1
|
Kitiyodom S, Kamble MT, Yostawonkul J, Thompson KD, Pirarat N. Effectiveness of a new cationic lipid-based nanovaccine for enhancing immersion vaccination against Flavobacterium oreochromis in red tilapia (Oreochromis sp.). FISH & SHELLFISH IMMUNOLOGY 2025; 161:110289. [PMID: 40118230 DOI: 10.1016/j.fsi.2025.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Flavobacterium oreochromis (Fo) poses a significant threat to tilapia, leading to economic losses due to mortality. Immersion vaccines, while practical for small fish, often result in limited antigen absorption. This study aimed to develop a cationic lipid-based nanoparticle vaccine using cetyltrimethylammonium bromide (CTAB) and evaluate its efficacy against F. oreochromis in red tilapia. In the first trial, healthy red tilapia were immersion vaccinated for 30 min, with three groups included in the trial: control (non-vaccinated), formalin-killed sonicated cells (FK-SC), or cationic lipid-based nanoparticles (Fo-NV). The second trial followed the same design, with booster vaccinations (FK-SC-B, Fo-NV-B) administered 14 days after the first vaccination. Fish were challenged with virulent F. oreochromis at multiple time points up to 120 days post-vaccination (dpv) in the first trial and up to 180 dpv in the second, with survival recorded for 10 days post-challenge during each challenge. Specific IgM antibody levels were measured at various dpv intervals. The Fo-NV group, characterized by nanoscale size (179 nm) and positive charge (13 mV), showed enhanced stability and mucoadhesion compared to FK-SC. In the first trial, the Fo-NV group had significantly higher relative percentage survival (RPS) (83.3-63.3 %) compared to FK-SC (33.3-10.0 %) during the first three months. In the second trial, the Fo-NV-B group exhibited elevated IgM levels and higher RPS (81.8-58.5 %) compared to control groups over five months. In conclusion, a booster dose of Fo-NV improved vaccine efficacy, enhancing antigen delivery to mucosal surfaces and providing prolonged protection against F. oreochromis infection.
Collapse
Affiliation(s)
- Sirikorn Kitiyodom
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manoj Tukaram Kamble
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jakarwan Yostawonkul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK
| | - Nopadon Pirarat
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Jaipakdee N, Tabboon P, Jarungsirawat R, Khetklang K, Phumart P, Pongjanyakul T, Sakloetsakun D. Synergistic impact of pretreatment by planetary ball milling on the efficiency of chemical modifications of glutinous starch through thiolation: Synthesis and characterization. Int J Biol Macromol 2025; 314:144332. [PMID: 40389000 DOI: 10.1016/j.ijbiomac.2025.144332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/05/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
This study examined the effects of planetary ball milling on glutinous rice starch (GS) thiolation. Native GS (NGS) and ball-milled GS (BMGS) were oxidized with periodate and conjugated with cysteamine (CYSM). FTIR, XRD, SEM, and EDX analyses confirmed successful conjugation with altered crystallinity, morphology, and elemental composition. BMGS-CYSM contained 828.9 ± 54.8 μmol/g of free thiol groups, which was 2.2 times greater than that of NGS-CYSM, and had disulfide bonds measuring 210.55 ± 6.25 μmol/g. Precipitation pH of GS-CYSM conjugates ranged between 6.3 and 7.2, with zeta potential values maintained near neutrality. Cytotoxicity tests showed >85 % Caco-2 cell viability after 24-h of exposure. GS-CYSM conjugates displayed layered, sheet-like structures instead of the original granular morphology, with BMGS-CYSM exhibiting more structural changes than NGS-CYSM. Swelling of GS-CYSM discs in an aqueous medium followed Fickian kinetics, with BMGS-CYSM exhibiting superior swelling rates. BMGS-CYSM showed lower erosion percentages in the pH 6.8 phosphate-buffered saline medium. Mucoadhesion tests on porcine intestinal mucosa using tensile strength and rotating cylinder techniques suggested the superior mucoadhesiveness of BMGS-CYSM over NGS-CYSM and BMGS, with mucosal retention exceeding 24 h. This study demonstrates that mechanical pretreatment via planetary ball milling enhances thiolation efficiency, offering a promising approach for developing mucoadhesive GS materials for drug delivery.
Collapse
Affiliation(s)
- Napaphak Jaipakdee
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peera Tabboon
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Rapee Jarungsirawat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kusarin Khetklang
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Panumart Phumart
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Thaned Pongjanyakul
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | |
Collapse
|
3
|
Ashfaq R, Tóth N, Kovács A, Berkó S, Katona G, Ambrus R, Polgár TF, Szécsényi M, Burián K, Budai-Szűcs M. Hydrogel-Nanolipid Formulations for the Complex Anti-Inflammatory and Antimicrobial Therapy of Periodontitis. Pharmaceutics 2025; 17:620. [PMID: 40430912 PMCID: PMC12114638 DOI: 10.3390/pharmaceutics17050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Objectives: This study aimed to develop and evaluate nanostructured lipid carriers (NLCs) loaded with meloxicam (Melox) and a therapeutic antibacterial and anti-inflammatory liquid lipid, clove oil (CO) for periodontitis treatment, a complex inflammatory condition necessitating advanced drug delivery systems. The NLC-Melox formulation was integrated into three hydrogels, hypromellose (HPMC), zinc hyaluronate (ZnHA), and sodium hyaluronate (NaHA), to conduct a comparative analysis focusing on enhanced localized drug delivery, improved mucoadhesion, prolonged retention, and significant therapeutic outcomes. Methods: NLC-Melox was prepared by homogenization and characterized by dynamic light scattering (DLS). Subsequently, NLC-Melox-loaded gels were subjected to transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Raman spectroscopy, and rheological analysis. In vitro drug release, anti-inflammatory activity (BSA denaturation assay), and antibacterial efficacy (MIC, MBC) were investigated to assess therapeutic potential. Results: DLS revealed a particle size of 183 nm with a polydispersity index of 0.26, indicating homogeneity. TEM confirmed consistent morphology and uniform nanoparticle distribution. DSC and XRD demonstrated the amorphous nature of Melox, enhancing solubility and stability. Spectroscopy confirmed no chemical interactions between components. Rheological studies identified ZnHA as the most mucoadhesive and structurally stable gel. In vitro release studies showed sustained drug release over 24 h. Melox and CO-loaded formulations demonstrated significant anti-inflammatory activity and notable antibacterial efficacy due to the antibacterial oil. Conclusions: The study highlighted the potential of NLC-based mucoadhesive hydrogels as an effective strategy for periodontitis treatment. The formulation offered improved drug solubility, therapeutic efficacy, mucoadhesivity, and prolonged delivery, making it a promising candidate for localized therapy.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (A.K.); (S.B.); (G.K.); (R.A.)
| | - Nóra Tóth
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (A.K.); (S.B.); (G.K.); (R.A.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (A.K.); (S.B.); (G.K.); (R.A.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (A.K.); (S.B.); (G.K.); (R.A.)
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (A.K.); (S.B.); (G.K.); (R.A.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (A.K.); (S.B.); (G.K.); (R.A.)
| | - Tamás Ferenc Polgár
- Core Facility, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary;
- Theoretical Medicine Doctoral School, University of Szeged, H-6722 Szeged, Hungary
| | - Mária Szécsényi
- Department of Medical Microbiology, University of Szeged, H-6720 Szeged, Hungary; (M.S.)
| | - Katalin Burián
- Department of Medical Microbiology, University of Szeged, H-6720 Szeged, Hungary; (M.S.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (A.K.); (S.B.); (G.K.); (R.A.)
| |
Collapse
|
4
|
Sabale V, Girhepunje M, Ingole A, Warokar A, Sawarkar K, Sabale P. Acyl chitosan based self-nanoemulsifying drug delivery system of lipophilic drug with enhanced oral bioavailability and mucoadhesion: Formulation development, optimization and in vitro/in vivo characterization. Int J Biol Macromol 2025; 306:141257. [PMID: 39986527 DOI: 10.1016/j.ijbiomac.2025.141257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
This study developed a mucoadhesive self-nano emulsifying drug delivery system (SNEDDS) with synthesized acyl chitosan coating for enhancing oral bioavailability and drug retention of Amphotericin B (AB) which is conventionally administered parenterally owing to its poor bioavailability. Acyl chitosan was synthesized and characterized. The AB and acyl chitosan Amphotericin B (ACAB) SNEDDS were prepared using capryol 90, kolliphor RH 40 and propylene glycol and optimized using Box- Behnken Design (BBD). After preliminary evaluation of both the SNEDDS, the optimized formulation underwent compatibility, thermodynamic stability, robustness to dilution, dissolution, permeation, mucoadhesion, SEM, and in vivo pharmacokinetic studies. Both AB and ACAB SNEDDS were transparent with sizes of 70.68 nm and 83 nm, respectively and had spherical morphology. ACAB SNEDDS exhibited controlled release of the drug (85.6 %) over AB SNEDDS (90.5 %) and increased drug permeation (97 % Vs 75 %) over 24 h. For ACAB SNEDDS higher drug plasma concentration (0.254 ± 0.03 μg/mL) over AB SNEDDS (0.194 μg/mL) and AB suspension (0.152 ± 0.03 μg/mL) was observed from in vivo pharmacokinetic studies on rats. The developed ACAB SNEDDS improved the solubility, permeability, oral bioavailability and drug retention through mucoadhesion.
Collapse
Affiliation(s)
- Vidya Sabale
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India.
| | - Mrunali Girhepunje
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Ashwini Ingole
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Amol Warokar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Krutika Sawarkar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
5
|
Spósito L, Morais-Silva G, Fonseca D, Neves MM, Vieira Silva M, Bauab TM, Parreira P, Martins MCL, Meneguin AB, Chorilli M. Nano-in-microparticles approach: Targeted gastric ulcer therapy using trans-resveratrol nanoparticles encapsulated in hyaluronic acid and alginate microparticles. Int J Biol Macromol 2025; 305:141010. [PMID: 39954886 DOI: 10.1016/j.ijbiomac.2025.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Gastric ulcers affect 4 million people worldwide and occur when the stomach's defenses are compromised, allowing harmful agents, such as nonsteroidal anti-inflammatory drugs and Helicobacter pylori, to damage the tissue. The naturally occurring polyphenol, trans-resveratrol (RESV), demonstrates promising potential for treating gastric diseases. However, its therapeutic application is limited by its photosensitivity and solubility. To overcome these challenges, RESV was encapsulated in a new nano-in-microparticle system comprised of chitosan nanoparticles incorporated into hyaluronic acid and alginate microparticles (RESV-MNP). RESV-MNP exhibited spherical morphology (~2 μm) and encapsulation efficiency of 79 %, releasing about 41 % of RESV within 24 h, showing a prolonged release profile compared to the free drug. Additionally, RESV-MNP interacted with porcine mucin in an acid environment. RESV-MNP showed no toxicity against AGS/MKN-74 cell lines in vitro and in acute toxicity tests using Galleria mellonella and hemolysis. RESV-MNP presented a minimum inhibitory and bactericidal concentration (MIC/MBC) of 3.9 μg/mL, eradicating H. pylori after 24 h. At 2×MIC, RESV-MNP completely eradicated H. pylori biofilm. In an in vitro infection assay, RESV-MNP reduced H. pylori load. The formulation effectively reduced the mortality rate of H. pylori-infected larvae in the G. mellonella model. Furthermore, RESV-MNP demonstrated gastroprotective effects, reducing the extent and severity of indomethacin-gastric lesions in rats.
Collapse
Affiliation(s)
- Larissa Spósito
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - Gessynger Morais-Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Diana Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, 38405-330, MG, Brazil
| | - Murilo Vieira Silva
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, 38405-330, MG, Brazil
| | - Taís Maria Bauab
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | | | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
6
|
Rahbar N, Darvish S, Farrahi F, Kouchak M. Chitosan/carbomer nanoparticles- laden in situ gel for improved ocular delivery of timolol: in vitro, in vivo, and ex vivo study. Drug Deliv Transl Res 2025; 15:1210-1220. [PMID: 38976207 DOI: 10.1007/s13346-024-01663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 07/09/2024]
Abstract
Due to the small capacity of the eye cavity and the rapid drainage of liquid into the nasolacrimal duct, patients must frequently administer the drops. Nanoparticles (NPs) and in situ gel systems have each proven their ability to achieve eye retention independently. In this study, timolol-loaded chitosan-carbomer NPs were prepared using the polyelectrolyte complexation method, and incorporated into a pH-responsive in situ gel system made of carbomer. The rheological behavior of NPs-laden in situ gel was examined at room and physiological conditions. Characteristics such as zeta potential, surface tension, refractive index, mucoadhesive properties, drug release, transcorneal permeability, and intra-ocular pressure (IOP) lowering activity were investigated on NPS and NPs-laden in situ gel formulations. The optimum gained NPs system had an encapsulation efficiency of about 69% with a particle size of 196 nm. The zeta potential of the NP and NPs-laden in situ gel were - 16 and + 11 mV respectively. NPs-laden in situ gel presented enhanced viscosity at physiological pH. All physicochemical properties were acceptable for both formulations. NPs and NPs-laden in situ gel systems proved to sustain drug release. They showed mucoadhesive properties which were greater for NPs-laden in situ gel. IOP reduction by NPs-laden in situ gel was significantly higher and more long-lasting than the timolol solution and NPs. In conclusion, the developed NPs-laden in situ gel is a promising carrier for ocular drug delivery due to the slow release of drug from nanoparticles, its mucoadhesive properties, and high viscosity acquisition in contact with precorneal film, which lead to improved therapeutic efficacy.
Collapse
Affiliation(s)
- Nadereh Rahbar
- Nanotechnology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sarah Darvish
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereydoun Farrahi
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Chiarentin L, Moura V, Vitorino C. Mucoadhesion and rheology characterization in topical semisolid formulations: An AQbD-driven case study. Int J Pharm 2025; 673:125389. [PMID: 39993514 DOI: 10.1016/j.ijpharm.2025.125389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
This study outlines a framework for developing a texture analyzer-based mucoadhesion method integrated with rheology analysis for evaluating ointment formulations. Using an Analytical Quality by Design (AQbD) approach, key sources of variability affecting critical method variables (CMVs) were identified. A Box-Behnken design evaluated applied force, contact time, and trigger force, with optimal conditions selected via response surface methodology (RSM) within the method operable design region (MODR). The final conditions-2 N applied force, 60 s contact time, and 0.05 N trigger force-ensured compliance with the analytical target profile (ATP). Incorporating mucin dispersion revealed significant rheological synergism, validating the optimized method. The framework adheres to ICH guidelines, demonstrating robust and reproducible performance.
Collapse
Affiliation(s)
- Lucas Chiarentin
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Laboratórios Basi Indústria Farmacêutica S.A., Parque Industrial Manuel Lourenço Ferreira, lote 15, 3450-232 Mortágua, Portugal; Basinnov Life Sciences, Unipessoal LDA, Avenida José Malhoa, Ed. Malhoa Plaza, n° 2, 3° piso, escritório 3.7, 1070-325 Lisboa, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra 3000-535 Coimbra, Portugal.
| | - Vera Moura
- Basinnov Life Sciences, Unipessoal LDA, Avenida José Malhoa, Ed. Malhoa Plaza, n° 2, 3° piso, escritório 3.7, 1070-325 Lisboa, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra 3000-535 Coimbra, Portugal.
| |
Collapse
|
8
|
Murphy CT, Bachelder EM, Ainslie KM. Mast cell activators as adjuvants for intranasal mucosal vaccines. Int J Pharm 2025; 672:125300. [PMID: 39914508 DOI: 10.1016/j.ijpharm.2025.125300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Mast cells have roles in immune regulation, allergy, and host response to pathogens. Compounds that activate mast cells (MCAs) can serve as vaccine adjuvants, potentially outperforming current FDA-approved options, especially for mucosal vaccines. While most vaccines are administered intramuscularly, intranasal and needle-free formulations offer benefits like improved compliance and accessibility. However, the lack of effective adjuvants limits mucosal vaccine development. This review explores MCAs as promising alternatives to traditional adjuvants, aiming to enhance mucosal vaccine efficacy. We summarize the nascent work of formulating MCAs like compound 48/80 into nanoparticles, with excipients such as chitosan and chitosan/alginate. Other MCAs like the peptide mastoparan 7 complexed with CpG have formed nanoparticle complexes that illustrate protective mucosal immunity in a model of influenza. The small molecule MCA ST101036, when encapsulated in acetalated dextran particles, has demonstrated enhanced immune responses and protection in a West Nile Virus model of infection. This review highlights the potential of MCAs as potent vaccine adjuvants, particularly for mucosal vaccines, and summarizes, recent advancements in formulating these activators into nanoparticles to enhance immune responses and protection.
Collapse
Affiliation(s)
- Connor T Murphy
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC Chapel Hill NC USA
| | - Eric M Bachelder
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC Chapel Hill NC USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC Chapel Hill NC USA; Department of Biomedical Engineering NC State/UNC Chapel Hill NC USA; Department of Microbiology and Immunology, School of Medicine, UNC Chapel Hill NC USA.
| |
Collapse
|
9
|
Lopez-Vidal L, Juskaite K, Ramöller IK, Real DA, McKenna PE, Priotti J, Donnelly RF, Paredes AJ. Advanced drug delivery systems for the management of local conditions. Ther Deliv 2025; 16:285-303. [PMID: 40020739 PMCID: PMC11875478 DOI: 10.1080/20415990.2024.2437978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025] Open
Abstract
Localized disorders, even though originally confined to a specific body part, can progress into potentially life-threatening systemic disorders if treated inappropriately. Local treatment is often highly challenging due to poor penetration of therapeutic agents from their vehicles into the affected body site. Systemic treatment on the other hand often comes with unspecific side effects. The skin is the largest organ of the body, and conditions such as wounds and bacterial or fungal infections disrupt its natural barrier properties, important for the homeostasis of the human body. Advanced drug delivery systems for treating these conditions could greatly improve the treatment outcome and patient compliance. Other parts of the body that are of interest regarding localized treatment are, for example, the eyes along with mucosal tissues which are present in the vagina and lungs. Rather than focusing on specific diseases or parts of the body, this review provides an overview of the different drug delivery platforms that have been employed for enhanced local treatment. The following systems will be discussed: nanoparticle-based systems, such as nanocrystals, polymeric, lipidic, and inorganic nanoparticles, and nanogels; cyclodextrin inclusion complexes; and several devices like microarray patches, wound dressings, and films.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Kornelija Juskaite
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Inken K. Ramöller
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Daniel A. Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de investigaciones Científicas y Tecnológicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Córdoba, Argentina
- Pill.AR Apotheke Revolution S.A, Córdoba, Argentina
| | - Peter E. McKenna
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Alejandro J. Paredes
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| |
Collapse
|
10
|
Rahma MN, Suhandi C, Mohammed AFA, El-Rayyes A, Elamin KM, Sulastri E, Wathoni N. The Role and Advancement of Liposomes for Oral Diseases Therapy. Int J Nanomedicine 2025; 20:1865-1880. [PMID: 39975418 PMCID: PMC11837752 DOI: 10.2147/ijn.s492353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 02/21/2025] Open
Abstract
As many as 48.0% of the global population suffers from disabilities caused by oral conditions. These conditions encompass dental caries, periodontal diseases, oral cancers, and other pathologies affecting the hard and soft tissues of the oral and maxillofacial regions. Topical drug treatments in the oral cavity are often ineffective due to the short contact time, which prevents the drug from reaching optimal concentrations necessary for therapeutic effect. Conventional liposomes have several limitations, including low stability, challenges in long-term storage, and rapid clearance by the reticuloendothelial system (RES). These factors significantly reduce their effectiveness in maintaining sustained drug delivery and achieving desired therapeutic outcomes. To overcome these challenges, advanced drug delivery systems have been developed. Among these systems, liposomes have been extensively explored as nanocarriers in targeted drug delivery systems, particularly in mucosal drug delivery, due to their biocompatibility and degradability, making them promising agents for the treatment of oral diseases. To address these issues, extensive research has been conducted to modify the surface of liposomes, optimizing their efficacy, and understanding their mechanisms of action. This review article discusses the role and recent advancements of liposomes in the treatment of oral diseases, highlighting their potential to revolutionize oral health care through improved drug delivery and therapeutic outcomes.
Collapse
Affiliation(s)
- Maya Nurul Rahma
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Ahmed F A Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ali El-Rayyes
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia
| | - Khaled M Elamin
- Graduated School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Evi Sulastri
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu, Central Sulawesi, 94118, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
11
|
Almuqbil RM, Aldhubiab B. Bioadhesive Nanoparticles in Topical Drug Delivery: Advances, Applications, and Potential for Skin Disorder Treatments. Pharmaceutics 2025; 17:229. [PMID: 40006596 PMCID: PMC11860006 DOI: 10.3390/pharmaceutics17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Skin disorders are the fourth most common cause of all diseases, which affect nearly one-third of the world's population. Topical drug delivery can be effective in treating a range of skin disorders, including microbial infections, skin cancer, dermatitis, burn injury, wounds, and psoriasis. Bioadhesive nanoparticles (BNPs) can serve as an efficient topical drug delivery system as they can serve dual purposes as bioadhesives and nanocarriers, which can mediate targeted drug delivery, prolong retention time, and deepen drug penetration through skin layers. There is an increasing demand for BNP-based applications in medicine because of their various advantages, including biodegradability, flexibility, biocompatibility, and enhanced adhesive strength. A number of BNPs have already been developed and evaluated as potential topical drug delivery systems. In addition, a range of studies have already been carried out to evaluate the potential of BNPs in the treatment of various skin disorders, including atopic dermatitis, irritant contact dermatitis, skin cancer, psoriasis, microbial infections, wounds, and severe burn injuries. This review article is timely and unique, because it provides an extensive and unique summary of the recent advances of BNPs in the treatment of wide-ranging skin disorders. Moreover, this review also provides a useful discussion on the bioadhesion mechanism and various biopolymers that can be used to prepare BNPs.
Collapse
Affiliation(s)
- Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | |
Collapse
|
12
|
Shah K, Singh D, Agrawal R, Garg A. Current Developments in the Delivery of Gastro-Retentive Drugs. AAPS PharmSciTech 2025; 26:57. [PMID: 39920556 DOI: 10.1208/s12249-025-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
The pharmaceutical industry has expressed a lot of interest in site specific drug delivery & oral controlled release to increase treatment efficiency. The idea of a unique drug delivery system was developed to address several concerns with the physicochemical characteristics of drug molecules and the associated formulations. The use of gastro retentive systems for drug delivery, which focus on site-specific drug release for either systemic or local effects in the stomach, is one of these cutting-edge strategies for lengthening gastric residency time. This approach is especially useful for drugs that have a small window of upper gastro intestinal tract absorption. This review has discussed various gastro-retentive techniques, including floating & non-floating systems. With a focus on the numerous gastro retentive approaches that have lately emerged as the most efficient methods for site specific oral controlled release drug administration, the aim of this study on gastro retentive drug delivery systems was to synthesise the most current findings. We have highlighted the major reasons affecting gastric retention so that you may comprehend the many physiological challenges involved. Next, we discussed the different gastro retentive strategies that have been developed and improved to date, including floating, high density, mucoadhesive, unfoldable, expandable, super porous hydrogel, & magnetic systems. The benefits of gastro retentive medication administration techniques were then thoroughly discussed.
Collapse
Affiliation(s)
- Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India.
| | - Disha Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Rutvi Agrawal
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, 281001, India
| | - Akash Garg
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, 281001, India
| |
Collapse
|
13
|
Smith GL. Weight Loss and Therapeutic Metabolic Effects of Tetrahydrocannabivarin (THCV)-Infused Mucoadhesive Strips. CANNABIS (ALBUQUERQUE, N.M.) 2025; 8:109-120. [PMID: 39968488 PMCID: PMC11831893 DOI: 10.26828/cannabis/2024/000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Objective Metabolic syndrome is due to dysregulation that starts with fat accumulation, causing inflammatory response, insulin resistance, dyslipidemia, hypertension, and fatty liver disease. The endocannabinoid system, via cannabinoid receptor type 1 (CB1), has been shown to be involved with energy homeostasis and regulation of appetitive behavior via activity in the hypothalamus, limbic forebrain and amygdala and in the peripheral tissues including adipose, liver and muscle. Therefore, two phytocannabinoids, tetrahydrocannabivarin (THCV), a CB1 neutral antagonist, and cannabidiol (CBD), a negative allosteric modulator of CB1, are expected to have therapeutic metabolic benefits, including weight loss. Method A placebo-controlled study was conducted on 44 subjects (31 females and 13 males) with an average age of 51.75. The study evaluated the efficacy of two different doses of THCV and CBD (8 mg THCV/10 mg CBD in the lower dose and 16 mg THCV/20 mg CBD in the higher dose), taken once daily for 90 days via mucoadhesive oral strips, for weight loss and improvement of certain metabolic markers. Results Use of the THCV/CBD strip was associated with statistically significant weight loss, decreases in abdominal girth, systolic blood pressure, and total and LDL cholesterol. The study was limited by small sample sizes in both the high dose and placebo groups. Conclusions The 16 mg/20 mg daily dose was superior for weight loss compared to the 8 mg/10 mg daily dose; both sets of results differed from placebo in a way that was statistically significant. The results of this study were congruent with the prior unpublished studies of a hemp extract containing significant percentages of THCV, CBDV and CBD.
Collapse
|
14
|
Chavda VP, Balar PC. Oral delivery of protein and peptide therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 212:355-387. [PMID: 40122651 DOI: 10.1016/bs.pmbts.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Oral administration of proteins and peptides has gained significant attention recently due to its potential to transform therapeutic strategies, providing a non-invasive and patient-friendly method for delivering biopharmaceuticals. The primary hurdle in oral delivery stems from the harsh conditions of the gastrointestinal (GI) tract, characterized by acidic pH, enzymatic degradation, and limited permeability across the intestinal epithelium. Various innovative approaches have emerged to overcome these challenges, including nanoparticle-based delivery systems, mucoadhesive formulations, and chemical modifications of peptides aimed at improving stability and absorption rates. Nanoparticle-based delivery systems, such as liposomes, polymeric nanoparticles, and solid lipid nanoparticles, hold promise in protecting proteins and peptides from enzymatic degradation while enhancing their bioavailability. These nanoparticles can be tailored to target specific areas within the GI tract, extending drug release and enhancing therapeutic effectiveness. Mucoadhesive formulations utilize polymers like chitosan, alginate, and polyethylene glycol (PEG) derivatives to adhere to GI mucosal surfaces, prolonging residence time and facilitating drug absorption. Chemical modifications, such as PEGylation, glycosylation, and lipidation have been employed to enhance the stability and permeability of proteins and peptides in the GI tract. PEGylation, in particular, has been widely used to extend the circulation half-life and reduce the immunogenicity of therapeutic proteins. Advancements in nanotechnology, especially the development of smart nanocarriers capable of responsive drug release triggered by pH or enzymatic stimuli, show promise in further improving oral delivery of proteins and peptides. The integration of bioinformatics and computational modeling techniques has facilitated the design of novel drug delivery systems with optimized pharmacokinetic profiles. This chapter focuses on the advancements and challenges in the oral delivery of protein and peptide-based drugs, highlighting the innovative strategies being explored to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | | |
Collapse
|
15
|
Yang P, Li J, Ma X, Hu N, Song Z, Chen B, Li S. Novel delivery systems for phages and lysins in the topical management of wound infections: a narrative review. Front Microbiol 2025; 16:1526096. [PMID: 39931378 PMCID: PMC11808012 DOI: 10.3389/fmicb.2025.1526096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Currently, multidrug-resistant (MDR) bacterial wound infections (WIs) are an extremely challenging clinical problem for physicians. Recently, compared to traditional single liquid delivery drugs, the study of five novel drug delivery systems (i.e., hydrogel, liposomes, electrospun fibers, nanoparticles and nanoemulsion) for phages and their encoded lysins in WI management has become a hot topic. To assess the current landscape of these emerging technologies, we conducted a comprehensive literature search across PubMed, Scopus and Web of Science up to July 2024, using terms such as "phage," "lysin," "wound," "hydrogel," "liposomes," "fibers," "nanoparticles," and "nanoemulsion." The criteria included original studies of five novel delivery systems for phages and lysins in WI management. The findings highlighted the positive effects of the five novel delivery systems for phages and lysins in WI management, significantly reducing wound bacterial populations, and accelerating healing at the injury site. However, the available literature on novel delivery systems for phages and lysins remains limited, particularly for lysins. In conclusion, the application of novel drug delivery systems for phages and lysins showed great potential in combating MDR bacterial WIs.
Collapse
Affiliation(s)
- Pan Yang
- Postdoctoral Research Station, Guangzhou Bay Area Institute of Biomedicine, Guangzhou, China
| | - Jing Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiumei Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Nan Hu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bin Chen
- Postdoctoral Research Station, Guangzhou Bay Area Institute of Biomedicine, Guangzhou, China
| | - Shizhu Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Bácskay I, Arany P, Fehér P, Józsa L, Vasvári G, Nemes D, Pető Á, Kósa D, Haimhoffer Á, Ujhelyi Z, Sinka D. Bioavailability Enhancement and Formulation Technologies of Oral Mucosal Dosage Forms: A Review. Pharmaceutics 2025; 17:148. [PMID: 40006515 PMCID: PMC11859484 DOI: 10.3390/pharmaceutics17020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The oral mucosa is a versatile surface for drug administration, supporting both local and systemic therapies. Many active substances are effectively absorbed in the oral cavity, offering an alternative to enteral administration by bypassing the harsh gastrointestinal environment and hepatic first-pass metabolism. This has made oral mucosal drug delivery a growing area of research. Enhancing the bioavailability of active ingredients is a key focus in pharmaceutical technology, especially given the challenges of developing new drugs. Numerous strategies to improve bioavailability are compatible with oral mucosal delivery, with the unique anatomy of the oral cavity enabling specialized applications. A variety of dosage forms tailored for oral mucosal delivery meet therapeutic needs while addressing biopharmaceutical and patient compliance challenges. Proper formulation can achieve controlled release, improved bioavailability, and patient convenience. This review highlights the potential of oral mucosal drug delivery, focusing on bioavailability enhancement methods and the types and production technologies of dosage forms optimized for use in the oral cavity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (I.B.); (P.A.); (P.F.); (L.J.); (G.V.); (D.N.); (Á.H.); (Z.U.)
| |
Collapse
|
17
|
Mahmoud TM, Abdelfatah MM, Omar MM, Hasan OA, Wali SM, El-Mofty MS, Ewees MG, Salem AE, Abd-El-Galil TI, Mahmoud DM. Enhancing the Therapeutic Effect and Bioavailability of Irradiated Silver Nanoparticle-Capped Chitosan-Coated Rosuvastatin Calcium Nanovesicles for the Treatment of Liver Cancer. Pharmaceutics 2025; 17:72. [PMID: 39861720 PMCID: PMC11769262 DOI: 10.3390/pharmaceutics17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 23-factorial design, eight formulations were produced using the solvent evaporation process. The formulations were characterized in vitro to identify the optimal formulation (Nop). The FTIR spectra showed that the fingerprint region is not superimposed with that of the drug; DSC thermal analysis depicted a negligible peak shift; and XRPD diffractograms revealed the disappearance of the typical drug peaks. Nop had an entrapment efficiency percent (EE%) of 86.2%, a polydispersity index (PDI) of 0.254, a zeta potential (ZP) of -35.3 mV, and a drug release after 12 h (Q12) of 55.6%. The chitosan-coated optimized formulation (CS.Nop) showed significant mucoadhesive strength that was 1.7-fold greater than Nop. Physical stability analysis of CS.Nop revealed negligible alterations in VS, ZP, PDI, and drug retention (DR) at 4 °C. The irradiated chitosan-coated optimized formulation capped with silver nanoparticles (INops) revealed the highest inhibition effect on carcinoma cells (97.12%) compared to the chitosan-coated optimized formulation (CS.Nop; 81.64) and chitosan-coated optimized formulation capped with silver nanoparticles (CS.Nop.AgNPs; 92.41). The bioavailability of CS-Nop was 4.95-fold greater than RC, with a residence time of about twice the free drug. CS.Nop has displayed a strong in vitro-in vivo correlation with R2 0.9887. The authors could propose that novel INop could serve as an advanced platform to improve oral bioavailability and enhance hepatic carcinoma recovery.
Collapse
Affiliation(s)
- Tamer Mohamed Mahmoud
- Pharmaceutics and Industrial Pharmacy Department, Al-Manara College for Medical Sciences, Maysan 62010, Iraq;
| | | | - Mahmoud Mohamed Omar
- Department of Pharmaceutics and Pharmaceutical Technology, Deraya University, Minia 61519, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Omiya Ali Hasan
- Department of Pharmaceutics and Pharmaceutical Technology, Deraya University, Minia 61519, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Saad M. Wali
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed S. El-Mofty
- Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Ain Shams University, Cairo 11566, Egypt;
- Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Nahda University, Beni-Suef 62764, Egypt
| | - Mohamed G. Ewees
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt;
- Department of Pharmacology and Toxicology, College of Pharmacy, Almaaqal University, Basrah 61014, Iraq
| | - Amel E. Salem
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | | | - Dina Mohamed Mahmoud
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni Suef 62764, Egypt;
| |
Collapse
|
18
|
Chaudhri N, Rastogi V, Verma A. A Review on Lipid-based Nanoformulations for Targeting Brain through Non-invasive Nasal Route. Pharm Nanotechnol 2025; 13:143-154. [PMID: 38685789 DOI: 10.2174/0122117385293436240321090218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The nasal method for administering nanoformulations to the brain has been examined and proven successful by prior investigators. For the treatment of central nervous system (CNS) disorders such as neuropsychiatric, depression, Alzheimer and anxiety, intranasal administration has become more popular for delivering drugs to the brain. This method offers direct transport through neuronal pathways. The lipid-based nanocarriers like nanostructured lipid carriers (NLC) appear more favorable than other nanosystems for brain administration. The nanostructured lipid carriers (NLC) system can quickly transform into a gelling system to facilitate easy administration into the nasal passages. The various compatibility studies showed that the other lipid structured-based formulations may not work well for various reasons, including a low drug filing capacity; during storage, the formulation showed changes in the solid lipid structures, which gives a chance of medication ejection. Formulations containing NLC can minimize these problems by improving drug solubility and permeation rate by incorporating a ratio of liquid lipids with solid lipids, resulting in improved stability during storage and drug bioavailability because of the higher drug loading capacity. This review aimed to find and emphasize research on lipid-based nanocarrier formulations that have advanced the treatment of central nervous system illnesses using nasal passages to reach the targeted area's drug molecules.
Collapse
Affiliation(s)
- Nirvesh Chaudhri
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Vaibhav Rastogi
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| |
Collapse
|
19
|
Joseph J, Ramesh P, Sayooj K, Unnikrishnan M, Unnikrishnan G. Functionalized Polyvinyl Alcohol-Gelatin Graft for the Treatment of Tympanic Membrane Perforations. J Biomed Mater Res A 2025; 113:e37818. [PMID: 39474709 DOI: 10.1002/jbm.a.37818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 12/26/2024]
Abstract
The majority of issues related to patients suffering from conductive hearing loss and repeated otitis media are due to chronic tympanic membrane perforations. This generally requires a surgical procedure called tympanoplasty to seal the perforation where autologous grafts are used to reconstruct the membrane. However, the limitations associated with surgical procedures and the limited graft-material availability often cause difficulties in this route; demanding novel procedures or materials. The basic requirements for a synthetic graft-material for this application cover excellent cell adherence with no immune response and inflammatory actions at the site of implantation along with wound-healing characteristics and sufficient acoustic and mechanical properties. With this aim, an innovative graft material has been developed with polyvinyl alcohol (PVA) as the base component through this work. To ensure better cell adhesion and proliferation, a natural polymer, gelatin, has been cross-linked with PVA through a maleic anhydride (MA) intermediate; with a two-step synthesis protocol. The mechanical strength of graft material has been found to be tunable by adjusting the ratio of gelatin with PVA. Laser Doppler Vibrometry (LDV) has been employed to evaluate its acoustic properties upon exposure to a frequency sweep of 10-8000 Hz. The in vitro biocompatibility assays using L929 and RPMI 2650 cells substantiate the material's compatibility; ensuring its potential clinical applications toward chronic tympanic membrane perforations.
Collapse
Affiliation(s)
- Jasmin Joseph
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, India
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - P Ramesh
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - K Sayooj
- Advanced Dynamic and Control Lab, Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananthapuram, India
| | - M Unnikrishnan
- Advanced Dynamic and Control Lab, Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananthapuram, India
| | - G Unnikrishnan
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, India
| |
Collapse
|
20
|
Romero-Carmona CE, Chávez-Corona JI, Lima E, Cortés H, Quintanar-Guerrero D, Bernad-Bernad MJ, Ramos-Martínez I, Peña-Corona SI, Sharifi-Rad J, Leyva-Gómez G. Nanoparticle and microparticle-based systems for enhanced oral insulin delivery: A systematic review and meta-analysis. J Nanobiotechnology 2024; 22:802. [PMID: 39734205 DOI: 10.1186/s12951-024-03045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
Diabetes mellitus (DM) prevalence is rising worldwide. Current therapies comprising subcutaneous insulin injections can cause adverse effects such as lipodystrophy, local reactions like redness and swelling, fluid retention, and allergic reactions. Nanoparticle carriers for oral insulin are groundbreaking compared to existing methods because they are non-invasive treatments, showing operational convenience, controlled release profile, and ability to simulate the physiological delivery route into the bloodstream. These systems improve patient adherence and have demonstrated the potential to lower blood glucose levels in DM. We present a systematic review and meta-analysis aimed at compiling relevant data to pave the way for developing innovative nano- and microparticles for the oral delivery of insulin. Our analysis of 85 articles revealed that the diminution of glucose levels is not proportional to the administered insulin dosage, which ranged from 1 to 120 International Units (IU). The meta-analysis data indicated that 25 IU of encapsulated porcine insulin did not produce a statistically significant outcome (p = 0.93). In contrast, a dosage of 30 IU was efficacious in eliciting an optimal hypoglycemic effect compared to excipient controls. Parameters such as a high degree of encapsulation (~ 90%), particle size (200-400 nm), and polydispersity index (0.086-0.3) are all associated with lower blood glucose levels. These parameters were also significant in the linear regression analysis. Among the excipients employed, chitosan emerged as a prevalent excipient in formulations due to its biocompatible and biodegradable properties and its ability to establish stable polymeric matrices. Even though oral insulin administration is a promising therapeutic method, it cannot guarantee preclinical safety and therapeutic efficacy yet in regulating glucose levels in diabetic conditions.
Collapse
Affiliation(s)
- Carlos E Romero-Carmona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Juan I Chávez-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, 54714, Cuautitlán Izcalli, Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), 14389, Ciudad de Mexico, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, 54714, Cuautitlán Izcalli, Mexico
| | - María J Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Iván Ramos-Martínez
- Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.
| |
Collapse
|
21
|
Sabra R, Kirby D, Chouk V, Malgorzata K, Mohammed AR. Buccal Absorption of Biopharmaceutics Classification System III Drugs: Formulation Approaches and Mechanistic Insights. Pharmaceutics 2024; 16:1563. [PMID: 39771541 PMCID: PMC11676059 DOI: 10.3390/pharmaceutics16121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Buccal drug delivery emerges as a promising strategy to enhance the absorption of drugs classified under the Biopharmaceutics Classification System (BCS) Class III, characterized by high solubility and low permeability. However, addressing the absorption challenges of BCS Class III drugs necessitates innovative formulation strategies. This review delves into optimizing buccal drug delivery for BCS III drugs, focusing on various formulation approaches to improve absorption. Strategies such as permeation enhancers, mucoadhesive polymers, pH modifiers, ion pairing, and prodrugs are systematically explored for their potential to overcome challenges associated with BCS Class III drugs. The mechanistic insight into how these strategies influence drug absorption is discussed, providing a detailed understanding of their applicability. Furthermore, the review advocates for integrating conventional buccal dosage forms with these formulation approaches as a potential strategy to enhance absorption. By emphasizing bioavailability enhancement, this review contributes to a holistic understanding of optimizing buccal absorption for BCS Class III drugs, presenting a unified approach to overcome inherent limitations in their delivery.
Collapse
Affiliation(s)
- Rayan Sabra
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK (D.K.)
- Catalent Pharma Solutions U.K. Swindon Zydis Limited, Swindon SN5 8RU, UK
| | - Daniel Kirby
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK (D.K.)
| | - Vikram Chouk
- Catalent Pharma Solutions U.K. Swindon Zydis Limited, Swindon SN5 8RU, UK
| | - Kleta Malgorzata
- Catalent Pharma Solutions U.K. Swindon Zydis Limited, Swindon SN5 8RU, UK
| | - Afzal R. Mohammed
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK (D.K.)
| |
Collapse
|
22
|
Yapto CV, Rajes K, Inselmann A, Staufenbiel S, Stolte KN, Witt M, Haag R, Dommisch H, Danker K. Topical Application of Dexamethasone-Loaded Core-Multishell Nanocarriers Against Oral Mucosal Inflammation. Macromol Biosci 2024; 24:e2400286. [PMID: 39363619 DOI: 10.1002/mabi.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/14/2024] [Indexed: 10/05/2024]
Abstract
Topical treatment of oral inflammatory diseases is challenging due to the intrinsic physicochemical barriers of the mucosa and the continuous flow of saliva, which dilute drugs and limit their bioavailability. Nanocarrier technology can be an innovative approach to circumvent these problems and thus improve the efficacy of topical drug delivery to the mucosa. Core-multishell (CMS) nanocarriers are putative delivery systems with high biocompatibility and the ability to adhere to and penetrate the oral mucosa. Ester-based CMS nanocarriers release the anti-inflammatory compound dexamethasone (Dx) more efficiently than a conventional cream. Mussel-inspired functionalization of a CMS nanocarrier with catechol further improves the adhesion of the nanocarrier and may enhance the efficacy of the loaded drugs. In the present study, the properties of the ester-based CMS 10-E-15-350 nanocarrier (CMS-NC) are further evaluated in comparison to the catechol-functionalized variant (CMS-C0.08). While the mucoadhesion of CMS-NC is inhibited by saliva, CMS-C0.08 exhibits better mucoadhesion in the presence of saliva. Due to the improved adhesion properties, CMS-C0.08 loaded with dexamethasone (Dx-CMS-C0.08) shows a better anti-inflammatory effect than Dx-CMS-NC when applied dynamically. These results highlight the superiority of CMS-C0.08 over CMS-NC as an innovative drug delivery system (DDS) for the treatment of oral mucosal diseases.
Collapse
Affiliation(s)
- Cynthia V Yapto
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
| | - Keerthana Rajes
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Antonia Inselmann
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
| | - Sven Staufenbiel
- Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, 12169, Berlin, Germany
| | - Kim N Stolte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, 14197, Berlin, Germany
| | - Maren Witt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, 14197, Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Henrik Dommisch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, 14197, Berlin, Germany
| | - Kerstin Danker
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
| |
Collapse
|
23
|
Núño K, Jensen AS, O'Connor G, Houston TJ, Dikici E, Zingg JM, Deo S, Daunert S. Insights into Women's health: Exploring the vaginal microbiome, quorum sensing dynamics, and therapeutic potential of quorum sensing quenchers. Mol Aspects Med 2024; 100:101304. [PMID: 39255544 DOI: 10.1016/j.mam.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/28/2024] [Indexed: 09/12/2024]
Abstract
The vaginal microbiome is an important aspect of women's health that changes dynamically with various stages of the woman's life. Just like the gut microbiome, the vaginal microbiome can also be affected by pathologies that dramatically change the typical composition of native vaginal microorganisms. However, the mechanism as to how both vaginal endemic and gut endemic opportunistic microbes can express pathogenicity in vaginal polymicrobial biofilms is poorly understood. Quorum sensing is the cellular density-dependent bacterial and fungal communication process in which chemical signaling molecules, known as autoinducers, activate expression for genes responsible for virulence and pathogenicity, such as biofilm formation and virulence factor production. Quorum sensing inhibition, or quorum quenching, has been explored as a potential therapeutic route for both bacterial and fungal infections. By applying these quorum quenchers, one can reduce biofilm formation of opportunistic vaginal microbes and combine them with antibiotics for a synergistic effect. This review aims to display the relationship between the vaginal and gut microbiome, the role of quorum sensing in polymicrobial biofilm formation which cause pathology in the vaginal microbiome, and how quorum quenchers can be utilized to attenuate the severity of bacterial and fungal infections.
Collapse
Affiliation(s)
- Kevin Núño
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Anne Sophie Jensen
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Tiffani Janae Houston
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Department of Internal Medicine, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Jean Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
24
|
Hernández-González ME, Rodríguez-González CA, Valencia-Gómez LE, Hernández-Paz JF, Jiménez-Vega F, Salcedo M, Olivas-Armendáriz I. Characterization of HPMC and PEG 400 Mucoadhesive Film Loaded with Retinyl Palmitate and Ketorolac for Intravaginal Administration. Int J Mol Sci 2024; 25:12692. [PMID: 39684402 DOI: 10.3390/ijms252312692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Intravaginal drug administration offers several advantages over other routes, primarily bypassing the initial stages of metabolism. Additionally, this route has demonstrated both local and systemic effects. Mucoadhesive polymeric systems can be utilized to prevent dose loss due to the mucous barriers and the formation of wet cavities. This study employed various techniques to evaluate the performance and characteristics of a mucoadhesive film composed of HPMC-PEG 400 containing retinyl palmitate and ketorolac molecules. Scanning Electron Microscopy (SEM) was employed to analyze the porous structure of the film. Thermogravimetric Analysis (TGA) was conducted at different temperatures to assess thermal stability. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze the functional groups and intermolecular interactions between the film and the drug. Swelling and weight loss tests indicated that the film disintegrated within 3-4 days. UV-VIS spectroscopy was used for drug release evaluation based on the Higuchi equation. Additionally, the surface wetting properties were assessed through contact angle measurements. The system's biocompatibility was confirmed using the MTT assay. Finally, adhesion and glide tests demonstrated the film's interaction with porcine uterine tissue. This study shows that the HPMC-PEG 400 film containing retinyl palmitate molecules interacts effectively with tissue and could be considered a novel tool for treating damaged epithelial tissues.
Collapse
Affiliation(s)
- Maryel E Hernández-González
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32320, Mexico
| | - Claudia A Rodríguez-González
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32320, Mexico
| | - Laura E Valencia-Gómez
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32320, Mexico
| | - Juan F Hernández-Paz
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32320, Mexico
| | - Florida Jiménez-Vega
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico
| | - Mauricio Salcedo
- Unidad de Investigación Biomédica Oncológica Genómica, Hospital Gineco Pediatría 3-A, Instituto Mexicano del Seguro Social, Ciudad de México 07790, Mexico
| | - Imelda Olivas-Armendáriz
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32320, Mexico
| |
Collapse
|
25
|
Surendranath M, Ramesan RM, Nair P, Parameswaran R. Zein and 3-Aminophenyl Boronic Acid Conjugated Polyvinylpyrrolidone Polymer Blend: Electrospinning, Characterization, and Mucoadhesive Drug Delivery. ACS APPLIED BIO MATERIALS 2024; 7:7429-7443. [PMID: 39420850 DOI: 10.1021/acsabm.4c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The era of mucoadhesive polymers has advanced to the next generation, focusing on targeted adhesion of chemical functional groups with mucosa. This work aims to develop boronic acid functionalized polymers, which could facilitate reversible binding with the mucin in the mucosa. Pendant groups of boronic acid were conjugated on the chains of polyvinylpyrrolidone (PVP) via C═N bonding. The evidence from FTIR spectroscopy, XPS analysis, and UV spectroscopy has been used for the confirmation of the chemical conjugation of 3-aminophenyl boronic acid (APBA) to PVP. Boronate ester formation is a pH-dependent process. High pKa values of APBA preferably cause the binding of trigonal-shaped boronic acid with sialic acid groups of mucin. Boronic acid moieties additionally benefited in mucoadhesion in comparison to PVP alone, which is a result of the formation of a five-membered boronate ester complex. The presence of boronic acid moieties enhanced the force of adhesion on porcine buccal mucosal tissue from 13.12 ± 1.52 to 19.04 ± 1.97 g force. Specific binding of the polymer to the mucosal surface caused prolonged adhesion of the polymer to the mucosal surface. A polymer blend of boronic acid functionalized PVP and zein has been explored for its potential for mucoadhesive delivery of propranolol hydrochloride.
Collapse
Affiliation(s)
- Medha Surendranath
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology Technology-Trivandrum, Thiruvananthapuram, Kerala 695012, India
| | - Rekha M Ramesan
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology Technology-Trivandrum, Thiruvananthapuram, Kerala 695012, India
| | - Prakash Nair
- Department of Neurosurgery Sree Chitra Tirunal Institute for Medical Sciences and Technology Technology-Trivandrum, Thiruvananthapuram, Kerala 695011, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology Technology-Trivandrum, Thiruvananthapuram, Kerala 695012, India
| |
Collapse
|
26
|
Miller S, Omoto N, DeCamp R, Gloeb G, Gross SM. Substantive Dimethicone-Based Mucoadhesive Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5590. [PMID: 39597413 PMCID: PMC11595981 DOI: 10.3390/ma17225590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
It is challenging to deliver therapeutics in the oral environment due to the wet surfaces, the nature of the mucosa and the potential for saliva washout. In this study, the development of a mucoadhesive dimethicone-based oral carrier system for adhesion to the hard tissue and mucosa in the mouth was examined. This study reports the viscosity and mucoadhesion of dimethicone based polymer blends. The viscosity of the materials was measured using a rheometer. The mucoadhesion of these materials was determined as the work of adhesion and peak tack force using the tensile test method with a texture analyzer. Materials were prepared with either calcium and phosphate salts or sodium fluoride as potential therapeutics for promoting remineralization and treating dentin hypersensitivity by mechanical occlusion. Scanning electron microscopy was used to look at mineral deposition on the surface of dental hard tissue after the application of the dimethicone-based formulations. The results of this study confirm the potential for using these dimethicone-based materials as mucoadhesive therapeutic delivery systems in the oral environment.
Collapse
Affiliation(s)
- Sophie Miller
- Department of Chemistry, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA; (S.M.); (R.D.); (G.G.)
| | - Nicole Omoto
- Department of Oral Biology, School of Dentistry, Creighton University, Omaha, NE 68178, USA;
| | - Ryan DeCamp
- Department of Chemistry, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA; (S.M.); (R.D.); (G.G.)
| | - Gavin Gloeb
- Department of Chemistry, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA; (S.M.); (R.D.); (G.G.)
| | - Stephen M. Gross
- Department of Chemistry, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA; (S.M.); (R.D.); (G.G.)
- Department of Oral Biology, School of Dentistry, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
27
|
Supachawaroj N, Kerdmanee K, Limsitthichaikoon S. Lidocaine-Loaded Thermoresponsive Gel for Accelerated Wound Healing in Dry Socket and Oral Wounds. Gels 2024; 10:739. [PMID: 39590095 PMCID: PMC11594129 DOI: 10.3390/gels10110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Dry socket, also known as alveolar osteitis, presents significant challenges in oral surgery because of severe pain and delayed wound healing. This study aims to address these challenges by developing and evaluating a lidocaine-loaded polyelectrolyte complex thermoresponsive gel (LG) designed to enhance wound healing and provide effective pain management in oral wounds. The thermoresponsive gel transitions from a liquid to a gel at body temperature, ensuring sustained contact with the wound site and prolonged release of lidocaine. The in vitro assessments, including cytotoxicity and wound scratch assays, demonstrated the biocompatibility and therapeutic potential of the LG formulation. Following this, palatal wounds were induced in rats, with healing monitored over a 14-days period. Histological analyses were conducted to assess tissue regeneration and inflammation. The results indicated that the LG formulation significantly improved wound closure rates, reduced inflammation, and accelerated epithelialization compared with control groups, primarily because of the high content of hyaluronic acid (HA). The synergistic effects of HA combined with the thermoresponsive properties of the gel facilitated faster healing. These findings suggest that LG is a promising therapeutic option for enhancing oral wound healing and effectively managing pain, particularly in conditions such as dry socket.
Collapse
Affiliation(s)
- Nuttawut Supachawaroj
- Department of Oral Surgery, College of Dental Medicine, Rangsit University, Pathum Thani 12000, Thailand;
| | - Kunchorn Kerdmanee
- Department of Periodontics, College of Dental Medicine, Rangsit University, Pathum Thani 12000, Thailand;
| | - Sucharat Limsitthichaikoon
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| |
Collapse
|
28
|
Vashchenko OV, Ye Brodskii R, Davydova IO, Vashchenko PV, Ivaniuk OI, Ruban OA. Biopharmaceutical studies of a novel sedative sublingual lozenge based on glycine and tryptophan: A rationale for mucoadhesive agent selection. Eur J Pharm Biopharm 2024; 203:114469. [PMID: 39186958 DOI: 10.1016/j.ejpb.2024.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Effective sedative drugs are in great demand due to increasing incidence of nervous disorders. The present work was aimed to develop a novel sublingual sedative drug based on glycine and L-tryptophan amino acids. Carbopol and different hydroxypropyl methylcellulose species were alternatively tested as mucoadhesive agents intended to prolong tryptophan sublingual release time. A model lipid medium of fully hydrated L-α-dimyristoylphosphatidylcholine was used for optimal mucoadhesive agents selection. Simultaneous processes of drug release and diffusion in lipid medium were first investigated involving both experimental and theoretical approaches. Individual substances, their selected combinations as well as different drug formulations were consecutively examined. Application of kinetic differential scanning calorimetry method allowed us to reveal a number of specific drug-excipient effects. Lactose was found to essentially facilitate tryptophan release and provide its ability to get into the bloodstream simultaneously with glycine, which is necessary to achieve glycine-tryptophan synergism. Introduction of a mucoadhesive agent into the formulation was shown to change kinetics of drug-membrane interactions variously depending on viscosity grade. Among the mucoadhesive agents, hydroxypropyl methylcellulose species K4M and E4M were shown to further accelerate drug release, therefore they were selected as optimal. Thus, effectiveness of the novel sedative drug was provided by including some excipients, such as lactose and the selected mucoadhesive agent species. A dynamic mathematical model was developed properly describing release and diffusion in lipid medium of various drug substances. Our study clearly showed applicability of a lipid medium to meet challenges such as drug-excipient interactions and optimization of drug formulations.
Collapse
Affiliation(s)
- O V Vashchenko
- Institute for Scintillation Materials, National Academy of Science of Ukraine, 60 Nauky Ave., 61072 Kharkov, Ukraine.
| | - R Ye Brodskii
- Institute for Single Crystals, National Academy of Science of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine
| | - I O Davydova
- National University of Pharmacy, 53 H. Skovorody Str., 61002 Kharkiv, Ukraine
| | - P V Vashchenko
- Institute for Scintillation Materials, National Academy of Science of Ukraine, 60 Nauky Ave., 61072 Kharkov, Ukraine
| | - O I Ivaniuk
- National University of Pharmacy, 53 H. Skovorody Str., 61002 Kharkiv, Ukraine
| | - O A Ruban
- National University of Pharmacy, 53 H. Skovorody Str., 61002 Kharkiv, Ukraine
| |
Collapse
|
29
|
Dallabrida KG, Braz WC, Marchiori C, Alves TM, Cruz LS, Trindade GADM, Machado P, da Rosa LS, Khalil NM, Rego FGDM, Fajardo AR, Ferreira LM, Sari MHM, Reolon JB. Exploring Cationic Guar Gum: Innovative Hydrogels and Films for Enhanced Wound Healing. Pharmaceutics 2024; 16:1233. [PMID: 39339269 PMCID: PMC11435176 DOI: 10.3390/pharmaceutics16091233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: This study developed and characterized hydrogels (HG-CGG) and films (F-CGG) based on cationic guar gum (CGG) for application in wound healing. Methods: HG-CGG (2% w/v) was prepared by gum thickening and evaluated for pH, stability, spreadability, and viscosity. F-CGG was obtained using an aqueous dispersion of CGG (6% w/v) and the solvent casting method. F-CGG was characterized for thickness, weight uniformity, morphology, mechanical properties, hydrophilicity, and swelling potential. Both formulations were evaluated for bioadhesive potential on intact and injured porcine skin, as well as antioxidant activity. F-CGG was further studied for biocompatibility using hemolysis and cell viability assays (L929 fibroblasts), and its wound-healing potential by the scratch assay. Results: HG-CGG showed adequate viscosity and spreadability profiles for wound coverage, but its bioadhesive strength was reduced on injured skin. In contrast, F-CGG maintained consistent bioadhesive strength regardless of skin condition (6554.14 ± 540.57 dyne/cm2 on injured skin), presenting appropriate mechanical properties (flexible, transparent, thin, and resistant) and a high swelling capacity (2032 ± 211% after 6 h). F-CGG demonstrated superior antioxidant potential compared to HG-CGG (20.50 mg/mL ABTS+ radical scavenging activity), in addition to exhibiting low hemolytic potential and no cytotoxicity to fibroblasts. F-CGG promoted the proliferation of L929 cells in vitro, supporting wound healing. Conclusions: Therefore, CGG proved to be a promising material for developing formulations with properties suitable for cutaneous use. F-CGG combines bioadhesion, antioxidant activity, biocompatibility, cell proliferation, and potential wound healing, making it promising for advanced wound treatment.
Collapse
Affiliation(s)
- Kamila Gabrieli Dallabrida
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| | - Willer Cezar Braz
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| | - Crisleine Marchiori
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| | - Thainá Mayer Alves
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| | - Luiza Stolz Cruz
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| | - Giovanna Araujo de Morais Trindade
- Centro de Estudos em Biofarmácia, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (P.M.); (L.M.F.)
| | - Patrícia Machado
- Centro de Estudos em Biofarmácia, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (P.M.); (L.M.F.)
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria 97015-372, RS, Brazil;
| | - Najeh Maissar Khalil
- Applied Nanostructured Systems Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil;
| | - Fabiane Gomes de Moraes Rego
- Grupo de Pesquisa em Doenças Metabólicas (GPDM), Departamento de Análises Clínicas, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil;
| | - André Ricardo Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil;
| | - Luana Mota Ferreira
- Centro de Estudos em Biofarmácia, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (P.M.); (L.M.F.)
| | - Marcel Henrique Marcondes Sari
- Grupo de Pesquisa em Doenças Metabólicas (GPDM), Departamento de Análises Clínicas, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil;
| | - Jéssica Brandão Reolon
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (W.C.B.); (C.M.); (T.M.A.); (L.S.C.)
| |
Collapse
|
30
|
Maria DN, Ibrahim MM, Kim MJ, Maria SN, White WA, Wang X, Hollingsworth TJ, Jablonski MM. Evaluation of Pregabalin bioadhesive multilayered microemulsion IOP-lowering eye drops. J Control Release 2024; 373:667-687. [PMID: 39079659 PMCID: PMC11384292 DOI: 10.1016/j.jconrel.2024.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
In spite of available treatment options, glaucoma continues to be a leading cause of irreversible blindness in the world. Current glaucoma medications have multiple limitations including: lack of sustained action; requirement for multiple dosing per day, ocular irritation and limited options for drugs with different mechanisms of action. Previously, we demonstrated that pregabalin, a drug with high affinity and selectivity for CACNA2D1, lowered IOP in a dose-dependent manner. The current study was designed to evaluate pregabalin microemulsion eye drops and to estimate its efficacy in humans using in silico methods. Molecular docking studies of pregabalin against CACNA2D1 of mouse, rabbit, and human were performed. Pregabalin microemulsion eye drops were characterized using multiple in vivo studies and its stability was evaluated over one year at different storage conditions. Molecular docking analyses and QSPR of pregabalin confirmed its suitability as a new IOP-lowering medication that functions using a new mechanism of action by binding to CACNA2D1 in all species evaluated. Because of its prolonged corneal residence time and corneal penetration enhancement, a single topical application of pregabalin ME can provide an extended IOP reduction of more than day in different animal models. Repeated daily dosing for 2 months confirms the lack of any tachyphylactic effect, which is a common drawback among marketed IOP-lowering medications. In addition, pregabalin microemulsion demonstrated good physical stability for one year, and chemical stability for 3-6 months if stored below 25 °C. Collectively, these outcomes greatly support the use of pregabalin eye drops as once daily IOP-lowering therapy for glaucoma management.
Collapse
Affiliation(s)
- Doaa N Maria
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed M Ibrahim
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Minjae J Kim
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Sara N Maria
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - William A White
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - XiangDi Wang
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - T J Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Monica M Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
31
|
Yessentayeva NA, Galiyeva AR, Daribay AT, Sadyrbekov DT, Moustafine RI, Tazhbayev YM. Optimization of Polylactide-Co-Glycolide-Rifampicin Nanoparticle Synthesis, In Vitro Study of Mucoadhesion and Drug Release. Polymers (Basel) 2024; 16:2466. [PMID: 39274099 PMCID: PMC11397862 DOI: 10.3390/polym16172466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Despite the large number of works on the synthesis of polylactide-co-glycolide (PLGA) nanoparticles (NP) loaded with antituberculosis drugs, the data on the influence of various factors on the final characteristics of the complexes are quite contradictory. In the present study, a comprehensive analysis of the effect of multiple factors, including the molecular weight of PLGA, on the size and stability of nanoparticles, as well as the loading efficiency and release of the antituberculosis drug rifampicin (RIF), was carried out. Emulsification was carried out using different surfactants (polyvinyl alcohol, Tween 80 and Pluronic F127), different aqueous-to-organic phase ratios, and different solvents (dichloromethane, dimethyl sulfoxide, ethyl acetate). In this research, the PLGA nanoemulsion formation process was accompanied by ultrasonic dispersion, at different frequencies and durations of homogenization. The use of the central composite design method made it possible to select optimal conditions for the preparation of PLGA-RIF NPs (particle size 223 ± 2 nm, loading efficiency 67 ± 1%, nanoparticles yield 47 ± 2%). The release of rifampicin from PLGA NPs was studied for the first time using the flow cell method and vertical diffusion method on Franz cells at different pH levels, simulating the gastrointestinal tract. For the purpose of the possible inhalation administration of rifampicin immobilized in PLGA NPs, their mucoadhesion to mucin was studied, and a high degree of adhesion of polymeric nanoparticles to the mucosa was shown (more than 40% within 4 h). In the example of strain H37Rv in vitro, the sensitivity of Mycobacterium tuberculosis to PLGA-RIF NPs was proven by the complete inhibition of their growth.
Collapse
Affiliation(s)
| | - Aldana R Galiyeva
- Chemistry Department, Karaganda Buketov University, Karaganda 100028, Kazakhstan
| | - Arailym T Daribay
- Chemistry Department, Karaganda Buketov University, Karaganda 100028, Kazakhstan
| | - Daniyar T Sadyrbekov
- Chemistry Department, Karaganda Buketov University, Karaganda 100028, Kazakhstan
| | | | | |
Collapse
|
32
|
Oh S, Lee S, Kim SW, Kim CY, Jeong EY, Lee J, Kwon DA, Jeong JW. Softening implantable bioelectronics: Material designs, applications, and future directions. Biosens Bioelectron 2024; 258:116328. [PMID: 38692223 DOI: 10.1016/j.bios.2024.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Implantable bioelectronics, integrated directly within the body, represent a potent biomedical solution for monitoring and treating a range of medical conditions, including chronic diseases, neural disorders, and cardiac conditions, through personalized medical interventions. Nevertheless, contemporary implantable bioelectronics rely heavily on rigid materials (e.g., inorganic materials and metals), leading to inflammatory responses and tissue damage due to a mechanical mismatch with biological tissues. Recently, soft electronics with mechanical properties comparable to those of biological tissues have been introduced to alleviate fatal immune responses and improve tissue conformity. Despite their myriad advantages, substantial challenges persist in surgical handling and precise positioning due to their high compliance. To surmount these obstacles, softening implantable bioelectronics has garnered significant attention as it embraces the benefits of both rigid and soft bioelectronics. These devices are rigid for easy standalone implantation, transitioning to a soft state in vivo in response to environmental stimuli, which effectively overcomes functional/biological problems inherent in the static mechanical properties of conventional implants. This article reviews recent research and development in softening materials and designs for implantable bioelectronics. Examples featuring tissue-penetrating and conformal softening devices highlight the promising potential of these approaches in biomedical applications. A concluding section delves into current challenges and outlines future directions for softening implantable device technologies, underscoring their pivotal role in propelling the evolution of next-generation bioelectronics.
Collapse
Affiliation(s)
- Subin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sung Woo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun Young Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Juhyun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Do A Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
33
|
Schuh RS, Franceschi EP, Brum BB, Fachel FNS, Poletto É, Vera LNP, Santos HS, Medeiros-Neves B, Monteagudo de Barros V, Helena da Rosa Paz A, Baldo G, Matte U, Giugliani R, Ferreira Teixeira H. Laronidase-loaded liposomes reach the brain and other hard-to-treat organs after noninvasive nasal administration. Int J Pharm 2024; 660:124355. [PMID: 38897489 DOI: 10.1016/j.ijpharm.2024.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by a lack of the lysosomal enzyme α-L-iduronidase (IDUA), responsible for the degradation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate, leading to multisystemic signs and symptoms. Enzyme replacement therapy (ERT) is a treatment that consists of weekly intravenous administrations of laronidase, a recombinant version of IDUA. However, ERT has limited access to certain tissues, such as bone, cartilage, and brain, and laronidase fails to trespass the BBB. In this sense, this study reports the development and characterization of laronidase-loaded liposomes for the treatment of MPS I mice. Liposomal complexes were obtained by the thin film formation method followed by microfluidization. The main characterization results showed mean vesicle size of 103.0 ± 3.3 nm, monodisperse populations of vesicles, zeta potential around + 30.0 ± 2.1 mV, and mucoadhesion strength of 5.69 ± 0.14 mN. Treatment of MPS I mice fibroblasts showed significant increase in enzyme activity. Nasal administration of complexes to MPS I mice resulted in significant increase in laronidase activity in the brain cortex, heart, lungs, kidneys, eyes, and serum. The overall results demonstrate the feasibility of nasal administration of laronidase-loaded liposomes to deliver enzyme in difficult-to-reach tissues, circumventing ERT issues and bringing hope as a potential treatment for MPS I.
Collapse
Affiliation(s)
- Roselena Silvestri Schuh
- Postgraduate Program in Pharmaceutical Sciences, UFRGS, Porto Alegre, RS, Brazil; Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | | | - Bruna Brazeiro Brum
- Postgraduate Program in Pharmaceutical Sciences, UFRGS, Porto Alegre, RS, Brazil; Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Édina Poletto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Luisa Natália Pimentel Vera
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hallana Souza Santos
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Medeiros-Neves
- Postgraduate Program in Pharmaceutical Sciences, UFRGS, Porto Alegre, RS, Brazil
| | | | - Ana Helena da Rosa Paz
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | | |
Collapse
|
34
|
Babakurd FM, Azzawi SK, Alkhouli M, Al-Nerabieah Z. Evaluation of EMLA cream with microneedle patches in palatal anesthesia in children: a randomized controlled clinical trial. Sci Rep 2024; 14:15295. [PMID: 38961171 PMCID: PMC11222482 DOI: 10.1038/s41598-024-66212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024] Open
Abstract
Palatal injections are considered to be one of the most painful dental procedures. As a result, it was important to find alternatives to this painful injection to improve children's cooperation. The dental literature mentioned using EMLA cream as a possible alternative to conventional injections, but its anesthetic effect was debated. Therefore, it was valuable to research the impact of microneedle patches to enhance the effectiveness of this cream. The purpose of this randomized controlled clinical trial was to compare the effectiveness of different methods of anesthesia and pain levels in children aged 7-11 years. The study compared the use of EMLA cream, EMLA with microneedles, and conventional palatal injections. A total of 90 children were randomly assigned to three groups: Group 1 received conventional palatal anesthesia (control), Group 2 received EMLA cream only, and Group 3 received EMLA with microneedles. Pain levels were assessed using the FLACC and Wong-Baker scales at three different time points: T1(during anesthesia), T2(on palatal probing), and T3(during extraction). The FLACC scale revealed a significant difference in pain between groups only at T1 (P value = 0.000). It was found that the conventional palatal injection group had a higher pain level than the EMLA cream-only group and the group using microneedle patches with EMLA cream (P value = 0.000). However, the other groups did not show significant differences in pain levels during the anesthesia (P value = 1.00). Similarly, the Wong-Baker scale also demonstrated a statistically significant difference in pain between groups only at T1 (P value = 0.000). It was found that the conventional palatal injection group had a higher pain level than the EMLA cream-only group and the group using microneedle patches with EMLA cream (P value = 0.000). However, the other groups did not show significant differences in pain levels during the anesthesia (P value = 0.091). The study concludes that both EMLA cream alone and EMLA with microneedles can be used as an alternative to conventional palatal anesthesia for children.
Collapse
Affiliation(s)
- Farah M Babakurd
- Pediatric Dentistry Department, Faculty of Dentistry, University of Damascus, Damascus, Syria.
| | - Shadi K Azzawi
- Pediatric Dentistry Department, Faculty of Dentistry, University of Damascus, Damascus, Syria
| | - Muaaz Alkhouli
- Pediatric Dentistry Department, Faculty of Dentistry, University of Damascus, Damascus, Syria
| | - Zuhair Al-Nerabieah
- Pediatric Dentistry Department, Faculty of Dentistry, University of Damascus, Damascus, Syria
| |
Collapse
|
35
|
Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AEY. A review on revolutionizing ophthalmic therapy: Unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024; 273:132700. [PMID: 38879998 DOI: 10.1016/j.ijbiomac.2024.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.
Collapse
Affiliation(s)
- Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Min-Yi Ku
- School of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
36
|
Kanu LN, Ross AE, Farhat W, Mudigunda SV, Boychev N, Kuang L, Hutcheon AEK, Ciolino JB. Development and Characterization of a Photocrosslinkable, Chitosan-Based, Nerve Growth Factor-Eluting Hydrogel for the Ocular Surface. Transl Vis Sci Technol 2024; 13:12. [PMID: 38888287 PMCID: PMC11186570 DOI: 10.1167/tvst.13.6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/04/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Recombinant human nerve growth factor (rhNGF; cenegermin-bkbj, OXERVATE) is the first and only U.S. Food and Drug Administration-approved treatment for moderate to severe neurotrophic keratopathy. The aim of this study was to determine the feasibility of incorporating a version of rhNGF in a mucoadhesive hydrogel capable of sustained drug release to the ocular surface. Methods Hydrogels loaded with rhNGF were synthesized by conjugating chitosan with azidobenzoic acid (Az-Ch), adding rhNGF, and exposing the solution to ultraviolet (UV) radiation to induce photocrosslinking. Az-Ch hydrogels were evaluated for physical properties and rhNGF release profiles. Cytocompatbility of Az-Ch was assessed using immortalized human corneal limbal epithelial (HCLE) cells. TF1 erythroleukemic cell proliferation and HCLE cell proliferation and migration were used to assess the bioactivity of rhNGF released from Az-Ch hydrogels. Results Az-Ch formed hydrogels in <10 seconds of UV exposure and demonstrated high optical transparency (75-85 T%). Az-Ch hydrogels exhibited good cytocompatibility with no demonstratable effect on HCLE cell morphology or viability. rhNGF was released gradually over 24 hours from Az-Ch hydrogels and retained its ability to induce TF1 cell proliferation. No significant difference was observed between rhNGF released from Az-Ch and freshly prepared rhNGF solutions on HCLE cell proliferation or percent wound closure after 12 hours; however, both were significantly better than control (P < 0.01). Conclusions rhNGF-loaded Az-Ch hydrogels exhibited favorable physical, optical, and drug-release properties, as well as retained drug bioactivity. This drug delivery system has the potential to be further developed for in vivo and translational clinical applications. Translational Relevance Az-Ch hydrogels may be used to enhance rhNGF therapy in patients with NK.
Collapse
Affiliation(s)
- Levi N. Kanu
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Amy E. Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sushma V. Mudigunda
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Audrey E. K. Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Li HY, Makatsoris C, Forbes B. Particulate bioaerogels for respiratory drug delivery. J Control Release 2024; 370:195-209. [PMID: 38641021 PMCID: PMC11847494 DOI: 10.1016/j.jconrel.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The bioaerogel microparticles have been recently developed for respiratory drug delivery and attract fast increasing interests. These highly porous microparticles have ultralow density and hence possess much reduced aerodynamic diameter, which favour them with greatly enhanced dispersibility and improved aerosolisation behaviour. The adjustable particle geometric dimensions by varying preparation methods and controlling operation parameters make it possible to fabricate bioaerogel microparticles with accurate sizes for efficient delivery to the targeted regions of respiratory tract (i.e. intranasal and pulmonary). Additionally, the technical process can provide bioaerogel microparticles with the opportunities of accommodating polar, weak polar and non-polar drugs at sufficient amount to satisfy clinical needs, and the adsorbed drugs are primarily in the amorphous form that potentially can facilitate drug dissolution and improve bioavailability. Finally, the nature of biopolymers can further offer additional advantageous characteristics of improved mucoadhesion, sustained drug release and subsequently elongated time for continuous treatment on-site. These fascinating features strongly support bioaerogel microparticles to become a novel platform for effective delivery of a wide range of drugs to the targeted respiratory regions, with increased drug residence time on-site, sustained drug release, constant treatment for local and systemic diseases and anticipated better-quality of therapeutic effects.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural & Mathematical Sciences, King's College London, WC2R 2LS, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
38
|
da Silva Fonseca L, Mello ALR, Chisini LA, Collares K. Hard drugs use and tooth wear: a scoping review. Clin Oral Investig 2024; 28:348. [PMID: 38822934 DOI: 10.1007/s00784-024-05738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES This study aims to map evidence on the relationship between hard drug use and dental wear. The scoping review is guided by the question: What is the relationship between hard drug consumption and dental wear? MATERIALS AND METHODS Adhering to PRISMA-ScR guidelines, searches were conducted across PubMed, Embase, and four databases in March 2024. Inclusion criteria included studies investigating the association between hard drug use and dental wear, regardless of publication date or language. Data were presented through narrative exposition, tables, and a conceptual framework. RESULTS Twenty-eight studies (four case-control, three cross-sectional, five case reports, and sixteen literature reviews) were included. Among case-control studies, 75% observed an association between drug use and dental erosion; however, no cross-sectional studies demonstrated this association. Despite questionable quality, reviews established connections between drug use and dental erosion. Studies aimed to elucidate potential causes for dental erosion. CONCLUSIONS Analysis suggests a potential link between hard drug use and dental wear, though indirect. Factors like bruxism and reduced salivary pH may contribute to dental wear among drug users. Further investigation through primary studies exploring this relationship is necessary. CLINICAL RELEVANCE Dentists should focus not only on clinical characteristics of dental wear but also on mediating factors such as bruxism and decreased salivary pH associated with drug use. This holistic approach allows for a deeper understanding of dental wear mechanisms, enabling targeted preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Laura da Silva Fonseca
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Luiz Alexandre Chisini
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Kauê Collares
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
39
|
Noske S, Karimov M, Krüger M, Lilli B, Ewe A, Aigner A. Spray-drying of PEI-/PPI-based nanoparticles for DNA or siRNA delivery. Eur J Pharm Biopharm 2024; 199:114297. [PMID: 38641228 DOI: 10.1016/j.ejpb.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Spray-drying of nucleic acid-based drugs designed for gene therapy or gene knockdown is associated with many advantages including storage stability and handling as well as the possibility of pulmonary application. The encapsulation of nucleic acids in nanoparticles prior to spray-drying is one strategy for obtaining efficient formulations. This, however, strongly relies on the definition of optimal nanoparticles, excipients and spray-drying conditions. Among polymeric nanoparticles, polyethylenimine (PEI)-based complexes with or without chemical modifications have been described previously as very efficient for gene or oligonucleotide delivery. The tyrosine-modification of linear or branched low molecular weight PEIs, or of polypropylenimine (PPI) dendrimers, has led to high complex stability, improved cell uptake and transfection efficacy as well as high biocompatibility. In this study, we identify optimal spray-drying conditions for PEI-based nanoparticles containing large plasmid DNA or small siRNAs, and further explore the spray-drying of nanoparticles containing chemically modified polymers. Poly(vinyl alcohol) (PVA), but not trehalose or lactose, is particularly well-suited as excipient, retaining or even enhancing transfection efficacies compared to fresh complexes. A big mesh size is critically important as well, while the variation of the spray-drying temperature plays a minor role. Upon spray-drying, microparticles in a ∼ 3.3 - 8.5 µm size range (laser granulometry) are obtained, dependent on the polymers. Upon their release from the spray-dried material, the nanoparticles show increased sizes and markedly altered zeta potentials as compared to their fresh counterparts. This may contribute to their high efficacy that is seen also after prolonged storage of the spray-dried material. We conclude that these spray-dried systems offer a great potential for the preparation of nucleic acid drug storage forms with facile reconstitution, as well as for their direct pulmonary application as dry powder.
Collapse
Affiliation(s)
- Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Martin Krüger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Bettina Lilli
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
40
|
Rampedi PN, Ogunrombi MO, Adeleke OA. Leading Paediatric Infectious Diseases-Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics 2024; 16:712. [PMID: 38931836 PMCID: PMC11206886 DOI: 10.3390/pharmaceutics16060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in drug delivery technologies, particularly oral formulations, have shown tremendous progress in enhancing the effectiveness of paediatric medicines. Generally, these delivery methods target, and address challenges associated with palatability, dosing accuracy, stability, bioavailability, patient compliance, and caregiver convenience, which are important factors that can influence successful treatment outcomes in children. Some of the emerging trends include moving away from creating liquid delivery systems to developing oral solid formulations, with the most explored being orodispersible tablets, multiparticulate dosage forms using film-coating technologies, and chewable drug products. Other ongoing innovations include gastro-retentive, 3D-printed, nipple-shield, milk-based, and nanoparticulate (e.g., lipid-, polymeric-based templates) drug delivery systems, possessing the potential to improve therapeutic effectiveness, age appropriateness, pharmacokinetics, and safety profiles as they relate to the paediatric population. This manuscript therefore highlights the evolving landscape of oral pharmacotherapeutic interventions for leading paediatric infectious diseases, crediting the role of innovative drug delivery technologies. By focusing on the current trends, pointing out gaps, and identifying future possibilities, this review aims to contribute towards ongoing efforts directed at improving paediatric health outcomes associated with the management of these infectious ailments through accessible and efficacious drug treatments.
Collapse
Affiliation(s)
- Penelope N. Rampedi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Modupe O. Ogunrombi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Oluwatoyin A. Adeleke
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3J5, Canada
- School of Pharmacy, Sefako Makgatho Health Science University, Pretoria 0208, South Africa
| |
Collapse
|
41
|
Farahmandnejad M, Alipour S, Nokhodchi A. Physical and mechanical properties of ocular thin films: a systematic review and meta-analysis. Drug Discov Today 2024; 29:103964. [PMID: 38552779 DOI: 10.1016/j.drudis.2024.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
The ocular thin film presents a potential solution for addressing challenges to ocular drug delivery. In this review, we summarise the findings of a comprehensive review analysing 336 formulations from 68 studies. We investigated the physical and mechanical properties of ocular thin films, categorised into natural polymer-based, synthetic polymer-based, and combined polymer films. The results showed that the type of polymers used impacted mucoadhesion force, moisture absorption:moisture loss ratio, pH, swelling index, and elongation percentage. Significant relationships were found between these properties within each subgroup. The results also highlighted the influence of plasticisers on elongation percentage, mucoadhesion force, swelling index, and moisture absorption:moisture loss ratio. These findings have implications for designing and optimising ocular drug formulations and selecting appropriate plasticisers to achieve formulations with the desired properties.
Collapse
Affiliation(s)
- Mitra Farahmandnejad
- Department of Drug & Food Quality Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shohreh Alipour
- Department of Drug & Food Quality Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK; Lupin Research Inc, Coral Springs, FL, USA.
| |
Collapse
|
42
|
Bahrami K, Lee E, Morse B, Lanier OL, Peppas NA. Design of nanoparticle-based systems for the systemic delivery of chemotherapeutics: Alternative potential routes via sublingual and buccal administration for systemic drug delivery. Drug Deliv Transl Res 2024; 14:1173-1188. [PMID: 38151650 DOI: 10.1007/s13346-023-01493-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Conventional therapeutic approaches for cancer generally involve chemo- and radiation therapies that often exhibit low efficacy and induce toxic side effects. Recent years have seen significant advancements in the use of protein biologics as a promising alternative treatment option. Nanotechnology-based systems have shown great potential in providing more specific and targeted cancer treatments, thus improving upon many of the limitations associated with current treatments. The unique properties of biomaterial carriers at the nanoscale have been proven to enhance both the performance of the incorporated therapeutic agent and tumor targeting; however, many of these systems are delivered intravenously, which can cause hazardous side effects. Buccal and sublingual delivery systems offer an alternative route for more efficient delivery of nanotechnologies and drug absorption into systemic circulation. This review concentrates on emerging buccal and sublingual nanoparticle delivery systems for chemo- and protein therapeutics, their development, efficacy, and potential areas of improvement in the field. Several factors contribute to the development of effective buccal or sublingual nanoparticle delivery systems, including targeting efficiency of the nanoparticulate carriers, drug release, and carrier biocompatibility. Furthermore, the potential utilization of buccal and sublingual multilayer films combined with nanoparticle chemotherapeutic systems is outlined as a future avenue for in vitro and in vivo research.
Collapse
Affiliation(s)
- Kiana Bahrami
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY, USA
| | - Elaine Lee
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
- School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Brinkley Morse
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, University of Texas, Austin, USA
| | - Olivia L Lanier
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
43
|
Vitamia C, Iftinan GN, Latarissa IR, Wilar G, Cahyanto A, Elamin KM, Wathoni N. Natural and Synthetic Drugs Approached for the Treatment of Recurrent Aphthous Stomatitis Over the Last Decade. Drug Des Devel Ther 2024; 18:1297-1312. [PMID: 38681204 PMCID: PMC11048360 DOI: 10.2147/dddt.s449370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
Recurrent aphthous stomatitis (RAS) refers to a sore and frequently recurring inflammation of the oral tissues, distinguished by the presence of small ulcers that cause significant discomfort and cannot be attributed to any underlying disease. Different treatments have been used for RAS. This review aims to provide a comprehensive overview of the treatment options over the past decade for recurrent aphthous stomatitis (RAS), encompassing both natural and synthetic treatments. It will utilize clinical efficacy studies conducted in vivo and in vitro, along with a focus on the pharmaceutical approach through advancements in drug delivery development. We conducted a thorough literature search from 2013 to 2023 in prominent databases such as PubMed, Scopus, and Cochrane, utilizing appropriate keywords of recurrent aphthous stomatitis, and treatment. A total of 53 clinical trials with 3022 patients were included, with 35 using natural materials in their research and a total of 16 articles discussing RAS treatment using synthetic materials. All the clinical trials showed that natural and synthetic medicines seemed to benefit RAS patients by reducing pain score, ulcer size, and number of ulcers and shortening the healing duration.
Collapse
Affiliation(s)
- Cszahreyloren Vitamia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Departement of Pharmacy, Akademi Farmasi Bumi Siliwangi, Bandung, Indonesia
| | - Ghina Nadhifah Iftinan
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
44
|
Mehta CH, Velagacherla V, Manandhar S, Nayak Y, Pai SRK, Acharya S, Nayak UY. Development of Epigallocatechin 3-gallate-Loaded Hydrogel Nanocomposites for Oral Submucous Fibrosis. AAPS PharmSciTech 2024; 25:66. [PMID: 38519779 DOI: 10.1208/s12249-024-02787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic progressive disease associated with increased collagen deposition and TGF-β1 release. The current therapy and management have been a limited success due to low efficacy and adverse drug reactions. This study aimed to evaluate epigallocatechin 3-gallate (EGCG) encapsulated nanoparticles loaded mucoadhesive hydrogel nanocomposite (HNC) for OSF. Developed HNC formulations were evaluated for their permeation behaviour using in vitro as well as ex vivo studies, followed by evaluation of efficacy and safety by in vivo studies using areca nut extract-induced OSF in rats. The disease condition in OSF-induced rats was assessed by mouth-opening and biochemical markers. The optimized polymeric nanoparticles exhibited the required particle size (162.93 ± 13.81 nm), positive zeta potential (22.50 ± 2.94 mV) with better mucoadhesive strength (0.40 ± 0.002 N), and faster permeation due to interactions of the positively charged surface with the negatively charged buccal mucosal membrane. HNC significantly improved disease conditions by reducing TGF-β1 and collagen concentration without showing toxicity and reverting the fibroid buccal mucosa to normal. Hence, the optimized formulation can be further tested to develop a clinically alternate therapeutic strategy for OSF.
Collapse
Affiliation(s)
- Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shruthi Acharya
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
45
|
Sommerfeld IK, Malyaran H, Neuss S, Demco DE, Pich A. Multiresponsive Core-Shell Microgels Functionalized by Nitrilotriacetic Acid. Biomacromolecules 2024; 25:903-923. [PMID: 38170471 DOI: 10.1021/acs.biomac.3c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Stimuli-responsive microgels with ionizable functional groups offer versatile applications, e.g., by the uptake of oppositely charged metal ions or guest molecules such as drugs, dyes, or proteins. Furthermore, the incorporation of carboxylic groups enhances mucoadhesive properties, crucial for various drug delivery applications. In this work, we successfully synthesized poly{N-vinylcaprolactam-2,2'-[(5-acrylamido-1-carboxypentyl)azanediyl]diacetic acid} [p(VCL/NTAaa)] microgels containing varying amounts of nitrilotriacetic acid (NTA) using precipitation polymerization. We performed fundamental characterization by infrared (IR) spectroscopy and dynamic and electrophoretic light scattering. Despite their potential multiresponsiveness, prior studies on NTA-functionalized microgels lack in-depth analysis of their stimuli-responsive behavior. This work addresses this gap by assessing the microgel responsiveness to temperature, ionic strength, and pH. Morphological investigations were performed via NMR relaxometry, nanoscale imaging (AFM and SEM), and reaction calorimetry. Finally, we explored the potential application of the microgels by conducting cytocompatibility experiments and demonstrating the immobilization of the model protein cytochrome c in the microgels.
Collapse
Affiliation(s)
- Isabel K Sommerfeld
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Hanna Malyaran
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthodontics, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dan E Demco
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
46
|
Chomchalao P, Saelim N, Lamlertthon S, Sisopa P, Tiyaboonchai W. Mucoadhesive Hybrid System of Silk Fibroin Nanoparticles and Thermosensitive In Situ Hydrogel for Amphotericin B Delivery: A Potential Option for Fungal Keratitis Treatment. Polymers (Basel) 2024; 16:148. [PMID: 38201813 PMCID: PMC10780372 DOI: 10.3390/polym16010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The purpose of this work was to investigate the feasibility of a novel ophthalmic formulation of amphotericin B-encapsulated silk fibroin nanoparticles incorporated in situ hydrogel (AmB-FNPs ISG) for fungal keratitis (FK) treatment. AmB-FNPs ISG composites were successfully developed and have shown optimized physicochemical properties for ocular drug delivery. Antifungal effects against Candida albicans and in vitro ocular irritation using corneal epithelial cells were performed to evaluate the efficacy and safety of the composite formulations. The combined system of AmB-FNPs-ISG exhibited effective antifungal activity and showed significantly less toxicity to HCE cells than commercial AmB. In vitro and ex vivo mucoadhesive tests demonstrated that the combination of silk fibroin nanoparticles with in situ hydrogels could enhance the adhesion ability of the particles on the ocular surface for more than 6 h, which would increase the ocular retention time of AmB and reduce the frequency of administration during the treatment. In addition, AmB-FNP-PEG ISG showed good physical and chemical stability under storage condition for 90 days. These findings indicate that AmB-FNP-PEG ISG has a great potential and be used in mucoadhesive AmB eye drops for FK treatment.
Collapse
Affiliation(s)
- Pratthana Chomchalao
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand;
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Nuttawut Saelim
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Supaporn Lamlertthon
- Centre of Excellence in Fungal Research, Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Premnapa Sisopa
- Department of Health and Cosmetic Product Development, Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | - Waree Tiyaboonchai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| |
Collapse
|
47
|
Lavania K, Garg A. Ion-activated In Situ Gel of Gellan Gum Containing Chrysin for Nasal Administration in Parkinson's Disease. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:35-49. [PMID: 38058093 DOI: 10.2174/0126673878279656231204103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION This study focused on creating an innovative treatment approach for Parkinson's disease (PD), a progressive neurodegenerative condition characterized by the loss of specific neurons in the brain. AIM The research aimed to develop a nasal gel using gellan gum containing a complex of chrysin with hydroxypropyl-β-cyclodextrin (HP-β-CD) to enhance the drug's solubility and stability. METHOD The formulation process involved utilizing central composite design (CCD) to optimize the concentrations of gellan gum and HPMC E5, with viscosity and mucoadhesive strength as key factors. The resulting optimized In Situ gel comprised 0.7% w/v gellan gum and 0.6% w/v HPMC E5, exhibiting desirable viscosity levels for both sol and gel states, along with robust mucoadhesive properties. The formulated gel underwent comprehensive evaluation, including assessments for gelation, drug content, in vitro drug release, ex vivo permeation, and histopathology. RESULT The findings demonstrated superior drug release from the In Situ gel compared to standalone chrysin. Ex vivo studies revealed effective drug permeation through nasal mucosa without causing harm. Moreover, experiments on neuronal cells exposed to oxidative stress (H2O2- induced) showcased significant neuroprotection conferred by chrysin and its formulations. These treatments exhibited notable enhancements in cell viability and reduced instances of apoptosis and necrosis, compared to the control group. The formulations exhibited neuroprotective properties by mitigating oxidative damage through mechanisms, like free radical scavenging and restoration of antioxidant enzyme activity. CONCLUSION In conclusion, this developed In situ gel formulation presents a promising novel nasal delivery system for PD therapy. By addressing challenges related to drug properties and administration route, it holds the potential to enhance treatment outcomes and improve the quality of life for individuals with Parkinson's disease.
Collapse
Affiliation(s)
- Khushboo Lavania
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| |
Collapse
|
48
|
Tada R, Ito H, Nagai Y, Sakurai Y, Yamanaka D, Ohno N, Kunisawa J, Adachi Y, Negishi Y. Addition of Mucoadhesive Agent to Enzymatically Polymerized Caffeic Acid-Based Nasal Vaccine Formulation Attenuates Antigen-Specific Antibody Responses in Mice. Int J Med Mushrooms 2024; 26:1-8. [PMID: 39171627 DOI: 10.1615/intjmedmushrooms.2024054586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mucosal vaccination is a promising strategy for combating infectious diseases caused by pathogenic microbes, as it can generate antigen-specific immune responses in both systemic and mucosal compartments. In our recent study, we developed a nasal vaccine system for Streptococcus pneumoniae infections in mice using enzymatically polymerized polyphenols such as caffeic acid. However, the efficacy of this mucosal vaccine system is approximately 70%, indicating a need for improvement. To address this issue, we hypothesized that incorporating a mucoadhesive agent that enhances mucosal absorption into a polyphenol-based mucosal vaccine system would improve vaccine efficacy. Contrary to our expectations, we found that adding a mucoadhesive agent, hydrophobically modified hydroxypropylmethylcellulose, to the vaccine system reduced the stimulation of antigen-specific antibody responses in both the mucosal (more than 90% reduction; P < 0.05) and systemic compartments (more than 80% reduction; P < 0.05). Although the addition of the mucoadhesive agent may have interfered with the interaction between the mucosal epithelium and the vaccine system, the underlying mechanism remains unclear, and further research is needed to fully understand the mechanisms involved.
Collapse
Affiliation(s)
- Rui Tada
- Tokyo University of Pharmacy and Life Sciences
| | - Hiroki Ito
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yuzuho Nagai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yasuhiro Sakurai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
49
|
Alipour M, Habibivand E, Sekhavati S, Aghazadeh Z, Ranjkesh M, Ramezani S, Aghazadeh M, Ghorbani M. Evaluation of therapeutic effects of nanofibrous mat containing mycophenolate mofetil on oral lichen planus: In vitro and clinical trial study. Biomater Investig Dent 2023; 10:2283177. [PMID: 38204471 PMCID: PMC10763882 DOI: 10.1080/26415275.2023.2283177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Objectives Recently, topical drug delivery system has gained increasing interest in the treatment of oral lesions. Lichen planus is a chronic inflammatory disease affecting mucous membranes and skin. The current study aimed to fabricate a drug delivery system containing mycophenolate mofetil for the treatment of oral lichen planus lesions. Methods Firstly, a nanofibrous mat containing mycophenolate mofetil, zinc oxide nanoparticles, and aloe vera was designed and fabricated. The antimicrobial, cytocompatibility, anti-inflammatory, and antioxidative characteristics of fabricated scaffolds were evaluated. Then, this nanofibrous mat was applied to 12 patients suffering from bilateral erythematous/erosive Oral Lichen planus (OLP) lesions for 2 weeks. The treatment outcomes, including oral symptoms and lesion size, were compared with the routine topical treatment of these lesions; Triamcinolone ointment. Results The characterization of nanofibrous mat approved the successful fabrication of scaffolds. The fabricated nanofibers showed notable antimicrobial activity. The amounts of TNF 𝛼, IL6, and reactive oxygen species (ROS) of stimulated human gingival fibroblasts were decreased after exposure to NFs/Myco/Alv/ZnO scaffolds. The clinical trial results demonstrated the same therapeutic effects compared to the commercial ointment, while the symptoms of patients were significantly improved in the mats group.Significance. Considering the successful results of this study, the application of nanofibrous mat can be a promising product for improving treatment outcomes of OLP.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Habibivand
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shayesteh Sekhavati
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Ranjkesh
- Department of Dermatology, School of Medicine, Sina Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Ramezani
- Nanofiber Research Center, Asian Nanostructures Technology Co. (ANSTCO), Zanjan, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bioscience Research, Department of Medicine – Cardiology, Department of Microbiology, Immunology & Biochemistry, University of Tennessee, Tennessee, USA
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Pamshong SR, Bhatane D, Sarnaik S, Alexander A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf B Biointerfaces 2023; 232:113613. [PMID: 37913702 DOI: 10.1016/j.colsurfb.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Proteins and peptides (PPs), as therapeutics are widely explored in the past few decades, by virtue of their inherent advantages like high specificity and biocompatibility with minimal side effects. However, owing to their macromolecular size, poor membrane permeability, and high enzymatic susceptibility, the effective delivery of PPs is often challenging. Moreover, their subjection to varying environmental conditions, when administered orally, results in PPs denaturation and structural conformation, thereby lowering their bioavailability. Hence, for effective delivery with enhanced bioavailability, protection of PPs using nanoparticle-based delivery system has gained a growing interest. Mesoporous silica nanoparticles (MSNs), with their tailored morphology and pore size, high surface area, easy surface modification, versatile loading capacity, excellent thermal stability, and good biocompatibility, are eligible candidates for the effective delivery of macromolecules to the target site. This review highlights the different barriers hindering the oral absorption of PPs and the various strategies available to overcome them. In addition, the potential benefits of MSNs, along with their diversifying role in controlling the loading of PPs and their release under the influence of specific stimuli, are also discussed in length. Further, the tuning of MSNs for enhanced gene transfection efficacy is also highlighted. Since extensive research is ongoing in this area, this review is concluded with an emphasis on the potential risks of MSNs that need to be addressed prior to their clinical translation.
Collapse
Affiliation(s)
- Sharon Rose Pamshong
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Dhananjay Bhatane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Santosh Sarnaik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|