analysis with other thermal springs.
Collapse
Affiliation(s)
| | | | | | | | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
11
|
A Novel Gene Cluster Is Involved in the Degradation of Lignin-Derived Monoaromatics in Thermus oshimai JL-2. Appl Environ Microbiol 2021; 87:AEM.01589-20. [PMID: 33741620 DOI: 10.1128/aem.01589-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
A novel gene cluster involved in the degradation of lignin-derived monoaromatics such as p-hydroxybenzoate, vanillate, and ferulate has been identified in the thermophilic nitrate reducer Thermus oshimai JL-2. Based on conserved domain analyses and metabolic pathway mapping, the cluster was classified into upper- and peripheral-pathway operons. The upper-pathway genes, responsible for the degradation of p-hydroxybenzoate and vanillate, are located on a 0.27-Mb plasmid, whereas the peripheral-pathway genes, responsible for the transformation of ferulate, are spread throughout the plasmid and the chromosome. In addition, a lower-pathway operon was also identified in the plasmid that corresponds to the meta-cleavage pathway of catechol. Spectrophotometric and gene induction data suggest that the upper and lower operons are induced by p-hydroxybenzoate, which the strain can degrade completely within 4 days of incubation, whereas the peripheral genes are expressed constitutively. The upper degradation pathway follows a less common route, proceeding via the decarboxylation of protocatechuate to form catechol, and involves a novel thermostable γ-carboxymuconolactone decarboxylase homolog, identified as protocatechuate decarboxylase based on gene deletion experiments. This gene cluster is conserved in only a few members of the Thermales and shows traces of vertical expansion of catabolic pathways in these organisms toward lignoaromatics.IMPORTANCE High-temperature steam treatment of lignocellulosic biomass during the extraction of cellulose and hemicellulose fractions leads to the release of a wide array of lignin-derived aromatics into the natural ecosystem, some of which can have detrimental effects on the environment. Not only will identifying organisms capable of using such aromatics aid in environmental cleanup, but thermostable enzymes, if characterized, can also be used for efficient lignin valorization. However, no thermophilic lignin degraders have been reported thus far. The present study reports T. oshimai JL-2 as a thermophilic bacterium with the potential to use lignin-derived aromatics. The identification of a novel thermostable protocatechuate decarboxylase gene in the strain further adds to its significance, as such an enzyme can be efficiently used in the biosynthesis of cis,cis-muconate, an important intermediate in the commercial production of plastics.
Collapse
|
12
|
Zhou EM, Adegboruwa AL, Mefferd CC, Bhute SS, Murugapiran SK, Dodsworth JA, Thomas SC, Bengtson AJ, Liu L, Xian WD, Li WJ, Hedlund BP. Diverse respiratory capacity among Thermus strains from US Great Basin hot springs. Extremophiles 2019; 24:71-80. [PMID: 31535211 DOI: 10.1007/s00792-019-01131-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/14/2019] [Indexed: 11/26/2022]
Abstract
Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that Thermus made up 0-3.5% of sequences and were predominately Thermus thermophilus. 189 Thermus isolates from GBS and LHC were affiliated with T. aquaticus (73.0%), T. oshimai (25.4%), T. sediminis (1.1%), and T. thermophilus (0.5%), with T. aquaticus and T. oshimai forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe3+ ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of Thermus, suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.
Collapse
Affiliation(s)
- En-Min Zhou
- School of Resource Environment and Earth Science, Yunnan University, Kunming, 650091, People's Republic of China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | | | - Shrikant S Bhute
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Scott C Thomas
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Amanda J Bengtson
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- SWCA Environmental Consultants, Reno, NV, USA
| | - Lan Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
13
|
Superoxide Dismutase and Pseudocatalase Increase Tolerance to Hg(II) in Thermus thermophilus HB27 by Maintaining the Reduced Bacillithiol Pool. mBio 2019; 10:mBio.00183-19. [PMID: 30940703 PMCID: PMC6445937 DOI: 10.1128/mbio.00183-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermus thermophilus is a deep-branching thermophilic aerobe. It is a member of the Deinococcus-Thermus phylum that, together with the Aquificae, constitute the earliest branching aerobic bacterial lineages; therefore, this organism serves as a model for early diverged bacteria (R. K. Hartmann, J. Wolters, B. Kröger, S. Schultze, et al., Syst Appl Microbiol 11:243–249, 1989, https://doi.org/10.1016/S0723-2020(89)80020-7) whose natural heated habitat may contain mercury of geological origins (G. G. Geesey, T. Barkay, and S. King, Sci Total Environ 569-570:321–331, 2016, https://doi.org/10.1016/j.scitotenv.2016.06.080). T. thermophilus likely arose shortly after the oxidation of the biosphere 2.4 billion years ago. Studying T. thermophilus physiology provides clues about the origin and evolution of mechanisms for mercury and oxidative stress responses, the latter being critical for the survival and function of all extant aerobes. Mercury (Hg) is a widely distributed, toxic heavy metal with no known cellular role. Mercury toxicity has been linked to the production of reactive oxygen species (ROS), but Hg does not directly perform redox chemistry with oxygen. How exposure to the ionic form, Hg(II), generates ROS is unknown. Exposure of Thermus thermophilus to Hg(II) triggered ROS accumulation and increased transcription and activity of superoxide dismutase (Sod) and pseudocatalase (Pcat); however, Hg(II) inactivated Sod and Pcat. Strains lacking Sod or Pcat had increased oxidized bacillithiol (BSH) levels and were more sensitive to Hg(II) than the wild type. The ΔbshA Δsod and ΔbshA Δpcat double mutant strains were as sensitive to Hg(II) as the ΔbshA strain that lacks bacillithiol, suggesting that the increased sensitivity to Hg(II) in the Δsod and Δpcat mutant strains is due to a decrease of reduced BSH. Treatment of T. thermophilus with Hg(II) decreased aconitase activity and increased the intracellular concentration of free Fe, and these phenotypes were exacerbated in Δsod and Δpcat mutant strains. Treatment with Hg(II) also increased DNA damage. We conclude that sequestration of the redox buffering thiol BSH by Hg(II), in conjunction with direct inactivation of ROS-scavenging enzymes, impairs the ability of T. thermophilus to effectively metabolize ROS generated as a normal consequence of growth in aerobic environments.
Collapse
|
14
|
Opperman DJ, Murgida DH, Dalosto SD, Brondino CD, Ferroni FM. A three-domain copper-nitrite reductase with a unique sensing loop. IUCRJ 2019; 6:248-258. [PMID: 30867922 PMCID: PMC6400189 DOI: 10.1107/s2052252519000241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Dissimilatory nitrite reductases are key enzymes in the denitrification pathway, reducing nitrite and leading to the production of gaseous products (NO, N2O and N2). The reaction is catalysed either by a Cu-containing nitrite reductase (NirK) or by a cytochrome cd 1 nitrite reductase (NirS), as the simultaneous presence of the two enzymes has never been detected in the same microorganism. The thermophilic bacterium Thermus scotoductus SA-01 is an exception to this rule, harbouring both genes within a denitrification cluster, which encodes for an atypical NirK. The crystal structure of TsNirK has been determined at 1.63 Å resolution. TsNirK is a homotrimer with subunits of 451 residues that contain three copper atoms each. The N-terminal region possesses a type 2 Cu (T2Cu) and a type 1 Cu (T1CuN) while the C-terminus contains an extra type 1 Cu (T1CuC) bound within a cupredoxin motif. T1CuN shows an unusual Cu atom coordination (His2-Cys-Gln) compared with T1Cu observed in NirKs reported so far (His2-Cys-Met). T1CuC is buried at ∼5 Å from the molecular surface and located ∼14.1 Å away from T1CuN; T1CuN and T2Cu are ∼12.6 Å apart. All these distances are compatible with an electron-transfer process T1CuC → T1CuN → T2Cu. T1CuN and T2Cu are connected by a typical Cys-His bridge and an unexpected sensing loop which harbours a SerCAT residue close to T2Cu, suggesting an alternative nitrite-reduction mechanism in these enzymes. Biophysicochemical and functional features of TsNirK are discussed on the basis of X-ray crystallography, electron paramagnetic resonance, resonance Raman and kinetic experiments.
Collapse
Affiliation(s)
- Diederik Johannes Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, Free State 9300, South Africa
| | - Daniel Horacio Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2 piso 1, Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Sergio Daniel Dalosto
- Instituto de Física del Litoral, CONICET-UNL, Güemes 3450, Santa Fe, Santa Fe S3000ZAA, Argentina
| | - Carlos Dante Brondino
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Santa Fe S3000ZAA, Argentina
| | - Felix Martín Ferroni
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Santa Fe S3000ZAA, Argentina
| |
Collapse
|
15
|
Physiological and genomic properties of Thermus tenuipuniceus sp. nov., a novel slight reddish color member isolated from a terrestrial geothermal spring. Syst Appl Microbiol 2018; 41:611-618. [PMID: 30217696 DOI: 10.1016/j.syapm.2018.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 11/23/2022]
Abstract
Two closely related, thermophilic bacteria, designated strains YIM 76954T and YIM 76947, were isolated from the Rehai Geothermal Field, Tengchong, Yunnan province, south-west China. Polyphasic approach and whole genome sequencing were used to determine the taxonomy status and genomic profiles of the novel strains. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates were closely related to Thermus scotoductus SE-1T (97.1% sequence similarity), and T. amyloliquefaciens YIM 77409T (96.6%). The strains could be differentiated from most recognized Thermus species by their whitish to slight reddish colony color, distinct DNA fingerprinting profiles and low ANI values. Cells stained Gram-negative, rod-shaped of diameter 0.2-0.5μm and length 1.5-5.0μm. Growth occurred at 50-75°C, pH 6.0-9.0 and in the presence of up to 1.0% (w/v) NaCl concentration. Thiosulfate was found to enhance cell growth, besides improving the intensity of its colony color. Oxygen, nitrate, sulfur, and Fe(III) could be used as terminal electron acceptors for growth. MK-8 was the major respiratory menaquinone. Major fatty acids were iso-C17:0, iso-C15:0, anteiso-C17:0, and anteiso-C15:0. The genome size was 2.26Mbp with 65.5% average GC content. A total of 2374 genes was predicted, comprising 2322 protein-coding and 52 RNA genes. On the basis of the polyphasic evidence presented, it is proposed that strain YIM 76954T represents a novel species of the genus Thermus, for which the name Thermus tenuipuniceus sp. nov. is proposed. The type strain is YIM 76954T (=JCM 30350T=KCTC 4677T).
Collapse
|
16
|
Diversity of key genes for carbon and nitrogen fixation in soils from the Sør Rondane Mountains, East Antarctica. Polar Biol 2018. [DOI: 10.1007/s00300-018-2353-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Tripathi C, Mishra H, Khurana H, Dwivedi V, Kamra K, Negi RK, Lal R. Complete Genome Analysis of Thermus parvatiensis and Comparative Genomics of Thermus spp. Provide Insights into Genetic Variability and Evolution of Natural Competence as Strategic Survival Attributes. Front Microbiol 2017; 8:1410. [PMID: 28798737 PMCID: PMC5529391 DOI: 10.3389/fmicb.2017.01410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023] Open
Abstract
Thermophilic environments represent an interesting niche. Among thermophiles, the genus Thermus is among the most studied genera. In this study, we have sequenced the genome of Thermus parvatiensis strain RL, a thermophile isolated from Himalayan hot water springs (temperature >96°C) using PacBio RSII SMRT technique. The small genome (2.01 Mbp) comprises a chromosome (1.87 Mbp) and a plasmid (143 Kbp), designated in this study as pTP143. Annotation revealed a high number of repair genes, a squeezed genome but containing highly plastic plasmid with transposases, integrases, mobile elements and hypothetical proteins (44%). We performed a comparative genomic study of the group Thermus with an aim of analysing the phylogenetic relatedness as well as niche specific attributes prevalent among the group. We compared the reference genome RL with 16 Thermus genomes to assess their phylogenetic relationships based on 16S rRNA gene sequences, average nucleotide identity (ANI), conserved marker genes (31 and 400), pan genome and tetranucleotide frequency. The core genome of the analyzed genomes contained 1,177 core genes and many singleton genes were detected in individual genomes, reflecting a conserved core but adaptive pan repertoire. We demonstrated the presence of metagenomic islands (chromosome:5, plasmid:5) by recruiting raw metagenomic data (from the same niche) against the genomic replicons of T. parvatiensis. We also dissected the CRISPR loci wide all genomes and found widespread presence of this system across Thermus genomes. Additionally, we performed a comparative analysis of competence loci wide Thermus genomes and found evidence for recent horizontal acquisition of the locus and continued dispersal among members reflecting that natural competence is a beneficial survival trait among Thermus members and its acquisition depicts unending evolution in order to accomplish optimal fitness.
Collapse
Affiliation(s)
- Charu Tripathi
- Department of Zoology, University of DelhiNew Delhi, India
| | | | - Himani Khurana
- Department of Zoology, University of DelhiNew Delhi, India
| | | | - Komal Kamra
- Ciliate Biology Laboratory, Sri Guru Tegh Bahadar Khalsa College, University of DelhiNew Delhi, India
| | - Ram K Negi
- Department of Zoology, University of DelhiNew Delhi, India
| | - Rup Lal
- Department of Zoology, University of DelhiNew Delhi, India
| |
Collapse
|
18
|
Whole Genome Comparison of Thermus sp. NMX2.A1 Reveals Principle Carbon Metabolism Differences with Closest Relation Thermus scotoductus SA-01. G3-GENES GENOMES GENETICS 2016; 6:2791-7. [PMID: 27412985 PMCID: PMC5015936 DOI: 10.1534/g3.116.032953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genome sequencing of the yellow-pigmented, thermophilic bacterium Thermus sp. NMX2.A1 resulted in a 2.29 Mb draft genome that encodes for 2312 proteins. The genetic relationship between various strains from the genus Thermus was assessed based on phylogenomic analyses using a concatenated set of conserved proteins. The resulting phylogenetic tree illustrated that Thermus sp. NMX2 A.1 clusters together with Thermus scotoductus SA-01, despite being isolated from vastly different geographical locations. The close evolutionary relationship and metabolic parallels between the two strains has previously been recognized; however, neither strain’s genome data were available at that point in time. Genomic comparison of the Thermus sp. NMX2.A1 and T. scotoductus SA-01, as well as other closely related Thermus strains, revealed a high degree of synteny at both the genomic and proteomic level, with processes such as denitrification and natural cell competence appearing to be conserved. However, despite this high level of similarity, analysis revealed a complete, putative Calvin–Benson–Bassham (CBB) cycle in NMX2.A1 that is absent in SA-01. Analysis of horizontally transferred gene islands provide evidence that NMX2 selected these genes due to pressure from its HCO3- rich environment, which is in stark contrast to that of the deep subsurface isolated SA-01.
Collapse
|
19
|
High-Quality Draft Genomes from Thermus caliditerrae YIM 77777 and T. tengchongensis YIM 77401, Isolates from Tengchong, China. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00312-16. [PMID: 27125486 PMCID: PMC4850857 DOI: 10.1128/genomea.00312-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The draft genomes of Thermus tengchongensis YIM 77401 and T. caliditerrae YIM 77777 are 2,562,314 and 2,218,114 bp and encode 2,726 and 2,305 predicted genes, respectively. Gene content and growth experiments demonstrate broad metabolic capacity, including starch hydrolysis, thiosulfate oxidation, arsenite oxidation, incomplete denitrification, and polysulfide reduction.
Collapse
|
20
|
Molecular identification of potential denitrifying bacteria and use of D-optimal mixture experimental design for the optimization of denitrification process. Microb Pathog 2016; 93:158-65. [DOI: 10.1016/j.micpath.2016.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 11/22/2022]
|
21
|
Zhou EM, Murugapiran SK, Mefferd CC, Liu L, Xian WD, Yin YR, Ming H, Yu TT, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Ngan CY, Daum C, Shapiro N, Markowitz V, Ivanova N, Spunde A, Kyrpides N, Woyke T, Li WJ, Hedlund BP. High-quality draft genome sequence of the Thermus amyloliquefaciens type strain YIM 77409(T) with an incomplete denitrification pathway. Stand Genomic Sci 2016; 11:20. [PMID: 26925197 PMCID: PMC4769583 DOI: 10.1186/s40793-016-0140-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
Thermus amyloliquefaciens type strain YIM 77409(T) is a thermophilic, Gram-negative, non-motile and rod-shaped bacterium isolated from Niujie Hot Spring in Eryuan County, Yunnan Province, southwest China. In the present study we describe the features of strain YIM 77409(T) together with its genome sequence and annotation. The genome is 2,160,855 bp long and consists of 6 scaffolds with 67.4 % average GC content. A total of 2,313 genes were predicted, comprising 2,257 protein-coding and 56 RNA genes. The genome is predicted to encode a complete glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle. Additionally, a large number of transporters and enzymes for heterotrophy highlight the broad heterotrophic lifestyle of this organism. A denitrification gene cluster included genes predicted to encode enzymes for the sequential reduction of nitrate to nitrous oxide, consistent with the incomplete denitrification phenotype of this strain.
Collapse
Affiliation(s)
- En-Min Zhou
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
- />School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV USA
| | | | | | - Lan Liu
- />State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Wen-Dong Xian
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Yi-Rui Yin
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Hong Ming
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Tian-Tian Yu
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Marcel Huntemann
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Alicia Clum
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Manoj Pillay
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | | - Neha Varghese
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | | | | - T. B. K. Reddy
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Chew Yee Ngan
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Chris Daum
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Nicole Shapiro
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Victor Markowitz
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Natalia Ivanova
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Alexander Spunde
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Nikos Kyrpides
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Tanja Woyke
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Wen-Jun Li
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
- />State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Brian P. Hedlund
- />School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV USA
- />Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV USA
| |
Collapse
|
22
|
Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, Grasby SE, Brady AL, Dong H, Briggs BR, Li WJ, Goudeau D, Malmstrom R, Pati A, Pett-Ridge J, Rubin EM, Woyke T, Kyrpides NC, Ivanova NN. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 2016; 7:10476. [PMID: 26814032 PMCID: PMC4737851 DOI: 10.1038/ncomms10476] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023] Open
Abstract
Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia') found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot' because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. The analysis of existing metagenomic data can lead to discovery of new microorganisms. Here, Eloe-Fadrosh et al. perform a large-scale analysis of global metagenomic data, followed by genome reconstruction and single-cell genomics, to describe a new bacterial phylum that inhabits geothermal springs.
Collapse
Affiliation(s)
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jessica Jarett
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
| | - Anne E Dekas
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | - Allyson L Brady
- School of Geography &Earth Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Hailiang Dong
- Department of Geology and Environmental Earth Sciences, Miami University, Oxford, Ohio 45056, USA
| | - Brandon R Briggs
- Department of Biological Sciences, University of Alaska-Anchorage, Anchorage, Alaska 99508, USA
| | - Wen-Jun Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Rex Malmstrom
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Amrita Pati
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | - Edward M Rubin
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.,Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| |
Collapse
|
23
|
Brumm PJ, Monsma S, Keough B, Jasinovica S, Ferguson E, Schoenfeld T, Lodes M, Mead DA. Complete Genome Sequence of Thermus aquaticus Y51MC23. PLoS One 2015; 10:e0138674. [PMID: 26465632 PMCID: PMC4605624 DOI: 10.1371/journal.pone.0138674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/02/2015] [Indexed: 12/29/2022] Open
Abstract
Thermus aquaticus Y51MC23 was isolated from a boiling spring in the Lower Geyser Basin of Yellowstone National Park. Remarkably, this T. aquaticus strain is able to grow anaerobically and produces multiple morphological forms. Y51MC23 is a Gram-negative, rod-shaped organism that grows well between 50°C and 80°C with maximum growth rate at 65°C to 70°C. Growth studies suggest that Y51MC23 primarily scavenges protein from the environment, supported by the high number of secreted and intracellular proteases and peptidases as well as transporter systems for amino acids and peptides. The genome was assembled de novo using a 350 bp fragment library (paired end sequencing) and an 8 kb long span mate pair library. A closed and finished genome was obtained consisting of a single chromosome of 2.15 Mb and four plasmids of 11, 14, 70, and 79 kb. Unlike other Thermus species, functions usually found on megaplasmids were identified on the chromosome. The Y51MC23 genome contains two full and two partial prophage as well as numerous CRISPR loci. The high identity and synteny between Y51MC23 prophage 2 and that of Thermus sp. 2.9 is interesting, given the 8,800 km separation of the two hot springs from which they were isolated. The anaerobic lifestyle of Y51MC23 is complex, with multiple morphologies present in cultures. The use of fluorescence microscopy reveals new details about these unusual morphological features, including the presence of multiple types of large and small spheres, often forming a confluent layer of spheres. Many of the spheres appear to be formed not from cell envelope or outer membrane components as previously believed, but from a remodeled peptidoglycan cell wall. These complex morphological forms may serve multiple functions in the survival of the organism, including food and nucleic acid storage as well as colony attachment and organization.
Collapse
Affiliation(s)
- Phillip J. Brumm
- C5-6 Technologies LLC, Fitchburg, Wisconsin, United States of America
- * E-mail:
| | - Scott Monsma
- Lucigen Corporation, Middleton, Wisconsin, United States of America
| | - Brendan Keough
- Lucigen Corporation, Middleton, Wisconsin, United States of America
| | | | - Erin Ferguson
- Lucigen Corporation, Middleton, Wisconsin, United States of America
| | | | - Michael Lodes
- Lucigen Corporation, Middleton, Wisconsin, United States of America
| | - David A. Mead
- Lucigen Corporation, Middleton, Wisconsin, United States of America
| |
Collapse
|
24
|
Song C, Li H, Sheng L, Zhang X. Characterization of the interaction between superoxide dismutase and 2-oxoisovalerate dehydrogenase. Gene 2015; 568:1-7. [PMID: 25958347 DOI: 10.1016/j.gene.2015.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Thermophiles are attractive microorganisms to study the adaptation of life in high temperature environment. It is revealed that superoxide dismutase (SOD) is essential for thermoadaptation of thermophiles. However, the SOD-mediated pathway of thermoadaptation remains unclear. To address this issue, the proteins interacted with SOD were characterized in Thermus thermophilus in this study. Based on co-immunoprecipitation and Western blot analyses, the results showed that 2-oxoisovalerate dehydrogenase α subunit was bound to SOD. The isothermal titration calorimetry analysis showed the existence of the interaction between SOD and 2-oxoisovalerate dehydrogenase α subunit. The bacterial two-hybrid data indicated that SOD was directly interacted with 2-oxoisovalerate dehydrogenase α subunit. Gene site-directed mutagenesis analysis revealed that the intracellular interaction between SOD and 2-oxoisovalerate dehydrogenase α subunit was dependent on their whole molecules. Therefore our study presented a novel aspect of SOD in the thermoadaptation of thermophiles by interaction with dehydrogenase, a key enzyme of tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Chongfu Song
- Key Laboratory of Conservation Biology for Endangered Wildlife of Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; School of Chemistry and Material Engineering, Fuyang Teachers College, Fuyang 236037, People's Republic of China
| | - Hebin Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China
| | - Liangquan Sheng
- School of Chemistry and Material Engineering, Fuyang Teachers College, Fuyang 236037, People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
25
|
A third subunit in ancestral cytochrome c-dependent nitric oxide reductases. Appl Environ Microbiol 2014; 80:4871-8. [PMID: 24907324 DOI: 10.1128/aem.00790-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reduction of NO to N2O by denitrifiying bacteria is catalyzed either by a monomeric quinol-nitric oxide reductase (qNor) or by a heterodimeric cytochrome c-dependent nitric oxide reductase (cNor). In ancient thermophilic bacteria belonging to the Thermales and Aquificales phylogenetic groups, the cluster encoding the cNor includes a small third gene (norH), in addition to those encoding homologues to the subunits of a typical cNor (norC and norB). We show in Thermus thermophilus that the three genes are cotranscribed in a single mRNA from an inducible promoter. The isolation of individual nor mutants and the production in vivo of His-tagged NorH protein followed by immobilized-metal affinity chromatography (IMAC) allowed us to conclude that NorH constitutes a third subunit of the cNor from T. thermophilus, which is involved in denitrification in vivo, likely allowing more efficient electron transport to cNor.
Collapse
|
26
|
Abstract
Laboratory-adapted strains of Thermus spp. have been shown to require oxygen for growth, including the model strains T. thermophilus HB27 and HB8. In contrast, many isolates of this species that have not been intensively grown under laboratory conditions keep the capability to grow anaerobically with one or more electron acceptors. The use of nitrogen oxides, especially nitrate, as electron acceptors is one of the most widespread capabilities among these facultative strains. In this process, nitrate is reduced to nitrite by a reductase (Nar) that also functions as electron transporter toward nitrite and nitric oxide reductases when nitrate is scarce, effectively replacing respiratory complex III. In many T. thermophilus denitrificant strains, most electrons for Nar are provided by a new class of NADH dehydrogenase (Nrc). The ability to reduce nitrite to NO and subsequently to N2O by the corresponding Nir and Nor reductases is also strain specific. The genes encoding the capabilities for nitrate (nar) and nitrite (nir and nor) respiration are easily transferred between T. thermophilus strains by natural competence or by a conjugation-like process and may be easily lost upon continuous growth under aerobic conditions. The reason for this instability is apparently related to the fact that these metabolic capabilities are encoded in gene cluster islands, which are delimited by insertion sequences and integrated within highly variable regions of easily transferable extrachromosomal elements. Together with the chromosomal genes, these plasmid-associated genetic islands constitute the extended pangenome of T. thermophilus that provides this species with an enhanced capability to adapt to changing environments.
Collapse
|