1
|
Xiang Y, Mao W. Neutrophil-derived ratios as predictors of short-term mortality in HBV-associated decompensated cirrhosis. BMC Gastroenterol 2025; 25:404. [PMID: 40419938 DOI: 10.1186/s12876-025-03991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Hepatitis B virus-associated decompensated cirrhosis (HBV-DC) is recognized as a critical illness with an increased risk of short-term mortality. Neutrophil-derived ratios, including neutrophil-to-lymphocyte ratio (NLR), neutrophil-to-albumin ratio, neutrophil-to-high-density lipoprotein-cholesterol ratio, neutrophil-to-hemoglobin ratio, and neutrophil-to-platelet ratio, have emerged as potential prognostic markers in various liver diseases. The present study aimed to determine the effectiveness of these neutrophil-derived ratios for prediction of mortality in patients with HBV-DC. METHODS We conducted a retrospective analysis of HBV-DC patients at our hospital between April 2022 and April 2024. The study endpoint was the 30-day mortality rate. These neutrophil-derived ratios were calculated from data obtained during routine laboratory tests on admission. Disease severity was assessed using the Model for End-Stage Liver Disease (MELD) score. Multivariate regression analyses and receiver operating characteristic (ROC) curve analyses were conducted. RESULTS The study investigated 160 HBV-DC patients, of whom 23 (14.4%) experienced mortality within 30 days. Non-survivors exhibited markedly higher values for neutrophil-derived ratios than survivors. All neutrophil-derived ratios were associated with mortality in univariate analyses, but only NLR and MELD score remained as independent predictors of mortality in multivariate analyses. In the ROC analyses, NLR showed a similar prognostic value to MELD score. Moreover, both NLR and MELD score had high specificity for prediction of mortality in HBV-DC patients. CONCLUSIONS Among neutrophil-derived ratios, NLR stands out as a simple and reliable predictor of mortality in HBV-DC patients.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Endocrinology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - WeiLin Mao
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
2
|
Torres JSS, Tamayo-Giraldo FJ, Bejarano-Zuleta A, Nati-Castillo HA, Quintero DA, Ospina-Mejía MJ, Salazar-Santoliva C, Suárez-Sangucho I, Ortiz-Prado E, Izquierdo-Condoy JS. Sepsis and post-sepsis syndrome: a multisystem challenge requiring comprehensive care and management-a review. Front Med (Lausanne) 2025; 12:1560737. [PMID: 40265185 PMCID: PMC12011779 DOI: 10.3389/fmed.2025.1560737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
Sepsis, a medical emergency with high mortality rates, demands comprehensive care spanning from early identification to patient rehabilitation. The sepsis survival chain encompasses early recognition, severity assessment, activation of emergency services, initial antimicrobial therapy, hemodynamic stabilization, and integrated rehabilitation. These interconnected steps are critical to reducing morbidity and mortality. Despite advancements in international guidelines, adherence remains limited, contributing to a significant disease burden. Beyond its acute phase, post-sepsis syndrome (PSS) is characterized by long-term immune dysregulation, chronic inflammation, and metabolic dysfunction, predisposing survivors to recurrent infections, cardiovascular disease, and neurocognitive decline. Mitochondrial dysfunction and epigenetic modifications play a central role in prolonged immunosuppression, impairing adaptive and innate immune responses. Sepsis-induced organ dysfunction impacts multiple systems, including the brain, heart, and kidneys. In the brain, it is associated with neuroinflammation, blood-brain barrier dysfunction, and the accumulation of neurotoxic proteins, leading to acute and chronic cognitive impairment. Myocardial dysfunction involves inflammatory mediators such as TNF-α and IL-6, while sepsis-associated acute kidney injury (SA-AKI) arises from hypoperfusion and inflammation, heightening the risk of progression to chronic kidney disease. Additionally, immune alterations such as neutrophil dysfunction, continuous platelet activation, and suppressed antitumoral responses contribute to increased infection risk and long-term complications. Timely and targeted interventions, including antimicrobial therapy, cytokine modulation, immune restoration, metabolic support, and structured rehabilitation strategies, are pivotal for improving outcomes. However, financial and infrastructural limitations in low-resource settings pose significant barriers to effective sepsis management. Precision medicine, AI-driven early warning systems, and optimized referral networks can enhance early detection and personalized treatments. Promoting public and professional awareness of sepsis, strengthening multidisciplinary post-sepsis care, and integrating long-term follow-up programs are imperative priorities for reducing mortality and improving the quality of life in sepsis survivors.
Collapse
Affiliation(s)
| | | | - Alejandro Bejarano-Zuleta
- Servicio de Cuidado intensivo Adulto, Clínica Versalles, Cali, Colombia
- Interinstitutional Group on Internal Medicine (GIMI 1), Department of Internal Medicine, Universidad Libre, Cali, Colombia
| | - H. A. Nati-Castillo
- Interinstitutional Group on Internal Medicine (GIMI 1), Department of Internal Medicine, Universidad Libre, Cali, Colombia
| | - Diego A. Quintero
- Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - M. J. Ospina-Mejía
- Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | | | | | | | | |
Collapse
|
3
|
Fan W, Wang C, Xu K, Liang H, Chi Q. Ccl5 + Macrophages drive pro-inflammatory responses and neutrophil recruitment in sepsis-associated acute kidney injury. Int Immunopharmacol 2024; 143:113339. [PMID: 39418726 DOI: 10.1016/j.intimp.2024.113339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Sepsis leads to dysfunctional immune responses with multi-organ damage, and acute kidney injury (AKI) is a common complication of sepsis. To gain a deeper understanding of the specific underlying mechanisms of sepsis, we investigated the effects of specific macrophages on sepsis. To gain a deeper understanding of the specific underlying mechanisms of sepsis, we investigated the effects of specific macrophages on sepsis. Single-cell sequencing of a mouse model of endotoxemia revealed that sepsis is a common complication of sepsis. Single-cell sequencing of a mouse model of endotoxemia revealed that the emerging macrophage subpopulation Ccl5+ Mac was significantly pro-inflammatory, activating a large number of pathways activating a large number of pathways associated with immune response and inflammatory response, including IL6-JAK-STAT3 signaling, TGF-β signaling, and inflammatory response. Interestingly, we found that Ccl5+ Mac recruits neutrophil through CCL5-CCR1 ligand receptor pairs by cellular communication analysis thereby further affecting sepsis. We therefore hypothesize that this macrophage subpopulation is actively involved in the underlying molecular mechanisms of AKI. We therefore hypothesize that this macrophage subpopulation is actively involved in the underlying molecular mechanisms of AKI in sepsis and provide valuable insights.
Collapse
Affiliation(s)
- Wenlin Fan
- Department of Engineering Mechanics, School of Physics and Mechanics, Wuhan University of Technology, Wuhan, China
| | - Chunli Wang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.
| | - Qingjia Chi
- Department of Engineering Mechanics, School of Physics and Mechanics, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
4
|
Dwivedi A, Ui Mhaonaigh A, Carroll M, Khosravi B, Batten I, Ballantine RS, Hendricken Phelan S, O’Doherty L, George AM, Sui J, Hawerkamp HC, Fallon PG, Noppe E, Mason S, Conlon N, Ni Cheallaigh C, Finlay CM, Little MA, Bioresource OBOTSJATTAR(STTAR. Emergence of dysfunctional neutrophils with a defect in arginase-1 release in severe COVID-19. JCI Insight 2024; 9:e171659. [PMID: 39253969 PMCID: PMC11385094 DOI: 10.1172/jci.insight.171659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Neutrophilia occurs in patients infected with SARS-CoV-2 (COVID-19) and is predictive of poor outcomes. Here, we link heterogenous neutrophil populations to disease severity in COVID-19. We identified neutrophils with features of cellular aging and immunosuppressive capacity in mild COVID-19 and features of neutrophil immaturity and activation in severe disease. The low-density neutrophil (LDN) number in circulating blood correlated with COVID-19 severity. Many of the divergent neutrophil phenotypes in COVID-19 were overrepresented in the LDN fraction and were less detectable in normal-density neutrophils. Functionally, neutrophils from patients with severe COVID-19 displayed defects in neutrophil extracellular trap formation and reactive oxygen species production. Soluble factors secreted by neutrophils from these patients inhibited T cell proliferation. Neutrophils from patients with severe COVID-19 had increased expression of arginase-1 protein, a feature that was retained in convalescent patients. Despite this increase in intracellular expression, there was a reduction in arginase-1 release by neutrophils into serum and culture supernatants. Furthermore, neutrophil-mediated T cell suppression was independent of arginase-1. Our results indicate the presence of dysfunctional, activated, and immature neutrophils in severe COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Batten
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Laura O’Doherty
- Wellcome Trust, Clinical Research Facility
- Department of Infectious Diseases; and
| | | | - Jacklyn Sui
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute
- Department of Immunology, Trinity Translational Medicine Institute; and
| | - Elnè Noppe
- Department of Critical Care, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sabina Mason
- Department of Critical Care, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Department of Infectious Diseases; and
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
5
|
Warner S, Teague HL, Ramos-Benitez MJ, Panicker S, Allen K, Gairhe S, Moyer T, Parachalil Gopalan B, Douagi I, Shet A, Kanthi Y, Suffredini AF, Chertow DS, Strich JR. R406 reduces lipopolysaccharide-induced neutrophil activation. Cell Immunol 2024; 403-404:104860. [PMID: 39084187 PMCID: PMC11387147 DOI: 10.1016/j.cellimm.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Modulating SYK has been demonstrated to have impacts on pathogenic neutrophil responses in COVID-19. During sepsis, neutrophils are vital in early bacterial clearance but also contribute to the dysregulated immune response and organ injury when hyperactivated. Here, we evaluated the impact of R406, the active metabolite of fostamatinib, on neutrophils stimulated by LPS. We demonstrate that R406 was able to effectively inhibit NETosis, degranulation, ROS generation, neutrophil adhesion, and the formation of CD16low neutrophils that have been linked to detrimental outcomes in severe sepsis. Further, the neutrophils remain metabolically active, capable of releasing cytokines, perform phagocytosis, and migrate in response to IL-8. Taken together, this data provides evidence of the potential efficacy of utilizing fostamatinib in bacterial sepsis.
Collapse
Affiliation(s)
- Seth Warner
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Marcos J Ramos-Benitez
- Basic Science Department, Microbiology Division, School of Medicine, Ponce Health Sciences University, Ponce, PR, USA
| | - Sumith Panicker
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiana Allen
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tom Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bindu Parachalil Gopalan
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIH Center for Human Immunology, Inflammation, and Autoimmunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arun Shet
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Ahmad D, Linares I, Pietropaoli A, Waugh RE, McGrath JL. Sided Stimulation of Endothelial Cells Modulates Neutrophil Trafficking in an In Vitro Sepsis Model. Adv Healthc Mater 2024; 13:e2304338. [PMID: 38547536 PMCID: PMC11338706 DOI: 10.1002/adhm.202304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Indexed: 04/09/2024]
Abstract
While the role of dysregulated polymorphonuclear leukocyte (PMN) transmigration in septic mediated tissue damage is well documented, strategies to mitigate aberrant transmigration across endothelium have yet to yield viable therapeutics. Recently, microphysiological systems (MPS) have emerged as novel in vitro mimetics that facilitate the development of human models of disease. With this advancement, aspects of endothelial physiology that are difficult to assess with other models can be directly probed. In this study, the role of endothelial cell (EC) apicobasal polarity on leukocyte trafficking response is evaluated with the µSiM-MVM (microphysiological system enabled by a silicon membrane - microvascular mimetic). Here, ECs are stimulated either apically or basally with a cytokine cocktail to model a septic-like challenge before introducing healthy donor PMNs into the device. Basally oriented stimulation generated a stronger PMN transmigratory response versus apical stimulation. Importantly, healthy PMNs are unable to migrate towards a bacterial peptide chemoattractant when ECs are apically stimulated, which mimics the attenuated PMN chemotaxis seen in sepsis. Escalating the apical inflammatory stimulus by a factor of five is necessary to elicit high PMN transmigration levels across endothelium. These results demonstrate that EC apicobasal polarity modulates PMN transmigratory behavior and provides insight into the mechanisms underlying sepsis.
Collapse
Affiliation(s)
- Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Isabelle Linares
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Anthony Pietropaoli
- Department of Medicine, Pulmonary Diseases and Critical Care at the University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
7
|
Zhang Q, Liu J, Shen J, Ou J, Wong YK, Xie L, Huang J, Zhang C, Fu C, Chen J, Chen J, He X, Shi F, Luo P, Gong P, Liu X, Wang J. Single-cell RNA sequencing reveals the effects of capsaicin in the treatment of sepsis-induced liver injury. MedComm (Beijing) 2023; 4:e395. [PMID: 37808269 PMCID: PMC10556204 DOI: 10.1002/mco2.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Sepsis is a difficult-to-treat systemic condition in which liver dysfunction acts as both regulator and target. However, the dynamic response of diverse intrahepatic cells to sepsis remains poorly characterized. Capsaicin (CAP), a multifunctional chemical derived from chilli peppers, has recently been shown to potentially possess anti-inflammatory effects, which is also one of the main approaches for drug discovery against sepsis. We performed single-cell RNA transcriptome sequencing on 86,830 intrahepatic cells isolated from normal mice, cecal ligation and puncture-induced sepsis model mice and CAP-treated mice. The transcriptional atlas of these cells revealed dynamic changes in hepatocytes, macrophages, neutrophils, and endothelial cells in response to sepsis. Among the extensive crosstalk across these major subtypes, KC_Cxcl10 shared strong potential interaction with other cells when responding to sepsis. CAP mitigated the severity of inflammation by partly reversing these pathophysiologic processes. Specific cell subpopulations in the liver act collectively to escalate inflammation, ultimately causing liver dysfunction. CAP displays its health-promoting function by ameliorating liver dysfunction induced by sepsis. Our study provides valuable insights into the pathophysiology of sepsis and suggestions for future therapeutic gain.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Jing Liu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jing Shen
- Department of OncologyShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Jinhuan Ou
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Yin Kwan Wong
- Department of PhysiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lulin Xie
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jingnan Huang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Chunting Zhang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Chunjin Fu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Junhui Chen
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Fei Shi
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Piao Luo
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ping Gong
- Department of EmergencyShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhen CityGuangdong ProvinceChina
| | - Xueyan Liu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jigang Wang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
8
|
Maus KD, Stephenson DJ, Macknight HP, Vu NT, Hoeferlin LA, Kim M, Diegelmann RF, Xie X, Chalfant CE. Skewing cPLA 2α activity toward oxoeicosanoid production promotes neutrophil N2 polarization, wound healing, and the response to sepsis. Sci Signal 2023; 16:eadd6527. [PMID: 37433004 PMCID: PMC10565596 DOI: 10.1126/scisignal.add6527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
Uncontrolled inflammation is linked to poor outcomes in sepsis and wound healing, both of which proceed through distinct inflammatory and resolution phases. Eicosanoids are a class of bioactive lipids that recruit neutrophils and other innate immune cells. The interaction of ceramide 1-phosphate (C1P) with the eicosanoid biosynthetic enzyme cytosolic phospholipase A2 (cPLA2) reduces the production of a subtype of eicosanoids called oxoeicosanoids. We investigated the effect of shifting the balance in eicosanoid biosynthesis on neutrophil polarization and function. Knockin mice expressing a cPLA2 mutant lacking the C1P binding site (cPLA2αKI/KI mice) showed enhanced and sustained neutrophil infiltration into wounds and the peritoneum during the inflammatory phase of wound healing and sepsis, respectively. The mice exhibited improved wound healing and reduced susceptibility to sepsis, which was associated with an increase in anti-inflammatory N2-type neutrophils demonstrating proresolution behaviors and a decrease in proinflammatory N1-type neutrophils. The N2 polarization of cPLA2αKI/KI neutrophils resulted from increased oxoeicosanoid biosynthesis and autocrine signaling through the oxoeicosanoid receptor OXER1 and partially depended on OXER1-dependent inhibition of the pentose phosphate pathway (PPP). Thus, C1P binding to cPLA2α suppresses neutrophil N2 polarization, thereby impairing wound healing and the response to sepsis.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J Stephenson
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - H Patrick Macknight
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ngoc T Vu
- Department of Applied Biochemistry, School of Biotechnology, International University-VNU HCM, Ho Chi Minh City, Vietnam
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Xiujie Xie
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles E Chalfant
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| |
Collapse
|
9
|
Martins FRB, de Oliveira MD, Souza JAM, Queiroz-Junior CM, Lobo FP, Teixeira MM, Malacco NL, Soriani FM. Chronic ethanol exposure impairs alveolar leukocyte infiltration during pneumococcal pneumonia, leading to an increased bacterial burden despite increased CXCL1 and nitric oxide levels. Front Immunol 2023; 14:1175275. [PMID: 37275853 PMCID: PMC10235596 DOI: 10.3389/fimmu.2023.1175275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Ethanol abuse is a risk factor for the development of pneumonia caused by Streptococcus pneumoniae, a critical pathogen for public health. The aim of this article was to investigate the inflammatory mechanisms involved in pneumococcal pneumonia that may be associated with chronic ethanol exposure. Male C57BL6/J-Unib mice were exposed to 20% (v/v) ethanol for twelve weeks and intranasally infected with 5x104 CFU of S. pneumoniae. Twenty-four hours after infection, lungs, bronchoalveolar lavage and blood samples were obtained to assess the consequences of chronic ethanol exposure during infection. Alcohol-fed mice showed increased production of nitric oxide and CXCL1 in alveoli and plasma during pneumococcal pneumonia. Beside this, ethanol-treated mice exhibited a decrease in leukocyte infiltration into the alveoli and reduced frequency of severe lung inflammation, which was associated with an increase in bacterial load. Curiously, no changes were observed in survival after infection. Taken together, these results demonstrate that chronic ethanol exposure alters the inflammatory response during S. pneumoniae lung infection in mice with a reduction in the inflammatory infiltrate even in the presence of higher levels of the chemoattractant CXCL1.
Collapse
Affiliation(s)
- Flávia Rayssa Braga Martins
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maycon Douglas de Oliveira
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jéssica Amanda Marques Souza
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francisco Pereira Lobo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Frederico Marianetti Soriani
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Wang Y, Zhu CL, Li P, Liu Q, Li HR, Yu CM, Deng XM, Wang JF. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome. Front Immunol 2023; 14:1112196. [PMID: 36891309 PMCID: PMC9986442 DOI: 10.3389/fimmu.2023.1112196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sepsis is defined as a life-threatening dysfunction due to a dysregulated host response to infection. It is a common and complex syndrome and is the leading cause of death in intensive care units. The lungs are most vulnerable to the challenge of sepsis, and the incidence of respiratory dysfunction has been reported to be up to 70%, in which neutrophils play a major role. Neutrophils are the first line of defense against infection, and they are regarded as the most responsive cells in sepsis. Normally, neutrophils recognize chemokines including the bacterial product N-formyl-methionyl-leucyl-phenylalanine (fMLP), complement 5a (C5a), and lipid molecules Leukotriene B4 (LTB4) and C-X-C motif chemokine ligand 8 (CXCL8), and enter the site of infection through mobilization, rolling, adhesion, migration, and chemotaxis. However, numerous studies have confirmed that despite the high levels of chemokines in septic patients and mice at the site of infection, the neutrophils cannot migrate to the proper target location, but instead they accumulate in the lungs, releasing histones, DNA, and proteases that mediate tissue damage and induce acute respiratory distress syndrome (ARDS). This is closely related to impaired neutrophil migration in sepsis, but the mechanism involved is still unclear. Many studies have shown that chemokine receptor dysregulation is an important cause of impaired neutrophil migration, and the vast majority of these chemokine receptors belong to the G protein-coupled receptors (GPCRs). In this review, we summarize the signaling pathways by which neutrophil GPCR regulates chemotaxis and the mechanisms by which abnormal GPCR function in sepsis leads to impaired neutrophil chemotaxis, which can further cause ARDS. Several potential targets for intervention are proposed to improve neutrophil chemotaxis, and we hope that this review may provide insights for clinical practitioners.
Collapse
Affiliation(s)
- Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peng Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui-ru Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Chang-meng Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-ming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
12
|
Kingren MS, Starr ME, Saito H. Divergent Sepsis Pathophysiology in Older Adults. Antioxid Redox Signal 2021; 35:1358-1375. [PMID: 34210173 PMCID: PMC8905233 DOI: 10.1089/ars.2021.0056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
Significance: Both incidence and mortality rates of sepsis significantly increase with advanced age, and the majority of sepsis patients are late middle-aged or older. With the proportion of older adults rapidly increasing in developed countries, age-dependent sepsis vulnerability is an urgent medical issue. Due to an increasing life expectancy, postsepsis complications and health care costs are expected to increase as well. Recent Advances: Older patients suffer from higher sepsis incidence and mortality rates, likely resulting from frequent comorbidities, increased coagulation, dysgylcemia, and altered immune responses. Critical Issues: Despite a large number of ongoing clinical and basic research studies, there is currently no effective therapeutic strategy targeting older patients with severe sepsis. The disparity between clinical and basic studies is a problem, and this is largely due to the use of animal models lacking clinical relevance. Although the majority of sepsis cases occur in older adults, most laboratory animals used for sepsis research are very young. Further, despite the wide use of combination fluid and antibiotic treatment in intensive care unit (ICU) patients, most animal research does not include such treatment. Future Directions: Because sepsis is a systemic disease with multiple organ dysfunction, combined therapy approaches, not those targeting single pathways or single organs, are essential. As for preclinical research, it is critical to confirm new findings using aged animal models with clinically relevant ICU-like medical treatments. Antioxid. Redox Signal. 35, 1358-1375.
Collapse
Affiliation(s)
- Meagan S. Kingren
- Aging and Critical Care Research Laboratory, Departments of University of Kentucky, Lexington, Kentucky, USA
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Marlene E. Starr
- Aging and Critical Care Research Laboratory, Departments of University of Kentucky, Lexington, Kentucky, USA
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Hiroshi Saito
- Aging and Critical Care Research Laboratory, Departments of University of Kentucky, Lexington, Kentucky, USA
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Surgery, University of Kentucky, Lexington, Kentucky, USA
- Physiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Pereshein AV, Kuznetsova SV, Shevantaeva ON. On the Nonspecific Resistance in Burn Injury: Pathophysiological Aspects (Review). Sovrem Tekhnologii Med 2021; 12:84-93. [PMID: 34795984 PMCID: PMC8596251 DOI: 10.17691/stm2020.12.3.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 11/14/2022] Open
Abstract
An analysis of nonspecific resistance in burn patients is conducted. The role of subpopulations of neutrophils and monocytes/ macrophages in severe burn injury is discussed. The significance of blood cells for the burn-induced immune dysfunction, susceptibility to sepsis and multiple organ failure is underscored. The involvement of secondary complications in the development of morbidity and mortality in patients with burn injury is shown. New approaches to identifying individuals with a risk of adverse outcome are considered.
Collapse
Affiliation(s)
- A V Pereshein
- Assistant, Department of Pathological Physiology; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - S V Kuznetsova
- Associate Professor, Department of Pathological Physiology; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - O N Shevantaeva
- Professor, Department of Pathological Physiology Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
14
|
Lu F, Hong Y, Liu L, Wei N, Lin Y, He J, Shao Y. Long noncoding RNAs: A potential target in sepsis-induced cellular disorder. Exp Cell Res 2021; 406:112756. [PMID: 34384779 DOI: 10.1016/j.yexcr.2021.112756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Sepsis, an inflammation-related clinical syndrome, is characterized by disrupted immune homeostasis accompanied by infection and multiple organ dysfunction as determined by the Sequential Organ Failure Assessment (SOFA). Substantial evidence has recently suggested that lncRNAs orchestrate various biological processes in diseases, and lncRNAs play special roles in the diagnosis and management of sepsis. To date, very few reviews have provided clear and comprehensive clues to demonstrate the roles of lncRNAs in the pathogenesis of sepsis. Based on previously published studies, in this review, we summarize the different functions of lncRNAs in sepsis-induced cellular disorders and sepsis-induced organ failure to show the potential roles of lncRNAs in the diagnosis and management of sepsis. We further depict the function of some lncRNAs known to be pivotal regulators in the pathogenesis of sepsis to discuss the underlying molecular events. Additionally, we list and discuss several hotspots in research on lncRNAs, which may be conducive to future lncRNA-targeted therapeutic approaches for sepsis treatment.
Collapse
Affiliation(s)
- Furong Lu
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yuan Hong
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Lizhen Liu
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Ning Wei
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yao Lin
- The Intensive Care Unit, Clinical Medicine Research Laboratory, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, PR China
| | - Junbing He
- The Intensive Care Unit, Clinical Medicine Research Laboratory, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, PR China.
| | - Yiming Shao
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
15
|
Silva RAM, de Mendonça RMH, Dos Santos Aguiar S, Yajima JC, Marson FAL, Brandalise SR, Levy CE. Induction therapy for acute lymphoblastic leukemia: incidence and risk factors for bloodstream infections. Support Care Cancer 2021; 30:695-702. [PMID: 34363492 DOI: 10.1007/s00520-021-06471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022]
Abstract
Among the treatment-related acute toxic effects, risks for bloodstream infections (BSIs) are associated with several variables. The authors carried out a retrospective cohort study with 259 children and adolescents with ALL, treated with the GBTLI-LLA 2009 protocol, in order to assess the incidence of BSIs in the induction phase; to determine the risk factors for these BSIs; and to identify the related microorganisms and sensitivity profile of the microorganisms related to these infections. BSIs were documented in 19.3% of patients. The isolated microorganisms were 39 Gram-negative bacteria, 21 Gram-positive bacteria, and four fungi. There was a statistically significant risk of BSI between the variables: protocol for T-line-derived leukemia (Derived T Protocol) (p = 0.020), oral manifestations (p = 0.015), central venous catheter (p = 0.008), and bladder catheter (p = 0.004). BSI is a frequent event in ALL patients during the induction phase. The identification of these factors can allow the elaboration and improvement of strategies for the intensification of supportive care, prevention, and rapid treatment of infections.
Collapse
Affiliation(s)
- Rosângela Aparecida Mendes Silva
- Microbiology Laboratory, Centro Infantil Boldrini, Rua Gabriel Porto, 1270, Campinas, SP, 13083-210, Brazil.
- Pediatric Research Center, Campinas, State University of Campinas, Campinas, SP, Brazil.
| | - Regina Maria Holanda de Mendonça
- Pediatric Research Center, Campinas, State University of Campinas, Campinas, SP, Brazil
- Dentistry Unit, Centro Infantil Boldrini, Campinas, SP, Brazil
| | | | | | | | | | - Carlos Emílio Levy
- Department of Clinical Pathology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
16
|
McKenna E, Mhaonaigh AU, Wubben R, Dwivedi A, Hurley T, Kelly LA, Stevenson NJ, Little MA, Molloy EJ. Neutrophils: Need for Standardized Nomenclature. Front Immunol 2021; 12:602963. [PMID: 33936029 PMCID: PMC8081893 DOI: 10.3389/fimmu.2021.602963] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are the most abundant innate immune cell with critical anti-microbial functions. Since the discovery of granulocytes at the end of the nineteenth century, the cells have been given many names including phagocytes, polymorphonuclear neutrophils (PMN), granulocytic myeloid derived suppressor cells (G-MDSC), low density neutrophils (LDN) and tumor associated neutrophils (TANS). This lack of standardized nomenclature for neutrophils suggest that biologically distinct populations of neutrophils exist, particularly in disease, when in fact these may simply be a manifestation of the plasticity of the neutrophil as opposed to unique populations. In this review, we profile the surface markers and granule expression of each stage of granulopoiesis to offer insight into how each stage of maturity may be identified. We also highlight the remarkable surface marker expression profiles between the supposed neutrophil populations.
Collapse
Affiliation(s)
- Ellen McKenna
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | | | - Richard Wubben
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Amrita Dwivedi
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland
| | - Tim Hurley
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Lynne A Kelly
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Zallaq, Bahrain
| | - Mark A Little
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland.,Irish Centre for Vascular Biology, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland.,Paediatrics, CHI at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
17
|
Ji J, Fan J. Neutrophil in Reverse Migration: Role in Sepsis. Front Immunol 2021; 12:656039. [PMID: 33790916 PMCID: PMC8006006 DOI: 10.3389/fimmu.2021.656039] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection. During the development and progression of sepsis, polymorphonuclear neutrophils (PMNs) are the most abundantly recruited innate immune cells at sites of infection, playing critical roles in the elimination of local infection and healing of the injury. PMN reverse migration (rM) describes the phenomenon in which PMNs migrate away from the inflammatory site back into the vasculature following the initial PMN infiltration. The functional role of PMN rM within inflammatory scenarios requires further exploration. Current evidence suggests that depending on the context, PMN rM can be both a protective response, by facilitating an efficient resolution to innate immune reaction, and also a tissue-damaging event. In this review, we provide an overview of current advancements in understanding the mechanism and roles of PMN rM in inflammation and sepsis. A comprehensive understanding of PMN rM may allow for the development of novel prophylactic and therapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Wang Q, Huang J, Chen X, Wang J, Fang F. Transcriptomic markers in pediatric septic shock prognosis: an integrative analysis of gene expression profiles. ACTA ACUST UNITED AC 2021; 54:e10152. [PMID: 33503200 PMCID: PMC7836399 DOI: 10.1590/1414-431x202010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
The goal of this study was to identify potential transcriptomic markers in
pediatric septic shock prognosis by an integrative analysis of multiple public
microarray datasets. Using the R software and bioconductor packages, we
performed a statistical analysis to identify differentially expressed (DE) genes
in pediatric septic shock non-survivors, and further performed functional
interpretation (enrichment analysis and co-expression network construction) and
classification quality evaluation of the DE genes identified. Four microarray
datasets (3 training datasets and 1 testing dataset, 252 pediatric patients with
septic shock in total) were collected for the integrative analysis. A total of
32 DE genes (18 upregulated genes; 14 downregulated genes) were identified in
pediatric septic shock non-survivors. Enrichment analysis revealed that those DE
genes were strongly associated with acute inflammatory response to antigenic
stimulus, response to yeast, and defense response to bacterium. A support vector
machine classifier (non-survivors vs survivors) was also
trained based on DE genes. In conclusion, the DE genes identified in this study
are suggested as candidate transcriptomic markers for pediatric septic shock
prognosis and provide novel insights into the progression of pediatric septic
shock.
Collapse
Affiliation(s)
- Qian Wang
- Anesthesiology Department, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Xia Chen
- Anesthesiology Department, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Qi Y, Jiang L, Wu C, Li J, Wang H, Wang S, Chen X, Cui X, Liu Z. Activin A impairs ActRIIA + neutrophil recruitment into infected skin of mice. iScience 2021; 24:102080. [PMID: 33604525 PMCID: PMC7873648 DOI: 10.1016/j.isci.2021.102080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/10/2020] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Activin A levels are elevated during multiple severe infections and associated with an increased risk of death. However, the role of activin A in bacterial infection is still unclear. Here, we found that activin A levels were increased during S. aureus skin infection in mice. Administration of activin A increased the bacterial burden and promoted the spread of bacteria in vivo. Moreover, activin A inhibited neutrophil chemotaxis to N-formylmethionine-leucyl-phenylalanine via the type IIA activin receptor (ActRIIA) in vitro and impaired ActRIIA+ neutrophil recruitment to infection foci in vivo. Additionally, we identified a novel subpopulation of neutrophils, ActRIIA+ neutrophils, which exhibit superior phagocytic capacity compared to ActRIIA− neutrophils and possess an N2-like immunoregulatory activity via secreting IL-10 and TGF-β. Taken together, these findings indicate that activin A inhibits the recruitment of ActRIIA+ neutrophils to infected foci, leading to the impairment of bacterial clearance, and thus may hamper early infection control. A novel activin A-responsitive subpopulation of neutrophils (ActRIIA+) was identified ActRIIA+ neutrophils exhibit N2-like immunoregulatory properties Activin A inhibits ActRIIA+ neutrophil recruitment to infected skin
Collapse
Affiliation(s)
- Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Lingling Jiang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Department of Oral Comprehensive Therapy, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chengdong Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jing Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Heyuan Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shiji Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xintong Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
20
|
Halyuk U, Lychkovska O, Mota O, Kovalyshyn V, Kech N, Pokotylo P, Trutiak O, Zboina B, Nowicki GJ, Ślusarska B. Ultrastructural Changes of Blood Cells in Children with Generalized Purulent Peritonitis: A Cross-Sectional and Prospective Study. CHILDREN-BASEL 2020; 7:children7100189. [PMID: 33080860 PMCID: PMC7602975 DOI: 10.3390/children7100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
In conditions of abdominal sepsis with indications of first- or second-stage shock, blood cells undergo significant ultrastructural changes that cause impaired gas exchange, changes in reactivity, and decompensation of organs and systems functions. This paper presents a cross-sectional prospective study aimed at researching the ultrastructure of blood cells in children experiencing abdominal septic shock against the background of generalized purulent peritonitis of appendicular origin. This study was conducted with 15 children aged 6-12 who were undergoing treatment for generalized appendicular purulent peritonitis, with first- or second-stage abdominal septic shock, in emergency care. The changes in the ultrastructure of erythrocytes did not correspond to changes characteristic of eryptosis, which confirms their occurrence under the influence of such pathogenic factors as intoxication, metabolic, water-electrolyte balance, and acid-base disorders. Ultrastructural changes of granulocytes indicate their hyperactivation, which leads to the exhaustion of membrane synthetic resources, membrane destruction, ineffective expenditure of bactericidal factors on substrates that are not subject to destruction. In lymphocytes, disorganization of the nuclear membrane and intracellular membranes, uneven distribution of chromatin, the hypertrophied Golgi apparatus, and a large number of young mitochondria, lysosomes, ribosomes, vesicles manifesting the disruption of metabolism, stress and decompensation of energy supply and protein synthesis systems, have been demonstrated. In conditions of abdominal sepsis with indications of first- or second-stage shock, blood cells undergo substantial ultrastructural changes causing gas exchange disruption, changes in reactivity, as well as decompensation of organs and system functioning.
Collapse
Affiliation(s)
- Ulyana Halyuk
- Department of Normal Anatomy, Lviv National Medical University, UA-79010 Lviv, Ukraine; (U.H.); (O.M.); (V.K.); (P.P.)
| | - Olena Lychkovska
- Department of Propaedeutic Pediatrics and Medical Genetics, Lviv National Medical University, UA-79010 Lviv, Ukraine; (O.L.); (O.T.)
| | - Oksana Mota
- Department of Normal Anatomy, Lviv National Medical University, UA-79010 Lviv, Ukraine; (U.H.); (O.M.); (V.K.); (P.P.)
| | - Vasyl Kovalyshyn
- Department of Normal Anatomy, Lviv National Medical University, UA-79010 Lviv, Ukraine; (U.H.); (O.M.); (V.K.); (P.P.)
| | - Natalia Kech
- Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, UA-79000 Lviv, Ukraine;
| | - Petro Pokotylo
- Department of Normal Anatomy, Lviv National Medical University, UA-79010 Lviv, Ukraine; (U.H.); (O.M.); (V.K.); (P.P.)
| | - Olena Trutiak
- Department of Propaedeutic Pediatrics and Medical Genetics, Lviv National Medical University, UA-79010 Lviv, Ukraine; (O.L.); (O.T.)
| | - Bożena Zboina
- Department of Pedagogy and Health Sciences, College of Business and Entreprise, PL-27-400 Ostrowiec Świetokrzyski, Poland;
| | - Grzegorz Józef Nowicki
- Department of Family Medicine and Community Nursing, Medical University of Lublin, PL-20-081 Lublin, Poland;
| | - Barbara Ślusarska
- Department of Family Medicine and Community Nursing, Medical University of Lublin, PL-20-081 Lublin, Poland;
- Correspondence: ; Tel.: +48-814-486-810
| |
Collapse
|
21
|
Gao L, Shi Q, Li H, Guo Q, Yan J, Zhou L. Prognostic value of the combined variability of mean platelet volume and neutrophil percentage for short-term clinical outcomes of sepsis patients. Postgrad Med 2020; 133:604-612. [PMID: 32912023 DOI: 10.1080/00325481.2020.1823137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION In this single center retrospective cohort study, 784 patients with sepsis were enrolled and followed up for at least 30 days. The selected endpoint was an all-cause mortality event. METHOD The relationship between MPV-CV + NEU%-CV and all-cause mortality (in-hospital and 30-day) was analyzed by categorizing the patients into four groups according to MPV-CV and NEU%-CV values. For in-hospital mortality, a significantly higher risk of mortality was observed in patients with an MPV-CV ≥ 15.00% + NEU%-CV ≥ 16.00% than in patients of the other groups (P < 0.001). After adjustment for age, sex, body mass index (BMI), infection site, Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA) score, use of vasoactive drugs, mechanical ventilation and renal replacement therapy (RRT), hematocrit, albumin, procalcitonin (PCT), and lactate, logistic regression analysis revealed that an MPV-CV ≥ 15.00% + NEU%-CV ≥ 16.00% was an independent predictive factor for in-hospital mortality [adjusted model: odds ratio (OR) = 4.48, 95% CI = 2.92-6.88, P = 0.001]. RESULTS After adjustment for age, sex, BMI, infection site, APACHE II score, SOFA score, hematocrit, albumin, PCT, lactate, and the use of vasoactive drugs, mechanical ventilation, and RRT, Cox proportional-hazards regression model revealed that an MPV-CV ≥ 15.00% + NEU%-CV ≥ 16.00% was an independent predictive factor for 30-day mortality [adjusted model 1: hazard ratio (HR) = 7.69, 95% CI = 4.15-14.24, P < 0.001; adjusted model 2: HR = 4.07, 95% CI = 2.50-6.62, P < 0.001]. CONCLUSION The combination of MPV-CV and NEU%-CV provides a good prognostic value and is a strong independent predictor of short-term clinical outcomes in patients with sepsis. An MPV-CV ≥ 15.00% + NEU%-CV ≥ 16.00% is significantly associated with adverse short-term clinical outcomes.Trial registration number is XJTU2AF2016LSY-04, the registration date is December 2018.
Collapse
Affiliation(s)
- Lan Gao
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qindong Shi
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qinyue Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinqi Yan
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Linjing Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Molecular mechanisms by which iNOS uncoupling can induce cardiovascular dysfunction during sepsis: Role of posttranslational modifications (PTMs). Life Sci 2020; 255:117821. [PMID: 32445759 DOI: 10.1016/j.lfs.2020.117821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
Human sepsis is the result of a multifaceted pathological process causing marked dysregulation of cardiovascular responses. A more sophisticated understanding of the pathogenesis of sepsis is certainly prerequisite. Evidence from studies provide further insight into the role of inducible nitric oxide synthase (iNOS) isoform. Results on inhibition of iNOS in sepsis models remain inconclusive. Concern has been devoted to improving our knowledge and understanding of the role of iNOS. The aim of this review is to define the role of iNOS in redox homeostasis disturbance, the detailed mechanisms linking iNOS and posttranslational modifications (PTMs) to cardiovascular dysfunctions, and their future implications in sepsis settings. Many questions related to the iNOS and PTMs still remain open, and much more work is needed on this.
Collapse
|
23
|
Neutrophil Adaptations upon Recruitment to the Lung: New Concepts and Implications for Homeostasis and Disease. Int J Mol Sci 2020; 21:ijms21030851. [PMID: 32013006 PMCID: PMC7038180 DOI: 10.3390/ijms21030851] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophils have a prominent role in all human immune responses against any type of pathogen or stimulus. The lungs are a major neutrophil reservoir and neutrophilic inflammation is a primary response to both infectious and non-infectious challenges. While neutrophils are well known for their essential role in clearance of bacteria, they are also equipped with specific mechanisms to counter viruses and fungi. When these defense mechanisms become aberrantly activated in the absence of infection, this commonly results in debilitating chronic lung inflammation. Clearance of bacteria by phagocytosis is the hallmark role of neutrophils and has been studied extensively. New studies on neutrophil biology have revealed that this leukocyte subset is highly adaptable and fulfills diverse roles. Of special interest is how these adaptations can impact the outcome of an immune response in the lungs due to their potent capacity for clearing infection and causing damage to host tissue. The adaptability of neutrophils and their propensity to influence the outcome of immune responses implicates them as a much-needed target of future immunomodulatory therapies. This review highlights the recent advances elucidating the mechanisms of neutrophilic inflammation, with a focus on the lung environment due to the immense and growing public health burden of chronic lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), and acute lung inflammatory diseases such as transfusion-related acute lung injury (TRALI).
Collapse
|
24
|
Prospect of using deep learning for predicting differentiation of myeloid progenitor cells after sepsis. Chin Med J (Engl) 2020; 132:1862-1864. [PMID: 31306223 PMCID: PMC6759120 DOI: 10.1097/cm9.0000000000000349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
25
|
Shrestha S, Lee JM, Hong CW. Autophagy in neutrophils. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:1-10. [PMID: 31908569 PMCID: PMC6940497 DOI: 10.4196/kjpp.2020.24.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Autophagy is a highly conserved intracellular degradation and energy-recycling mechanism that contributes to the maintenance of cellular homeostasis. Extensive researches over the past decades have defined the role of autophagy innate immune cells. In this review, we describe the current state of knowledge regarding the role of autophagy in neutrophil biology and a picture of molecular mechanism underlying autophagy in neutrophils. Neutrophils are professional phagocytes that comprise the first line of defense against pathogen. Autophagy machineries are highly conserved in neutrophils. Autophagy is not only involved in generalized function of neutrophils such as differentiation in bone marrow but also plays crucial role effector functions of neutrophils such as granule formation, degranulation, neutrophil extracellular traps release, cytokine production, bactericidal activity and controlling inflammation. This review outlines the current understanding of autophagy in neutrophils and provides insight towards identification of novel therapeutics targeting autophagy in neutrophils.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
26
|
Yu Q, Li Y, Wang H, Xiong H. TSLP induces a proinflammatory phenotype in circulating innate cells and predicts prognosis in sepsis patients. FEBS Open Bio 2019; 9:2137-2148. [PMID: 31628890 PMCID: PMC6886299 DOI: 10.1002/2211-5463.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/18/2019] [Accepted: 10/17/2019] [Indexed: 01/14/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) has been identified as a crucial inflammatory cytokine in immune homeostasis. Previous studies have reported conflicting effects of TSLP on sepsis in mice, and the effect of TSLP on sepsis in humans has not been investigated. In this study, we used the ELISA to measure serum levels of TSLP in patients with sepsis, and used flow cytometry and ELISA to evaluate the proinflammatory phenotype of circulating immune cells. In addition, we used quantitative RT-PCR to examine the expression of proinflammatory cytokines [interleukin (IL)-1β, IL-6, tumor necrosis factor-α, transferrin growth factor-β, IL-10, and matrix metalloproteinase] between patients with high and low levels of TSLP. Flow cytometry analysis was performed to evaluate the phagocytic and respiratory burst of circulating neutrophils. A significant increase in the production of proinflammatory cytokines by nonclassical monocytes and the number of interferon (IFN)-γ+ CD4+ monocytes was observed in patients with high levels of TSLP. Furthermore, the number of IL-10+ regulatory T cells was observed to be increased in patients with high levels of TSLP. We found that TSLP values greater than 350 pg·mL-1 were associated with a higher mortality rate and longer stays in intensive care (sensitivity of 89% and specificity of 79%). In patients with low levels of neutrophils, the area under curve was only 0.71 (based on the cutoff value in the diagnostic test evaluation; sensitivity of 62% and specificity of 68%). Our findings suggest that the serum levels of TSLP may be suitable as a biomarker for prediction of prognosis in a subgroup of patients with sepsis who are exhibiting hyperleukocytosis and a high neutrophil ratio.
Collapse
Affiliation(s)
- Qichuan Yu
- Department of OrthopedicsThe First Affiliated Hospital of Nanchang UniversityChina
| | - Yang Li
- Department of EmergencyThe First Affiliated Hospital of Nanchang UniversityChina
| | - Hao Wang
- Department of EmergencyThe First Affiliated Hospital of Nanchang UniversityChina
| | - Huawei Xiong
- Department of EmergencyThe First Affiliated Hospital of Nanchang UniversityChina
| |
Collapse
|
27
|
Blaurock-Möller N, Gröger M, Siwczak F, Dinger J, Schmerler D, Mosig AS, Kiehntopf M. CAAP48, a New Sepsis Biomarker, Induces Hepatic Dysfunction in an in vitro Liver-on-Chip Model. Front Immunol 2019; 10:273. [PMID: 30873161 PMCID: PMC6401602 DOI: 10.3389/fimmu.2019.00273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a leading cause of mortality in the critically ill, characterized by life-threatening organ dysfunctions due to dysregulation of the host response to infection. Using mass spectrometry, we identified a C-terminal fragment of alpha-1-antitrypsin, designated CAAP48, as a new sepsis biomarker that actively participates in the pathophysiology of sepsis. It is well-known that liver dysfunction is an early event in sepsis-associated multi-organ failure, thus we analyzed the pathophysiological function of CAAP48 in a microfluidic-supported in vitro liver-on-chip model. Hepatocytes were stimulated with synthetic CAAP48 and several control peptides. CAAP48-treatment resulted in an accumulation of the hepatocyte-specific intracellular enzymes aspartate- and alanine-transaminase and impaired the activity of the hepatic multidrug resistant-associated protein 2 and cytochrome P450 3A4. Moreover, CAAP48 reduced hepatic expression of the multidrug resistant-associated protein 2 and disrupted the endothelial structural integrity as demonstrated by reduced expression of VE-cadherin, F-actin and alteration of the tight junction protein zonula occludens-1, which resulted in a loss of the endothelial barrier function. Furthermore, CAAP48 induced the release of adhesion molecules and pro- and anti-inflammatory cytokines. Our results show that CAAP48 triggers inflammation-related endothelial barrier disruption as well as hepatocellular dysfunction in a liver-on-chip model emulating the pathophysiological conditions of inflammation. Besides its function as new sepsis biomarker, CAAP48 thus might play an important role in the development of liver dysfunction as a consequence of the dysregulated host immune-inflammatory response in sepsis.
Collapse
Affiliation(s)
- Nancy Blaurock-Möller
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Marko Gröger
- Centre for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Fatina Siwczak
- Centre for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Julia Dinger
- Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Diana Schmerler
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Alexander S Mosig
- Centre for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
28
|
Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G. Past, Present, and Future of Regulatory T Cell Therapy in Transplantation and Autoimmunity. Front Immunol 2019; 10:43. [PMID: 30804926 PMCID: PMC6371029 DOI: 10.3389/fimmu.2019.00043] [Citation(s) in RCA: 377] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Regulatory T cells (Tregs) are important for the induction and maintenance of peripheral tolerance therefore, they are key in preventing excessive immune responses and autoimmunity. In the last decades, several reports have been focussed on understanding the biology of Tregs and their mechanisms of action. Preclinical studies have demonstrated the ability of Tregs to delay/prevent graft rejection and to control autoimmune responses following adoptive transfer in vivo. Due to these promising results, Tregs have been extensively studied as a potential new tool for the prevention of graft rejection and/or the treatment of autoimmune diseases. Currently, solid organ transplantation remains the treatment of choice for end-stage organ failure. However, chronic rejection and the ensuing side effects of immunosuppressants represent the main limiting factors for organ acceptance and patient survival. Autoimmune disorders are chronic diseases caused by the breakdown of tolerance against self-antigens. This is triggered either by a numerical or functional Treg defect, or by the resistance of effector T cells to suppression. In this scenario, patients receiving high doses of immunosuppressant are left susceptible to life-threatening opportunistic infections and have increased risk of malignancies. In the last 10 years, a few phase I clinical trials aiming to investigate safety and feasibility of Treg-based therapy have been completed and published, whilst an increasing numbers of trials are still ongoing. The first results showed safety and feasibility of Treg therapy and phase II clinical trials are already enrolling. In this review, we describe our understanding of Tregs focussing primarily on their ontogenesis, mechanisms of action and methods used in the clinic for isolation and expansion. Furthermore, we will describe the ongoing studies and the results from the first clinical trials with Tregs in the setting of solid organ transplantation and autoimmune disorders. Finally, we will discuss strategies to further improve the success of Treg therapy.
Collapse
Affiliation(s)
- Marco Romano
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Giorgia Fanelli
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Caraugh Jane Albany
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Giulio Giganti
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Scuola di Specializzazione in Medicina Interna, Universita' degli Studi di Milano, Milan, Italy
| | - Giovanna Lombardi
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Raymond SL, Hawkins RB, Stortz JA, Murphy TJ, Ungaro R, Dirain ML, Nacionales DC, Hollen MK, Rincon JC, Larson SD, Brakenridge SC, Moore FA, Irimia D, Efron PA, Moldawer LL. Sepsis is associated with reduced spontaneous neutrophil migration velocity in human adults. PLoS One 2018; 13:e0205327. [PMID: 30300408 PMCID: PMC6177179 DOI: 10.1371/journal.pone.0205327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a common and deadly complication among trauma and surgical patients. Neutrophils must mobilize to the site of infection to initiate an immediate immune response. To quantify the velocity of spontaneous migrating blood neutrophils, we utilized novel microfluidic approaches on whole blood samples from septic and healthy individuals. A prospective study at a level 1 trauma and tertiary care center was performed with peripheral blood samples collected at <12 hours, 4 days, and/or 14 days relative to study initiation. Blood samples were also collected from healthy subjects. Ex vivo spontaneous neutrophil migration was measured on 2 μl of whole blood using microfluidic devices and time-lapse imaging. For each sample, individual neutrophils were tracked to calculate mean instantaneous velocity. Forty blood samples were collected from 33 patients with sepsis, and 15 blood samples were collected from age- and gender-matched healthy, control subjects. Average age was 61 years for septic patients with a male predominance (67%). Overall, average spontaneous neutrophil migration velocity in septic samples was 16.9 μm/min, significantly lower than controls samples at 21.1 μm/min (p = 0.0135). Neutrophil velocity was reduced the greatest at <12 hours after sepsis (14.5 μm/min). Regression analysis demonstrated a significant, positive correlation between neutrophil velocity and days after sepsis (p = 0.0059). There was no significant association between neutrophil velocity and age, gender, APACHE II score, SOFA score, sepsis severity, total white blood cell count, or percentage of neutrophils. Circulating levels of the cytokines IL-6, IL-8, IL-10, MCP-1, IP-10, and TNF were additionally measured using bead-based multiplex assay and found to peak at <12 hours and be significantly increased in patients with sepsis at all three time points (<12 hours, 4 days, and 14 days after sepsis) compared to healthy subjects. In conclusion, these findings may demonstrate an impaired ability of neutrophils to respond to sites of infection during the proinflammatory phase of sepsis.
Collapse
Affiliation(s)
- Steven L. Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Russell B. Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Julie A. Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Tyler J. Murphy
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Ricardo Ungaro
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Marvin L. Dirain
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Dina C. Nacionales
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - McKenzie K. Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Jaimar C. Rincon
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Shawn D. Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Scott C. Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Frederick A. Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Daniel Irimia
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Phil A. Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| |
Collapse
|
30
|
Yao JF, Li N, Jiang J. Clinical Characteristics of Bloodstream Infections in Pediatric Acute Leukemia: A Single-center Experience with 231 Patients. Chin Med J (Engl) 2018; 130:2076-2081. [PMID: 28836551 PMCID: PMC5586176 DOI: 10.4103/0366-6999.213411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Acute leukemia is the most common pediatric hematological malignancy. Bloodstream infections (BSIs) are severe complications in these patients during chemotherapy. This study aimed to explore the clinical presentation and etiology of BSI, as well as the common sites of infection, and to provide a basis for the rational regarding antibiotic use. Methods: We performed a retrospective chart review of all pediatric patients who had acute leukemia accompanied by a BSI in our hospital from December 2011 to September 2015. All patients were selected based on clinical presentation and had to have at least one positive blood culture for inclusion. The basic clinical characteristics, blood culture results, and antimicrobial susceptibilities were analyzed. Results: All 231 patients had a fever; of them, 12 patients continued to have a fever. Twenty-five patients had nonremitting (NR) leukemia, and 206 patients achieved complete remission (CR). Differences in the duration of fever between the NR and CR groups were significant (9.6 ± 7.9 vs. 5.1 ± 3.8 days, P = 0.016). One hundred and eighty patients had agranulocytosis. Differences in fever duration between the agranulocytosis and nonagranulocytosis groups were significant (6.2 ± 5.1 vs. 4.1 ± 2.6 days, P = 0.001). The other sites of infection in these 231 patients were the lung, mouth, digestive tract, and rectum. Blood culture comprised 2635 samples. There were 619 samples, which were positive. Of the 619 positive blood culture samples, 59.9% had Gram-negative bacteria, 39.3% had Gram-positive bacteria, and 0.8% had fungus. The primary pathogens were Pseudomonas aeruginosa, Enterobactercloacae, Escherichia coli, and Klebsiella pneumoniae. Of these 231 patients, 217 patients were cured. The effective treatment ratio was 94%. Conclusions: Gram-negative bacteria were the main pathogenic bacteria in patients with acute leukemia in our center. NR primary illness, agranulocytosis, and drug-resistant pathogenic bacteria were all risk factors for poor prognosis.
Collapse
Affiliation(s)
- Jia-Feng Yao
- Hematology Oncology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Nan Li
- Hematology Oncology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Jin Jiang
- Hematology Oncology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| |
Collapse
|
31
|
Francis EA, Heinrich V. Extension of chemotactic pseudopods by nonadherent human neutrophils does not require or cause calcium bursts. Sci Signal 2018. [PMID: 29535263 DOI: 10.1126/scisignal.aal4289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global bursts in free intracellular calcium (Ca2+) are among the most conspicuous signaling events in immune cells. To test the common view that Ca2+ bursts mediate rearrangement of the actin cytoskeleton in response to the activation of G protein-coupled receptors, we combined single-cell manipulation with fluorescence imaging and monitored the Ca2+ concentration in individual human neutrophils during complement-mediated chemotaxis. By decoupling purely chemotactic pseudopod formation from cell-substrate adhesion, we showed that physiological concentrations of anaphylatoxins, such as C5a, induced nonadherent human neutrophils to form chemotactic pseudopods but did not elicit Ca2+ bursts. By contrast, pathological or supraphysiological concentrations of C5a often triggered Ca2+ bursts, but pseudopod protrusion stalled or reversed in such cases, effectively halting chemotaxis, similar to sepsis-associated neutrophil paralysis. The maximum increase in cell surface area during pseudopod extension in pure chemotaxis was much smaller-by a factor of 8-than the known capacity of adherent human neutrophils to expand their surface. Because the measured rise in cortical tension was not sufficient to account for this difference, we attribute the limited deformability to a reduced ability of the cytoskeleton to generate protrusive force in the absence of cell adhesion. Thus, we hypothesize that Ca2+ bursts in neutrophils control a mechanistic switch between two distinct modes of cytoskeletal organization and dynamics. A key element of this switch appears to be the expedient coordination of adhesion-dependent lock or release events of cytoskeletal membrane anchors.
Collapse
Affiliation(s)
- Emmet A Francis
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
32
|
Mishra HK, Ma J, Walcheck B. Ectodomain Shedding by ADAM17: Its Role in Neutrophil Recruitment and the Impairment of This Process during Sepsis. Front Cell Infect Microbiol 2017; 7:138. [PMID: 28487846 PMCID: PMC5403810 DOI: 10.3389/fcimb.2017.00138] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are specialized at killing bacteria and are recruited from the blood in a rapid and robust manner during infection. A cascade of adhesion events direct their attachment to the vascular endothelium and migration into the underlying tissue. A disintegrin and metalloproteinase 17 (ADAM17) functions in the cell membrane of neutrophils and endothelial cells by cleaving its substrates, typically in a cis manner, at an extracellular site proximal to the cell membrane. This process is referred to as ectodomain shedding and it results in the downregulation of various adhesion molecules and receptors, and the release of immune regulating factors. ADAM17 sheddase activity is induced upon cell activation and rapidly modulates intravascular adhesion events in response to diverse environmental stimuli. During sepsis, an excessive systemic inflammatory response against infection, neutrophil migration becomes severely impaired. This involves ADAM17 as indicated by increased levels of its cleaved substrates in the blood of septic patients, and that ADAM17 inactivation improves neutrophil recruitment and bacterial clearance in animal models of sepsis. Excessive ADAM17 sheddase activity during sepsis thus appears to undermine in a direct and indirect manner the necessary balance between intravascular adhesion and de-adhesion events that regulate neutrophil migration into sites of infection. This review provides an overview of ADAM17 function and regulation and its potential contribution to neutrophil dysfunction during sepsis.
Collapse
Affiliation(s)
- Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSt. Paul, MN, USA
| | - Jing Ma
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSt. Paul, MN, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSt. Paul, MN, USA
| |
Collapse
|
33
|
Rajakumar A, Kaliamoorthy I, Rela M, Mandell MS. Small-for-Size Syndrome: Bridging the Gap Between Liver Transplantation and Graft Recovery. Semin Cardiothorac Vasc Anesth 2017; 21:252-261. [DOI: 10.1177/1089253217699888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In living donor liver transplantation, optimal graft size is estimated from values like graft volume/standard liver volume and graft/recipient body weight ratio but the final functional hepatic mass is influenced by other donor and recipient factors. Grafts with insufficient functional hepatic mass can produce a life-threatening condition with rapidly progressive liver failure called small-for-size syndrome (SFSS). Diagnosis of SFSS requires careful surveillance for signs of inadequate hepatocellular function, residual portal hypertension, and systemic inflammation that suggest rapidly progressive liver failure. Early diagnosis, symptom control, and addressing the cause of SFSS may prevent the need for retransplantation. With increased attention to avoiding donor risk, intensivists will be confronted with more SFSS recipients. In this review, we aim to outline a systematic approach to the medical management of patients with SFSS by providing a concise synopsis of general supportive care—neurological, cardiovascular, and renal support, mechanical ventilation, nutritional support, infection control, and tailored immunosuppression—with an aim to avoid end-organ damage or death and a review of current interventions including liver support devices, portal flow modulating drugs, and other experimental interventions that aim to preserve existing hepatic mass and improve conditions for hepatic regeneration. We examine evidence for SFSS interventions to provide the reader with information that may assist in clinical decision making. Points of controversy in care are purposefully highlighted to identify areas where additional experimental work is still needed. A full understanding of the pathophysiology of SFSS and measures to support liver regeneration will guide effective management.
Collapse
|