1
|
Mohammed ARA, Othman MFS, Khairat YM, Abdelrahman AAM. Use of a multifocal electroretinogram to evaluate the therapeutic effect of a single intravitreal dexamethasone implant, Ozurdex ®, for refractory diabetic macular oedema. Int J Retina Vitreous 2025; 11:33. [PMID: 40108633 PMCID: PMC11921743 DOI: 10.1186/s40942-025-00652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
AIM To evaluate the therapeutic effect of a single intravitreal dexamethasone implant (Ozurdex®) in eyes with refractory diabetic macular oedema (DME) anatomically via optical coherence tomography (OCT) and functionally via best corrected visual acuity (BCVA) and multifocal electroretinography (mfERG). METHODS This prospective interventional study included twenty eyes with refractory DME that were treated using six intravitreal injections of anti-vascular endothelial growth factor (VEGF). The central retinal thickness (CRT) was measured via OCT exceeding 300 μm. The eyes were treated with a single dexamethasone (DEX) implant four weeks after the last injection of anti-VEGF. The outcomes included changes in CRT, BCVA and p1 amplitude of ring 1 on mfERG and intraocular pressure (IOP) recorded before injection and two, four and six months after DEX injection. RESULTS The study included fifteen males (75%) and five females (25%). The mean age was 62.83 ± 6.34 years, with the mean duration of diabetes was 16.7 ± 2.21 years. During the two-month follow-up, there were statistically significant reductions in CRT and logMAR BCVA as well as an increase in p1 of ring 1 on mfERG (P = 0.046, P < 0.001 and P < 0.001, respectively). At four months, these changes were not statistically significant (P = 0.99, P < 0.56&P < 0.58), whereas at six months, all the parameters nearly reached pre-DEX injection values (p = 0.93 P = 0.99 P = 0.81). The IOP values were not significantly increased at two, four or six months (p < 0.06, P = 0.35 and P = 1.0, respectively). There were significant negative correlations between the mfERG and OCT parameters before and six months after DEX injection (p = 0.000). CONCLUSION A single intravitreal injection of DEX in refractory DME patients induced significant anatomical and functional improvements, but these improvements only lasted for short periods of up to four months. This treatment exhibited an excellent safety profile. However, at six months, the therapeutic effect was null. The utility of mfERG as a sensitive biomarker of treatment efficacy was highlighted herein.
Collapse
|
2
|
Kakoti BB, Alom S, Deka K, Halder RK. AMPK pathway: an emerging target to control diabetes mellitus and its related complications. J Diabetes Metab Disord 2024; 23:441-459. [PMID: 38932895 PMCID: PMC11196491 DOI: 10.1007/s40200-024-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose In this extensive review work, the important role of AMP-activated protein kinase (AMPK) in causing of diabetes mellitus has been highlighted. Structural feature of AMPK as well its regulations and roles are described nicely, and the association of AMPK with the diabetic complications like nephropathy, neuropathy and retinopathy are also explained along with the connection between AMPK and β-cell function, insulin resistivity, mTOR, protein metabolism, autophagy and mitophagy and effect on protein and lipid metabolism. Methods Published journals were searched on the database like PubMed, Medline, Scopus and Web of Science by using keywords such as AMPK, diabetes mellitus, regulation of AMPK, complications of diabetes mellitus, autophagy, apoptosis etc. Result After extensive review, it has been found that, kinase enzyme like AMPK is having vital role in management of type II diabetes mellitus. AMPK involve in enhance the concentration of glucose transporter like GLUT 1 and GLUT 4 which result in lowering of blood glucose level in influx of blood glucose into the cells; AMPK increases the insulin sensitivity and decreases the insulin resistance and further AMPK decreases the apoptosis of β-cells which result into secretion of insulin and AMPK is also involve in declining of oxidative stress, lipotoxicity and inflammation, owing to which organ damage due to diabetes mellitus can be lowered by activation of AMPK. Conclusion As AMPK activation leads to overall control of diabetes mellitus, designing and developing of small molecules or peptide that can act as AMPK agonist will be highly beneficial for control or manage diabetes mellitus.
Collapse
Affiliation(s)
- Bibhuti B. Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Girijananda Chowdhury University- Tezpur campus, 784501 Sonitpur, Assam India
| | - Kangkan Deka
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, 781125 Mirza, Kamrup, Assam India
| | - Raj Kumar Halder
- Ruhvenile Biomedical, Plot -8 OCF Pocket Institution, Sarita Vihar, 110076 Delhi, India
| |
Collapse
|
3
|
Tumminia A, Milluzzo A, Carrubba N, Vinciguerra F, Baratta R, Frittitta L. Excessive generalized and visceral adiposity is associated with a higher prevalence of diabetic retinopathy in Caucasian patients with type 2 diabetes. Nutr Metab Cardiovasc Dis 2024; 34:763-770. [PMID: 38161118 DOI: 10.1016/j.numecd.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/30/2023] [Accepted: 10/22/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIMS Type 2 Diabetes Mellitus (T2D) has heterogeneous clinical phenotypes related to different risk of developing diabetes complications. We investigated the correlation between generalized and abdominal adiposity and the prevalence of both micro- and macrovascular complications in Caucasian patients with T2D. METHODS AND RESULTS We evaluated 769 individuals with T2D consecutively referred to our diabetes center. Body mass index (BMI), waist circumference (WC), waist to hip (W/H) ratio, glycated hemoglobin (HbA1c), systolic and diastolic blood pressure, lipid profile, smoking habit, diabetes therapy, and micro- and macrovascular complications were recorded. Patients were divided into three groups based on BMI and WC: non-obese with normal WC (nWC, n = 220), non-obese with excess of abdominal fat (AF, n = 260) and obese (Ob, n = 289). We found that nWC, compared with AF and Ob individuals, were predominantly males (p<0.01), had lower HbA1c (p<0.01), diastolic blood pressure (p<0.01), triglycerides (p<0.01), and showed a significantly lower prevalence of diabetic retinopathy (DR) (p = 0.01). The rate of proliferative DR was significantly higher in Ob (13.2 %) compared to the other groups (p = 0.03). Multivariate analyses showed a significantly decreased prevalence of DR in nWC compared to both AF (OR 0.58, 95 CI 0.34-0.96; p = 0.03) and Ob (OR 0.57, 95 CI 0.33-0.98; p = 0.04) individuals. Conversely, DR was associated, mainly in women, to higher WC and W/H ratio. The prevalence of the other diabetes-related complications was similar among the studied groups. CONCLUSIONS In our population, nWC subjects showed a lower prevalence of DR. An increased generalized and abdominal adiposity was associated to a higher prevalence of DR, especially among females.
Collapse
Affiliation(s)
- Andrea Tumminia
- Endocrinology, Garibaldi-Nesima Hospital, Catania, Italy; Diabetes and Obesity Center, Garibaldi-Nesima Hospital, Catania, Italy
| | - Agostino Milluzzo
- Diabetes and Obesity Center, Garibaldi-Nesima Hospital, Catania, Italy; Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nunzia Carrubba
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Vinciguerra
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Lucia Frittitta
- Diabetes and Obesity Center, Garibaldi-Nesima Hospital, Catania, Italy; Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
4
|
Mohammad HMF, Eladl MA, Abdelmaogood AKK, Elshaer RE, Ghanam W, Elaskary A, Saleh MAK, Eltrawy AH, Ali SK, Moursi SMM, Bilasy SE, Zaitone SA, Alzlaiq WA, Atteya H. Protective Effect of Topiramate against Diabetic Retinopathy and Computational Approach Recognizing the Role of NLRP3/IL-1β/TNF-α Signaling. Biomedicines 2023; 11:3202. [PMID: 38137423 PMCID: PMC10741203 DOI: 10.3390/biomedicines11123202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
The possible impact of topiramate against diabetic retinopathy (DREN) and its molecular mechanisms in relation to the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome has not been studied before. Thus, in the present study, we aimed to utilize a computational approach to investigate the possible protective effect of topiramate on experimental DREN and explore its impact on NLRP3/interlukin-1β signaling and brain-derived neurotrophic factor (BDNF) expression. Male albino mice were distributed to four experimental groups and assigned the following categorizations: (i) saline, (ii) diabetic, (iii) diabetic + topiramate 10 mg/kg and (iv) diabetic + topiramate 30 mg/kg. We observed shrinkage of total retinal thickness and elevation in retinal glutamate, malondialdehyde, NLRP3 and interlukin-1β but decreased glutathione (GSH) levels in the diabetic mice. Additionally, retinal ultra-structures in the diabetic group showed abnormalities and vacuolations in the pigmented epithelium, the photoreceptor segment, the outer nuclear layer, the inner nuclear layer and the ganglion cell layer (GCL). Mice treated with topiramate 10 or 30 mg/kg showed downregulation in retinal malondialdehyde, NLRP3 and interlukin-1β levels; improvements in the retinal pathologies; enhanced immunostaining for BDNF and improved ultra-structures in different retinal layers. Overall, the current results suggest topiramate as a neuroprotective agent for DREN, and future studies are warranted to further elucidate the mechanism of its protective action.
Collapse
Affiliation(s)
- Hala M. F. Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Asmaa K. K. Abdelmaogood
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rabie E. Elshaer
- Pathology Department, Faculty of Medicine (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Walaa Ghanam
- Department of Pathology, Faculty of Medicine, Suez University, Suez 43533, Egypt
| | - Abdelhakeem Elaskary
- Ophthalmology Department, Al-Azher Asyut Faculty of Medicine for Men, Asyut 71524, Egypt (M.A.K.S.)
| | - Mohamed A. K. Saleh
- Ophthalmology Department, Al-Azher Asyut Faculty of Medicine for Men, Asyut 71524, Egypt (M.A.K.S.)
| | - Amira H. Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk 71451, Saudi Arabia
| | - Sahar K. Ali
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Suzan M. M. Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shymaa E. Bilasy
- College of Dental Medicine, California Northstate University, 9700 Taron Dr., Elk Grove, CA 95757, USA
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71451, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Wafa Ali Alzlaiq
- Department of Clinical Pharmacy, College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Hayam Atteya
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| |
Collapse
|
5
|
Nouralishahi A, Fazlinejad N, Pecho RDC, Zaidan HK, Kheradjoo H, Amin AH, Mohammadzadehsaliani S. Pathological role of inflammation in ocular disease progress and its targeting by mesenchymal stem cells (MSCs) and their exosome; current status and prospect. Pathol Res Pract 2023; 248:154619. [PMID: 37406377 DOI: 10.1016/j.prp.2023.154619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Because of their unique capacity for differentiation to a diversity of cell lineages and immunosuppressive properties, mesenchymal stem cells (MSC) are being looked at as a potential new treatment option in ophthalmology. The MSCs derived from all tissue sources possess immunomodulatory attributes through cell-to-cell contact and releasing a myriad of immunomodulatory factors (IL-10, TGF-β, growth-related oncogene (GRO), indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), interleukin 1 receptor antagonist (IL-1Ra), prostaglandin E2 (PGE2)). Such mediators, in turn, alter both the phenotype and action of all immune cells that serve a pathogenic role in the progression of inflammation in eye diseases. Exosomes from MSCs, as natural nano-particles, contain the majority of the bioactive components of parental MSCs and can easily by-pass all biological barriers to reach the target epithelial and immune cells in the eye without interfering with nearby parenchymal cells, thus having no serious side effects. We outlined the most recent research on the molecular mechanisms underlying the therapeutic benefits of MSC and MSC-exosome in the treatment of inflammatory eye diseases in the current article.
Collapse
Affiliation(s)
- Alireza Nouralishahi
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; KIMS Hospital, Oman
| | | | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
6
|
Ramos H, Hernández C, Simó R, Simó-Servat O. Inflammation: The Link between Neural and Vascular Impairment in the Diabetic Retina and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24108796. [PMID: 37240138 DOI: 10.3390/ijms24108796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The etiology of diabetic retinopathy (DR) is complex, multifactorial and compromises all the elements of the retinal neurovascular unit (NVU). This diabetic complication has a chronic low-grade inflammatory component involving multiple inflammatory mediators and adhesion molecules. The diabetic milieu promotes reactive gliosis, pro-inflammatory cytokine production and leukocyte recruitment, which contribute to the disruption of the blood retinal barrier. The understanding and the continuous research of the mechanisms behind the strong inflammatory component of the disease allows the design of new therapeutic strategies to address this unmet medical need. In this context, the aim of this review article is to recapitulate the latest research on the role of inflammation in DR and to discuss the efficacy of currently administered anti-inflammatory treatments and those still under development.
Collapse
Affiliation(s)
- Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| |
Collapse
|
7
|
Kowluru RA. Cross Talks between Oxidative Stress, Inflammation and Epigenetics in Diabetic Retinopathy. Cells 2023; 12:300. [PMID: 36672234 PMCID: PMC9857338 DOI: 10.3390/cells12020300] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy, one of the most devastating complications of diabetes, is a multifactorial progressing disease with a very complex etiology. Although many metabolic, molecular, functional and structural changes have been identified in the retina and its vasculature, the exact molecular mechanism of its pathogenesis still remains elusive. Sustained high-circulating glucose increases oxidative stress in the retina and also activates the inflammatory cascade. Free radicals increase inflammatory mediators, and inflammation can increase production of free radicals, suggesting a positive loop between them. In addition, diabetes also facilitates many epigenetic modifications that can influence transcription of a gene without changing the DNA sequence. Several genes associated with oxidative stress and inflammation in the pathogenesis of diabetic retinopathy are also influenced by epigenetic modifications. This review discusses cross-talks between oxidative stress, inflammation and epigenetics in diabetic retinopathy. Since epigenetic changes are influenced by external factors such as environment and lifestyle, and they can also be reversed, this opens up possibilities for new strategies to inhibit the development/progression of this sight-threatening disease.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Zheng C, Wei X, Cao X. The causal effect of obesity on diabetic retinopathy: A two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1108731. [PMID: 37077358 PMCID: PMC10106681 DOI: 10.3389/fendo.2023.1108731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The causal effect of obesity on diabetic retinopathy (DR) remains controversial. The aim of this study was to assess the causal association of generalized obesity evaluated by body mass index (BMI) and abdominal obesity evaluated by waist or hip circumference with DR, background DR, and proliferative DR using a two-sample Mendelian randomization (MR) analysis. METHODS Genetic variants associated with obesity at the genome-wide significance (P<5×10-8) level were derived using GWAS summary statistics from the UK Biobank (UKB) with a sample size of 461 460 individuals for BMI, 462 166 individuals for waist circumference, and 462 117 individuals for hip circumference. We obtained genetic predictors of DR (14 584 cases and 202 082 controls), background DR (2026 cases and 204 208 controls), and proliferative DR (8681 cases and 204 208 controls) from FinnGen. Univariable and multivariable Mendelian randomization analyses were conducted. Inverse variance weighted (IVW) was the main method used to analyze causality, accompanied by several sensitivity MR analyses. RESULTS Genetically predicted increased BMI [OR=1.239; 95% CI=(1.134, 1.353);P=1.94×10-06], waist circumference [OR=1.402; 95% CI=(1.242, 1.584); P=5.12×10-08], and hip circumference [OR=1.107; 95% CI=(1.003, 1.221); P=0.042] were associated with increased risk of DR. BMI [OR=1.625; 95% CI=(1.285, 2.057); P=5.24×10-05], waist circumference [OR=2.085; 95% CI=(1.54, 2.823); P=2.01×10-06], and hip circumference [OR=1.394; 95% CI=(1.085, 1.791); P=0.009] were correlated with the risk of background DR. MR analysis also supported a causal association between BMI [OR=1.401; 95% CI=(1.247, 1.575); P=1.46×10-08], waist circumference [OR=1.696; 95% CI=(1.455, 1.977); P=1.47×10-11], and hip circumference [OR=1.221; 95% CI=(1.076, 1.385); P=0.002] and proliferative DR. The association of obesity with DR continued to be significant after adjustment for type 2 diabetes. CONCLUSION This study using two-sample MR analysis indicated that generalized obesity and abdominal obesity might increase the risk of any DR. These results suggested that controlling obesity may be effective in DR development.
Collapse
|
9
|
Kurtul BE, Koca S, Yilmaz MO. Prognostic nutritional index as a novel marker for diabetic retinopathy in individuals with type 2 diabetes mellitus. Saudi J Ophthalmol 2022; 36:322-326. [PMID: 36276247 PMCID: PMC9583354 DOI: 10.4103/sjopt.sjopt_63_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE In recent years, the prognostic nutritional index (PNI), an easily obtainable nutritional inflammatory marker, has been introduced as an independent prognostic indicator for various types of cancers and cardiovascular diseases. However, its clinical importance in the area of ophthalmology is not well known yet. We aimed to elucidate the association between the PNI and the occurrence of diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM). METHODS In this cross-sectional study, the PNI was applied to 128 consecutive patients with T2DM. The relationship between the PNI and the occurrence of DR was examined. PNI was calculated as 10× (serum albumin) + 0.005 × (total lymphocyte count). The risk factors for DR were evaluated using multivariate logistic regression analysis. A receiver operating characteristic (ROC) curve analysis of PNI for predicting DR was performed. RESULTS Patients with DR had significantly lower levels of PNI than those without DR (41.20 ± 4.81 and 44.49 ± 3.10, respectively,P< 0.001). Multivariate regression analysis indicated that PNI, together with the duration of diabetes and creatinine, was an independent factor for DR occurrence (odds ratio, 0.885; 95% confidence interval: 0.735-0.971;P= 0.017). ROC curve analysis revealed that the best cutoff value of PNI was 43 (area under the curve: 0.713; sensitivity: 74%; specificity: 64%). CONCLUSION A lower PNI value is common among T2DM patients with DR and is strongly associated with the occurrence of DR. The PNI might be a useful biomarker for identifying DR to improve the risk stratification and management of T2DM patients.
Collapse
Affiliation(s)
- Bengi E. Kurtul
- Department of Ophthalmology, Hatay Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine, Hatay, Turkey,Address for correspondence: Dr. Bengi E. Kurtul, Mustafa Kemal Üniversitesi Tayfur Ata Sökmen Tip Fakültesi Alahan, Hatay 31060, Turkey. E-mail:
| | - Suleyman Koca
- Department of Ophthalmology, Nevsehir State Hospital, Nevsehir, Turkey
| | - Muge O. Yilmaz
- Department of Endocrinology, Hatay Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine, Hatay, Turkey
| |
Collapse
|
10
|
Zhu Y, Guo L, Zou J, Wang L, Dong H, Yu S, Zhang L, Li J, Qu X. JQ1 inhibits high glucose-induced migration of retinal microglial cells by regulating the PI3K/AKT signaling pathway. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13079-13092. [PMID: 36654036 DOI: 10.3934/mbe.2022611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diabetic retinopathy (DR) is one of the main leading causes of visual impairment worldwide. The current study elucidates the role of JQ1 in DR. A diabetic model was constructed by STZ injection and a high-fat diet. After establishment of the diabetic model, rats were assigned to treatment groups: 1) control, 2) diabetic model, and 3) diabetic+JQ1 model. In vitro Transwell and wound-healing assays were used to measure BV2 cell viability by stimulation with low glucose and high glucose with or without JQ1 and 740Y-P. Pathological methods were used to analyze DR, and Western blotting was used to analyze protein expression. Identification of enriched pathways in DR was performed by bioinformatics. Histopathological examination demonstrated that JQ1 rescued the loss of retinal cells and increased the thickness of retinal layers in diabetic rats. JQ1 attenuated high glucose-stimulated BV2 microglial motility and migration. The bioinformatics analysis implied that the Pl3K-Akt signaling pathway was enriched in DR. JQ1 decreased the phosphorylation of PI3K and AKT as well as the immunostaining of PI3K in BV2 cells. 740Y-P (a PI3K agonist) significantly reversed the decrease in p-PI3K and p-AK in BV2 cells. Additionally, JQ1 decreased the protein expression of p-PI3K, p-AKT, and MMP2/9 and immunostaining of PI3K in retinal tissues of rats. JQ1 suppresses the PI3K/Akt cascade by targeting MMP expression, thus decreasing the viability and invasion capacity of retinal microglia, suggesting an interesting treatment target for DR.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Ophthalmology, Eye Hospital of Dalian, Dalian Third People's Hospital Affiliated of Dalian Medical University, Dalian 116037, China
| | - Lipeng Guo
- Department of Cardiovascular, Dalian Third People's Hospital Affiliated of Dalian Medical University, Dalian 116037, China
| | - Jixin Zou
- Department of Ophthalmology, Eye Hospital of Dalian, Dalian Third People's Hospital Affiliated of Dalian Medical University, Dalian 116037, China
| | - Liwen Wang
- Department of Ophthalmology, Eye Hospital of Dalian, Dalian Third People's Hospital Affiliated of Dalian Medical University, Dalian 116037, China
| | - He Dong
- Department of Ophthalmology, Eye Hospital of Dalian, Dalian Third People's Hospital Affiliated of Dalian Medical University, Dalian 116037, China
| | - Shengbo Yu
- Department of Anatomy, Dalian Medical University, Dalian 116044, China
| | - Lijun Zhang
- Department of Ophthalmology, Eye Hospital of Dalian, Dalian Third People's Hospital Affiliated of Dalian Medical University, Dalian 116037, China
| | - Jun Li
- He Eye Specialists Hospital of ShenYang No. 128, Huanghebei Street, YuHong District, Shenyang 110034, China
| | - Xueling Qu
- Pelvic Floor Repair Center, the Affiliated Dalian Maternity Hospital of Dalian Medical University, 1 Dunhuang Road, Dalian, China
| |
Collapse
|
11
|
Administration of Melatonin in Diabetic Retinopathy Is Effective and Improves the Efficacy of Mesenchymal Stem Cell Treatment. Stem Cells Int 2022; 2022:6342594. [PMID: 35450343 PMCID: PMC9017455 DOI: 10.1155/2022/6342594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/26/2022] [Indexed: 11/29/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic technique for the treatment of a variety of diseases; nevertheless, stem cell therapy may not always work as well as it could. The goal of this study was to test the hypothesis that employing a powerful antioxidant like melatonin improves stem cell transplantation success and potentiates stem cell function in the therapy of diabetic retinopathy. For this purpose, 50 adult male rats were divided into the following: control group: this group received 0.5 ml of 0.1 M of sodium citrate buffer (pH = 4.5) (intraperitoneal (I.P.)). The confirmed diabetic rats were divided into 4 groups: diabetic group: confirmed diabetic rats received no treatments with a regular follow of the blood glucose profile for 8 weeks; melatonin group: confirmed diabetic rats received melatonin (5 mg/kg/day); stem cell group: the confirmed diabetic rats were given intravitreal injection of stem cells (2 μl cell suspension of stem cells (3 × 104 cells/μl)); and melatonin+stem cell group: confirmed diabetic rats received melatonin (5 mg/kg/day), orally once daily for 8 weeks, and 2 μl cell suspension of stem cells (3 × 104 cells/μl) was carefully injected into the vitreous cavity. Our results showed that administration of melatonin and/or stem cell restored the retinal oxidative/antioxidant redox and reduced retinal inflammatory mediators. Coadministration of melatonin and stem cells enhanced the number of transplanted stem cells in the retinal tissue and significantly reduced retinal BDEF, VEGF, APOA1, and RBP4 levels as compared to melatonin and/or stem alone. We may conclude that rats treated with melatonin and stem cells had their retinal oxidative/antioxidant redox values restored to normal and their histological abnormalities reduced. These findings support the hypothesis that interactions with the BDEF, VEGF, APOA1, and RBP4 signaling pathways are responsible for these effects.
Collapse
|
12
|
Rajeswaren V, Wong JO, Yabroudi D, Nahomi RB, Rankenberg J, Nam MH, Nagaraj RH. Small Heat Shock Proteins in Retinal Diseases. Front Mol Biosci 2022; 9:860375. [PMID: 35480891 PMCID: PMC9035800 DOI: 10.3389/fmolb.2022.860375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
This review summarizes the latest findings on small heat shock proteins (sHsps) in three major retinal diseases: glaucoma, diabetic retinopathy, and age-related macular degeneration. A general description of the structure and major cellular functions of sHsps is provided in the introductory remarks. Their role in specific retinal diseases, highlighting their regulation, role in pathogenesis, and possible use as therapeutics, is discussed.
Collapse
Affiliation(s)
- Vivian Rajeswaren
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Jeffrey O. Wong
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Dana Yabroudi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Rooban B. Nahomi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Johanna Rankenberg
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Mi-Hyun Nam
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| | - Ram H. Nagaraj
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| |
Collapse
|
13
|
Changes of lysozyme content in the lacrimal fluid in patients with diabetic retinopathy (pilot study). ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. Type 2 diabetes mellitus is one of the most common metabolic disorders in humans. Diabetes mellitus can lead to abnormalities in many tissues of the eye structure, exposing patients to the risk of developing a wide range of ocular pathologies associated with changes in its anterior and posterior segments. The most common complication is diabetic retinopathy.The aim: to assess the potential clinical significance of lacrimal lysozyme as a minimally invasive biomarker of diabetic ophthalmic disorders.Material and methods. Three groups were formed during the study. Group 1 (Control, n = 10) included conditionally healthy people with no type 2 diabetes mellitus. Group 2 (Main 1, n = 15) included patients with type 2 diabetes mellitus, but no diabetic manifestations in the fundus. Group 3 (Main 2, n = 15) included patients with type 2 diabetes mellitus and manifestations of diabetic retinopathy of varying degrees. In patients of all groups, the level of tear lysozyme was assessed.Results. It was found that the concentration of lacrimal fluid lysozyme in patients with type 2 diabetes mellitus was significantly lower than in healthy patients. In patients with diabetic retinopathy of varying degrees of manifestation (non-proliferative and proliferative forms) against the background of type 2 diabetes mellitus, significantly lower values of lysozyme were observed compared to patients with type 2 diabetes mellitus, but without diabetic ophthalmic manifestations.Conclusion. It is possible that local detection of lysozyme in the lacrimal fluid may be potential biomarkers of the progression of diabetic retinopathy.
Collapse
|
14
|
miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms. J Physiol Biochem 2022; 78:19-37. [DOI: 10.1007/s13105-021-00867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
|
15
|
Lu L, Zou G, Chen L, Lu Q, Wu M, Li C. Elevated NLRP3 Inflammasome Levels Correlate With Vitamin D in the Vitreous of Proliferative Diabetic Retinopathy. Front Med (Lausanne) 2021; 8:736316. [PMID: 34722576 PMCID: PMC8553965 DOI: 10.3389/fmed.2021.736316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose: This study aims to determine vitamin D concentrations in the vitreous and serum, as well as the expression levels of NLRP3 inflammasome pathway in the vitreous of patients with proliferative diabetic retinopathy (PDR). In addition, we investigated the possible correlation between NLRP3 inflammasome levels and vitamin D concentrations. Methods: We obtained vitreous samples before vitrectomy from 55 PDR patients, 25 non-diabetic patients with idiopathic macular hole (IMH), and 10 non-proliferative diabetic retinopathy (NPDR) patients. We also collected serum samples from the same patients. Enzyme-linked immunosorbent assay (ELISA) was used to examine NLRP3 inflammasome pathway proteins, including NLRP3, caspase-1, IL-1β, and VEGF. In addition, vitamin D concentrations were analyzed in Roche Cobas 6000's module e601 platform using electrochemiluminescence immune assay. Results: The levels of NLRP3 inflammasome pathway and VEGF increased dramatically in PDR vitreous. However, vitamin D concentrations in vitreous and serum followed the opposite trend. Meanwhile, vitreous and serum vitamin D concentrations were significantly negatively correlated with vitreous NLRP3 expression in PDR patients. Moreover, serum and vitreous vitamin D concentrations were positively correlated and demonstrated discriminatory ability in DR. The subgroup analysis of PDR group revealed that eyes with tractional retinal detachment (TRD) had higher NLRP3 inflammasome pathway and VEGF levels but lower vitamin D concentrations. Conversely, eyes that received preoperative pan-retinal photocoagulation (PRP) exhibited lower levels of NLRP3 inflammasome pathway, but vitamin D concentrations were irrelevant to laser treatment. Conclusions: Our results demonstrate a strong correlation between increased NLRP3 inflammasome pathway and decreased vitamin D concentrations in the vitreous of PDR patients, which may be linked to PDR pathogenesis. In addition, vitamin D supplementation may play a key role in preventing, treating, and improving PDR prognosis due to its inhibitory impact on NLRP3 inflammasome pathway and VEGF.
Collapse
Affiliation(s)
- Li Lu
- Department of Ophthalmology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Gaocheng Zou
- Department of Ophthalmology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Li Chen
- Department of Clinical laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Qianyi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mian Wu
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Chunxia Li
- Department of Ophthalmology, Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
16
|
Erdem B, Kaya Y. Prediction of diabetic retinopathy in patients with type 2 diabetes mellitus by using monocyte to high-density lipoprotein-cholesterol ratio. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Myocardial repolarization is affected in patients with diabetic retinopathy. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.955574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Iyer SS, Lagrew MK, Tillit SM, Roohipourmoallai R, Korntner S. The Vitreous Ecosystem in Diabetic Retinopathy: Insight into the Patho-Mechanisms of Disease. Int J Mol Sci 2021; 22:ijms22137142. [PMID: 34281192 PMCID: PMC8269048 DOI: 10.3390/ijms22137142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic retinopathy is one of the leading causes of blindness in the world with the incidence of disease ever-increasing worldwide. The vitreous humor represents an extensive and complex interactive arena for cytokines in the diabetic eye. In recent decades, there has been significant progress in understanding this environment and its implications in disease pathophysiology. In this review, we investigate the vitreous ecosystem in diabetic retinopathy at the molecular level. Areas of concentration include: the current level of knowledge of growth factors, cytokine and chemokine mediators, and lipid-derived metabolites in the vitreous. We discuss the molecular patho-mechanisms of diabetic retinopathy based upon current vitreous research.
Collapse
|
19
|
Al-Latayfeh M, Abdel Rahman M, Shatnawi R. Outcome of Single Dexamethasone Implant Injection in the Treatment of Persistent Diabetic Macular Edema After Anti-VEGF Treatment: Real-Life Data from a Tertiary Hospital in Jordan. Clin Ophthalmol 2021; 15:1285-1291. [PMID: 33790536 PMCID: PMC8006758 DOI: 10.2147/opth.s303670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose To analyze the real-life clinical outcome of a single dexamethasone implant (DEX) injection in the treatment of persistent diabetic macular edema (DME) after anti-vascular endothelial growth factor (anti-VEGF) agents in a sample of the Jordanian population. Methods An observational case study design that involved a retrospective chart review analysis in a tertiary hospital in Amman, Jordan. Patients who showed persistent DME after receiving at least six doses of anti-VEGF agents for DME treatment were included. Results The study population consisted of 72 participants (29 females, 43 males) having an average age of 66 years. All patients had best-corrected visual acuity (BCVA) less than 0.7 (6/9) and SD-OCT documented center-involved DME. The study results showed that the average baseline BCVA improved from 0.205±0.1 before DEX injection to 0.358±0.1 at 3 months post-injection (p<0.0001). The central mean thickness (CMT) showed significant improvement also (539.347±132.402 to 379.041±99.430, p<0.0001). There was a mean of 3 mmHg increase in intraocular pressure at 3 months post-injection (p<0.0001), however, only 4% of patients required medical treatment. Other inflammatory biomarkers in OCT, such as intraretinal hyper-reflective dots (HRD), showed significant improvement also (23.67±16 to 14.83±13, p<0.0001). No other significant safety concerns were noticed. Conclusion A single DEX injection showed significant clinical and anatomical improvement in DME cases that are persistent after anti-VEGF treatment in our sample, with an excellent safety profile. In case of supply shortage of intravitreal injections, which occurs frequently at our center, a single DEX injection may be utilized as an effective DME therapy. Further research is mandated to identify clinical response in a larger sample and more frequent injections.
Collapse
Affiliation(s)
- Motasem Al-Latayfeh
- Department of General and Special Surgery, School of Medicine, The Hashemite University, Zarqa, Jordan.,Department of Ophthalmology, Prince Hamza Hospital, Amman, Jordan
| | | | - Raed Shatnawi
- Department of General and Special Surgery, School of Medicine, The Hashemite University, Zarqa, Jordan.,Department of Ophthalmology, Prince Hamza Hospital, Amman, Jordan
| |
Collapse
|
20
|
Yalinbas Yeter D, Eroglu S, Sariakcali B, Bozali E, Vural Ozec A, Erdogan H. The Usefulness of Monocyte-to-High Density Lipoprotein and Neutrophil-to-Lymphocyte Ratio in Diabetic Macular Edema Prediction and Early anti-VEGF Treatment Response. Ocul Immunol Inflamm 2021; 30:901-906. [PMID: 33596398 DOI: 10.1080/09273948.2020.1849739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To determine the association of monocyte-to-high-density lipoprotein ratio (MHR) and neutrophil-to-lymphocyte ratio (NLR) with diabetic macular edema (DME) and early anti-VEGF treatment response.Material methods: This was a retrospective and cross-sectional study conducted with 143 patients with diabetes mellitus (53 diabetic retinopathy with DME, 38 diabetic retinopathy without DME, and 52 without diabetic retinopathy).Results: 13.9 was the best cutoff value to predict DME for MHR, and 2 was for NLR (59% and 75% sensitivity and 81% and 59% specificity, respectively). Logistic regression analysis showed that NLR≥2 and MHR≥13.9 were significantly associated with DME prediction. However, neither NLR≥2 nor MHR≥13.9 was associated with central retinal thickness(CRT) or best corrected visual acuity(BCVA) outcomes after anti-VEGF treatment. On the other hand, increased NLR was associated with inferior CRT outcomes.Conclusion: MHR and NLR were simple and cost-effective biomarkers to predict DME. Moreover, higher NLR may contribute to poor CRT outcomes.
Collapse
Affiliation(s)
- Duygu Yalinbas Yeter
- Faculty of Medicine, Department of Ophthalmology, Cumhuriyet University, Sivas, Turkey
| | - Serap Eroglu
- Faculty of Medicine, Department of Ophthalmology, Cumhuriyet University, Sivas, Turkey
| | - Baris Sariakcali
- Faculty of Medicine, Department of Endocrinology and Metabolism, Cumhuriyet University, Sivas, Turkey
| | - Erman Bozali
- Faculty of Medicine, Department of Ophthalmology, Cumhuriyet University, Sivas, Turkey
| | - Ayse Vural Ozec
- Faculty of Medicine, Department of Ophthalmology, Cumhuriyet University, Sivas, Turkey
| | - Haydar Erdogan
- Faculty of Medicine, Department of Ophthalmology, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
21
|
CHANGES OF AQUEOUS HUMOR MÜLLER CELLS' BIOMARKERS IN HUMAN PATIENTS AFFECTED BY DIABETIC MACULAR EDEMA AFTER SUBTHRESHOLD MICROPULSE LASER TREATMENT. Retina 2021; 40:126-134. [PMID: 30300267 DOI: 10.1097/iae.0000000000002356] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the changes in activity of biomarkers of Mu[Combining Diaeresis]ller cells (MC) in aqueous humor of patients with diabetic macular edema after subthreshold micropulse laser, over 1 year. METHODS Patients with untreated diabetic macular edema and central retinal thickness ≤ 400 μm were enrolled. Best-corrected visual acuity, full ophthalmic examination, and optical coherence tomography were performed. Subthreshold micropulse laser was applied every 3 months. Glial fibrillary acidic protein and inwardly rectifying potassium channel (Kir 4.1), MC activity markers, and vascular endothelial growth factor were quantified in the aqueous humor collected at baseline and at 1, 3, and 12 months after laser. Changes in the macular thickness and inner nuclear layer thickness, where MC bodies are located, were measured. RESULTS Ten eyes of 10 patients were included. Best-corrected visual acuity improved at 3 months (P = 0.047) and remained stable. Inner nuclear layer thickness significantly reduced at 12 months (P = 0.012). Glial fibrillary acidic protein, Kir 4.1, and vascular endothelial growth factor decreased at 1 and/or 3 and/or 12 months compared with baseline (P < 0.05). CONCLUSION Subthreshold micropulse laser improves visual function in diabetic macular edema. Kir 4.1 and glial fibrillary acidic protein decrease and inner nuclear layer thickness reduction demonstrate that subthreshold micropulse laser may restore MC function. Subthreshold micropulse laser also reduces vascular endothelial growth factor concentration. The effect of subthreshold micropulse laser in diabetic macular edema may in part be due to changes of MC metabolic activity.
Collapse
|
22
|
Filippelli M, Campagna G, Vito P, Zotti T, Ventre L, Rinaldi M, Bartollino S, dell'Omo R, Costagliola C. Anti-inflammatory Effect of Curcumin, Homotaurine, and Vitamin D3 on Human Vitreous in Patients With Diabetic Retinopathy. Front Neurol 2021; 11:592274. [PMID: 33633656 PMCID: PMC7901953 DOI: 10.3389/fneur.2020.592274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose: To determine the levels of pro-inflammatory cytokines and soluble mediators (TNF-α, IL6, IL2, and PDGF-AB) in 28 vitreous biopsies taken from patients with proliferative diabetic retinopathy (PDR) and treated with increasing doses of curcumin (0. 5 and 1 μM), with or without homotaurine (100 μM) and vitamin D3 (50 nM). Materials and Methods: ELISA tests were performed on the supernatants from 28 vitreous biopsies that were incubated with bioactive molecules at 37°C for 20 h. The concentration of the soluble mediators was calculated from a calibration curve and expressed in pg/mL. Shapiro-Wilk test was used to verify the normality of distribution of the residuals. Continuous variables among groups were compared using the General Linear Model (GLM). Homoscedasticity was verified using Levene and Brown-Forsythe tests. Post-hoc analysis was also performed with the Tukey test. A p ≤ 0.05 was considered statistically significant. Results: The post-hoc analysis revealed statistically detectable changes in the concentrations of TNF-α, IL2, and PDGF-AB in response to the treatment with curcumin, homotaurine, and vitamin D3. Specifically, the p-values for between group comparisons are as follows: TNF-α: (untreated vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.008, (curcumin 0.5 μM vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.0004, (curcumin 0.5 μM vs. curcumin 1 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.02, (curcumin 1 μM vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.025, and (homotaurine 100 μM + vitamin D3 50 nM vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.009; IL2: (untreated vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.0023, and (curcumin 0.5 μM vs. curcumin 0.5 μM+ homotaurine 100 μM + vitamin D3 50 nM) p = 0.0028; PDGF-AB: (untreated vs. curcumin 0.5 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.04, (untreated vs. curcumin 1 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.0006, (curcumin 0.5 μM vs. curcumin 1 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.006, and (homotaurine 100 μM + vitamin D3 50 nM vs. curcumin 1 μM + homotaurine 100 μM + vitamin D3 50 nM) p = 0.022. IL6 levels were not significantly affected by any treatment. Conclusions: Pro-inflammatory cytokines are associated with inflammation and angiogenesis, although there is a discrete variability in the doses of the mediators investigated among the different vitreous samples. Curcumin, homotaurine, and vitamin D3 individually have a slightly appreciable anti-inflammatory effect. However, when used in combination, these substances are able to modify the average levels of the soluble mediators of inflammation and retinal damage. Multi-target treatment may provide a therapeutic strategy for diabetic retinopathy in the future. Clinical Trial Registration : The trial was registered at clinical trials.gov as NCT04378972 on 06 May 2020 ("retrospectively registered") https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid = S0009UI8&selectaction = Edit&uid = U0003RKC&ts = 2&cx = dstm4o.
Collapse
Affiliation(s)
- Mariaelena Filippelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giuseppe Campagna
- Department of Medical-Surgical Sciences and Translational Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Pasquale Vito
- Sannio Tech Consortium, Apollosa, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Tiziana Zotti
- Sannio Tech Consortium, Apollosa, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Luca Ventre
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University Eye Clinic, Turin, Italy
| | - Michele Rinaldi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto dell'Omo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.,Sannio Tech Consortium, Apollosa, Italy
| |
Collapse
|
23
|
Li R, Chen L, Yao GM, Yan HL, Wang L. Effects of quercetin on diabetic retinopathy and its association with NLRP3 inflammasome and autophagy. Int J Ophthalmol 2021; 14:42-49. [PMID: 33469482 DOI: 10.18240/ijo.2021.01.06] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
AIM To investigate the effects of quercetin on diabetic retinopathy (DR) and its association with nucleotide-binding oligomerization domain-like receptors 3 (NLRP3) inflammasome and autophagy using retinal endothelial cell as an experimental model. METHODS Human retinal microvascular endothelial cells (HRMECs) were cultured in vitro and assigned into the control group, high-glucose (HG) group, and HG+different concentrations of quercetin groups. Cellular viability, migration, and tube formation in these groups was detected by MTT, transwell and matrigel assay, respectively. Expressions of NLRP3, apoptosis-associated speck-like protein (ASC), cysteiny aspartate-specific protease-1 (Caspase-1) as well as microtubule-related protein 1 light chain 3 (LC3) and Beclin-1 were detected by Western blotting. Expressions of IL-1β and IL-18 were detected by ELISA and cellular autophagy was detected by Cyto-ID® autophagy detection kit. RESULTS Under an HG condition, the viability, migration, tube formation of HRMECs, and the protein expressions of NLRP3, ASC, Caspase-1, IL-1β, IL-18, LC3, and Beclin-1 as well as autophagy were all increased. Quercetin inhibited angiogenesis of HRMECs as well as the expressions of NLRP3, ASC, Caspase-1, IL-1β, IL-18, LC3, Beclin-1, and autophagy of HRMECs under a HG condition. The inhibitory effects of quercetin on angiogenesis, NLRP3 inflammasome and autophagy increased with the increase of its concentration. CONCLUSION The therapeutic potential of quercetin in retinal neovascularization of DR, and inhibition of NLRP3 inflammasome and autophagy signaling pathway may be involved.
Collapse
Affiliation(s)
- Rong Li
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Lin Chen
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Guo-Min Yao
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Hong-Lin Yan
- Department of Drug Clinical Trial Institution, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Li Wang
- Department of Scientific Research, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| |
Collapse
|
24
|
Sheu WHH, Lin KH, Wang JS, Lai DW, Lee WJ, Lin FY, Chen PH, Chen CH, Yeh HY, Wu SM, Shen CC, Lee MR, Liu SH, Sheu ML. Therapeutic Potential of Tpl2 (Tumor Progression Locus 2) Inhibition on Diabetic Vasculopathy Through the Blockage of the Inflammasome Complex. Arterioscler Thromb Vasc Biol 2021; 41:e46-e62. [PMID: 33176446 DOI: 10.1161/atvbaha.120.315176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Diabetic retinopathy, one of retinal vasculopathy, is characterized by retinal inflammation, vascular leakage, blood-retinal barrier breakdown, and neovascularization. However, the molecular mechanisms that contribute to diabetic retinopathy progression remain unclear. Approach and Results: Tpl2 (tumor progression locus 2) is a protein kinase implicated in inflammation and pathological vascular angiogenesis. Nε-carboxymethyllysine (CML) and inflammatory cytokines levels in human sera and in several diabetic murine models were detected by ELISA, whereas liquid chromatography-tandem mass spectrometry analysis was used for whole eye tissues. The CML and p-Tpl2 expressions on the human retinal pigment epithelium (RPE) cells were determined by immunofluorescence. Intravitreal injection of pharmacological inhibitor or NA (neutralizing antibody) was used in a diabetic rat model. Retinal leukostasis, optical coherence tomography, and H&E staining were used to observe pathological features. Sera of diabetic retinopathy patients had significantly increased CML levels that positively correlated with diabetic retinopathy severity and foveal thickness. CML and p-Tpl2 expressions also significantly increased in the RPE of both T1DM and T2DM diabetes animal models. Mechanistic studies on RPE revealed that CML-induced Tpl2 activation and NADPH oxidase, and inflammasome complex activation were all effectively attenuated by Tpl2 inhibition. Tpl2 inhibition by NA also effectively reduced inflammatory/angiogenic factors, retinal leukostasis in streptozotocin-induced diabetic rats, and RPE secretion of inflammatory cytokines. The attenuated release of angiogenic factors led to inhibited vascular abnormalities in the diabetic animal model. CONCLUSIONS The inhibition of Tpl2 can block the inflammasome signaling pathway in RPE and has potential clinical and therapeutic implications in diabetes-associated retinal microvascular dysfunction.
Collapse
MESH Headings
- Aged
- Angiogenesis Inhibitors/pharmacology
- Animals
- Cells, Cultured
- Cross-Sectional Studies
- Databases, Factual
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/diagnosis
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/enzymology
- Diabetic Retinopathy/enzymology
- Diabetic Retinopathy/etiology
- Diabetic Retinopathy/pathology
- Diabetic Retinopathy/prevention & control
- Female
- Humans
- Inflammasomes/antagonists & inhibitors
- Inflammasomes/metabolism
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/metabolism
- Male
- Mice, Inbred C57BL
- Middle Aged
- Pregnancy
- Prospective Studies
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Retinal Neovascularization/enzymology
- Retinal Neovascularization/etiology
- Retinal Neovascularization/pathology
- Retinal Neovascularization/prevention & control
- Retinal Pigment Epithelium/drug effects
- Retinal Pigment Epithelium/enzymology
- Retinal Pigment Epithelium/pathology
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine (W.H.-H.S., J.-S.W.), Taichung Veterans General Hospital, Taiwan
- Institute of Biomedical Sciences (W.H.-H.S., J.-S.W., D.-W.L., S.-M.W., M.-L.S.), National Chung Hsing University, Taichung, Taiwan
| | - Keng-Hung Lin
- Department of Ophthalmology (K.-H.L.), Taichung Veterans General Hospital, Taiwan
| | - Jun-Sing Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine (W.H.-H.S., J.-S.W.), Taichung Veterans General Hospital, Taiwan
- Institute of Biomedical Sciences (W.H.-H.S., J.-S.W., D.-W.L., S.-M.W., M.-L.S.), National Chung Hsing University, Taichung, Taiwan
| | - De-Wei Lai
- Institute of Biomedical Sciences (W.H.-H.S., J.-S.W., D.-W.L., S.-M.W., M.-L.S.), National Chung Hsing University, Taichung, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research (W.-J.L., M.-L.S.), Taichung Veterans General Hospital, Taiwan
| | - Fu-Yu Lin
- Department of Ophthalmology, Chiayi Branch Taichung Veterans General Hospital, Taiwan (F.-Y.L.)
| | | | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine (C.-H.C.), Taichung Veterans General Hospital, Taiwan
| | - Hsiang-Yu Yeh
- Department of Nutrition and Institute of Biomedical Nutrition, Hung-Kuang University, Taichung, Taiwan (H.-Y.Y.)
| | - Sheng-Mao Wu
- Institute of Biomedical Sciences (W.H.-H.S., J.-S.W., D.-W.L., S.-M.W., M.-L.S.), National Chung Hsing University, Taichung, Taiwan
| | - Chin-Chang Shen
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.)
| | - Maw-Rong Lee
- Department of Chemistry (M.-R.L.), National Chung Hsing University, Taichung, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.)
| | - Meei-Ling Sheu
- Department of Medical Research (W.-J.L., M.-L.S.), Taichung Veterans General Hospital, Taiwan
- Institute of Biomedical Sciences (W.H.-H.S., J.-S.W., D.-W.L., S.-M.W., M.-L.S.), National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine (M.-L.S.), National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
25
|
The cells involved in the pathological process of diabetic retinopathy. Biomed Pharmacother 2020; 132:110818. [PMID: 33053509 DOI: 10.1016/j.biopha.2020.110818] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Diabetic retinopathy(DR) is an expanding global health problem, the exact mechanism of which has not yet been clarified clearly, new insights into retinal physiology indicate that diabetes-induced retinal dysfunction may be viewed as an impairment of the retinal neurovascular unit, including retinal ganglion cells, glial cells, endothelial cells, pericytes, and retinal pigment epithelium. Different retinal cells have unique structure and functions, while the interactions among which are less known. Cells are the basic unit of organism structure and function, their impairment could lead to abnormal physiological functions and even organ disorder. Considering the body is multi-dimension and the complexity of DR, one point or a single type of cell can't be used to illustrate the mechanism of occurrence and development of DR. In this review, we provided a systematic and comprehensive elaboration of the cells that are involved in the process of DR. We underlined the importance of considering the neurovascular unit, not just retinal vascular and neural cells, in understanding the pathophysiology of DR. Our studies provided a better understanding of the pathological process in DR and provide a theoretical basis for further research.
Collapse
|
26
|
Yang B, Ma G, Liu Y. Z-Ligustilide Ameliorates Diabetic Rat Retinal Dysfunction Through Anti-Apoptosis and an Antioxidation Pathway. Med Sci Monit 2020; 26:e925087. [PMID: 33011733 PMCID: PMC7542994 DOI: 10.12659/msm.925087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Diabetic retinopathy (DR) is one of the major causes of vision impairment. Z-ligustilide (3-butylidene-4,5-dihydrophthalide; Z-LIG) is an important volatile oil from the Chinese herb Angelica sinensis (Oliv.) Diels. It has been extensively studied and reportedly has anti-inflammatory, antioxidant, antitumor, analgesic, vasodilatory, and neuroprotective effects. Its effects on DR, however, remain obscure. In this study, we attempted to explore the protective effects of Z-LIG on retinal dysfunction and the potential underlying mechanisms. Material/Methods A diabetic rat model was constructed with streptozotocin injection. Three study groups were constituted: control (CON), diabetic model (DM), and DM+Z-LIG. The DM+Z-LIG group was injected intraperitoneally with 10 mg/kg of Z-LIG. The other groups received the same volume of 3% solution of polysorbate 80. After a 12-week intervention, a series of assessments were performed, including tests for retinal function, morphology, and molecular biology. Results Z-LIG treatment significantly elevated b-wave and OPs2-wave amplitude and thickened the inner layer of the nucleus of the retina, and the outer plexiform and nuclear layers (INL+OPL+ONL). Moreover, the rate of apoptosis and expression of bcl-2- associated X protein (BAX) and cleaved-Caspase-3 were clearly reduced, and the expression of bcl-2 was raised by Z-LIG in retinas of diabetic mice. In addition, the levels of retinal proinflammatory cytokines interleukin-1 and tumor necrosis factor-α were downregulated by Z-LIG. Furthermore, Z-LIG inhibited expression of vascular endothelial growth factor-α (VEGF-α) at the mRNA and protein levels. Conclusions Z-LIG can inhibit inflammatory response and cell apoptosis in retinas of diabetic rats by repressing the VEGF-α pathway. Therefore, it may serve as a potential therapeutic agent for DR.
Collapse
Affiliation(s)
- Bing Yang
- Department of Endocrinology and Metabolism, 3201 Hospital, Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi, China (mainland)
| | - Guobin Ma
- Department of Endocrinology and Metabolism, 3201 Hospital, Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi, China (mainland)
| | - Yang Liu
- Department of Endocrinology and Metabolism, 3201 Hospital, Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi, China (mainland)
| |
Collapse
|
27
|
Serum Glycoproteomic Alterations in Patients with Diabetic Retinopathy. Proteomes 2020; 8:proteomes8030025. [PMID: 32933222 PMCID: PMC7565786 DOI: 10.3390/proteomes8030025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
The precise molecular mechanisms of diabetic retinopathy (DR) pathogenesis are unclear, and treatment options are limited. There is an urgent need to discover and develop novel therapeutic targets for the treatment of this disease. Glycosylation is a post-translational modification that plays a critical role in determining protein structure, function, and stability. Recent studies have found that serum glycoproteomic changes are associated with the presence or progression of several inflammatory diseases. However, very little is known about the glycoproteomic changes associated with DR. In this study, glycoproteomic profiling of the serum of diabetic patients with and without DR was performed. A total of 15 glycopeptides from 11 glycoproteins were found to be significantly altered (5 upregulated and 10 downregulated) within the serum glycoproteome of DR patients. These glycoproteins are known to be involved in the maintenance of the extracellular matrix and complement system through peptidolytic activity or regulation.
Collapse
|
28
|
Vitamin D Protects against Oxidative Stress and Inflammation in Human Retinal Cells. Antioxidants (Basel) 2020; 9:antiox9090838. [PMID: 32911690 PMCID: PMC7555517 DOI: 10.3390/antiox9090838] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy is a vision-threatening microvascular complication of diabetes and is one of the leading causes of blindness. Oxidative stress and inflammation play a major role in its pathogenesis, and new therapies counteracting these contributors could be of great interest. In the current study, we investigated the role of vitamin D against oxidative stress and inflammation in human retinal pigment epithelium (RPE) and human retinal endothelial cell lines. We demonstrate that vitamin D effectively counteracts the oxidative stress induced by hydrogen peroxide (H2O2). In addition, the increased levels of proinflammatory proteins such as Interleukin (IL)-6, IL-8, Monocyte chemoattractant protein (MCP)-1, Interferon (IFN)-γ, and tumor necrosis factor (TNF)-α triggered by lipopolysaccharide (LPS) exposure were significantly decreased by vitamin D addition. Interestingly, the increased IL-18 only decreased by vitamin D addition in endothelial cells but not in RPE cells, suggesting a main antiangiogenic role under inflammatory conditions. Moreover, H2O2 and LPS induced the alteration and morphological damage of tight junctions in adult retinal pigment epithelium (ARPE-19) cells that were restored under oxidative and inflammatory conditions by the addition of vitamin D to the media. In conclusion, our data suggest that vitamin D could protect the retina by enhancing antioxidant defense and through exhibiting anti-inflammatory properties.
Collapse
|
29
|
Saenz de Viteri M, Hernandez M, Bilbao-Malavé V, Fernandez-Robredo P, González-Zamora J, Garcia-Garcia L, Ispizua N, Recalde S, Garcia-Layana A. A Higher Proportion of Eicosapentaenoic Acid (EPA) When Combined with Docosahexaenoic Acid (DHA) in Omega-3 Dietary Supplements Provides Higher Antioxidant Effects in Human Retinal Cells. Antioxidants (Basel) 2020; 9:E828. [PMID: 32899655 PMCID: PMC7555332 DOI: 10.3390/antiox9090828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Retinal pigment epithelium (RPE) is a key regulator of retinal function and is directly related to the transport, delivery, and metabolism of long-chain n-3 polyunsaturated fatty acids (n3-PUFA), in the retina. Due to their functions and location, RPE cells are constantly exposed to oxidative stress. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown to have antioxidant effects by different mechanisms. For this reason, we designed an in vitro study to compare 10 formulations of DHA and EPA supplements from different origins and combined in different proportions, evaluating their effect on cell viability, cell proliferation, reactive oxygen species production, and cell migration using ARPE-19 cells. Furthermore, we assessed their ability to rescue RPE cells from the oxidative conditions seen in diabetic retinopathy. Our results showed that the different formulations of n3-PUFAs have a beneficial effect on cell viability and proliferation and are able to restore oxidative induced RPE damage. We observed that the n3-PUFA provided different results alone or combined in the same supplement. When combined, the best results were obtained in formulations that included a higher proportion of EPA than DHA. Moreover, n3-PUFA in the form of ethyl-esters had a worse performance when compared with triglycerides or phospholipid based formulations.
Collapse
Affiliation(s)
- Manuel Saenz de Viteri
- Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.S.d.V.); (V.B.-M.); (J.G.-Z.); (A.G.-L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.H.); (L.G.-G.); (N.I.); (S.R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - María Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.H.); (L.G.-G.); (N.I.); (S.R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Valentina Bilbao-Malavé
- Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.S.d.V.); (V.B.-M.); (J.G.-Z.); (A.G.-L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.H.); (L.G.-G.); (N.I.); (S.R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Patricia Fernandez-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.H.); (L.G.-G.); (N.I.); (S.R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Jorge González-Zamora
- Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.S.d.V.); (V.B.-M.); (J.G.-Z.); (A.G.-L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.H.); (L.G.-G.); (N.I.); (S.R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Laura Garcia-Garcia
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.H.); (L.G.-G.); (N.I.); (S.R.)
| | - Nahia Ispizua
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.H.); (L.G.-G.); (N.I.); (S.R.)
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.H.); (L.G.-G.); (N.I.); (S.R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Alfredo Garcia-Layana
- Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.S.d.V.); (V.B.-M.); (J.G.-Z.); (A.G.-L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.H.); (L.G.-G.); (N.I.); (S.R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| |
Collapse
|
30
|
Khaloo P, Qahremani R, Rabizadeh S, Omidi M, Rajab A, Heidari F, Farahmand G, Bitaraf M, Mirmiranpour H, Esteghamati A, Nakhjavani M. Nitric oxide and TNF-α are correlates of diabetic retinopathy independent of hs-CRP and HbA1c. Endocrine 2020; 69:536-541. [PMID: 32494901 DOI: 10.1007/s12020-020-02353-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Regarding the role of inflammation in progression of diabetes this study was conducted to investigate the association between inflammatory biomarkers such as nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and high-sensitivity C-reactive protein (hs-CRP) with the chance of existence of diabetic retinopathy and its progression in patients with diabetes. METHODS A total of 83 patients with T2DM (Type 2 diabetes mellitus) were divided into three groups of patients with proliferative diabetic retinopathy (PDR), patients with non-proliferative diabetic retinopathy (NPDR) and patients without diabetic retinopathy (NDR) based on ophthalmologic funduscopic examination. Twenty six healthy controls were also enrolled. Blood samples were taken after 12 h of overnight fasting, NO, TNF-α, and hs-CRP were measured. Association of the level of these biomarkers with retinopathy was analyzed. RESULTS The levels of TNF-α, NO and hs-CRP were higher among patients with diabetic retinopathy. Multinomial Logistic Regression model showed that TNF-α and NO could predict the presence of retinopathy among patients with diabetes when adjusted for hs-CRP, HbA1c, FBS, gender, total cholesterol, triglyceride, HDL, LDL, BMI, and age (respectively OR = 1.76, CI 95% = 1.01-3.02, p = 0.046 and OR = 1.12, CI 95% = 1.05-1.18, p < 0.001); however they could not predict the severity of retinopathy. In ROC analysis AUC for TNFα was 0.849 (p < 0.001) and for NO was 0.907 (p < 0.001). Serum TNF-α level of 7.10 pmol/L could be suggestive of the presence of retinopathy (sensitivity = 92.2% and specificity = 66.0%), also serum NO level of 45.96 μmol/L could be suggestive of the presence of retinopathy (sensitivity = 96.1% and specificity = 86%). CONCLUSIONS Our results suggest elevated levels of NO and TNF-α can be suggestive of diabetic retinopathy.
Collapse
Affiliation(s)
- Pegah Khaloo
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reihane Qahremani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Omidi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Rajab
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Firouzeh Heidari
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Farahmand
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoume Bitaraf
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mirmiranpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Al-Rashed F, Sindhu S, Arefanian H, Al Madhoun A, Kochumon S, Thomas R, Al-Kandari S, Alghaith A, Jacob T, Al-Mulla F, Ahmad R. Repetitive Intermittent Hyperglycemia Drives the M1 Polarization and Inflammatory Responses in THP-1 Macrophages Through the Mechanism Involving the TLR4-IRF5 Pathway. Cells 2020; 9:1892. [PMID: 32806763 PMCID: PMC7463685 DOI: 10.3390/cells9081892] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Repetitive intermittent hyperglycemia (RIH) is an independent risk factor for complications associated with type-2 diabetes (T2D). Glucose fluctuations commonly occur in T2D patients with poor glycemic control or following intensive therapy. Reducing blood glucose as well as glucose fluctuations is critical to the control of T2D and its macro-/microvascular complications. The interferon regulatory factor (IRF)-5 located downstream of the nutrient sensor toll-like receptor (TLR)-4, is emerging as a key metabolic regulator. It remains unclear how glucose fluctuations may alter the IRF5/TLR4 expression and inflammatory responses in monocytes/macrophages. To investigate this, first, we determined IRF5 gene expression by real-time qRT-PCR in the white adipose tissue samples from 39 T2D and 48 nondiabetic individuals. Next, we cultured THP-1 macrophages in hypo- and hyperglycemic conditions and compared, at the protein and transcription levels, the expressions of IRF5, TLR4, and M1/M2 polarization profile and inflammatory markers against control (normoglycemia). Protein expression was assessed using flow cytometry, ELISA, Western blotting, and/or confocal microscopy. IRF5 silencing was achieved by small interfering RNA (siRNA) transfection. The data show that adipose IRF5 gene expression was higher in T2D than nondiabetic counterparts (P = 0.006), which correlated with glycated hemoglobin (HbA1c) (r = 0.47/P < 0.001), homeostatic model assessment of insulin resistance (HOMA-IR) (r = 0.23/P = 0.03), tumor necrosis factor (TNF)-α (r = 0.56/P < 0.0001), interleukin (IL)-1β (r = 0.40/P = 0.0009), and C-C motif chemokine receptor (CCR)-2 (r = 0.49/P < 0.001) expression. IRF5 expression in macrophages was induced/upregulated (P < 0.05) by hypoglycemia (3 mM/L), persistent hyperglycemia (15 mM/L-25 mM/L), and RIH/glucose fluctuations (3-15 mM/L) as compared to normoglycemia (5 mM/L). RIH/glucose fluctuations also induced M1 polarization and an inflammatory profile (CD11c, IL-1β, TNF-α, IL-6, and monocyte chemoattractant protein (MCP)-1) in macrophages. RIH/glucose fluctuations also drove the expression of matrix metalloproteinase (MMP)-9 (P < 0.001), which is a known marker for cardiovascular complication in T2D patients. Notably, all these changes were counteracted by IRF5 silencing in macrophages. In conclusion, RIH/glucose fluctuations promote the M1 polarization and inflammatory responses in macrophages via the mechanism involving TLR4-IRF5 pathway, which may have significance for metabolic inflammation.
Collapse
Affiliation(s)
- Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (H.A.); (S.K.); (R.T.); (S.A.-K.); (T.J.)
- Kuwait Ministry of Health, Immunology Unit, Mubarak Al Kabeer Hospital, Kuwait City 30000, Kuwait
| | - Sardar Sindhu
- Animal & Imaging Core Facility, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (S.S.); (A.A.M.)
| | - Hossein Arefanian
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (H.A.); (S.K.); (R.T.); (S.A.-K.); (T.J.)
| | - Ashraf Al Madhoun
- Animal & Imaging Core Facility, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (S.S.); (A.A.M.)
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| | - Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (H.A.); (S.K.); (R.T.); (S.A.-K.); (T.J.)
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (H.A.); (S.K.); (R.T.); (S.A.-K.); (T.J.)
| | - Sarah Al-Kandari
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (H.A.); (S.K.); (R.T.); (S.A.-K.); (T.J.)
| | | | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (H.A.); (S.K.); (R.T.); (S.A.-K.); (T.J.)
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (H.A.); (S.K.); (R.T.); (S.A.-K.); (T.J.)
| |
Collapse
|
32
|
Shrikanth CB, Nandini CD. AMPK in microvascular complications of diabetes and the beneficial effects of AMPK activators from plants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152808. [PMID: 30935723 DOI: 10.1016/j.phymed.2018.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Diabetes mellitus is a multifactorial disorder with the risk of micro- and macro-vascular complications. High glucose-induced derangements in metabolic pathways are primarily associated with the initiation and progression of secondary complications namely, diabetic nephropathy, neuropathy, and retinopathy. Adenosine monophosphate-activated protein kinase (AMPK) has emerged as an attractive therapeutic target to treat various metabolic disorders including diabetes mellitus. It is a master metabolic regulator that helps in maintaining cellular energy homeostasis by promoting ATP-generating catabolic pathways and inhibiting ATP-consuming anabolic pathways. Numerous pharmacological and plant-derived bioactive compounds that increase AMP-activated protein kinase activation has shown beneficial effects by mitigating secondary complications namely retinopathy, nephropathy, and neuropathy. PURPOSE The purpose of this review is to highlight current knowledge on the role of AMPK and its activators from plant origin in diabetic microvascular complications. METHODS Search engines such as Google Scholar, PubMed, Science Direct and Web of Science are used to extract papers using relevant key words. Papers mainly focusing on the role of AMPK and AMPK activators from plant origin in diabetic nephropathy, retinopathy, and neuropathy was chosen to be highlighted. RESULTS According to results, decrease in AMPK activation during diabetes play a causative role in the pathogenesis of diabetic microvascular complications. Some of the plant-derived bioactive compounds were beneficial in restoring AMPK activity and ameliorating diabetic microvascular complications. CONCLUSION AMPK activators from plant origin are beneficial in mitigating diabetic microvascular complications. These pieces of evidence will be helpful in the development of AMPK-centric therapies to mitigate diabetic microvascular complications.
Collapse
Affiliation(s)
- C B Shrikanth
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India
| | - C D Nandini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India.
| |
Collapse
|
33
|
Urbančič M, Petrovič D, Živin AM, Korošec P, Fležar M, Petrovič MG. Correlations between vitreous cytokine levels and inflammatory cells in fibrovascular membranes of patients with proliferative diabetic retinopathy. Mol Vis 2020; 26:472-482. [PMID: 32606566 PMCID: PMC7316633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/24/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose The purpose of this study was to investigate the levels of cytokines in the vitreous, and their correlation with the density of inflammatory cells in fibrovascular membranes (FVMs) in patients with proliferative diabetic retinopathy (PDR) to evaluate intraocular inflammatory conditions with regard to disease activity. Methods Thirty-three patients (33 eyes) with PDR requiring vitreoretinal surgery because of FVMs and tractional detachment were enrolled in the study, and compared with 20 patients (20 eyes) with macular hole (MH; control group). All patients underwent complete ophthalmological examinations before surgery. The activity of the disease was noted in patients with PDR. Samples of vitreous and blood were taken, and cytokine (MCP-1, IL-8, IL-6, VEGF, IL-1β, TNF-α, MIP-1α, MIP-1β, IL-10, and IL-12) levels were measured using cytometric bead array (CBA). Samples of FVMs were analyzed with immunohistochemical methods for the presence of inflammatory cells (CD45+, CD14+, CD3+, CD4+, CD8+, and CD19+ cells), and the numerical areal density was calculated (NA). Spearman's correlation was used to assess the association between variables. The Mann-Whitney test was used to assess the differences between independent groups. The Wilcoxon signed-rank test was used for assessing differences between two related groups. A p value of less than 0.05 was considered statistically significant. Results Patients with active PDR had statistically significantly higher levels of MCP-1 (p = 0.003), VEGF (p = 0.009), and IL-8 (p = 0.02) in the vitreous in comparison with those with inactive PDR. CD45+, CD14+, CD3+, CD4+, CD8+, and CD19+ cells were identified in FVMs for patients with PDR. Statistically significantly higher numerical areal density of T lymphocytes (CD3+, CD4+, and CD8+) was demonstrated in patients with active PDR in comparison with patients with inactive PDR. Moderate to strong correlations were found between either MCP-1 or IL-8 in the vitreous, and the numerical areal density of cells (CD45+, CD3+, CD4+, and CD8+) in the FVMs, and weaker between either MCP-1 or IL-8 in the vitreous and the numerical areal density of CD14+ cells in the FVMs. Conclusions The correlation of cytokine (MCP-1 and IL-8) vitreous levels with the density of inflammatory cells in FVMs, and differences in cytokine levels in the vitreous between patients with active and inactive PDR, and between the vitreous and serum in PDR indicate the importance of local intraocular inflammation in patients with PDR.
Collapse
Affiliation(s)
- Mojca Urbančič
- Eye Hospital, University Medical Centre Ljubljana, Slovenia
| | - Daniel Petrovič
- Institute of Histology and Embryology, Faculty of medicine, University of Ljubljana, Slovenia
| | | | - Peter Korošec
- Laboratory for Clinical Immunology and Molecular Genetics, University Hospital Golnik, Slovenia
| | - Matjaž Fležar
- Laboratory for Clinical Immunology and Molecular Genetics, University Hospital Golnik, Slovenia
| | - Mojca Globočnik Petrovič
- Eye Hospital, University Medical Centre Ljubljana, Slovenia
- Faculty of medicine, University of Ljubljana, Slovenia
| |
Collapse
|
34
|
Robinson R, Srinivasan M, Shanmugam A, Ward A, Ganapathy V, Bloom J, Sharma A, Sharma S. Interleukin-6 trans-signaling inhibition prevents oxidative stress in a mouse model of early diabetic retinopathy. Redox Biol 2020; 34:101574. [PMID: 32422539 PMCID: PMC7231846 DOI: 10.1016/j.redox.2020.101574] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Diabetic retinopathy (DR), a microvascular complication of diabetes, is the leading cause of visual disability and blindness in diabetic patients. Chronic hyperglycemia leads to increased oxidative stress and inflammation in the retina, resulting in microvascular damage. Our recent in vitro studies have demonstrated that inhibition of interleukin-6 (IL-6) trans-signaling significantly reduces oxidative stress in retinal endothelial cells. The purpose of this study was to further explore the relationship between IL-6 trans-signaling and oxidative stress using a streptozotocin (STZ) induced mouse model of early diabetic retinopathy. Methods Diabetes was induced in eight week-old male C57BL/6J mice using STZ injections. sgp130Fc (mouse sgp130Fc protein) treatment was used for inhibition of IL-6 trans-signaling. Studies were conducted to evaluate the effects of IL-6 trans-signaling on oxidative balance at the systemic and retinal level. Results Decreased antioxidant capacity and increased oxidative stress was observed in diabetic mice, which returned to near-normal levels with sgp130Fc treatment. Similarly, superoxide levels, lipid peroxidation, and markers of oxidative DNA damage were increased in the diabetic retina, and these effects were abrogated by sgp130Fc treatment. Inhibition of IL-6 trans-signaling also restored normal expression of catalase and endothelial nitric oxide synthase in mouse retinas. Conclusions Inhibition of IL-6 trans-signaling significantly reduces diabetes-induced oxidative damage at the systemic level and in the retina. These findings provide further evidence for the role of IL-6 trans-signaling in diabetes-mediated oxidative stress. Decreased antioxidant capacity and increased oxidative stress in mice with DR. Inhibition of L-6 trans-signaling restores catalase and eNOS in the retina. Inhibition of IL-6 trans-signaling reduces retinal oxidative damage.
Collapse
Affiliation(s)
- Rebekah Robinson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mukund Srinivasan
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Arul Shanmugam
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Alexander Ward
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Veena Ganapathy
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Justin Bloom
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
35
|
The Correlation between Hemoglobin A1c (HbA1c) and Hyperreflective Dots (HRD) in Diabetic Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093154. [PMID: 32369922 PMCID: PMC7246917 DOI: 10.3390/ijerph17093154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Hyperreflective dots (HRD) are activated retinal microglial cells induced by retinal inflammation in diabetic patients. This study was conducted to compare the HRD count of normal and diabetic subjects; to determine the correlation between hemoglobin A1c (HbA1c) levels and HRD count; to determine HbA1c cut-off levels for the appearance of HRD in diabetic patients. A cross-sectional study was conducted among normal and diabetic patients. Fundus photos, SD-OCT images and HbA1c levels were taken. A total of 25 normal subjects, 32 diabetics without retinopathy and 26 mild-to-moderate nonproliferative diabetic retinopathy (NPDR) diabetics were recruited. There was a statistically significant difference between the mean count of HRD among the normal group, the diabetic without retinopathy group and the mild-to-moderate NPRD group. The mean HRD count in the inner retina layer was significantly higher compared to the outer retina layer. There was a significant linear relationship between the HbA1c levels and HRD count. Using the receiver operating curve, the HbA1c level of 5.4% was chosen as the cut-off point for the appearance of HRD. The positive linear correlation between the HbA1c levels and the appearance of HRD may indicate that hyperglycemia could activate retina microglial cells in diabetic patients.
Collapse
|
36
|
Rishi P, Rishi E, Attiku Y, Dhami A, Iyer V. Real-world experience with pro re nata dosing of intravitreal dexamethasone implant for eyes with refractory diabetic macular edema. GMS OPHTHALMOLOGY CASES 2020; 10:Doc21. [PMID: 32676266 PMCID: PMC7332721 DOI: 10.3205/oc000148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aims: To evaluate treatment outcomes of pro re nata dosing of intravitreal dexamethasone implant in eyes with refractory diabetic macular edema (DME) amongst Indian subjects. Methods and material: Retrospective, interventional case series. Medical records of 28 eyes of 23 patients with refractory DME who underwent intravitreal dexamethasone (700 µ) implant were reviewed. Paired t-test was carried out to measure mean change in the parameters evaluated. Mann-Whitney U test and Fisher’s exact t-test were done to explore differences between groups receiving single or multiple injections. Results: Best corrected visual acuity (BCVA) and central macular thickness (CMT) at baseline were 0.85 (±0.44) and 612 µm (±123), respectively. Mean CMT over 6 months (measured monthly) following injection was 340±119 µm (p=0.001), 346±150 µm (p=0.02), 368±169 µm (p=0.02), 304±174 µm (p=0.001), 525±216 µm (p=0.94) and 532±201 µm (p=0.46), respectively. Mean BCVA at each month following injection was 0.68±0.36 (p=0.02), 0.75±0.45 (p=0.42), 0.55±0.40 (p=0.11), 0.63±0.40 (p=0.12), 0.78±0.30 (p=0.90) and 0.60±0.47 (p=0.92), respectively. Mean follow-up was 12 months (range: 6–33 months). Mean BCVA and CMT at mean 12 months were 0.72±0.46 (p=0.10) and 358 µm±189 (p=0.0001), respectively. Seven eyes had raised IOP; five eyes required cataract extraction. Conclusions: Intravitreal dexamethasone implant is effective in treatment of refractory DME. However, its therapeutic effect lasts for about 4 months.
Collapse
Affiliation(s)
- Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralya, Chennai, India
| | - Ekta Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralya, Chennai, India
| | - Yamini Attiku
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralya, Chennai, India
| | - Abhinav Dhami
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralya, Chennai, India
| | - Vandana Iyer
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralya, Chennai, India
| |
Collapse
|
37
|
Specialized pro-resolving mediators in diabetes: novel therapeutic strategies. Clin Sci (Lond) 2019; 133:2121-2141. [DOI: 10.1042/cs20190067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
AbstractDiabetes mellitus (DM) is an important metabolic disorder characterized by persistent hyperglycemia resulting from inadequate production and secretion of insulin, impaired insulin action, or a combination of both. Genetic disorders and insulin receptor disorders, environmental factors, lifestyle choices and toxins are key factors that contribute to DM. While it is often referred to as a metabolic disorder, modern lifestyle choices and nutrient excess induce a state of systemic chronic inflammation that results in the increased production and secretion of inflammatory cytokines that contribute to DM. It is chronic hyperglycemia and the low-grade chronic-inflammation that underlies the development of microvascular and macrovascular complications leading to damage in a number of tissues and organs, including eyes, vasculature, heart, nerves, and kidneys. Improvements in the management of risk factors have been beneficial, including focus on intensified glycemic control, but most current approaches only slow disease progression. Even with recent studies employing SGLT2 inhibitors demonstrating protection against cardiovascular and kidney diseases, kidney function continues to decline in people with established diabetic kidney disease (DKD). Despite the many advances and a greatly improved understanding of the pathobiology of diabetes and its complications, there remains a major unmet need for more effective therapeutics to prevent and reverse the chronic complications of diabetes. More recently, there has been growing interest in the use of specialised pro-resolving mediators (SPMs) as an exciting therapeutic strategy to target diabetes and the chronic complications of diabetes.
Collapse
|
38
|
Proteomic Biomarkers of Retinal Inflammation in Diabetic Retinopathy. Int J Mol Sci 2019; 20:ijms20194755. [PMID: 31557880 PMCID: PMC6801709 DOI: 10.3390/ijms20194755] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR), a sight-threatening neurovasculopathy, is the leading cause of irreversible blindness in the developed world. DR arises as the result of prolonged hyperglycemia and is characterized by leaky retinal vasculature, retinal ischemia, retinal inflammation, angiogenesis, and neovascularization. The number of DR patients is growing with an increase in the elderly population, and therapeutic approaches are limited, therefore, new therapies to prevent retinal injury and enhance repair are a critical unmet need. Besides vascular endothelial growth factor (VEGF)-induced vascular proliferation, several other mechanisms are important in the pathogenesis of diabetic retinopathy, including vascular inflammation. Thus, combining anti-VEGF therapy with other new therapies targeting these pathophysiological pathways of DR may further optimize treatment outcomes. Technological advancements have allowed for high-throughput proteomic studies examining biofluids such as aqueous humor, vitreous humor, tear, and serum. Many DR biomarkers have been identified, especially proteins involved in retinal inflammatory processes. This review attempts to summarize the proteomic biomarkers of DR-associated retinal inflammation identified over the last several years.
Collapse
|
39
|
Niu T, Zhao M, Jiang Y, Xing X, Shi X, Cheng L, Jin H, Liu K. Endomucin restores depleted endothelial glycocalyx in the retinas of streptozotocin-induced diabetic rats. FASEB J 2019; 33:13346-13357. [PMID: 31545913 DOI: 10.1096/fj.201901161r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endothelial glycocalyx plays a significant role in the development and progression of diabetic complications. Endomucin (EMCN) is an anti-inflammatory membrane glycoprotein that is mainly expressed in venous and capillary endothelial cells. However, the function of EMCN in diabetic retinopathy (DR) progression is still completely unknown. We first investigated the change of EMCN expression in the retina and human retinal microvascular endothelial cells. We then overexpressed EMCN in the retina with adeno-associated virus and induced DR with streptozotocin (STZ). We analyzed EMCN's effect on the integrity of endothelial glycocalyx under conditions of DR. Furthermore, we investigated EMCN's protective effect against inflammation and blood-retinal barrier (BRB) destruction. We found that EMCN is specifically expressed in retinal endothelial cells and that its levels are decreased during hyperglycemia in vitro and in vivo. Overexpression of EMCN can restore the retinal endothelial glycocalyx of STZ-induced diabetic rats. Furthermore, EMCN overexpression can decrease leukocyte-endothelial adhesion to ameliorate inflammation and stabilize the BRB to inhibit vessel leakage in rats with DR. EMCN may protect patients with diabetes from retinal vascular degeneration by restoring the endothelial glycocalyx. EMCN may thus represent a novel therapeutic strategy for DR because it targets endothelial glycocalyx degradation associated with this disease.-Niu, T., Zhao, M., Jiang, Y., Xing, X., Shi, X., Cheng, L., Jin, H., Liu, K. Endomucin restores depleted endothelial glycocalyx in the retinas of streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengya Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Jiang
- Department of Ophthalmology, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Cheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiyi Jin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Kumari N, Karmakar A, Ganesan SK. Targeting epigenetic modifications as a potential therapeutic option for diabetic retinopathy. J Cell Physiol 2019; 235:1933-1947. [PMID: 31531859 DOI: 10.1002/jcp.29180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in adults of working age (20-65 years) in developed countries. The metabolic memory phenomena (persistent effect of a glycemic insult even after retrieved) associated with it has increased the risk of developing the complication even after the termination of the glycemic insult. Hence, the need for finding early diagnosis and treatment options has been of great concern. Epigenetic modifications which generally occur during the beginning stages of the disease are responsible for the metabolic memory effect. Therefore, the therapy based on the reversal of the associated epigenetic mechanism can bring new insight in the area of early diagnosis and treatment mechanism. This review discusses the diabetic retinopathy, its pathogenesis, current treatment options, need of finding novel treatment options, and different epigenetic alterations associated with DR. However, the main focus is emphasized on various epigenetic modifications particularly DNA methylation which are responsible for the initiation and progression of diabetic retinopathy and the use of different epigenetic inhibitors as a novel therapeutic option for DR.
Collapse
Affiliation(s)
- Nidhi Kumari
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditi Karmakar
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Senthil Kumar Ganesan
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
41
|
Midena E, Micera A, Frizziero L, Pilotto E, Esposito G, Bini S. Sub-threshold micropulse laser treatment reduces inflammatory biomarkers in aqueous humour of diabetic patients with macular edema. Sci Rep 2019; 9:10034. [PMID: 31296907 PMCID: PMC6624368 DOI: 10.1038/s41598-019-46515-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/21/2019] [Indexed: 12/23/2022] Open
Abstract
Subthreshold micropulse laser (SMPL) is a tissue-sparing technique whose efficacy is demonstrated for diabetic macular edema (DME) treatment. However, its mechanism of action is poorly known. A prospective observational study was performed on naïve DME patients treated with SMPL, to evaluate the changes of aqueous humor (AH) inflammatory and vaso-active biomarkers after treatments. AH samples of eighteen DME eyes were collected before and after SMPL. Ten non-diabetic AH samples served as controls. Full ophthalmic evaluation, spectral domain optical coherence tomography (SD-OCT) and fluorescein angiography were performed in DME group. Glass chip protein array was used to quantify 58 inflammatory molecules. Central retinal thickness (CRT) and visual acuity were also monitored. Several molecules showed different concentrations in DME eyes versus controls (p value < 0.05). Fas Ligand (FasL), Macrophage Inflammatory Proteins (MIP)-1α, Regulated on Activation Normal T Cell Expressed and Secreted (RANTES) and Vascular Endothelial Growth Factor (VEGF) were increased in DME at baseline versus controls and decreased after SMPL treatments (p < 0.05). CRT reduction and visual acuity improvement were also found. Inflammatory cytokines, mainly produced by the retinal microglia, were significantly reduced after treatments, suggesting that SMPL may act by de-activating microglial cells, and reducing local inflammatory diabetes-related response.
Collapse
Affiliation(s)
- Edoardo Midena
- Department of Ophthalmology, University of Padova, Padova, Italy. .,IRCCS - Fondazione Bietti, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Chen P, Miao Y, Yan P, Wang XJ, Jiang C, Lei Y. MiR-455-5p ameliorates HG-induced apoptosis, oxidative stress and inflammatory via targeting SOCS3 in retinal pigment epithelial cells. J Cell Physiol 2019; 234:21915-21924. [PMID: 31041827 DOI: 10.1002/jcp.28755] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness in adults with diabetes mellitus. Numerous microRNAs (miRNAs) have been identified to modulate the pathogenesis of DR. The main purpose of this study was to evaluate the potential roles of miR-455-5p in high glucose (HG)-treated retinal pigment epithelial (RPE) cells and underlying mechanisms. Our present investigation discovered that the expression of miR-455-5p was apparently downregulated in ARPE-19 cells stimulated with HG. In addition, forced expression of miR-455-5p markedly enhanced cell viability and restrained HG-induced apoptosis accompanied by decreased BCL2-associated X protein (Bax)/B-cell leukemia/lymphoma 2 (Bcl-2) ratio and expression of apoptotic marker cleaved caspase-3 during HG challenged. Subsequently, augmentation of miR-455-5p remarkably alleviated HG-triggered oxidative stress injury as reflected by decreased the production of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) content as well as NADPH oxidase 4 expression, concomitant with enhanced the activities of superoxide dismutase, catalase, and GPX stimulated with HG. Furthermore, enforced expression of miR-455-5p effectively ameliorated HG-stimulated inflammatory response as exemplified by repressing the secretion of inflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumour necrosis factor-α in ARPE-19 cells challenged by HG. Most importantly, we successfully identified suppressor of cytokine signaling 3 (SOCS3) as a direct target gene of miR-455-5p, and miR-455-5p negatively regulated the expression of SOCS3. Mechanistically, restoration of SOCS3 abrogated the beneficial effects of miR-455-5p on apoptosis, accumulation of ROS, and inflammatory factors production in response to HG. Taken together, these findings demonstrated that miR-455-5p relieved HG-induced damage through repressing apoptosis, oxidant stress, and inflammatory response by targeting SOCS3. The study gives evidence that miR-455-5p may serve as a new potential therapeutic agent for DR treatment.
Collapse
Affiliation(s)
- Pan Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ying Miao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - PuJun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xiao Jie Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - ChunXia Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yi Lei
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
43
|
Pavlou S, Augustine J, Cunning R, Harkin K, Stitt AW, Xu H, Chen M. Attenuating Diabetic Vascular and Neuronal Defects by Targeting P2rx7. Int J Mol Sci 2019; 20:ijms20092101. [PMID: 31035433 PMCID: PMC6540042 DOI: 10.3390/ijms20092101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal vascular and neuronal degeneration are established pathological features of diabetic retinopathy. Data suggest that defects in the neuroglial network precede the clinically recognisable vascular lesions in the retina. Therefore, new treatments that target early-onset neurodegeneration would be expected to have great value in preventing the early stages of diabetic retinopathy. Here, we show that the nucleoside reverse transcriptase inhibitor lamivudine (3TC), a newly discovered P2rx7 inhibitor, can attenuate progression of both neuronal and vascular pathology in diabetic retinopathy. We found that the expression of P2rx7 was increased in the murine retina as early as one month following diabetes induction. Compared to non-diabetic controls, diabetic mice treated with 3TC were protected against the formation of acellular capillaries in the retina. This occurred concomitantly with a maintenance in neuroglial function, as shown by improved a- and b-wave amplitude, as well as oscillatory potentials. An improvement in the number of GABAergic amacrine cells and the synaptophysin-positive area was also observed in the inner retina of 3TC-treated diabetic mice. Our data suggest that 3TC has therapeutic potential since it can target both neuronal and vascular defects caused by diabetes.
Collapse
Affiliation(s)
- Sofia Pavlou
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Josy Augustine
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Rónán Cunning
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Kevin Harkin
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
44
|
Lei XW, Li Q, Zhang JZ, Zhang YM, Liu Y, Yang KH. The Protective Roles of Folic Acid in Preventing Diabetic Retinopathy Are Potentially Associated with Suppressions on Angiogenesis, Inflammation, and Oxidative Stress. Ophthalmic Res 2019; 62:80-92. [PMID: 31018207 DOI: 10.1159/000499020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/20/2019] [Indexed: 11/19/2022]
Abstract
This study aimed to evaluate the therapeutic effect of folic acid (FA) on diabetic retinopathy (DR) in a genetic mouse model of obese type 2 diabetes mellitus (T2D). C57BL/KsJ-db/db (db/db) T2D mice were divided into control, FA, metformin (MET), and FA plus MET groups (n = 10/group). Serum levels of glucose, glycated hemoglobin, and insulin were determined weekly. The retinal thickness was measured using optical coherence tomography (OCT) at 4 weeks after treatments. The retinal expression and serum levels of vascular formation, inflammation, and oxidative stress-associated molecules were examined. Our results demonstrated that FA, but not MET, played a protective role against retinal thinning in the early stage of DR in db/db mice, although FA did not exhibit antihyperglycemic effect. In addition, retinal expression and serum levels of a panel of molecules associated with angiogenesis (CD31 and VEGFR), inflammation (IL-1β and NLRP3), and oxidative stress (3-NT, 4-HNE, Vav2, and NOX4) were significantly downregulated in FA-treated diabetic mice compared with those in saline-treated controls. Furthermore, the serum level of homocysteine was also markedly decreased following FA treatments. These findings suggest that through potential suppressions on angiogenesis, inflammation, and oxidative stress, FA may serve as a potential therapeutic agent against DR.
Collapse
Affiliation(s)
- Xun-Wen Lei
- The First Hospital of Lanzhou University, Lanzhou, China, .,The First Clinical Medical College of Lanzhou University, Lanzhou, China, .,Evidence-Based Medicine Center, School of Basic Medical Sciences of Lanzhou University, Lanzhou, China,
| | - Qiang Li
- The First Hospital of Lanzhou University, Lanzhou, China.,The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jin-Zhi Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yue-Mei Zhang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Yang Liu
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Ke-Hu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences of Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
45
|
Semeraro F, Morescalchi F, Cancarini A, Russo A, Rezzola S, Costagliola C. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications. DIABETES & METABOLISM 2019; 45:517-527. [PMID: 31005756 DOI: 10.1016/j.diabet.2019.04.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and the leading cause of visual impairment in the working-age population in the Western world. Diabetic macular oedema (DME) is one of the major complications of DR. Therapy with intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) drugs has become the gold standard treatment for DR and its complications. However, these drugs have no effect on the pathogenesis of DR and must be administered frequently via invasive intravitreal injections over many years. Thus, there is a pressing need to develop new therapeutic strategies to improve the treatment of this devastating disease. Indeed, an increasing volume of data supports the role of the inflammatory process in the pathogenesis of DR itself and its complications, including both increased retinal vascular permeability and neovascularization. Inflammation may also contribute to retinal neurodegeneration. Evidence that low-grade inflammation plays a critical role in the pathogenesis of DME has opened up new pathways and targets for the development of improved treatments. Anti-inflammatory compounds such as intravitreal glucocorticoids, topical non-steroidal anti-inflammatory drugs (NSAIDs), antioxidants, inflammatory molecule inhibitors, renin-angiotensin system (RAS) blockers and natural anti-inflammatory therapies may all be considered to reduce the rate of administration of antineovascularization agents in the treatment of DR. This report describes the current state of knowledge of the potential role of anti-inflammatory drugs in controlling the onset and evolution of DR and DME.
Collapse
Affiliation(s)
- F Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - F Morescalchi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - A Cancarini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - A Russo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - S Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - C Costagliola
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy.
| |
Collapse
|
46
|
Wu Q, Liu H, Zhou M. Fangchinoline Ameliorates Diabetic Retinopathy by Inhibiting Receptor for Advanced Glycation End-Products (RAGE)-Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB) Pathway in Streptozotocin (STZ)-Induced Diabetic Rats. Med Sci Monit 2019; 25:1113-1121. [PMID: 30739905 PMCID: PMC6380384 DOI: 10.12659/msm.912927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a macrovascular complication that occurs in diabetic patients. Conventional treatments for the management of DR have many limitations. Thus, the present investigation evaluated the protective effect of fangchinoline against diabetic retinopathy (DR). Material/Methods DR was induced by streptozotocin (STZ; 60 mg/kg; i.p.) and rats were treated with fangchinoline 1, 3, and 10 mg/kg for 16 weeks. DR was confirmed by determining the concentration of advanced glycation end-products (AGEs) and morphology of retinal tissues. Parameters of oxidative stress and expression of inflammatory cytokines and receptor for advanced glycation end-products (RAGE) in the retinal tissue were determined by Western blot assay and reverse transcription polymerase chain reaction (RT-PCR). Moreover enzyme-linked immunosorbent assay (ELISA) was used to determine the apoptosis index and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the retinal tissues. Results Our study reveals that the concentration of glycosylated hemoglobin (HbA1c) and glucose in the plasma and AGEs in the retinal tissue were significantly reduced in the fangchinoline group compared to the DR group. Moreover, treatment with fangchinoline attenuated the altered retinal morphology and expression of inflammatory mediators and RAGE in the retinal tissues of DR rats. There was a significant (p<0.01) decrease in oxidative stress, activity of NF-κB, and apoptosis index in the fangchinoline group compared to the DR group of rats. Conclusions Our investigation shows that fangchinoline attenuates the apoptosis of retinal cells in STZ-induced diabetic retinopathy rats by inhibiting the RAGE/NF-κB pathway.
Collapse
Affiliation(s)
- Qi Wu
- Department of Ophthalmology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Haojie Liu
- Department of Ophthalmology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Ming Zhou
- Department of Ophthalmology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
47
|
Zhu YN, Zuo GJ, Wang Q, Chen XM, Cheng JK, Zhang S. The involvement of the mGluR5-mediated JNK signaling pathway in rats with diabetic retinopathy. Int Ophthalmol 2019; 39:2223-2235. [PMID: 30607864 DOI: 10.1007/s10792-018-01061-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To understand the involvement of the mGluR5-mediated JNK signaling pathway in rats with diabetic retinopathy (DR). METHODS This study established rat models of diabetes mellitus (DM), which were divided into Normal, DM, DM + CHPG (mGluR5 agonist CHPG), and DM + MTEP (mGluR5 antagonist MTEP) groups. The blood glucose and weight of rats were recorded. EB staining was used for observation of blood-retinal barrier (BRB) damage. Neural retina function was measured by pattern electroretinogram (ERG). PAS and NG2 immunohistochemistry were conducted to evaluate the retinal vascular morphology. The TUNEL assay and active caspase-3 immunohistochemistry were performed to detect retinal cell apoptosis. Additionally, the expression levels of superoxide dismutase (SOD) and methylenedioxyamphetamine (MDA) were measured. Moreover, expression levels of mGluR5 and JNK pathway-related proteins were detected by western blot. RESULTS When compared with control rats, rats in the DM group showed decreased amplitude and latency of the peak times in the ERG test; further, DM group rats presented increases in blood glucose, BRB permeability, a retinal capillary area density, retinal cell apoptosis with an increased number of active caspase-3-positive cells, MDA level, mGluR5 levels, and the ratio of p-JNK/JNK, and they showed reductions in body weight and SOD activity, as well as in the number of pericytes and in the pericyte coverage (all P < 0.05). However, rats in DM + CHPG group had stronger negative effects than those in DM group (all P < 0.05). Rats from DM + MTEP group showed an opposite trend compared with the DM rats (all P < 0.05). CONCLUSION The level of mGluR5 in DR rats was upregulated, whereas inhibition of mGluR5 alleviated retinal pathological damage and decreased cell apoptosis to improve DR via suppression of the JNK signaling pathway, which provided a scientific theoretical basis for the clinical treatment of DR.
Collapse
Affiliation(s)
- Yan-Ni Zhu
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China.
| | - Guo-Jin Zuo
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China
| | - Qi Wang
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China
| | - Xiao-Ming Chen
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China
| | - Jin-Kui Cheng
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China
| | - Shu Zhang
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China
| |
Collapse
|
48
|
Curcumin inhibits high glucose‑induced inflammatory injury in human retinal pigment epithelial cells through the ROS‑PI3K/AKT/mTOR signaling pathway. Mol Med Rep 2018; 19:1024-1031. [PMID: 30569107 PMCID: PMC6323224 DOI: 10.3892/mmr.2018.9749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 11/23/2018] [Indexed: 01/17/2023] Open
Abstract
Diabetic retinopathy (DR) is a retinal disease caused by metabolic disorders of glucose tolerance that can lead to irreversible blindness if not adequately treated. Retinal pigment epithelial cell (RPEC) dysfunction contributes to the pathogenesis of DR. In the present study the anti‑inflammatory effect of curcumin (CUR) was investigated in RPECs damaged by high glucose levels. RPEC treated with 30 mmol/l glucose was regarded as high glucose group, and cells treated with 24.4 mmol/l mannitol was set as equivalent osmolarity group. Cell Counting Kit‑8 assay was used to measure RPEC viability, the expression of phosphorylated (p)‑AKT and p‑mammalian target of rapamycin (mTOR) were assessed by western blot, and secretion of tumor necrosis factor (TNF)‑α, interleukin (IL)‑6 and IL‑1β in the culture medium was measured by ELISA. Intracellular reactive oxygen species (ROS) levels were measured by laser scanning confocal microscope. The present data indicated that, compared with mannitol treatment, high glucose treatment reduced RPEC viability, increased TNF‑α, IL‑6 and IL‑1β secretion, increased ROS formation and promoted phosphorylation of AKT and mTOR. The antioxidant N‑acetylcysteine, the phosphoinositide 3‑kinase (PI3K)/AKT inhibitor LY294002 and the mTOR inhibitor rapamycin ameliorated the effects of high glucose. In addition, pretreatment with 10 µmol/l CUR reduced secretion levels of TNF‑α, IL‑6 and IL‑1β, ROS formation and phosphorylation of AKT and mTOR. In conclusion, CUR inhibited high glucose‑induced inflammatory injury in RPECs by interfering with the ROS/PI3K/AKT/mTOR signaling pathway. The present study may reveal the molecular mechanism of CUR inhibition effects to high glucose‑induced inflammatory injury in RPEC.
Collapse
|
49
|
Connexin43 hemichannel block protects against the development of diabetic retinopathy signs in a mouse model of the disease. J Mol Med (Berl) 2018; 97:215-229. [DOI: 10.1007/s00109-018-1727-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
|
50
|
Al-Kharashi AS. Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy. Saudi J Ophthalmol 2018; 32:318-323. [PMID: 30581303 PMCID: PMC6300752 DOI: 10.1016/j.sjopt.2018.05.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/29/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a retinal disease which is one of the most severe complications occuring due to diabetes mellitus and is a major cause of blindness. Patients who have diabetes mellitus for number of years develop characteristic group of lesions in the retina which leads to Diabetic retinopathy. It is a multifactorial condition occuring due to complex cellular interactions between biochemical and metabolic abnormalities taking place in all retinal cells. Considerable research efforts in the past 20 years have suggested that the microvasculature of the retina responds to hyperglycemia through a number of biochemical changes, which includes polyol pathway, protein kinase C activation, upregulation of advanced glycation end products formation and renin angiotensin system activation. Various previous studies had suggest that interaction of these biochemical changes may cause a cascade of events, such as apoptosis, oxidative stress, inflammation and angiogenesis which can lead to the damage of a diabetic retina, causing DR. This highlights that oxidative stress, inflammation, angiogenesis-related factors triggers the occurrence of retinal complication in diabetes are highlighted.
Collapse
Affiliation(s)
- Abdullah S. Al-Kharashi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|