1
|
Mike-Ogburia MI, Eze CC, Okoli MO, Ekada I, Uhegbu CU, Ugwu C, Ogbakiri PA, Alozie FC, Ideozu NO, Amesi AW, Ifeanyi MA. Cholera in Nigeria: A review of outbreaks, trends, contributing factors, and public health responses. Niger Med J 2024; 65:824-843. [PMID: 39877509 PMCID: PMC11770646 DOI: 10.60787/nmj.v65i6.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Cholera remains a significant public health challenge in Nigeria, with recurrent outbreaks exacerbated by inadequate water, sanitation, and hygiene (WASH) infrastructure, as well as conflict and displacement. This review examines cholera outbreaks in Nigeria from 2010 to 2024, analyzing epidemiological trends, contributing factors, and public health responses. Seasonal peaks during periods of heavy rainfall and flooding have consistently facilitated Vibrio cholerae transmission, with Northern regions disproportionately affected due to poor infrastructure and ongoing conflicts. Displacement into overcrowded camps has heightened vulnerability, particularly in conflict-affected areas such as Borno and Adamawa. The outbreaks have exhibited multiple epidemic waves within single periods, reflecting persistent transmission dynamics. Recent outbreaks have seen higher incidence rates among children under the age of five and vulnerable populations, highlighting the need for targeted interventions. Public health responses have focused on improving surveillance, case management, and WASH infrastructure, with coordinated efforts from national and international agencies. Vaccination campaigns, particularly in high-risk areas, have proven effective in controlling outbreaks. However, challenges remain, including inadequate healthcare capacity, vaccine stockouts, and the emergence of antimicrobial-resistant Vibrio cholerae strains (serogroup O1) resistant to antibiotics such as tetracycline, doxycycline, ampicillin, and trimethoprim-sulfamethoxazole, complicating treatment efforts. The COVID-19 pandemic further strained Nigeria's healthcare system, underscoring the need for an integrated health system to be strengthened to manage concurrent public health crises. This review emphasizes the importance of a multi-sectoral approach to cholera prevention and control, addressing underlying social determinants and ensuring sustained investments in public health infrastructure to mitigate future outbreaks.
Collapse
Affiliation(s)
- Moore Ikechi Mike-Ogburia
- Department of Medical Microbiology, Rivers State University, Port Harcourt, Nigeria
- School of Public Health, University of Port Harcourt, Nigeria
| | - Chinemerem Cynthia Eze
- Department of Haematology and Blood Transfusion Science, Rivers State University, Port Harcourt, Nigeria
| | | | - Inimuvie Ekada
- Department of Clinical Pharmacy and Public Health, Afe-Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | | | - Chioma Ugwu
- Department of Medical Laboratory, Cedarcrest Hospitals, Abuja, Nigeria
| | | | | | - Nancy Obutor Ideozu
- Department of Medical Microbiology, Rivers State University, Port Harcourt, Nigeria
| | | | - Margaret Afor Ifeanyi
- Department of Medical Laboratory Services, Federal Medical Center, Yenagoa, Bayelsa State, Nigeria
| |
Collapse
|
2
|
Bitew A, Gelaw A, Wondimeneh Y, Ayenew Z, Getie M, Tafere W, Gebre-Eyesus T, Yimer M, Beyene GT, Bitew M, Abayneh T, Abebe M, Mihret A, Yeshitela B, Teferi M, Gelaw B. Prevalence and antimicrobial susceptibility pattern of Vibrio cholerae isolates from cholera outbreak sites in Ethiopia. BMC Public Health 2024; 24:2071. [PMID: 39085873 PMCID: PMC11292863 DOI: 10.1186/s12889-024-19621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cholera is an acute infectious disease caused by ingestion of contaminated food or water with Vibrio cholerae. Cholera remains a global threat to public health and an indicator of inequity and lack of social development. The aim of this study was to assess the prevalence and antimicrobial susceptibility pattern of V. cholerae from cholera outbreak sites in Ethiopia. METHODS Across-sectional study was conducted from May 2022 to October 2023 across different regions in Ethiopia: Oromia National Regional State, Amhara National Regional State and Addis Ababa City Administration. A total of 415 fecal samples were collected from the three regions. Two milliliter fecal samples were collected from each study participants. The collected samples were cultured on Blood Agar, MacConkey Agar and Thiosulfate Citrate Bile Salt Sucrose Agar. A series of biochemical tests Oxidase test, String test, Motility, Indole, Citrate, Gas production, H2S production, Urease test were used to identify V. cholerae species. Both polyvalent and monovalent antisera were used for agglutination tests to identify and differentiate V. cholerae serogroup and serotypes. In addition, Kirby-Bauer Disk diffusion antibiotic susceptibility test method was done. Data were registered in epi-enfo version 7 and analyzed by Statistical Package for Social Science version 25. Descriptive statistics were used to determine the prevalence of Vibrio cholerae. Logistic regression model was fitted and p-value < 0.05 was considered as statically significant. RESULTS The prevalence of V. cholerae in the fecal samples was 30.1%. Majority of the isolates were from Oromia National Regional State 43.2% (n = 54) followed by Amhara National Regional State 31.2% (n = 39) and Addis Ababa City Administration 25.6% (n = 32). Most of the V. cholerae isolates were O1 serogroups 90.4% (n = 113) and Ogawa serotypes 86.4% (n = 108). Majority of the isolates were susceptible to ciprofloxacin 100% (n = 125), tetracycline 72% (n = 90) and gentamycin 68% (n = 85). More than half of the isolates were resistant to trimethoprim-sulfamethoxazole 62.4% (n = 78) and ampicillin 56.8% (n = 71). In this study, participants unable to read and write were about four times more at risk for V. cholerae infection (AOR: 3.8, 95% CI: 1.07-13.33). In addition, consumption of river water were about three times more at risk for V. cholerae infection (AOR: 2.8, 95% CI: 1.08-7.08). CONCLUSION our study revealed a high prevalence of V. cholerae from fecal samples. The predominant serogroups and serotypes were O1 and Ogawa, respectively. Fortunately, the isolates showed susceptible to most tested antibiotics. Drinking water from river were the identified associated risk factor for V. cholerae infection. Protecting the community from drinking of river water and provision of safe and treated water could reduce cholera outbreaks in the study areas.
Collapse
Affiliation(s)
- Abebaw Bitew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
- Department of Medical Microbiology, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia.
| | - Aschalew Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayih Wondimeneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zeleke Ayenew
- Department of Bacteriology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Michael Getie
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Wudu Tafere
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Tsehaynesh Gebre-Eyesus
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Marechign Yimer
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Getachew Tesfaye Beyene
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Molalegne Bitew
- Bio and Emerging Technology Institute of Ethiopia, Addis Ababa, Ethiopia
| | | | - Markos Abebe
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adane Mihret
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Biruk Yeshitela
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mekonnen Teferi
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Mogessie H, Legesse M, Hailu AF, Teklehaymanot T, Alemayehu H, Abubeker R, Ashenafi M. Vibrio cholerae O1 and Escherichia coli O157:H7 from drinking water and wastewater in Addis Ababa, Ethiopia. BMC Microbiol 2024; 24:219. [PMID: 38902619 PMCID: PMC11188251 DOI: 10.1186/s12866-024-03302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/11/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND In Addis Ababa, Ethiopia, open ditches along innner roads in residential areas serve to convey domestic wastewater and rainwater away from residences. Contamination of drinking water by wastewater through faulty distribution lines could expose households to waterborne illnesses. This prompted the study to assess the microbiological safety of wastewater and drinking water in Addis Ababa, identify the pathogens therein, and determine their antibiotic resistance patterns. RESULTS VIBRIO CHOLERAE O1, mainly Hikojima serotype, was isolated from 23 wastewater and 16 drinking water samples. Similarly, 19 wastewater and 10 drinking water samples yielded Escherichia coli O157:H7. V. cholerae O1 were 100% resistant to the penicillins (Amoxacillin and Ampicillin), and 51-82% were resistant to the cephalosporins. About 44% of the V. cholerae O1 isolates in this study were Extended Spectrum Beta-Lactamase (ESBL) producers. Moreover, 26% were resistant to Meropenem. Peperacillin/Tazobactam was the only effective β-lactam antibiotic against V. cholerae O1. V. cholerae O1 isolates showed 37 different patterns of multiple resistance ranging from a minimum of three to a maximum of ten antimicrobials. Of the E. coli O157:H7 isolates, 71% were ESBL producers. About 96% were resistant to Ampicillin. Amikacin and Gentamicin were very effective against E. coli O157:H7 isolates. The isolates from wastewater and drinking water showed multiple antibiotic resistance against three to eight antibiotic drugs. CONCLUSIONS Open ditches for wastewater conveyance along innner roads in residence areas and underground faulty municipal water distribution lines could be possible sources for V. cholerae O1 and E. coli O157:H7 infections to surrounding households and for dissemination of multiple drug resistance in humans and, potentially, the environment.
Collapse
Affiliation(s)
- Helina Mogessie
- Microbiology Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Mengistu Legesse
- Microbiology Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aklilu Feleke Hailu
- Microbiology Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tilahun Teklehaymanot
- Microbiology Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Haile Alemayehu
- Microbiology Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rajiha Abubeker
- Ethiopian Public Health Institute, Bacteriology Directorate, Addis Ababa, Ethiopia
| | - Mogessie Ashenafi
- Center for Food Security Studies, College of Development Studies, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Melfi F, Carradori S, Mencarelli N, Campestre C, Granese A, Mori M. Recent developments of agents targeting Vibrio cholerae: patents and literature data. Expert Opin Ther Pat 2024; 34:415-432. [PMID: 38446009 DOI: 10.1080/13543776.2024.2327305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Vibrio cholerae bacteria cause an infection characterized by acute diarrheal illness in the intestine. Cholera is sustained by people swallowing contaminated food or water. Even though symptoms can be mild, if untreated disease becomes severe and life-threatening, especially in low-income countries. AREAS COVERED After a description of the most recent literature on the pathophysiology of this infection, we searched for patents and literature articles following the PRISMA guidelines, filtering the results disclosed from 2020 to present. Moreover, some innovative molecular targets (e.g., carbonic anhydrases) and pathways to counteract this rising problem were also discussed in terms of design, structure-activity relationships and structural analyses. EXPERT OPINION This review aims to cover and analyze the most recent advances on the new druggable targets and bioactive compounds against this fastidious pathogen, overcoming the use of old antibiotics which currently suffer from high resistance rate.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Noemi Mencarelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Arianna Granese
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Falco A, Villaquirán-Muriel MÁ, Gallo Pérez JD, Mondragón-Quiguanas A, Aranaga C, Correa A. Identification of Vibrio metschnikovii and Vibrio injensis Isolated from Leachate Ponds: Characterization of Their Antibiotic Resistance and Virulence-Associated Genes. Antibiotics (Basel) 2023; 12:1571. [PMID: 37998773 PMCID: PMC10668802 DOI: 10.3390/antibiotics12111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to evaluate the antibiotic resistance of 22 environmental Vibrio metschnikovii isolates and 1 Vibrio injensis isolate from landfill leachates in southwestern Colombia. Isolates were identified by Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF), and 16S ribosomal RNA gene sequencing. Analysis of the susceptibility to six antibacterial agents by the Kirby-Bauer method showed susceptibility of all the isolates to ciprofloxacin and imipenem. We recorded resistance to beta-lactams and aminoglycosides, but no multidrug resistance was observed. The genome of one of the isolates was sequenced to determine the pathogenic potential of V. injensis. Genes associated with virulence were identified, including for flagellar synthesis, biofilm formation, and hemolysins, among others. These results demonstrate that landfill leachates are potential reservoirs of antibiotic-resistant and pathogenic bacteria and highlight the importance of monitoring Vibrio species in different aquatic environments.
Collapse
Affiliation(s)
- Aura Falco
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Miguel Ángel Villaquirán-Muriel
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - José David Gallo Pérez
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Alejandra Mondragón-Quiguanas
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Carlos Aranaga
- Chemistry and Biotechnology Research Group (QUIBIO), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia;
| | - Adriana Correa
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| |
Collapse
|
6
|
Almansour AM, Alhadlaq MA, Alzahrani KO, Mukhtar LE, Alharbi AL, Alajel SM. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023; 11:2127. [PMID: 37763971 PMCID: PMC10537193 DOI: 10.3390/microorganisms11092127] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a global health problem without geographic boundaries. This increases the risk of complications and, thus, makes it harder to treat infections, which can result in higher healthcare costs and a greater number of deaths. Antimicrobials are often used to treat infections from pathogens in food-producing animals, making them a potential source of AMR. Overuse and misuse of these drugs in animal agriculture can lead to the development of AMR bacteria, which can then be transmitted to humans through contaminated food or direct contact. It is therefore essential to take multifaceted, comprehensive, and integrated measures, following the One Health approach. To address this issue, many countries have implemented regulations to limit antimicrobial use. To our knowledge, there are previous studies based on AMR in food-producing animals; however, this paper adds novelty related to the AMR pathogens in livestock, as we include the recent publications of this field worldwide. In this work, we aim to describe the most critical and high-risk AMR pathogens among food-producing animals, as a worldwide health problem. We also focus on the dissemination of AMR genes in livestock, as well as its consequences in animals and humans, and future strategies to tackle this threat.
Collapse
Affiliation(s)
- Ayidh M. Almansour
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Meshari A. Alhadlaq
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Khaloud O. Alzahrani
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Lenah E. Mukhtar
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| | - Abdulmohsen L. Alharbi
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Sulaiman M. Alajel
- Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| |
Collapse
|
7
|
Shah MM, Bundi M, Kathiiko C, Guyo S, Galata A, Miringu G, Ichinose Y, Yoshida LM. Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016. Microbiol Spectr 2023; 11:e0414022. [PMID: 37125926 PMCID: PMC10269778 DOI: 10.1128/spectrum.04140-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
Multidrug-resistant Vibrio cholerae O1 strains have long been observed in Africa, and strains exhibiting new resistance phenotypes have emerged during recent epidemics in Kenya. This study aimed to determine the epidemiological aspects, drug resistance patterns, and genetic elements of V. cholerae O1 strains isolated from two cholera epidemics in Kenya between 2007 and 2010 and between 2015 and 2016. A total of 228 V. cholerae O1 strains, including 226 clinical strains isolated from 13 counties in Kenya during the 2007-2010 and 2015-2016 cholera epidemics and two environmental isolates (from shallow well water and spring water isolates) isolated from Pokot and Kwale Counties, respectively, in 2010 were subjected to biotyping, serotyping, and antimicrobial susceptibility testing, including the detection of antibiotic resistance genes and mobile genetic elements. All V. cholerae isolates were identified as El Tor biotypes and susceptible to ceftriaxone, gentamicin, and ciprofloxacin. The majority of isolates were resistant to trimethoprim-sulfamethoxazole (94.6%), streptomycin (92.8%), and nalidixic acid (64.5%), while lower resistance was observed against ampicillin (3.6%), amoxicillin (4.2%), chloramphenicol (3.0%), and doxycycline (1.8%). Concurrently, the integrating conjugative (SXT) element was found in 95.5% of the V. cholerae isolates; conversely, class 1, 2, and 3 integrons were absent. Additionally, 64.5% of the isolates exhibited multidrug resistance patterns. Antibiotic-resistant gene clusters suggest that environmental bacteria may act as cassette reservoirs that favor resistant pathogens. On the other hand, the 2015-2016 epidemic strains were found susceptible to most antibiotics except nalidixic acid. This revealed the replacement of multidrug-resistant strains exhibiting new resistance phenotypes that emerged after Kenya's 2007-2010 epidemic. IMPORTANCE Kenya is a country where cholera is endemic; it has experienced three substantial epidemics over the past few decades, but there are limited data on the drug resistance patterns of V. cholerae at the national level. To the best of our knowledge, this is the first study to investigate the antimicrobial susceptibility profiles of V. cholerae O1 strains isolated from two consecutive epidemics and to examine their associated antimicrobial genetic determinants. Our study results revealed two distinct antibiotic resistance trends in two separate epidemics, particularly trends for multidrug-associated mobile genetic elements and chromosomal mutation-oriented resistant strains from the 2007-2010 epidemic. In contrast, only nalidixic acid-associated chromosomal mutated strains were isolated from the 2015-2016 epidemic. This study also found similar patterns of antibiotic resistance in environmental and clinical strains. Continuous monitoring is needed to control emerging multidrug-resistant isolates in the future.
Collapse
Affiliation(s)
- Mohammad Monir Shah
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Martin Bundi
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Cyrus Kathiiko
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Sora Guyo
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Amina Galata
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Gabriel Miringu
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Yoshio Ichinose
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Lay-Myint Yoshida
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
8
|
Wu Q, Vaziri AZ, Omidi N, Hassan Kaviar V, Maleki A, Khadivar P, Kouhsari E. Antimicrobial resistance among clinical Vibrio cholerae non-O1/non-O139 isolates: systematic review and meta-analysis. Pathog Glob Health 2023; 117:235-244. [PMID: 35983997 PMCID: PMC10081078 DOI: 10.1080/20477724.2022.2114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Non-O1/non-O139 Vibrio cholerae (NOVC) are nonpathogenic or asymptomatic colonizers in humans, but they may be related to intestinal or extra-intestinal (severe wound infections or sepsis) infections in immunocompromised patients.The present study aimed to evaluate the weighted pooled resistance (WPR) rates in clinical NOVC isolates based on different years, areas, quality, antimicrobial susceptibility testing (AST), and resistance rates. We systematically searched the articles in PubMed, Scopus, and Embase (until January 2020). Data analyses were performed using the Stata software program (version 17). A total of 16 studies that had investigated 824 clinical NOVC isolates were included in the meta-analysis. The majority of the studies were conducted in Asia (n = 14) and followed by Africa (n = 2). The WPR rates were as follows: erythromycin 10%, ciprofloxacin 5%, cotrimoxazole 27%, and tetracycline 13%. There was an increase in resistance to ciprofloxacin, nalidixic acid, and gentamicin, norfloxacin during the period from 2000 to 2020. On the contrary, there was a decreased resistance to erythromycin, tetracycline, chloramphenicol, cotrimoxazole, ampicillin, streptomycin, kanamycin, and neomycin during the period from 2000 to 2020. The lowest resistance rate were related to gentamicin, kanamycin, ciprofloxacin, and chloramphenicol against NOVC strains. However, temporal changes in antimicrobial resistance rate were found in our study. We established continuous surveillance, careful appropriate AST, and limitations on improper antibiotic usage, which are essential, especially in low-income countries.
Collapse
Affiliation(s)
- Qianxing Wu
- Clinical Laboratory, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Ali Zaman Vaziri
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Omidi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Parand Khadivar
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, GorganIran
| |
Collapse
|
9
|
Colito DA, Dorta-Guerra R, Da Costa Lima HS, Pina C, Gonçalves D, Valladares B, Foronda P. Epidemiological investigations of diarrhea in children in Praia city, Cape Verde. Front Microbiol 2022; 13:1059431. [PMID: 36619987 PMCID: PMC9814011 DOI: 10.3389/fmicb.2022.1059431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Diarrheal disease is a major cause of infant mortality and morbidity in Africa and results primarily from contaminated food and water sources, but its prevalence predictors in Cape Verde are not completely known. For this reason, this study aimed to identify the etiological agents of diarrhea in Cape Verdean children and assess its associated risk factors. Methods A survey questionnaire was used, and a total of 105 stool samples from children with diarrhea aged 0-12 years at the Central Hospital of Praia (Santiago, Cape Verde) were analyzed. The analyses were carried out using Biofire FilmArray Gastrointestinal Panels. Possible risk factors for these pathogens were analyzed using logistic regression, chi-square tests, or Fisher's exact test. Results Among the bacteria, enteroaggregative Escherichia coli (45.71%; 95% CI: 36.71-56.70), enteropathogenic E. coli (40%; 95% CI: 30.56-50.02), Shigella/enteroinvasive E. coli (29.52%; 95% CI: 21.02-39.22), E. coli enterotoxigenic (12.38%; 95% CI: 6.76-20.24), Campylobacter sp. (10.48%; 95% CI: 5.35-1.97), Vibrio sp. (4.76%; 95% CI: 1.56-10.76), Clostridioides difficile (3.81%; 95% CI: 1.05-9.47), Vibrio cholerae (2.86%; 0.59-8.12), Shiga-like toxin-producing E. coli (2.86%; 0.59-8.12) and Salmonella sp. (0.95%; 0.02-5.19) were identified; four viruses, Rotavirus A (28.57%; 95% CI: 20.18-38.21), Sapovirus I. II. IV and V (11.43%; 95% CI: 6.05-19.11), Norovirus GI.GII (6.67%; 95% CI: 2.72-13.25) and Adenovirus F 40.41 (6.67%; 95% CI: 2.72-13.25) were also observed. All the pathogens detected in this study were found in coinfections. Significant associations with risk factors were found; specifically, having a bathroom at home reduced the risk of Campylobacter sp., having animals at home increased the risk of Shigella/EIEC infection, and drinking bottled water reduced the risk of Sapovirus infection. Discussion From the findings of this study, it can be concluded that, in Cape Verde, there is a high prevalence and diversity of pathogens among children. Our results could help to establish an adequate diagnosis and effective treatments for diarrheal disease.
Collapse
Affiliation(s)
| | - Roberto Dorta-Guerra
- Departamento de Matemáticas, Estadística e IO, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Carine Pina
- Faculty of Science and Technology, University of Cape Verde, Palmarejo, Cape Verde
| | - Deisy Gonçalves
- Faculty of Science and Technology, University of Cape Verde, Palmarejo, Cape Verde
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pilar Foronda
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,*Correspondence: Pilar Foronda,
| |
Collapse
|
10
|
Shaw S, Samanta P, Chowdhury G, Ghosh D, Dey TK, Deb AK, Ramamurthy T, Miyoshi SI, Ghosh A, Dutta S, Mukhopadhyay AK. Altered Molecular Attributes and Antimicrobial Resistance Patterns of Vibrio cholerae O1 El Tor Strains Isolated from the Cholera Endemic Regions of India. J Appl Microbiol 2022; 133:3605-3616. [PMID: 36000378 DOI: 10.1111/jam.15794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed to document the comparative analysis of differential hyper-virulent features of Vibrio cholerae O1 strains isolated during 2018 from cholera endemic regions in Gujarat and Maharashtra (Western India) and West Bengal (Eastern India). METHODS AND RESULTS A total of 87 V. cholerae O1 clinical strains from Western India and 48 from Eastern India were analyzed for a number of biotypic and genotypic features followed by antimicrobial resistance (AMR) profile. A novel PCR was designed to detect a large fragment deletion in the Vibrio seventh pandemic island II (VSP-II) genomic region, which is a significant genetic feature of the V. cholerae strains that has caused Yemen cholera outbreak. All the strains from Western India were belong to the Ogawa serotype, polymyxin B-sensitive, hemolytic, had a deletion in VSP-II (VSP-IIC) region and carried Haitian genetic alleles of ctxB, tcpA and rtxA. Conversely, 14.6% (7/48) of the strains from Eastern India belonged to the Inaba serotype, polymyxin B-resistant, non-hemolytic, harbored VSP-II other than VSP-IIC type, classical ctxB, Haitian tcpA and El Tor rtxA alleles. Resistance to tetracycline and chloramphenicol has been observed in strains from both the regions. CONCLUSIONS This study showed hyper-virulent, polymyxin B-sensitive epidemic causing strains in India along with the strains with polymyxin B-resistant and non-hemolytic traits that may spread and cause serious disease outcome in future. SIGNIFICANCE AND IMPACT OF THE STUDY The outcomes of this study can help to improve the understanding of the hyper-pathogenic property of recently circulating pandemic V. cholerae strains in India. A special attention is also needed on the monitoring of AMR surveillance because V. cholerae strains are losing susceptibility to many antibiotics used as a second line of defense in the treatment of cholera.
Collapse
Affiliation(s)
- Sreeja Shaw
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debjani Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Tanmoy Kumar Dey
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok Kumar Deb
- Division of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
11
|
Yuan XH, Li YM, Vaziri AZ, Kaviar VH, Jin Y, Jin Y, Maleki A, Omidi N, Kouhsari E. Global status of antimicrobial resistance among environmental isolates of Vibrio cholerae O1/O139: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2022; 11:62. [PMID: 35468830 PMCID: PMC9036709 DOI: 10.1186/s13756-022-01100-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Vibrio cholerae O1/O139 were the predominant circulating serogroups exhibiting multi-drug resistance (MDR) during the cholera outbreak which led to cholera treatment failures. OBJECTIVE This meta-analysis aimed to evaluate the weighted pooled resistance (WPR) rates in V. cholerae O1/O139 isolates obtained from environmental samples. METHODS We systematically searched the articles in PubMed, Scopus, and Embase (until January 2020). Subgroup analyses were then employed by publication year, geographic areas, and the quality of studies. Statistical analyses were conducted using STATA software (ver. 14.0). RESULTS A total of 20 studies investigating 648 environmental V. cholerae O1/O139 isolates were analysed. The majority of the studies were originated from Asia (n = 9). In addition, a large number of studies (n = 15 i.e. 71.4%) included in the meta-analysis revealed the resistance to cotrimoxazole and ciprofloxacin. The WPR rates were as follows: cotrimoxazole 59%, erythromycin 28%, tetracycline 14%, doxycycline 5%, and ciprofloxacin 0%. There was increased resistance to nalidixic acid, cotrimoxazole, furazolidone, and tetracycline while a decreased resistance to amoxicillin, ciprofloxacin, erythromycin, chloramphenicol, ampicillin, streptomycin, and ceftriaxone was observed during the years 2000-2020. A significant decrease in the doxycycline and ciprofloxacin-resistance rates in V. cholerae O1/O139 isolates was reported over the years 2011-2020 which represents a decrease in 2001-2010 (p < 0.05). CONCLUSIONS Fluoroquinolones, gentamicin, ceftriaxone, doxycycline, kanamycin, and cefotaxime showed the highest effectiveness and the lowest resistance rate. However, the main interest is the rise of antimicrobial resistance in V. cholerae strains especially in low-income countries or endemic areas, and therefore, continuous surveillance, careful appropriate AST, and limitation on improper antibiotic usage are crucial.
Collapse
Affiliation(s)
- Xin-Hui Yuan
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, 210008, China
| | - Yu-Mei Li
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ali Zaman Vaziri
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Yang Jin
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, 210008, China
| | - Yu Jin
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, 210008, China.
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Nazanin Omidi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Faculty of Paramedical Sciences, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
12
|
Zuberi Z, Sillo AJ. Antibiotic Resistance Conferred by Class 1 Integron in Vibrio Cholerae Strains: A Meta-analysis. East Afr Health Res J 2022; 6:119-126. [PMID: 36751685 PMCID: PMC9887504 DOI: 10.24248/eahrj.v6i2.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/25/2022] [Indexed: 01/02/2023] Open
Abstract
Background Class 1 integron is the most ubiquitous platform among antibiotic resistance bacterial populations, including Vibrio cholerae strains. This meta-analysis aimed to determine the antibiotic resistance conferred by class 1 integron conserved segments (CS); 3'-qacEΔ1 and sul1, and 5'-int1 in V. cholerae strains. Methods An intensive literature search of electronic databases for relevant studies from their starting dates up to April 2019 was conducted by two independent investigators. The electronic databases included; PubMed, Ovid Medline and Google Scholar databases. Only studies that determined antibiotic resistance conferred by class 1 integron in V. cholerae strains isolated from clinical and/or environmental samples using Polymerase Chain Reaction (PCR) assay were included in this study. Results The random-effects model was selected and performed for all the studies included in this meta-analysis. Fourteen studies consisting of both qacEΔ1 and sul1, and int1 in the class 1 integron of V. cholerae strains were included. The proportions of class 1 integron 3'-CS and 5'-CS were 70.4 % (95%CI: 37.5-94.4) and 52 % (95% CI: 6.3-95.7) respectively. Conclusions The proportions of class 1 integron in V. cholerae strains significantly contributed to the antibiotic resistances, which are comparable to other gram-negative bacteria clinical isolates. Moreover, the 3'-CS qacEΔ1 and sul1 are highly involved in the antibiotic resistance in comparison to 5'-CS int1. Generally, the study findings provide a general view on antibiotic resistance conferred by class 1 integron in Vibrio cholerae strains.
Collapse
Affiliation(s)
- Zavuga Zuberi
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania,Correspondence to Zavuga Zuberi ()
| | - Albert Joseph Sillo
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
13
|
Amadu DO, Abdullahi IN, Seibu E, Fadeyi A, Kamaldeen K, Akanbi AA, Okwume CC, Amadu MB, Nwabuisi C. Retrospective Analysis of the Serovars and Antibiogram of Vibrio cholerae Isolates of the 2017 Ilorin Cholera Outbreak, Nigeria. Infect Chemother 2021; 53:368-373. [PMID: 34216130 PMCID: PMC8258287 DOI: 10.3947/ic.2021.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
In this retrospective study, we determined the incidence, serovars, and antibiogram of Vibrio cholerae isolated from 102 clinical stool samples collected from rice water diarrheic patients during an outbreak (May - July 2017) in Ilorin metropolis, Nigeria. The culture positive rate of the V. cholerae isolates was 41.2%, with 41 and 1 isolates from O1 (Inaba) and non-O1/O139 serogroups, respectively. The isolates were the most susceptible to ciprofloxacin (76.2%) followed by amoxicillin-clavulanate (71.4%). However, all isolates were resistant to ampicillin and tetracycline. In conclusion, V. cholerae O1 was the predominant circulating serogroup exhibiting multi-drug resistance during the outbreak.
Collapse
Affiliation(s)
- Dele Ohinoyi Amadu
- Department of Medical Microbiology and Parasitology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Idris Nasir Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria.
| | - Ezekiel Seibu
- Department of Medical Microbiology and Parasitology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Abayomi Fadeyi
- Department of Medical Microbiology and Parasitology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | | | - Aliu Ajibola Akanbi
- Department of Medical Microbiology and Parasitology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Chukwudi Crescent Okwume
- Department of Medical Laboratory Services, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Motunrayo Bukola Amadu
- Department of Obstetrics and Gynecology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Charles Nwabuisi
- Department of Obstetrics and Gynecology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| |
Collapse
|
14
|
Potential pathogenicity and antibiotic resistance of aquatic Vibrio isolates from freshwater in Slovakia. Folia Microbiol (Praha) 2019; 65:545-555. [PMID: 31773555 DOI: 10.1007/s12223-019-00760-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate the potential pathogenicity and antibiotic resistance of 31 environmental Vibrio isolates obtained from surface water in southern and eastern Slovakia. Isolates were identified as Vibrio cholerae non-O1/non-O139 and Vibrio metschnikovii by biochemical tests, MALDI biotyping, and 16S RNA gene sequencing. Analysis of the susceptibility to 13 antibacterial agents showed susceptibility of all isolates to ciprofloxacin, trimethoprim/sulfamethoxazole, chloramphenicol, gentamicin, imipenem, tetracyclin, and doxycycline. We recorded high rates of resistance to β-lactams and streptomycin. Investigation of antibiotic resistance showed five different antibiotic profiles with resistance to antibacterials from three classes, but no multidrug resistance was observed. The investigation of the pathogenic potential of V. cholerae isolates showed that neither the cholera toxin coding gene ctxA nor the genes zot (zonula occludens toxin), ace (accessory cholera toxin), and tcpA (toxin-coregulated pilus) were present in any of 31 isolated samples. Gene ompU (outer membrane protein) was confirmed in 80% and central regulatory protein-coding gene toxR in 71% of V. cholerae isolates, respectively. A high prevalence of the hemolysin coding gene hlyA in all V. cholerae was observed. The data point toward the importance of systematic monitoring and comparative studies of potentially pathogenic vibrios in European countries.
Collapse
|
15
|
Zereen F, Akter S, Sobur MA, Hossain MT, Rahman MT. Molecular detection of Vibrio cholerae from human stool collected from SK Hospital, Mymensingh, and their antibiogram. J Adv Vet Anim Res 2019; 6:451-455. [PMID: 31819871 PMCID: PMC6882716 DOI: 10.5455/javar.2019.f367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 11/17/2022] Open
Abstract
Objective: Vibrio spp., particularly, Vibrio cholerae is a major etiology of diarrhea in humans worldwide. In this study, we isolated and identified V. cholerae from the human stool of suspected cases along with antibiogram. Materials and Methods: In total, 25 stool samples from cholera suspected patients were analyzed. Isolation and molecular detection of Vibrio species were performed based on staining, motility, cultural and biochemical characteristics followed by polymerase chain reaction (PCR) using groEL gene-specific primers. Results: Among the 25 samples, seven showed growth of yellow color colonies on Thiosulfate-Citrate-Bile salts-Sucrose agar plates. The isolates were Gram-negative, curved shaped, and motile. Biochemically, they were found positive for indole and Methyl Red tests and negative for Voges–Proskauer test. Out of the seven positive samples, only three isolates were confirmed as Vibrio spp. using genus-specific primers. Subsequently, these three isolates were confirmed as V. cholerae by PCR using V. cholerae groEL gene-specific primers. Antibiotic sensitivity test revealed these three isolates as highly sensitive to azithromycin, chloramphenicol, gentamicin, and norfloxacillin while resistant to streptomycin, tetracycline, and oxacillin. Conclusion: Vibrio cholerae were isolated from the stool of diarrheic human patients and confirmed by PCR targeting the groEL gene. The isolates were found resistant to streptomycin, tetracycline and oxacillin, and need further characterization to reveal the molecular basis of their origin and resistance.
Collapse
Affiliation(s)
- Farah Zereen
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Soudiya Akter
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abdus Sobur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Tofazzal Hossain
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
16
|
Narendrakumar L, Gupta SS, Johnson JB, Ramamurthy T, Thomas S. Molecular Adaptations and Antibiotic Resistance inVibrio cholerae: A Communal Challenge. Microb Drug Resist 2019; 25:1012-1022. [DOI: 10.1089/mdr.2018.0354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Kerala, India
- Research Scholar, University of Kerala, Kerala, India
| | | | - John B. Johnson
- Viral Disease Biology, Rajiv Gandhi Centre for Biotechnology, Kerala, India
| | | | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Kerala, India
| |
Collapse
|