1
|
Isidoro-Ayza M, Klein BS. Pathogenic strategies of Pseudogymnoascus destructans during torpor and arousal of hibernating bats. Science 2024; 385:194-200. [PMID: 38991070 DOI: 10.1126/science.adn5606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/14/2024] [Indexed: 07/13/2024]
Abstract
Millions of hibernating bats across North America have died from white-nose syndrome (WNS), an emerging disease caused by a psychrophilic (cold-loving) fungus, Pseudogymnoascus destructans, that invades their skin. Mechanisms of P. destructans invasion of bat epidermis remain obscure. Guided by our in vivo observations, we modeled hibernation with a newly generated little brown bat (Myotis lucifugus) keratinocyte cell line. We uncovered the stealth intracellular lifestyle of P. destructans, which inhibits apoptosis of keratinocytes and spreads through the cells by two epidermal growth factor receptor (EGFR)-dependent mechanisms: active penetration during torpor and induced endocytosis during arousal. Melanin of endocytosed P. destructans blocks endolysosomal maturation, facilitating P. destructans survival and germination after return to torpor. Blockade of EGFR aborts P. destructans entry into keratinocytes.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruce S Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Kwak S, Song CL, Lee J, Kim S, Nam S, Park YJ, Lee J. Development of pluripotent stem cell-derived epidermal organoids that generate effective extracellular vesicles in skin regeneration. Biomaterials 2024; 307:122522. [PMID: 38428092 DOI: 10.1016/j.biomaterials.2024.122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Cellular skin substitutes such as epidermal constructs have been developed for various applications, including wound healing and skin regeneration. These cellular models are mostly derived from primary cells such as keratinocytes and fibroblasts in a two-dimensional (2D) state, and further development of three-dimensional (3D) cultured organoids is needed to provide insight into the in vivo epidermal phenotype and physiology. Here, we report the development of epidermal organoids (EpiOs) generated from induced pluripotent stem cells (iPSCs) as a novel epidermal construct and its application as a source of secreted biomolecules recovered by extracellular vesicles (EVs) that can be utilized for cell-free therapy of regenerative medicine. Differentiated iPSC-derived epidermal organoids (iEpiOs) are easily cultured and expanded through multiple organoid passages, while retaining molecular and functional features similar to in vivo epidermis. These mature iEpiOs contain epidermal stem cell populations and retain the ability to further differentiate into other skin compartment lineages, such as hair follicle stem cells. By closely recapitulating the epidermal structure, iEpiOs are expected to provide a more relevant microenvironment to influence cellular processes and therapeutic response. Indeed, iEpiOs can generate high-performance EVs containing high levels of the angiogenic growth factor VEGF and miRNAs predicted to regulate cellular processes such as proliferation, migration, differentiation, and angiogenesis. These EVs contribute to target cell proliferation, migration, and angiogenesis, providing a promising therapeutic tool for in vivo wound healing. Overall, the newly developed iEpiOs strategy as an organoid-based approach provides a powerful model for studying basic and translational skin research and may also lead to future therapeutic applications using iEpiOs-secreted EVs.
Collapse
Affiliation(s)
- Sojung Kwak
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Cho Lok Song
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jinhyuk Lee
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea; Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sungyeon Kim
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Young-Jun Park
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jungwoon Lee
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Jahn M, Lang V, Diehl S, Back R, Kaufmann R, Fauth T, Buerger C. Different immortalized keratinocyte cell lines display distinct capabilities to differentiate and reconstitute an epidermis in vitro. Exp Dermatol 2024; 33:e14985. [PMID: 38043130 DOI: 10.1111/exd.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/05/2023]
Abstract
Dermatological research relies on the availability of suitable models that most accurately reflect the in vivo situation. Primary keratinocytes obtained from skin reduction surgeries are not only limited by availability but have a short lifespan and show donor-specific variations, which hamper the understanding of general mechanisms. The spontaneously immortalized keratinocyte cell line HaCaT displays chromosomal aberrations and is known to differentiate in an abnormal manner. To overcome these issues, we validated different engineered immortalized cell lines created from primary human keratinocytes (NHK) as model systems to study epidermal function. Cell lines either immortalized by the expression of SV40 large T antigen and hTERT (NHK-SV/TERT) or by transduction with HPV E6/E7 (NHK-E6/E7) were analysed for their growth and differentiation behaviour using 2D and 3D culture systems and compared to primary keratinocytes. Both cell lines displayed a robust proliferative behaviour but were still sensitive to contact inhibition. NHK-E6/E7 could be driven into differentiation by Ca2+ switch, while NHK-SV/TERT needed withdrawal from any proliferative signal to initiate a delayed onset of differentiation. In 3D epidermal models both cell lines were able to reconstitute a stratified epidermis and functional epidermal barrier. However, only NHK-E6/E7 showed a degree of epidermal maturation and stratification that was comparable to primary keratinocytes.
Collapse
Affiliation(s)
- Magdalena Jahn
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Victoria Lang
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Sandra Diehl
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Roland Kaufmann
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Kyriakou S, Potamiti L, Demosthenous N, Amery T, Stewart K, Winyard PG, Franco R, Pappa A, Panayiotidis MI. A Naturally Derived Watercress Flower-Based Phenethyl Isothiocyanate-Enriched Extract Induces the Activation of Intrinsic Apoptosis via Subcellular Ultrastructural and Ca 2+ Efflux Alterations in an In Vitro Model of Human Malignant Melanoma. Nutrients 2023; 15:4044. [PMID: 37764828 PMCID: PMC10537737 DOI: 10.3390/nu15184044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of the current study was to (i) extract isolated fractions of watercress flowers enriched in polyphenols, phenethyl isothiocyanate and glucosinolates and (ii) characterize the anticancer mode of action of non-lethal, sub-lethal and lethal concentrations of the most potent extract fraction in primary (A375) and metastatic (COLO-679) melanoma cells as well as non-tumorigenic immortalized keratinocyte (HaCaT) cells. Cytotoxicity was assessed via the Alamar Blue assay, whereas ultrastructural alterations in mitochondria and the endoplasmic reticulum were determined via transmission electron microscopy. Mitochondrial membrane depolarization was determined using Mito-MP dye, whereas apoptosis was evaluated through the activation of caspases-3, -8 and -9. Among all extract fractions, the phenethyl isothiocyanate-enriched one (PhEF) possessed significant cytotoxicity against A375 and COLO-679 cells, while HaCaT cells remained relatively resistant at sub-lethal and lethal concentrations. Additionally, ultrastructural subcellular alterations associated with apoptosis were observed by means of increased mitochondrial area and perimeter, decreased cristae density and a shorter distance of the endoplasmic reticulum to the mitochondria, all taking place during "early" time points (2-4 h) of exposure. Moreover, PhEF induced mitochondrial membrane depolarization associated with "late" time points (24 h) of exposure, thereby leading to the activation of intrinsic apoptosis. Finally, the inhibition of cytosolic Ca2+ efflux reduced levels of caspases-9 and -3 activity, suggesting the involvement of Ca2+ efflux in modulating the activation of intrinsic apoptosis. To conclude, our data demonstrate an association of "early" ultrastructural alterations in mitochondria and the endoplasmic reticulum with the "late" induction of intrinsic apoptosis via the modulation of Ca2+ efflux.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (L.P.); (N.D.)
| | - Louiza Potamiti
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (L.P.); (N.D.)
| | - Nikoletta Demosthenous
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (L.P.); (N.D.)
| | - Tom Amery
- The Watercress Company, Dorchester DT2 8QY, UK;
| | - Kyle Stewart
- Watercress Research Limited, Exeter EX5 2GE, UK; (K.S.); (P.G.W.)
| | - Paul G. Winyard
- Watercress Research Limited, Exeter EX5 2GE, UK; (K.S.); (P.G.W.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (L.P.); (N.D.)
| |
Collapse
|
5
|
Ritzmann D, Jahn M, Heck S, Jung C, Cesetti T, Couturier N, Rudolf R, Reuscher N, Buerger C, Rauh O, Fauth T. The Ca 2+ channel TRPV4 is dispensable for Ca 2+ influx and cell volume regulation during hypotonic stress response in human keratinocyte cell lines. Cell Calcium 2023; 111:102715. [PMID: 36933289 DOI: 10.1016/j.ceca.2023.102715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Cell swelling as a result of hypotonic stress is counteracted in mammalian cells by a process called regulatory volume decrease (RVD). We have recently discovered that RVD of human keratinocytes requires the LRRC8 volume-regulated anion channel (VRAC) and that Ca2+ exerts a modulatory function on RVD. However, the ion channel that is responsible for Ca2+ influx remains unknown. We investigated in this study whether the Ca2+-permeable TRPV4 ion channel, which functions as cell volume sensor in many cell types, may be involved in cell volume regulation during hypotonic stress response of human keratinocytes. We interfered with TRPV4 function in two human keratinocyte cell lines (HaCaT and NHEK-E6/E7) by using two TRPV4-specific inhibitors (RN1734 and GSK2193874), and by creating a CRISPR/Cas9-mediated genetic TRPV4-/- knockout in HaCaT cells. We employed electrophysiological patch clamp analysis, fluorescence-based Ca2+ imaging and cell volume measurements to determine the functional importance of TRPV4. We could show that both hypotonic stress and direct activation of TRPV4 by the specific agonist GSK1016790A triggered intracellular Ca2+ response. Strikingly, the Ca2+ increase upon hypotonic stress was neither affected by genetic knockout of TRPV4 in HaCaT cells nor by pharmacological inhibition of TRPV4 in both keratinocyte cell lines. Accordingly, hypotonicity-induced cell swelling, downstream activation of VRAC currents as well as subsequent RVD were unaffected both in TRPV4 inhibitor-treated keratinocytes and in HaCaT-TRPV4-/- cells. In summary, our study shows that keratinocytes do not require TRPV4 for coping with hypotonic stress, which implies the involvement of other, yet unidentified Ca2+ channels.
Collapse
Affiliation(s)
| | - Magdalena Jahn
- BRAIN Biotech AG, Zwingenberg, Germany; Department of Dermatology, Venerology and Allergology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Cristina Jung
- Membrane Biophysics, Department of Biology, TU Darmstadt, Darmstadt, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany; Center for Mass Spectrometry and Optical Spectroscopy, Hochschule Mannheim, Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany; Center for Mass Spectrometry and Optical Spectroscopy, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany; Center for Mass Spectrometry and Optical Spectroscopy, Hochschule Mannheim, Mannheim, Germany
| | - Naemi Reuscher
- Department of Dermatology, Venerology and Allergology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Oliver Rauh
- Membrane Biophysics, Department of Biology, TU Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
6
|
Kunhorm P, Chaicharoenaudomrung N, Noisa P. Cordycepin-induced Keratinocyte Secretome Promotes Skin Cell Regeneration. In Vivo 2023; 37:574-590. [PMID: 36881050 PMCID: PMC10026670 DOI: 10.21873/invivo.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM Skin regeneration is the intrinsic ability to repair damaged skin tissues to regaining skin well-being. Processes of wound healing, a major part of skin regeneration, involve various types of cells, including keratinocytes and dermal fibroblasts, through their autocrine/paracrine signals. The releasable factors from keratinocytes were reported to influence dermal fibroblasts behavior during wound-healing processes. Here, we developed a strategy to modulate cytokine components and improve the secretome quality of HaCaT cells, a nontumorigenic immortalized keratinocyte cell line, via the treatment of cordycepin, and designated as cordycepin-induced HaCaT secretome (CHS). MATERIALS AND METHODS The bioactivities of CHS were investigated in vitro on human dermal fibroblasts (HDF). The effects of CHS on HDF proliferation, reactive oxygen species-scavenging, cell migration, extracellular matrix production and autophagy activation were investigated by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide cell viability assay, dichloro-dihydro-fluorescein diacetate, the wound-healing assay, reverse transcription polymerase chain reaction and immunofluorescent microscopy. Finally, Proteome Profiler™ Array was used to determine the composition of the secretome. RESULTS CHS induced fibroblast proliferation/migration, reactive oxygen species-scavenging property, regulation of extracellular matrix synthesis, and autophagy activation. Such enhanced bioactivities of CHS were related to the increase of some key cytokines, including C-X-C motif chemokine ligand 1, interleukin 1 receptor A, interleukin 8, macrophage migration-inhibitory factor, and serpin family E member 1. CONCLUSION These findings highlight the implications of cordycepin alteration of the cytokine profile of the HaCaT secretome, which represents a novel biosubstance for the development of wound healing and skin regeneration products.
Collapse
Affiliation(s)
- Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
7
|
de Bardet JC, Cardentey CR, González BL, Patrone D, Mulet IL, Siniscalco D, Robinson-Agramonte MDLA. Cell Immortalization: In Vivo Molecular Bases and In Vitro Techniques for Obtention. BIOTECH 2023; 12:14. [PMID: 36810441 PMCID: PMC9944833 DOI: 10.3390/biotech12010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Somatic human cells can divide a finite number of times, a phenomenon known as the Hayflick limit. It is based on the progressive erosion of the telomeric ends each time the cell completes a replicative cycle. Given this problem, researchers need cell lines that do not enter the senescence phase after a certain number of divisions. In this way, more lasting studies can be carried out over time and avoid the tedious work involved in performing cell passes to fresh media. However, some cells have a high replicative potential, such as embryonic stem cells and cancer cells. To accomplish this, these cells express the enzyme telomerase or activate the mechanisms of alternative telomere elongation, which favors the maintenance of the length of their stable telomeres. Researchers have been able to develop cell immortalization technology by studying the cellular and molecular bases of both mechanisms and the genes involved in the control of the cell cycle. Through it, cells with infinite replicative capacity are obtained. To obtain them, viral oncogenes/oncoproteins, myc genes, ectopic expression of telomerase, and the manipulation of genes that regulate the cell cycle, such as p53 and Rb, have been used.
Collapse
Affiliation(s)
- Javier Curi de Bardet
- Department of Neurobiology, International Center for Neurological Restoration, Havana 11300, Cuba
| | | | - Belkis López González
- Department of Allergy, Calixto Garcia General University Hospital, Havana 10400, Cuba
| | - Deanira Patrone
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| | | | - Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| | | |
Collapse
|
8
|
Ageing at Molecular Level: Role of MicroRNAs. Subcell Biochem 2023; 102:195-248. [PMID: 36600135 DOI: 10.1007/978-3-031-21410-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The progression of age triggers a vast number of diseases including cardiovascular, cancer, and neurodegenerative disorders. Regardless of our plentiful knowledge about age-related diseases, little is understood about molecular pathways that associate the ageing process with various diseases. Several cellular events like senescence, telomere dysfunction, alterations in protein processing, and regulation of gene expression are common between ageing and associated diseases. Accumulating information on the role of microRNAs (miRNAs) suggests targeting miRNAs can aid our understanding of the interplay between ageing and associated diseases. In the present chapter, we have attempted to explore the information available on the role of miRNAs in ageing of various tissues/organs and diseases and understand the molecular mechanism of ageing.
Collapse
|
9
|
Ansari A, Denton KM, Lim R. Strategies for immortalisation of amnion-derived mesenchymal and epithelial cells. Cell Biol Int 2022; 46:1999-2008. [PMID: 35998259 DOI: 10.1002/cbin.11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 01/10/2023]
Abstract
Mesenchymal (human amniotic mesenchymal stem cell [HAMSC]) and epithelial cells (human amnion epithelial cell [HAEC]) derived from human amniotic membranes possess characteristics of pluripotency. However, the pluripotency of HAMSC and HAEC are sustained only for a finite period. This in vitro cell growth can be extended by cell immortalisation. Many well-defined immortalisation systems have been used for artificially overexpressing genes such as human telomerase reverse transcriptase in HAMSC and HAEC leading to controlled and prolonged cell proliferation. In recent years, much progress has been made in our understanding of the cellular machinery that regulates the cell cycle when immortalised. This review summarises the current understanding of molecular mechanisms that contribute to cell immortalisation, the strategies that have been employed to immortalise amnion-derived cell types, and their likely applications in regenerative medicine.
Collapse
Affiliation(s)
- Aneesa Ansari
- Department of Physiology, Monash University, Clayton, Australia.,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Kate M Denton
- Department of Physiology, Monash University, Clayton, Australia.,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| |
Collapse
|
10
|
Coenye T, Spittaels KJ, Achermann Y. The role of biofilm formation in the pathogenesis and antimicrobial susceptibility of Cutibacterium acnes. Biofilm 2022; 4:100063. [PMID: 34950868 PMCID: PMC8671523 DOI: 10.1016/j.bioflm.2021.100063] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Cutibacterium acnes (previously known as Propionibacterium acnes) is frequently found on lipid-rich parts of the human skin. While C. acnes is most known for its role in the development and progression of the skin disease acne, it is also involved in many other types of infections, often involving implanted medical devices. C. acnes readily forms biofilms in vitro and there is growing evidence that biofilm formation by this Gram-positive, facultative anaerobic micro-organism plays an important role in vivo and is also involved in treatment failure. In this brief review we present an overview on what is known about C. acnes biofilms (including their role in pathogenesis and reduced susceptibility to antibiotics), discuss model systems that can be used to study these biofilms in vitro and in vivo and give an overview of interspecies interactions occurring in polymicrobial communities containing C. acnes.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Karl-Jan Spittaels
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Yvonne Achermann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Chen Z, Chung HY. Pseudo-Taste Cells Derived from Rat Taste and Non-Taste Tissues: Implications for Cultured Taste Cell-Based Biosensors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10826-10835. [PMID: 35998688 DOI: 10.1021/acs.jafc.2c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the technique for taste cell culture has been reported, cultured taste cells have remained poorly validated. This study systematically compared the cultured cells derived from both taste and non-taste tissues. Fourteen cell lines established from rat circumvallate papillae (RCVs* or RCVs), non-taste lingual epithelia (RVEs), and tail skins (RTLs) were analyzed by PCR, immunocytochemistry, proteomics, and calcium imaging. The cell lines were morphologically indistinguishable, and all expressed some taste-related molecules. Of the tested RCVs*, RCVs, RVEs, and RTLs (%), 84.7 ± 7.8, 63.9 ± 22.8, 46.8 ± 0.3, and 40.8 ± 15.1 of them were responsive to at least one tastant or ATP, respectively. However, the calcium signaling pathways in the responding cells differed from the canonical taste transduction pathways in the taste cells in vivo, suggesting that they were not genuine taste cells. In addition, the growth medium intended for taste cell culture did not prevent the proliferation of non-gustatory epithelial cells regardless of supplementation of Y-27632 and EGF. In conclusion, the current method for taste cell culture is susceptible to pseudo-taste cells that may lead to overinterpretation. Thus, biosensors that rely on calcium responses of cultured taste cells should be applied with extreme caution.
Collapse
Affiliation(s)
- Zixing Chen
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
12
|
Jakobsen ND, Kaiser K, Ebbesen MF, Lauritsen L, Gjerstorff MF, Kuntsche J, Brewer JR. The ROC skin model: a robust skin equivalent for permeation and live cell imaging studies. Eur J Pharm Sci 2022; 178:106282. [PMID: 35995349 DOI: 10.1016/j.ejps.2022.106282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Rat Epidermal Keratinocyte (REK) Organotypic Culture (ROC) is an epidermis model that is robust and inexpensive to develop and maintain, and it has in previous studies been shown to have permeability characteristics close to those of human skin. Here, we characterize the model further by structural comparison to native human and rat skin and by investigating functional characteristics of lipid packing, polarity, and permeability coefficients. We show that the ROC model has structural similarities to native human skin and observe human skin-like permeability coefficients for testosterone and mannitol. We develop a transwell device that allows live cell microscopy of the tissue at the air-liquid interface and establish transgenic cell lines expressing different fluorescently tagged proteins. This enables showing the migration of keratinocytes during the first days after seeding, finding that keratinocytes have a higher mean migration rate in the earlier days of development. Collectively, our results show that the ROC model is an inexpensive and robust epidermis model that works reproducibly across laboratories.
Collapse
Affiliation(s)
| | - Katharina Kaiser
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Frendø Ebbesen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 Odense, Denmark
| | - Line Lauritsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Judith Kuntsche
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, 5000 Odense, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 Odense, Denmark.
| |
Collapse
|
13
|
Kocher T, Bischof J, Haas SA, March OP, Liemberger B, Hainzl S, Illmer J, Hoog A, Muigg K, Binder HM, Klausegger A, Strunk D, Bauer JW, Cathomen T, Koller U. A non-viral and selection-free COL7A1 HDR approach with improved safety profile for dystrophic epidermolysis bullosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:237-250. [PMID: 34458008 PMCID: PMC8368800 DOI: 10.1016/j.omtn.2021.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
Gene editing via homology-directed repair (HDR) currently comprises the best strategy to obtain perfect corrections for pathogenic mutations of monogenic diseases, such as the severe recessive dystrophic form of the blistering skin disease epidermolysis bullosa (RDEB). Limitations of this strategy, in particular low efficiencies and off-target effects, hinder progress toward clinical applications. However, the severity of RDEB necessitates the development of efficient and safe gene-editing therapies based on perfect repair. To this end, we sought to assess the corrective efficiencies following optimal Cas9 nuclease and nickase-based COL7A1-targeting strategies in combination with single- or double-stranded donor templates for HDR at the COL7A1 mutation site. We achieved HDR-mediated correction efficiencies of up to 21% and 10% in primary RDEB keratinocytes and fibroblasts, respectively, as analyzed by next-generation sequencing, leading to full-length type VII collagen restoration and accurate deposition within engineered three-dimensional (3D) skin equivalents (SEs). Extensive on- and off-target analyses confirmed that the combined treatment of paired nicking and single-stranded oligonucleotides constituted a highly efficient COL7A1-editing strategy, associated with a significantly improved safety profile. Our findings, therefore, represent a further advancement in the field of traceless genome editing for genodermatoses.
Collapse
Affiliation(s)
- Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Simone Alexandra Haas
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Patrick March
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Bernadette Liemberger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Julia Illmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Anna Hoog
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Katharina Muigg
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Heide-Marie Binder
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Alfred Klausegger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Johann Wolfgang Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Corresponding author Ulrich Koller, EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Strubergasse 22, 5020 Salzburg, Austria.
| |
Collapse
|
14
|
Tanuma-Takahashi A, Inoue M, Kajiwara K, Takagi R, Yamaguchi A, Samura O, Akutsu H, Sago H, Kiyono T, Okamoto A, Umezawa A. Restoration of keratinocytic phenotypes in autonomous trisomy-rescued cells. Stem Cell Res Ther 2021; 12:476. [PMID: 34433490 PMCID: PMC8390253 DOI: 10.1186/s13287-021-02448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background An extra copy of chromosome 21 in humans can alter cellular phenotypes as well as immune and metabolic systems. Down syndrome is associated with many health-related problems and age-related disorders including dermatological abnormalities. However, few studies have focused on the impact of trisomy 21 (T21) on epidermal stem cells and progenitor cell dysfunction. Here, we investigated the differences in keratinocytic characteristics between Down syndrome and euploid cells by differentiating cells from trisomy 21-induced pluripotent stem cells (T21-iPSCs) and autonomous rescued disomy 21-iPSCs (D21-iPSCs). Methods Our protocol for keratinocytic differentiation of T21-iPSCs and D21-iPSCs was employed. For propagation of T21- and D21-iPSC-derived keratinocytes and cell sheet formation, the culture medium supplemented with Rho kinase inhibitor on mouse feeder cells was introduced as growth rate decreased. Before passaging, selection of a keratinocytic population with differential dispase reactivity was performed. Three-dimensional (3D) air-liquid interface was performed in order to evaluate the ability of iPSC-derived keratinocytes to differentiate and form stratified squamous epithelium. Results Trisomy-rescued disomy 21-iPSCs were capable of epidermal differentiation and expressed keratinocytic markers such as KRT14 and TP63 upon differentiation compared to trisomy 21-iPSCs. The lifespan of iPSC-derived keratinocytes could successfully be extended on mouse feeder cells in media containing Rho kinase inhibitor, to more than 34 population doublings over a period of 160 days. Dispase-based purification of disomy iPSC-derived keratinocytes contributed epidermal sheet formation. The trisomy-rescued disomy 21-iPSC-derived keratinocytes with an expanded lifespan generated 3D skin in combination with a dermal fibroblast component. Conclusions Keratinocytes derived from autonomous trisomy-rescued iPSC have the ability of stratification for manufacturing 3D skin with restoration of keratinocytic functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02448-w.
Collapse
Affiliation(s)
- Akiko Tanuma-Takahashi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Momoko Inoue
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Kazuhiro Kajiwara
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Ryo Takagi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Ayumi Yamaguchi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
15
|
Ge Y, Smits AM, Liu J, Zhang J, van Brakel TJ, Goumans MJTH, Jongbloed MRM, de Vries AAF. Generation, Characterization, and Application of Inducible Proliferative Adult Human Epicardium-Derived Cells. Cells 2021; 10:2064. [PMID: 34440833 PMCID: PMC8391799 DOI: 10.3390/cells10082064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
RATIONALE In recent decades, the great potential of human epicardium-derived cells (EPDCs) as an endogenous cell source for cardiac regeneration has been recognized. The limited availability and low proliferation capacity of primary human EPDCs and phenotypic differences between EPDCs obtained from different individuals hampers their reproducible use for experimental studies. AIM To generate and characterize inducible proliferative adult human EPDCs for use in fundamental and applied research. METHODS AND RESULTS Inducible proliferation of human EPDCs was achieved by doxycycline-controlled expression of simian virus 40 large T antigen (LT) with a repressor-based lentiviral Tet-On system. In the presence of doxycycline, these inducible EPDCs (iEPDCs) displayed high and long-term proliferation capacity. After doxycycline removal, LT expression ceased and the iEPDCs regained their cuboidal epithelial morphology. Similar to primary EPDCs, iEPDCs underwent an epithelial-to-mesenchymal transition (EMT) after stimulation with transforming growth factor β3. This was confirmed by reverse transcription-quantitative polymerase chain reaction analysis of epithelial and mesenchymal marker gene expression and (immuno) cytochemical staining. Collagen gel-based cell invasion assays demonstrated that mesenchymal iEPDCs, like primary EPDCs, possess increased invasion and migration capacities as compared to their epithelial counterparts. Mesenchymal iEPDCs co-cultured with sympathetic ganglia stimulated neurite outgrowth similarly to primary EPDCs. CONCLUSION Using an inducible LT expression system, inducible proliferative adult human EPDCs were generated displaying high proliferative capacity in the presence of doxycycline. These iEPDCs maintain essential epicardial characteristics with respect to morphology, EMT ability, and paracrine signaling following doxycycline removal. This renders iEPDCs a highly useful new in vitro model for studying human epicardial properties.
Collapse
Affiliation(s)
- Yang Ge
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (Y.G.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (J.L.); (J.Z.); (A.A.F.d.V.)
| | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Jia Liu
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (J.L.); (J.Z.); (A.A.F.d.V.)
- Central Laboratory, Longgang District People’s Hospital of Shenzhen & The Third Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Juan Zhang
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (J.L.); (J.Z.); (A.A.F.d.V.)
| | - Thomas J. van Brakel
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands;
| | - Marie José T. H. Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Monique R. M. Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (Y.G.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (J.L.); (J.Z.); (A.A.F.d.V.)
| | - Antoine A. F. de Vries
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (J.L.); (J.Z.); (A.A.F.d.V.)
| |
Collapse
|
16
|
Opálková Šišková A, Mosnáčková K, Hrůza J, Frajová J, Opálek A, Bučková M, Kozics K, Peer P, Eckstein Andicsová A. Electrospun Poly(ethylene Terephthalate)/Silk Fibroin Composite for Filtration Application. Polymers (Basel) 2021; 13:2499. [PMID: 34372102 PMCID: PMC8348435 DOI: 10.3390/polym13152499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
In this study, fibrous membranes from recycled-poly(ethylene terephthalate)/silk fibroin (r-PSF) were prepared by electrospinning for filtration applications. The effect of silk fibroin on morphology, fibers diameters, pores size, wettability, chemical structure, thermo-mechanical properties, filtration efficiency, filtration performance, and comfort properties such as air and water vapor permeability was investigated. The filtration efficiency (FE) and quality factor (Qf), which represents filtration performance, were calculated from penetration through the membranes using aerosol particles ranging from 120 nm to 2.46 μm. The fiber diameter influenced both FE and Qf. However, the basis weight of the membranes has an effect, especially on the FE. The prepared membranes were classified according to EN149, and the most effective was assigned to the class FFP1 and according to EN1822 to the class H13. The impact of silk fibroin on the air permeability was assessed. Furthermore, the antibacterial activity against bacteria S. aureus and E. coli and biocompatibility were evaluated. It is discussed that antibacterial activity depends not only on the type of used materials but also on fibrous membranes' surface wettability. In vitro biocompatibility of the selected samples was studied, and it was proven to be of the non-cytotoxic effect of the keratinocytes (HaCaT) after 48 h of incubation.
Collapse
Affiliation(s)
- Alena Opálková Šišková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia;
| | - Katarína Mosnáčková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
| | - Jakub Hrůza
- Advanced Technologies and Innovation, Institute for Nanomaterials, Technical University in Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic;
| | - Jaroslava Frajová
- Faculty of Arts and Architecture, Technical University in Liberec, Studentská 1402/2, 460 01 Liberec, Czech Republic;
| | - Andrej Opálek
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia;
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 51 Bratislava, Slovakia;
| | - Katarína Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Petra Peer
- Institute of Hydrodynamics of the Czech Academy of Sciences, v. v. i., Pod Patankou 5, 166 12 Prague 6, Czech Republic;
| | - Anita Eckstein Andicsová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
| |
Collapse
|
17
|
Chen Z, He W, Leung TCN, Chung HY. Immortalization and Characterization of Rat Lingual Keratinocytes in a High-Calcium and Feeder-Free Culture System Using ROCK Inhibitor Y-27632. Int J Mol Sci 2021; 22:6782. [PMID: 34202585 PMCID: PMC8268148 DOI: 10.3390/ijms22136782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Cultured keratinocytes are desirable models for biological and medical studies. However, primary keratinocytes are difficult to maintain, and there has been little research on lingual keratinocyte culture. Here, we investigated the effect of Y-27632, a Rho kinase (ROCK) inhibitor, on the immortalization and characterization of cultured rat lingual keratinocyte (RLKs). Three Y-27632-supplemented media were screened for the cultivation of RLKs isolated from Sprague-Dawley rats. Phalloidin staining and TUNEL assay were applied to visualize cytoskeleton dynamics and cell apoptosis following Y-27632 removal. Label-free proteomics, RT-PCR, calcium imaging, and cytogenetic studies were conducted to characterize the cultured cells. Results showed that RLKs could be conditionally immortalized in a high-calcium medium in the absence of feeder cells, although they did not exhibit normal karyotypes. The removal of Y-27632 from the culture medium led to reversible cytoskeletal reorganization and nuclear enlargement without triggering apoptosis, and a total of 239 differentially expressed proteins were identified by proteomic analysis. Notably, RLKs derived from the non-taste epithelium expressed some molecular markers characteristic of taste bud cells, yet calcium imaging revealed that they rarely responded to tastants. Collectively, we established a high-calcium and feeder-free culture method for the long-term maintenance of RLKs. Our results shed some new light on the immortalization and differentiation of lingual keratinocytes.
Collapse
Affiliation(s)
- Zixing Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Z.C.); (T.C.N.L.)
| | - Wenmeng He
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Thomas Chun Ning Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Z.C.); (T.C.N.L.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hau Yin Chung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Z.C.); (T.C.N.L.)
| |
Collapse
|
18
|
Choi DH, Jeon B, Lim MH, Lee DH, Ye SK, Jeong SY, Kim S. 3D cell culture using a clinostat reproduces microgravity-induced skin changes. NPJ Microgravity 2021; 7:20. [PMID: 34075058 PMCID: PMC8169764 DOI: 10.1038/s41526-021-00148-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Exposure to microgravity affects human physiology in various ways, and astronauts frequently report skin-related problems. Skin rash and irritation are frequent complaints during space missions, and skin thinning has also been reported after returning to Earth. However, spaceflight missions for studying the physiological changes in microgravity are impractical. Thus, we used a previously developed 3D clinostat to simulate a microgravity environment and investigate whether physiological changes of the skin can be reproduced in a 3D in vitro setting. Our results showed that under time-averaged simulated microgravity (taSMG), the thickness of the endothelial cell arrangement increased by up to 59.75%, indicating skin irritation due to vasodilation, and that the diameter of keratinocytes and fibroblast co-cultured spheroids decreased by 6.66%, representing skin thinning. The α1 chain of type I collagen was upregulated, while the connective tissue growth factor was downregulated under taSMG. Cytokeratin-10 expression was significantly increased in the taSMG environment. The clinostat-based 3D culture system can reproduce physiological changes in the skin similar to those under microgravity, providing insight for understanding the effects of microgravity on human health before space exploration.
Collapse
Affiliation(s)
- Dong Hyun Choi
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea.,Department of Emergency Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Byoungjun Jeon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Min Hyuk Lim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea. .,Institute of Bioengineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
19
|
Kardeh S, Khorraminejad-Shirazi M, Faezi-Marian S. Cellular senescence and skin tissue engineering: mTOR as a potential pharmacological target for increasing proliferative capacity of keratinocytes. Burns 2020; 47:744-746. [PMID: 33277093 DOI: 10.1016/j.burns.2020.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Sina Kardeh
- Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammadhossein Khorraminejad-Shirazi
- Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Faezi-Marian
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Kocher T, March OP, Bischof J, Liemberger B, Hainzl S, Klausegger A, Hoog A, Strunk D, Bauer JW, Koller U. Predictable CRISPR/Cas9-Mediated COL7A1 Reframing for Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2020; 140:1985-1993.e5. [DOI: 10.1016/j.jid.2020.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
|
21
|
The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci 2020; 21:ijms21155281. [PMID: 32722415 PMCID: PMC7432402 DOI: 10.3390/ijms21155281] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The aging process starts directly after birth and lasts for the entire lifespan; it manifests itself with a decline in an organism’s ability to adapt and is linked to the development of age-related diseases that eventually lead to premature death. This review aims to explore how microRNAs (miRNAs) are involved in skin functioning and aging. Recent evidence has suggested that miRNAs regulate all aspects of cutaneous biogenesis, functionality, and aging. It has been noted that some miRNAs were down-regulated in long-lived individuals, such as let-7, miR-17, and miR-34 (known as longevity-related miRNAs). They are conserved in humans and presumably promote lifespan prolongation; conversely, they are up-regulated in age-related diseases, like cancers. The analysis of the age-associated cutaneous miRNAs revealed the increased expression of miR-130, miR-138, and miR-181a/b in keratinocytes during replicative senescence. These miRNAs affected cell proliferation pathways via targeting the p63 and Sirtuin 1 mRNAs. Notably, miR-181a was also implicated in skin immunosenescence, represented by the Langerhans cells. Dermal fibroblasts also expressed increased the levels of the biomarkers of aging that affect telomere maintenance and all phases of the cellular life cycle, such as let-7, miR-23a-3p, 34a-5p, miR-125a, miR-181a-5p, and miR-221/222-3p. Among them, the miR-34 family, stimulated by ultraviolet B irradiation, deteriorates collagen in the extracellular matrix due to the activation of the matrix metalloproteinases and thereby potentiates wrinkle formation. In addition to the pro-aging effects of miRNAs, the plausible antiaging activity of miR-146a that antagonized the UVA-induced inhibition of proliferation and suppressed aging-related genes (e.g., p21WAF-1, p16, and p53) through targeting Smad4 has also been noticed. Nevertheless, the role of miRNAs in skin aging is still not fully elucidated and needs to be further discovered and explained.
Collapse
|
22
|
Immortalizing Mesenchymal Stromal Cells from Aged Donors While Keeping Their Essential Features. Stem Cells Int 2020; 2020:5726947. [PMID: 32612662 PMCID: PMC7315279 DOI: 10.1155/2020/5726947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (MSCs) obtained from aged patients are prone to senesce and diminish their differentiation potential, therefore limiting their usefulness for osteochondral regenerative medicine approaches or to study age-related diseases, such as osteoarthiritis (OA). MSCs can be transduced with immortalizing genes to overcome this limitation, but transduction of primary slow-dividing cells has proven to be challenging. Methods for enhancing transduction efficiency (such as spinoculation, chemical adjuvants, or transgene expression inductors) can be used, but several parameters must be adapted for each transduction system. In order to develop a transduction method suitable for the immortalization of MSCs from aged donors, we used a spinoculation method. Incubation parameters of packaging cells, speed and time of centrifugation, and valproic acid concentration to induce transgene expression have been adjusted. In this way, four immortalized MSC lines (iMSC#6, iMSC#8, iMSC#9, and iMSC#10) were generated. These immortalized MSCs (iMSCs) were capable of bypassing senescence and proliferating at a higher rate than primary MSCs. Characterization of iMSCs showed that these cells kept the expression of mesenchymal surface markers and were able to differentiate towards osteoblasts, adipocytes, and chondrocytes. Nevertheless, alterations in the CD105 expression and a switch of cell fate-commitment towards the osteogenic lineage have been noticed. In conclusion, the developed transduction method is suitable for the immortalization of MSCs derived from aged donors. The generated iMSC lines maintain essential mesenchymal features and are expected to be useful tools for the bone and cartilage regenerative medicine research.
Collapse
|
23
|
Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc Natl Acad Sci U S A 2019; 116:14630-14638. [PMID: 31253707 DOI: 10.1073/pnas.1715272116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mammalian epidermal stem cells maintain homeostasis of the skin epidermis and contribute to its regeneration throughout adult life. While 2D mouse epidermal stem cell cultures have been established decades ago, a long-term, feeder cell- and serum-free culture system recapitulating murine epidermal architecture has not been available. Here we describe an epidermal organoid culture system that allows long-term, genetically stable expansion of adult epidermal stem cells. Our epidermal expansion media combines atypically high calcium concentrations, activation of cAMP, FGF, and R-spondin signaling with inhibition of bone morphogenetic protein (BMP) signaling. Organoids are established robustly from adult mouse skin and expand over at least 6 mo, while maintaining the basal-apical organization of the mouse interfollicular epidermis. The system represents a powerful tool to study epidermal homeostasis and disease in vitro.
Collapse
|
24
|
Jo MJ, Patil MP, Jung HI, Seo YB, Lim HK, Son BW, Kim G. Cristazine, a novel dioxopiperazine alkaloid, induces apoptosis via the death receptor pathway in A431 cells. Drug Dev Res 2019; 80:504-512. [DOI: 10.1002/ddr.21527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Mi Jeong Jo
- Department of MicrobiologyCollege of Natural Sciences, Pukyong National University Busan Republic of Korea
| | - Maheshkumar P. Patil
- Department of MicrobiologyCollege of Natural Sciences, Pukyong National University Busan Republic of Korea
| | - Hyun Il Jung
- Department of MicrobiologyCollege of Natural Sciences, Pukyong National University Busan Republic of Korea
| | - Yong Bae Seo
- Institute of Marine BiotechnologyPukyong National University Busan Republic of Korea
| | - Han Kyu Lim
- Department of Marine and Fisheries ResourcesCollege of Natural Sciences, Mokpo National University Muan Republic of Korea
| | - Byeng Wha Son
- Department of ChemistryCollege of Natural Sciences, Pukyong National University Busan Republic of Korea
| | - Gun‐Do Kim
- Department of MicrobiologyCollege of Natural Sciences, Pukyong National University Busan Republic of Korea
| |
Collapse
|
25
|
Mantso T, Trafalis DT, Botaitis S, Franco R, Pappa A, Rupasinghe HPV, Panayiotidis MI. Novel Docosahexaenoic Acid Ester of Phloridzin Inhibits Proliferation and Triggers Apoptosis in an In Vitro Model of Skin Cancer. Antioxidants (Basel) 2018; 7:antiox7120188. [PMID: 30544916 PMCID: PMC6316153 DOI: 10.3390/antiox7120188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022] Open
Abstract
Skin cancer is among the most common cancer types accompanied by rapidly increasing incidence rates, thus making the development of more efficient therapeutic approaches a necessity. Recent studies have revealed the potential role of decosahexaenoic acid ester of phloridzin (PZDHA) in suppressing proliferation of liver, breast, and blood cancer cell lines. In the present study, we investigated the cytotoxic potential of PZDHA in an in vitro model of skin cancer consisting of melanoma (A375), epidermoid carcinoma (A431), and non-tumorigenic (HaCaT) cell lines. Decosahexaenoic acid ester of phloridzin led to increased cytotoxicity in all cell lines as revealed by cell viability assays. However, growth inhibition and induction of both apoptosis and necrosis was more evident in melanoma (A375) and epidermoid carcinoma (A431) cells, whereas non-tumorigenic keratinocytes (HaCaT) appeared to be more resistant as detected by flow cytometry. More specifically, PZDHA-induced cell cycle growth arrest at the G2/M phase in A375 and A431 cells in contrast to HaCaT cells, which were growth arrested at the G0/G1 phase. Elevated intracellular generation of reactive oxygen species ROS was detected in all cell lines. Overall, our findings support the potential of PZDHA as a novel therapeutic means against human skin cancer.
Collapse
Affiliation(s)
- Theodora Mantso
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska, Lincoln, NE 68588, USA.
- Department of Veterinary & Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada.
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
26
|
Dou X, Chen L, Lei M, Zellmer L, Jia Q, Ling P, He Y, Yang W, Liao DJ. Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation. Int J Biol Sci 2018; 14:1800-1812. [PMID: 30443184 PMCID: PMC6231223 DOI: 10.7150/ijbs.26962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
Organisms and their different component levels, whether organelle, cellular or other, come by birth and go by death, and the deaths are often balanced by new births. Evolution on the one hand has built demise program(s) in cells of organisms but on the other hand has established external controls on the program(s). For instance, evolution has established death program(s) in animal cells so that the cells can, when it is needed, commit apoptosis or senescent death (SD) in physiological situations and stress-induced cell death (SICD) in pathological situations. However, these programmed cell deaths are not predominantly regulated by the cells that do the dying but, instead, are controlled externally and remotely by the cells' superior(s), i.e. their host tissue or organ or even the animal's body. Currently, it is still unclear whether a cell has only one death program or has several programs respectively controlling SD, apoptosis and SICD. In animals, apoptosis exterminates, in a physiological manner, healthy but no-longer needed cells to avoid cell redundancy, whereas suicidal SD and SICD, like homicidal necrosis, terminate ill but useful cells, which may be followed by regeneration of the live cells and by scar formation to heal the damaged organ or tissue. Therefore, “who dies” clearly differentiates apoptosis from SD, SICD and necrosis. In animals, apoptosis can occur only in those cell types that retain a lifelong ability of proliferation and never occurs in those cell types that can no longer replicate in adulthood. In cancer cells, SICD is strengthened, apoptosis is dramatically weakened while SD has been lost. Most published studies professed to be about apoptosis are actually about SICD, which has four basic and well-articulated pathways involving caspases or involving pathological alterations in the mitochondria, endoplasmic reticula, or lysosomes.
Collapse
Affiliation(s)
- Xixi Dou
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China.,Technology Center, Shandong Freda Pharmaceutical Group, Jinan 250101, Shandong Province, P.R. China
| | - Lichan Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, P.R. China
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA
| | - Qingwen Jia
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China
| | - Peixue Ling
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China.,Technology Center, Shandong Freda Pharmaceutical Group, Jinan 250101, Shandong Province, P.R. China
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China
| | - Wenxiu Yang
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, P.R. China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China.,Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, P.R. China
| |
Collapse
|
27
|
|
28
|
Wagner T, Gschwandtner M, Strajeriu A, Elbe-Bürger A, Grillari J, Grillari-Voglauer R, Greiner G, Golabi B, Tschachler E, Mildner M. Establishment of keratinocyte cell lines from human hair follicles. Sci Rep 2018; 8:13434. [PMID: 30194332 PMCID: PMC6128885 DOI: 10.1038/s41598-018-31829-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
The advent of organotypic skin models advanced the understanding of complex mechanisms of keratinocyte differentiation. However, these models are limited by both availability of primary keratinocytes and donor variability. Keratinocytes derived from cultured hair follicles and interfollicular epidermis were immortalized by ectopic expression of SV40 and hTERT. The generated keratinocyte cell lines differentiated into stratified epidermis with well-defined stratum granulosum and stratum corneum in organotypic human skin models. They behaved comparable to primary keratinocytes regarding the expression of differentiation-associated proteins, cell junction components and proteins associated with cornification and formed a barrier against biotin diffusion. Mechanistically, we found that SV40 large T-antigen expression, accompanied by a strong p53 accumulation, was only detectable in the basal layer of the in vitro reconstructed epidermis. Inhibition of DNA-methylation resulted in expression of SV40 large T-antigen also in the suprabasal epidermal layers and led to incomplete differentiation of keratinocyte cell lines. Our study demonstrates the generation of keratinocyte cell lines which are able to fully differentiate in an organotypic skin model. Since hair follicles, as source for keratinocytes, can be obtained by minimally invasive procedures, our approach enables the generation of cell lines also from individuals not available for skin biopsies.
Collapse
Affiliation(s)
- Tanja Wagner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Gschwandtner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Johannes Grillari
- Evercyte, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Regina Grillari-Voglauer
- Evercyte, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma. Sci Rep 2018; 8:10724. [PMID: 30013176 PMCID: PMC6048057 DOI: 10.1038/s41598-018-29018-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022] Open
Abstract
In the present study, we have aimed to characterize the intrinsic, extrinsic and ER-mediated apoptotic induction by hyperthermia in an in vitro model of human malignant melanoma and furthermore, to evaluate its therapeutic effectiveness in an adjuvant therapeutic setting characterized by combinational treatments with non-targeted (Dacarbazine & Temozolomide) and targeted (Dabrafenib & Vemurafenib) drugs. Overall, our data showed that both low (43 °C) and high (45 °C) hyperthermic exposures were capable of inducing cell death by activating all apoptotic pathways but in a rather distinct manner. More specifically, low hyperthermia induced extrinsic and intrinsic apoptotic pathways both of which activated caspase 6 only as opposed to high hyperthermia which was mediated by the combined effects of caspases 3, 7 and 6. Furthermore, significant involvement of the ER was evident (under both hyperthermic conditions) suggesting its role in regulating apoptosis via activation of CHOP. Our data revealed that while low hyperthermia activated IRE-1 and ATF6 only, high hyperthermia induced activation of PERK as well suggesting that ultimately these ER stress sensors can lead to the induction of CHOP via different pathways of transmitted signals. Finally, combinational treatment protocols revealed an effect of hyperthermia in potentiating the therapeutic effectiveness of non-targeted as well as targeted drugs utilized in the clinical setting. Overall, our findings support evidence into hyperthermia's therapeutic potential in treating human malignant melanoma by elucidating the underlying mechanisms of its complex apoptotic induction.
Collapse
|
30
|
EPR Technology as Sensitive Method for Oxidative Stress Detection in Primary and Secondary Keratinocytes Induced by Two Selected Nanoparticles. Cell Biochem Biophys 2017; 75:359-367. [PMID: 28849322 DOI: 10.1007/s12013-017-0823-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/14/2017] [Indexed: 12/14/2022]
Abstract
Exogenous factors can cause an imbalance in the redox state of biological systems, promoting the development of oxidative stress, especially reactive oxygen species (ROS). To monitor the intensity of ROS production in secondary keratinocytes (HaCaT) by diesel exhaust particles and thermoresponsive nanogels (tNG), electron paramagnetic resonance (EPR) spectroscopy after 1 and 24 h of incubation, respectively, was applied. Their cytotoxicity was analyzed by a cell viability assay (XTT). For tNG an increase in the cell viability and ROS production of 10% was visible after 24 h, whereas 1 h showed no effect. A ten times lower concentration of diesel exhaust particles exhibited no significant toxic effects on HaCaT cells for both incubation times, thus normal adult human keratinocytes (NHK) were additionally analyzed by XTT and EPR spectroscopy. Here, after 24 h a slight increase of 18% in metabolic activity was observed. However, this effect could not be explained by the ROS formation. A slight increase in the ROS production was only visible after 1 h of incubation time for HaCaT (9%) and NHK (14%).
Collapse
|
31
|
Establishment and evaluation of immortalized human epidermal keratinocytes for an alternative skin irritation test. J Pharmacol Toxicol Methods 2017; 88:130-139. [PMID: 28827132 DOI: 10.1016/j.vascn.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/24/2017] [Accepted: 08/18/2017] [Indexed: 12/11/2022]
Abstract
Human skin is located at the outermost part of the body, and various cosmetics and chemicals that may come in contact with human skin need to be evaluated for their potential to cause irritation. Until recently, the Draize test was considered the standard method for skin irritation; however, this technique has disadvantages such as the need to sacrifice many rabbits and subjective scoring. Thus, to contribute to the development of an animal-free alternative skin irritation test, we investigated the cytotoxicity and inflammatory response to standard skin irritants in SV40 large T antigen-transformed human epidermal keratinocyte 2 cells (SV-HEK2 cells). In this study, we established an SV-HEK2 cell line immortalized by SV40 large T antigen (SV40 T) and characterized the inherent morphological and cytological properties. We next used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) or neutral red uptake (NRU) assays of cell viability to investigate the optimal experimental conditions for determining SV-HEK2 cell viability after exposure to sodium dodecyl sulfate at 6.25×10-3% to 1×10-1% as a standard skin irritant. We then examined the viability of SV-HEK2 cells in response to five skin irritants (benzalkonium chloride, isopropanol, sodium dodecyl sulfate, Triton X-100 and Tween20) at 5×10-3% to 1×10-1% by MTT or NRU assay. Finally, we estimated the level of cytokines secretion in response to stimulation by skin irritants in SV-HEK2 cells. The results revealed that SV-HEK2 cells responded well to skin irritants in a concentration-dependent manner and that there was good correlation between irritant concentration and cytotoxicity (or cytokine secretion) when cells were exposed to skin irritants for 10min at room temperature (RT) using an MTT assay. Overall, these findings suggest that SV-HEK2 cells could be a good alternative in vitro model for skin irritation tests.
Collapse
|
32
|
Choi M, Park M, Lee S, Lee JW, Cho MC, Noh M, Lee C. Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction. Biomol Ther (Seoul) 2017; 25:296-307. [PMID: 28365978 PMCID: PMC5424640 DOI: 10.4062/biomolther.2017.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/29/2022] Open
Abstract
In spite of frequent usage of primary human foreskin keratinocytes (HFKs) in the study of skin biology, senescence-induced blockage of in vitro proliferation has been a big hurdle for their effective utilization. In order to overcome this passage limitation, we first isolated ten HFK lines from circumcision patients and successfully immortalized four of them via a retroviral transduction of high-risk human papillomavirus (HPV) E6 and E7 oncogenes. We confirmed expression of a keratinocyte marker protein, keratin 14 and two viral oncoproteins in these immortalized HFKs. We also observed their robust responsiveness to various exogenous stimuli, which was evidenced by increased mRNA expression of epithelial differentiation markers and pro-inflammatory genes in response to three reactive chemicals. In addition, their applicability to cytotoxicity assessment turned out to be comparable to that of HaCaT cells. Finally, we confirmed their differentiation capacity by construction of well-stratified three dimensional skin cultures. These newly established immortalized HFKs will be valuable tools not only for generation of in vitro skin disease models but also for prediction of potential toxicities of various cosmetic chemicals.
Collapse
Affiliation(s)
- Moonju Choi
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Minkyung Park
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Suhyon Lee
- R&D Institute, Biosolution Co., Ltd., Seoul 01811, Republic of Korea
| | - Jeong Woo Lee
- Department of Urology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Min Chul Cho
- Department of Urology, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|