1
|
Kulhari U, Ambujakshan A, Ahmed M, Washimkar K, Kachari J, Mugale MN, Sahu BD. Nuciferine inhibits TLR4/NF-κB/MAPK signaling axis and alleviates adjuvant-induced arthritis in rats. Eur J Pharmacol 2024; 982:176940. [PMID: 39182545 DOI: 10.1016/j.ejphar.2024.176940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis is an inflammatory condition primarily affecting the joints. Nuciferine (NCF), a key bioactive aporphine alkaloid biosynthesized in lotus leaves, exhibits promising anti-inflammatory and antioxidant properties. In this study, we investigated whether NCF could alleviate inflammatory arthritis conditions in a complete Freund's adjuvant (CFA)-mediated arthritis model in rats. The arthritis model was established through intradermal injection of CFA (100 μL) in the sub-plantar region of the right hind paw. The arthritic animals were treated orally with NCF at 5 and 10 mg/kg and indomethacin (Indo) at 5 mg/kg body weight as reference control. NCF treatment remarkably alleviated inflammatory joint swelling and arthritic index. The radiological and histological analysis revealed evidence of the beneficial effects of NCF. NCF treatment decreased the content of pro-inflammatory cytokines (TNF-α and IL-1β) and myeloperoxidase (MPO) activity and restored the anti-inflammatory cytokine (IL-10) in the paw joints. The serum levels of pro-inflammatory cytokines were also markedly reduced in the NCF (10 mg/kg) treatment group. Moreover, the arthritis-induced inflammatory mediators, including cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and the toll-like receptor (TLR)-4, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling proteins were substantially decreased in the NCF treatment groups. NCF treatment also restored the antioxidant defense enzymes and abrogated lipid peroxidation in the paw tissue. Our findings strongly suggest that NCF is a promising therapeutic molecule for rheumatoid arthritis, inspiring further research, and development in this area.
Collapse
Affiliation(s)
- Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Anju Ambujakshan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Momitul Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Kaveri Washimkar
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Jodumoni Kachari
- Department of Veterinary Surgery and Radiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
2
|
Irfan HM, Anjum A, Asim MH, Rasheed SU, Alamgeer, Siddique F. In vitro and in vivo modulatory effects of fluoxetine on gene expression and antioxidant enzymes in CFA-induced chronic inflammatory model: drug repurposing for arthritis. Inflammopharmacology 2024:10.1007/s10787-024-01553-5. [PMID: 39192161 DOI: 10.1007/s10787-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Fluoxetine, being a selective serotonin uptake inhibitor, has been broadly used to modulate the neurotransmission of serotonin in the central nervous system. Fluoxetine performs a number of crucial central nervous system-related tasks, including neuroprotective effects against microglial neurotoxicity and protecting oxidative cell damage produced by stress in a variety of stress-related unfavourable health disorders. Studies have shown that the drug (fluoxetine) also has analgesic and anti-inflammatory characteristics in addition to its other basic benefits. Furthermore, existing treatment approaches (NSAIDs, DMARDs, corticosteroids and other immunosuppressants) for RA have limited effects on chronic immunological models. These facts served as the basis for carrying out a study on fluoxetine to explore its therapeutics in a chronic inflammatory rat model called Freund's complete adjuvant (FCA)-induced arthritis. The therapeutic effect of the fluoxetine in FCA-induced arthritic rats was assessed by paw volume, paw diameter, arthritic index and body weight at specific days through the experiment of 28 days. These findings were further co-investigated by haematological, biochemical parameters and radiographic imaging at the end of experiment. Furthermore, the modulatory effects on gene expression (NF-κB, PGE2, COX2, INF-γ, IL-4 and IL-10) and antioxidant properties were gritty using qRT-PCR and ELISA kits, respectively, in experimental arthritic rats. Fluoxetine at 10, 20 and 40 mg/kg doses reduced (p < 0.001) the serum concentration of C-reactive protein and rheumatoid factor as well as suppressed the expression of PGE2, NF-kB, COX2 and INF-γ when compared to arthritic control. Moreover, fluoxetine (at higher doses) caused significant rise of IL-4 and IL-10. These findings supported the anti-inflammatory and antioxidant potential of fluoxetine in chronic inflammatory model and endorsed it for clinical trials.
Collapse
Affiliation(s)
| | - Awais Anjum
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Saeed Ur Rasheed
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | - Alamgeer
- Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - Farzana Siddique
- Institute of Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| |
Collapse
|
3
|
Moon S, Hong J, Go S, Kim BS. Immunomodulation for Tissue Repair and Regeneration. Tissue Eng Regen Med 2023; 20:389-409. [PMID: 36920675 PMCID: PMC10219918 DOI: 10.1007/s13770-023-00525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Various immune cells participate in repair and regeneration following tissue injury or damage, orchestrating tissue inflammation and regeneration processes. A deeper understanding of the immune system's involvement in tissue repair and regeneration is critical for the development of successful reparatory and regenerative strategies. Here we review recent technologies that facilitate cell-based and biomaterial-based modulation of the immune systems for tissue repair and regeneration. First, we summarize the roles of various types of immune cells in tissue repair. Second, we review the principle, examples, and limitations of regulatory T (Treg) cell-based therapy, a representative cell-based immunotherapy. Finally, we discuss biomaterial-based immunotherapy strategies that aim to modulate immune cells using various biomaterials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Antioxidants: Structure-activity of plant polyphenolics. VITAMINS AND HORMONES 2023; 121:395-411. [PMID: 36707141 DOI: 10.1016/bs.vh.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The excessive accumulation of reactive oxygen species (ROS)/free radicals can lead to abnormal oxidation of biomolecules such as proteins, lipids, fats, carbohydrates and nucleic acids in human organisms. Accordingly, endogenous oxidative stress induces the progressive development of various chronic diseases like rheumatoid arthritis, cancers, cardiovascular risks, diabetes, digestive ulcers, hypertension, obesity, neurological disorders, and age-related complications. Therefore, anti-oxidant defense mechanisms are needed to control/prevent the unbalanced molecular oxidative damage. Indeed, the oxidative stress arises from both endogenous and exogenous factors such as smoking, alcohol, medications, air pollution, sunlight, lifestyle disorders, and metabolic processes. Therefore, consumption of fruits, vegetables, grains, beverages, and leafy vegetables rich in antioxidants may inhibit or treat oxidative damage accompanying diseases. From this aspect, dietary foods are rich in various antioxidant metabolites such as flavonoids, vitamin A, C, E, phenolic acids, curcumin, stilbenes, anthocyanins, etc., which promote healthy life and nutritional benefits. Additionally, various studies have also proven that foods rich in antioxidants interact with reactive species to prevent cell damage(s) or therapeutic pathways for diseases. Although, there are various myths about the antioxidant mechanism(s), the optimal dosage of antioxidants can show beneficial pharmacological activities against various molecular oxidation paths.
Collapse
|
5
|
Wojdas M, Dąbkowska K, Kuźnik-Trocha K, Wisowski G, Lachór-Motyka I, Komosińska-Vassev K, Olczyk K, Winsz-Szczotka K. Plasma Glycosaminoglycans in Children with Juvenile Idiopathic Arthritis Being Treated with Etanercept as Potential Biomarkers of Joint Dysfunction. Biomedicines 2022; 10:biomedicines10081845. [PMID: 36009392 PMCID: PMC9405228 DOI: 10.3390/biomedicines10081845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022] Open
Abstract
We assessed the effect of two-year etanercept (ETA) therapy on the metabolism of the cartilage extracellular matrix (ECM) in patients with juvenile idiopathic arthritis (JIA). Methods: We performed a quantitative evaluation of glycosaminoglycans (GAGs) (performed by the multistage extraction and purification method) in blood obtained from patients before and during 24 months of ETA treatment, as potential biomarker of joint dysfunction and indicators of biological effectiveness of therapy. Since the metabolism of GAGs is related to the activity of proteolytic enzymes and prooxidant–antioxidant factors, we decided to evaluate the relationship between GAGs and the levels of metalloproteinases (MMP), i.e., MMP-1 and MMP-3 (using immunoenzymatic methods), as well as the total antioxidative status (TAS) (using the colorimetric method) in blood of the JIA patients. Results: When compared to the controls, GAGs and TAS concentrations were significantly lower in patients with an aggressive course of JIA qualified for ETA treatment. MMP-1 and MMP-3 levels were significantly higher versus control values. An anti-cytokine therapy leading to clinical improvement does not lead to the normalization of any of the assessed parameters. GAGs concentration is significantly related to MMP-1, MMP-3, TAS, TOS, and CRP levels. Conclusion: The results of the present study indicate the necessity of constant monitoring of the dynamics of destructive processes of articular cartilage in children with JIA. We suggest that GAGs may be a useful biomarker to assess the clinical status of the extracellular matrix of joints.
Collapse
Affiliation(s)
- Magdalena Wojdas
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
- Correspondence:
| | - Klaudia Dąbkowska
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Kornelia Kuźnik-Trocha
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Grzegorz Wisowski
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Iwona Lachór-Motyka
- Department of Rheumatology, The John Paul II Pediatric Center in Sosnowiec, ul. G. Zapolskiej 3, 41-218 Sosnowiec, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Katarzyna Winsz-Szczotka
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| |
Collapse
|
6
|
Moreira LS, Chagas AC, Ames-Sibin AP, Pateis VO, Gonçalves OH, Silva-Comar FMS, Hernandes L, Sá-Nakanishi AB, Bracht L, Bersani-Amado CA, Bracht A, Comar JF. Alpha-tocopherol-loaded polycaprolactone nanoparticles improve the inflammation and systemic oxidative stress of arthritic rats. J Tradit Complement Med 2021; 12:414-425. [PMID: 35747358 PMCID: PMC9209870 DOI: 10.1016/j.jtcme.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background and aim The present study investigated the effects of orally administered α-tocopherol-loaded polycaprolactone nanoparticles on the articular inflammation and systemic oxidative status of middle-aged Holtzman rats with Freund's adjuvant-induced polyarthritis, a model for rheumatoid arthritis. Intraperitoneally administered free α-tocopherol provided the reference for comparison. Experimental procedure Two protocols of treatment were followed: intraperitoneal administration of free α-tocopherol (100 mg/kg i.p.) or oral administration of free and nanoencapsulated α-tocopherol (100 mg/kg p.o.). Animals were treated during 18 days after arthritis induction. Results Free (i.p.) and encapsulated α-tocopherol decreased the hind paws edema, the leukocytes infiltration into femorotibial joints and the mRNA expression of pro-inflammatory cytokines in the tibial anterior muscle of arthritic rats, but the encapsulated compound was more effective. Free (i.p.) and encapsulated α-tocopherol decreased the high levels of reactive oxygen species in the brain and liver, but only the encapsulated compound decreased the levels of protein carbonyl groups in these organs. Both free (i.p.) and encapsulated α-tocopherol increased the α-tocopherol levels and the ratio of reduced to oxidized glutathione in these organs. Conclusion Both intraperitoneally administered free α-tocopherol and orally administered encapsulated α-tocopherol effectively improved inflammation and systemic oxidative stress in middle-aged arthritic rats. However, the encapsulated form should be preferred because the oral administration route does not be linked to the evident discomfort that is caused in general by injectable medicaments. Consequently, α-tocopherol-loaded polycaprolactone nanoparticles may be a promising adjuvant to the most current approaches aiming at rheumatoid arthritis therapy. Oxidative stress is systemically increased in rats with adjuvant-induced arthritis. Arthritic rats were orally treated with α-tocopherol-loaded polycaprolactone nanoparticles. Treatment decreased the paw edema and articular inflammation of arthritic rats. Treatment improved the oxidative stress in the liver and brain arthritic rats. The content of α-tocopherol was increased in the brain and liver of treated rats.
Collapse
|
7
|
Saxena P, Selvaraj K, Khare SK, Chaudhary N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol Lett 2021; 44:1-22. [PMID: 34734354 DOI: 10.1007/s10529-021-03200-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) is consistently recognized as a threat to living organisms, especially for human beings. For proper working of cellular signaling, functioning, and survival, a strict and balanced level of ROS is necessary. Superoxide dismutase (SOD); a group of metalloenzymes provides an important antioxidant defense mechanism, required to preserve the level of ROS in the body. The enzyme reveals the therapeutic potential against various diseases due to a deficiency in the ROS level. The review illustrates the numerous clinical aspects of SOD in various physiological and pathological conditions such as cancer, diabetes, arthritis, cardiovascular, neurodegenerative diseases, etc., with the mechanism of action. Despite limitations, the SOD enzyme has proved as a powerful tool against diseases, and various forms of conjugates and mimetics have been developed and reported to make it more efficient. Extensive studies need in this direction for use of natural SOD-based therapeutics for the prevention and cure of diseases.
Collapse
Affiliation(s)
- Priyanka Saxena
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Kanagarethinam Selvaraj
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Sunil Kumar Khare
- R&D & Institute Chair Professor of Biochemistry, Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Nidhee Chaudhary
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
8
|
Oh JW, Shin J, Chun S, Muthu M, Gopal J. Evaluating the Anticarcinogenic Activity of Surface Modified/Functionalized Nanochitosan: The Emerging Trends and Endeavors. Polymers (Basel) 2021; 13:3138. [PMID: 34578039 PMCID: PMC8471611 DOI: 10.3390/polym13183138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan begins its humble journey from marine food shell wastes and ends up as a versatile nutraceutical. This review focuses on briefly discussing the antioxidant activity of chitosan and retrospecting the accomplishments of chitosan nanoparticles as an anticarcinogen. The various modified/functionalized/encapsulated chitosan nanoparticles and nanoforms have been listed and their biomedical deliverables presented. The anticancer accomplishments of chitosan and its modified composites have been reviewed and presented. The future of surface modified chitosan and the lacunae in the current research focus have been discussed as future perspective. This review puts forth the urge to expand the scientific curiosity towards attempting a variety of functionalization and surface modifications to chitosan. There are few well known modifications and functionalization that benefit biomedical applications that have been proven for other systems. Being a biodegradable, biocompatible polymer, chitosan-based nanomaterials are an attractive option for medical applications. Therefore, maximizing expansion of its bioactive properties are explored. The need for applying the ideal functionalization that will significantly promote the anticancer contributions of chitosan nanomaterials has also been stressed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Sechul Chun
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Judy Gopal
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| |
Collapse
|
9
|
Mukhopadhyay K, De S, Kundu S, Ghosh P, Chatterjee S, Chatterjee M. Evaluation of levels of oxidative stress as a potential biomarker in patients with rheumatoid arthritis. J Family Med Prim Care 2021; 10:1981-1986. [PMID: 34195135 PMCID: PMC8208196 DOI: 10.4103/jfmpc.jfmpc_2412_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives: One of the most prevalent autoimmune disease globally, rheumatoid arthritis (RA) is caused by interplay of multiple inflammatory mediators in specific joints. Altered redox balance is one of the key factors in pathophysiology of RA. This study aims to find whether oxidative stress in peripheral blood neutrophil correlates with the disease activity and disability associated with it. Methods: Ten healthy controls and 29 RA patients with moderate to severe disease activity (DAS28 score >3.2) were recruited and reactive oxygen species (ROS) level in peripheral blood neutrophil was measured using flow cytometry at baseline visit and after 6 months follow-up. Functional status of RA patients was measured using Health Assessment Questionnaire Disability Index (HAQ-DI). Results: RA patients showed significantly higher level of ROS in compared to healthy control. DAS28 correlated well with ROS at baseline visit (Pearson's r = +0.63) as well as follow-up visit (Pearson's r = +0.75). HAQ-DI showed weak positive correlation at baseline visit (Pearson's r = 0.1) but it was negative at follow-up visit (Pearson's r = -0.19). Conclusions: Oxidative stress mirrors the disease activity in RA and can be considered as a biomarker, but it is not related with functional ability of the patients.
Collapse
Affiliation(s)
- Kaushik Mukhopadhyay
- Department of Pharmacology, AIIMS, Kalyani, NH-34 Connector, Basantapur, Saguna, Kalyani, West Bengal, India
| | - Soumita De
- Department of Pharmacology, Institute of Postgraduate Medical Education & Research (IPGME&R), 244B Acharya J. C. Bose Road, Kolkata, West Bengal, India
| | - Sunanda Kundu
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Bailey Road, Sheikhpura, Patna, Bihar, India
| | - Parasar Ghosh
- Department of Rheumatology, Institute of Postgraduate Medical Education & Research (IPGME&R), 244B Acharya J. C. Bose Road, Kolkata, West Bengal, India
| | - Suparna Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education & Research (IPGME&R), 244B Acharya J. C. Bose Road, Kolkata, West Bengal, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education & Research (IPGME&R), 244B Acharya J. C. Bose Road, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Gadeval A, Chaudhari S, Bollampally SP, Polaka S, Kalyane D, Sengupta P, Kalia K, Tekade RK. Integrated nanomaterials for non-invasive photothermal therapy of rheumatoid arthritis. Drug Discov Today 2021; 26:2315-2328. [PMID: 33962037 DOI: 10.1016/j.drudis.2021.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune disease that causes swelling, redness, and arthralgia of multiple joints. Despite significant research and development on the treatment modalities for RA, there is still no established effective treatment option for eradicating joint damage and inflammation. In recent years, photothermal therapy (PTT) has emerged as a practical approach to treat RA. In this review, we outline various factors that affect the effective treatment of RA. Moreover, we discuss various PTT-based nanomaterials that can be used to treat RA.
Collapse
Affiliation(s)
- Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sayali Chaudhari
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sai Pranavi Bollampally
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Suryanarayana Polaka
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dnyaneshwar Kalyane
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
11
|
Muthu M, Gopal J, Chun S, Devadoss AJP, Hasan N, Sivanesan I. Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants (Basel) 2021; 10:228. [PMID: 33546282 PMCID: PMC7913366 DOI: 10.3390/antiox10020228] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chitosan is obtained from chitin that in turn is recovered from marine crustacean wastes. The recovery methods and their varying types and the advantages of the recovery methods are briefly discussed. The bioactive properties of chitosan, which emphasize the unequivocal deliverables contained by this biopolymer, have been concisely presented. The variations of chitosan and its derivatives and their unique properties are discussed. The antioxidant properties of chitosan have been presented and the need for more work targeted towards harnessing the antioxidant property of chitosan has been emphasized. Some portions of the crustacean waste are being converted to chitosan; the possibility that all of the waste can be used for harnessing this versatile multifaceted product chitosan is projected in this review. The future of chitosan recovery from marine crustacean wastes and the need to improve in this area of research, through the inclusion of nanotechnological inputs have been listed under future perspective.
Collapse
Affiliation(s)
- Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India;
| | - Judy Gopal
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | - Sechul Chun
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | | | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
12
|
Rondanelli M, Perdoni F, Peroni G, Caporali R, Gasparri C, Riva A, Petrangolini G, Faliva MA, Infantino V, Naso M, Perna S, Rigon C. Ideal food pyramid for patients with rheumatoid arthritis: A narrative review. Clin Nutr 2020; 40:661-689. [PMID: 32928578 DOI: 10.1016/j.clnu.2020.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
Emerging literature suggests that diet plays an important modulatory role in rheumatoid arthritis (RA) because diet is an environmental factor that affects inflammation, antigen presentation, antioxidant defense mechanisms and gut microbiota. Patients with RA frequently ask their doctors about which diets to follow, and even in the absence of advice from their physicians, many patients are undertaking various dietary interventions. Given this background, the aim of this review is to evaluate the evidence to date regarding the ideal dietary approach for management of RA in order to reduce the counteracting inflammation, and to construct a food pyramid for patients with RA. The pyramid shows that carbohydrates should be consumed every day (3 portions of whole grains, preferably gluten free), together with fruits and vegetables (5 portions; among which fruit, berries and citrus fruit are to be preferred, and among the vegetables, green leafy ones.), light yogurt (125 ml), skim milk (200 ml), 1 glass (125 ml) of wine and extra virgin olive oil; weekly, fish (3 portions), white meat (3 portions), legumes (2 portions) eggs (2 portions), seasoned cheeses (2 portions), and red or processed meats (once a week). At the top of the pyramid, there are two pennants: one green means that subjects with RA need some personalized supplementation (vitamin D and omega 3) and one red means that there are some foods that are banned (salt and sugar). The food pyramid allows patients to easily figure out what to eat.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, 27100 Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, 27100 Italy.
| | - Federica Perdoni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy; Clinical Rheumatology Unit Gaetano Pini Hospital, Milan 20122, Italy.
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| | - Antonella Riva
- Research and Development Department, Indena SpA, Milan, Italy.
| | | | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| | - Vittoria Infantino
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, 27100 Italy.
| | - Maurizio Naso
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| | - Simone Perna
- Department of Biology, University of Bahrain, College of Science, Sakhir Campus P. O. Box 32038 Bahrain.
| | - Chiara Rigon
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| |
Collapse
|
13
|
Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and Anti-Inflammatory Activities. INT J POLYM SCI 2018. [DOI: 10.1155/2018/1708172] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chitosan is obtained from alkaline deacetylation of chitin, and acetamide groups are transformed into primary amino groups during the deacetylation. The diverse biological activities of chitosan and its derivatives are extensively studied that allows to widening the application fields in various sectors especially in biomedical science. The biological properties of chitosan are strongly depending on the solubility in water and other solvents. Deacetylation degree (DDA) and molecular weight (MW) are the most decisive parameters on the bioactivities since the primary amino groups are the key functional groups of chitosan where permits to interact with other molecules. Higher DDA and lower MW of chitosan and chitosan derivatives demonstrated higher antimicrobial, antioxidant, and anticancer capacities. Therefore, the chitosan oligosaccharides (COS) with a low polymerization degree are receiving a great attention in medical and pharmaceutical applications as they have higher water solubility and lower viscosity than chitosan. In this review articles, the antimicrobial, antioxidant, anticancer, anti-inflammatory activities of chitosan and its derivatives are highlighted. The influences of physicochemical parameters of chitosan like DDA and MW on bioactivities are also described.
Collapse
|
14
|
Khojah HM, Ahmed S, Abdel-Rahman MS, Elhakeim EH. Resveratrol as an effective adjuvant therapy in the management of rheumatoid arthritis: a clinical study. Clin Rheumatol 2018; 37:2035-2042. [PMID: 29611086 DOI: 10.1007/s10067-018-4080-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
Resveratrol (RSV), a naturally occurring polyphenol, has been found to have potent antioxidant, anti-inflammatory, and anticancer effects. Recently, RSV was reported as a new potential agent to suppress inflammation of collagen-induced arthritis in a mouse model. Nevertheless, the clinical benefits of RSV in the management of rheumatoid arthritis (RA) were not studied. This randomized controlled clinical trial aims to shed some light on the therapeutic benefits of RSV in the treatment of RA in patients with different stages of the disease activity. In this randomized controlled clinical trial, 100 RA patients (68 female, 32 male) were enrolled randomly and divided into two groups, each of 50 patients: an RSV-treated group that received a daily RSV capsule of 1 g with the conventional treatment for 3 months and a control group that just received the regular treatment. The clinical and biochemical markers of RA in both groups were assessed. It was found that the clinical markers (i.e., the 28-joint count for swelling and tenderness) and the disease activity score assessment for 28 joints were significantly lowered in the RSV-treated group. Moreover, serum levels of certain biochemical markers (i.e., C-reactive protein, erythrocyte sedimentation rate, undercarboxylated osteocalcin, matrix metalloproteinase-3, tumor necrosis factor alpha, and interleukin-6) were also significantly decreased in RSV-treated patients. The current study suggests the addition of RSV as an adjuvant to the conventional antirheumatic drugs.
Collapse
Affiliation(s)
- Hani M Khojah
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medina, Saudi Arabia.
| | - Sameh Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Eman H Elhakeim
- Department of Rheumatology & Rehabilitation, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Phull AR, Nasir B, Haq IU, Kim SJ. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact 2018; 281:121-136. [PMID: 29258867 DOI: 10.1016/j.cbi.2017.12.024] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
There are numerous extra- and intra-cellular processes involved in the production of reactive oxygen species (ROS). Augmented ROS generation can cause the damage of biomolecules such as proteins, nucleic acid and lipids. ROS act as an intracellular signaling component and is associated with various inflammatory responses, chronic arthropathies, including rheumatoid arthritis (RA). It is well documented that ROS can activate different signaling pathways having a vital importance in the patho-physiology of RA. Hence, understanding of the molecular pathways and their interaction might be advantageous in the development of novel therapeutic approaches for RA.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea
| | - Bakht Nasir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea.
| |
Collapse
|