1
|
Nguyen HTT, Lindahl JF, Bett B, Nguyen-Viet H, Lâm S, Nguyen-Tien T, Unger F, Dang-Xuan S, Bui TX, Le HT, Lundkvist Å, Ling J, Lee HS. Understanding zoonotic pathogens and risk factors from wildlife in Southeast Asia: a systematic literature review. Vet Q 2025; 45:1-17. [PMID: 40059837 PMCID: PMC11894755 DOI: 10.1080/01652176.2025.2475990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The COVID-19 pandemic has demonstrated the significance of the human-animal interface in the emergence of zoonotic diseases, with wildlife serving as an important source of infection. A better understanding of the specific pathogens and mechanisms involved is vital to prepare against future outbreaks, especially in Southeast Asia, a hotspot for zoonotic diseases. This paper reviews the published literature on wildlife zoonoses in this region from 2012 to 2022. The results show a diverse range of potential zoonotic pathogens and the widespread occurrence of zoonotic diseases from wildlife. Drivers of zoonotic pathogen spillover include (i) environmental factors (e.g. animal habitat disruption, environmental conditions, exposure to contaminated water/food/soil), (ii) animal factors (e.g. movement patterns, age-related susceptibility), (iii) human factors (e.g. lack of awareness, poor hygiene practices, age, gender and income) and (iv) human-animal-environmental interface factors (e.g. close contact between humans and animals, exposure through visiting animals and presence of vectors). The diverse drivers of zoonoses in Southeast Asia put its communities at risk for infection. To mitigate these risks, global health efforts should consider adopting a One Health approach to foster collaboration across human, animal, and wildlife health sectors. This could involve educating communities on safe animal interactions and improving disease surveillance.
Collapse
Affiliation(s)
- Ha Thi Thanh Nguyen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
| | - Johanna F Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Swedish Veterinary Agency, Uppsala, Sweden
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Steven Lâm
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Fred Unger
- International Livestock Research Institute, Hanoi, Vietnam
| | - Sinh Dang-Xuan
- International Livestock Research Institute, Hanoi, Vietnam
| | - Thanh Xuan Bui
- Ho Chi Minh City Department of Health, Ho Chi Minh Center for Diseases Control, Ho Chi Minh, Vietnam
| | - Hien Thanh Le
- Ho Chi Minh City University of Agriculture and Forestry, Ho Chi Minh, Vietnam
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hu Suk Lee
- International Livestock Research Institute, Hanoi, Vietnam
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Behera JK, Mishra P, Jena AK, Behera B, Bhattacharya M. Human health implications of emerging diseases and the current situation in India's vaccine industry. SCIENCE IN ONE HEALTH 2023; 2:100046. [PMID: 39077045 PMCID: PMC11262297 DOI: 10.1016/j.soh.2023.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/22/2023] [Indexed: 07/31/2024]
Abstract
Emerging diseases are infectious diseases that pose significant threat to human health, causing millions of deaths and disabilities in the upcoming days. Periodic epidemics of new infections and old reinfections increase the global burden of disease prevalence. They can be caused by new pathogens or evolving ones, which change human behavior and environmental factors. Researchers have studied the dynamic connections between microbes, hosts, and the environment, but new infectious diseases like coronavirus disease 2019 (COVID-19), re-emerging diseases, and deliberately disseminated diseases persist despite earlier hopes of elimination. With heavy privatesector investments, Indian pharmacology now provides core Expanded Programme on Immunization vaccines to United Nations International Children's Emergency Fund, producing previously unattainable vaccines for diseases like meningitis, hepatitis B, pneumococcal conjugate, rotavirus, influenza A (H1N1), and COVID-19. India's vaccine sector has emerged, among the oriented leaders of the Bharat Biotech, Serum Institute of India, Panacea Biotech and Biological E. Specifically, the technology transferred from Western countries has benefited the sector, which produces 1.3 billion doses annually. The Serum Institute is the world's largest manufacturer of vaccines, providing measles and diphtheria-tetanus-pertussis vaccines to United Nations. The Serum Institute has developed several vaccines, including Nasovac, MenAfriVac, Pentavac, and an inactivated polio vaccine. India's success in vaccinations can be attributed to attractive investment conditions, government assistance, international alliances, and rising domestic technical talent. Despite its booming economy and technical advances, India's disproportionate share of the world's child mortality rate remains unchanged. However, the growing production and distribution of vaccinations in developing nations has initiated a new era, leading to a worldwide decline in childhood death and disease.
Collapse
Affiliation(s)
- Jiban Kumar Behera
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Pabitra Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Anway Kumar Jena
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| |
Collapse
|
3
|
Gopinath R, Sundaram ALM, Dhanasezhian A, Arundadhi M, Thangam GS. Seroprevalence of Various Viral Diseases in Tamil Nadu, India. J Glob Infect Dis 2023; 15:144-148. [PMID: 38292695 PMCID: PMC10824225 DOI: 10.4103/jgid.jgid_101_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Virus-borne diseases have recently gained significant public health importance. Viruses infect several hosts, including animal reservoirs, evolve quickly, and recombine emerging and reemerging to pose recurring dangers to humans. The Viral Research and Diagnostic Laboratory (VRDL) located at Government Theni Medical College, Theni, Tamil Nadu, conducts the diagnosis of common virus infections. Methods From January 2018 to December 2022, the VRDL received whole blood sera samples from 84,059 patients suspected of having various viral illnesses. The enzyme-linked immunosorbent assay was used to detect viral infections in all of the samples. Results A total of 84,059 individuals suspected for various viral infections have been tested and out of these 4948 (5.88%) cases have been reported to be positive and among them, the dengue virus is predominantly followed by, hepatitis B virus, chikungunya virus, hepatitis C virus, hepatitis A virus, hepatitis E virus, hepatitis B virus, herpes simplex virus, cytomegalovirus, and rubella virus. Conclusion The issue of emerging and re-emerging infectious illnesses, particularly those caused by viruses, has grown in importance in public health. Timely action combined with proper information and the ability to diagnose infections may save many lives.
Collapse
Affiliation(s)
- R. Gopinath
- Department of Microbiology, Government Theni Medical College, Theni, Tamil Nadu, India
| | | | - A. Dhanasezhian
- Department of Microbiology, Government Theni Medical College, Theni, Tamil Nadu, India
| | - M. Arundadhi
- Department of Microbiology, Government Theni Medical College, Theni, Tamil Nadu, India
| | - G. Sucila Thangam
- Department of Microbiology, Government Theni Medical College, Theni, Tamil Nadu, India
| |
Collapse
|
4
|
Zhang W, Wu Y, Wen B, Zhang Y, Wang Y, Yin W, Sun S, Wei X, Sun H, Zhang Z, Li S, Guo Y. Non-pharmaceutical interventions for COVID-19 reduced the incidence of infectious diseases: a controlled interrupted time-series study. Infect Dis Poverty 2023; 12:15. [PMID: 36895021 PMCID: PMC9996566 DOI: 10.1186/s40249-023-01066-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Non-pharmaceutical interventions (NPIs) have been implemented worldwide to suppress the spread of coronavirus disease 2019 (COVID-19). However, few studies have evaluated the effect of NPIs on other infectious diseases and none has assessed the avoided disease burden associated with NPIs. We aimed to assess the effect of NPIs on the incidence of infectious diseases during the COVID-19 pandemic in 2020 and evaluate the health economic benefits related to the reduction in the incidence of infectious diseases. METHODS Data on 10 notifiable infectious diseases across China during 2010-2020 were extracted from the China Information System for Disease Control and Prevention. A two-stage controlled interrupted time-series design with a quasi-Poisson regression model was used to examine the impact of NPIs on the incidence of infectious diseases. The analysis was first performed at the provincial-level administrative divisions (PLADs) level in China, then the PLAD-specific estimates were pooled using a random-effect meta-analysis. RESULTS A total of 61,393,737 cases of 10 infectious diseases were identified. The implementation of NPIs was associated with 5.13 million (95% confidence interval [CI] 3.45‒7.42) avoided cases and USD 1.77 billion (95% CI 1.18‒2.57) avoided hospital expenditures in 2020. There were 4.52 million (95% CI 3.00‒6.63) avoided cases for children and adolescents, corresponding to 88.2% of total avoided cases. The top leading cause of avoided burden attributable to NPIs was influenza [avoided percentage (AP): 89.3%; 95% CI 84.5‒92.6]. Socioeconomic status and population density were effect modifiers. CONCLUSIONS NPIs for COVID-19 could effectively control the prevalence of infectious diseases, with patterns of risk varying by socioeconomic status. These findings have important implications for informing targeted strategies to prevent infectious diseases.
Collapse
Affiliation(s)
- Wenyi Zhang
- Division of Disease Surveillance, Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Bo Wen
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Yongming Zhang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yong Wang
- Division of Disease Surveillance, Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Wenwu Yin
- Division of Infectious Diseases, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shanhua Sun
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Xianyu Wei
- Division of Disease Surveillance, Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Hailong Sun
- Division of Disease Surveillance, Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Zhijie Zhang
- Department of Epidemiology and Health Statistics, Fudan University, Shanghai, 200032, China
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia.
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
5
|
Sharma D, Kumar S, Sharma A, Kumar R, Kumar R, Kulharia M, Kumar M. Functional assignment to hypothetical proteins in Orientia tsutsugamushistrain Ikeda. Bioinformation 2022; 18:188-195. [PMID: 36518125 PMCID: PMC9722422 DOI: 10.6026/97320630018188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 09/19/2023] Open
Abstract
Orientia tsutsugamushi(O. tsutsugamushi) is an intracellular bacterial pathogen which causes zoonosis scrub typhus in humans. Genome of O. tsutsugamushi strain Ikeda contains 214 hypothetical proteins (HPs) which is nearly 20% of the total proteins. Domain and family based functional analysis of HPs results in the annotation of 44 hypothetical proteins. The annotated HPs were classified in to five main classes namely, gene expression and regulation, transport, metabolism, cell signaling and proteolysis. Thus, computational analysis of HPs helps to understand their putative roles in various biological and cellular processes, including pathogenesis for further consideration as potential therapeutic targets.
Collapse
Affiliation(s)
- Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Ranjit Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Mahesh Kulharia
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Manish Kumar
- Department of Chemistry and Chemical Sciences, School of Physical and Material Science, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| |
Collapse
|
6
|
Wong CSA, Lim CW, Mohammed HI, Liew KY, Tham CL, Tan JW, Chee HY. Current Perspective of Plant-Based Diets on Communicable Diseases Caused by Viruses: A Mini Review. Front Nutr 2022; 9:786972. [PMID: 35369089 PMCID: PMC8966492 DOI: 10.3389/fnut.2022.786972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/23/2022] [Indexed: 12/09/2022] Open
Abstract
Communicable diseases are illnesses caused by pathogenic biological agents, including viruses, bacteria, fungi, parasites, and protozoa. Such diseases spread among people through contact with contaminated surfaces, bodily fluids, or blood products, or through the air, insect bites, or consuming contaminated food and beverages. Although some communicable diseases can be treated or prevented by taking medication and vaccines, there has been an increase in awareness of adopting a healthy diet to aid in the prevention and reversal of these diseases. One popular diet is a plant-based diet. Plant-based diets generally consist of vegetables, grains, nuts, seeds, legumes, and fruits, without any animal-source foods or artificial ingredients. Over the years, this diet has continuously increased in popularity. Reasons for following a plant-based diet are varied but include health benefits, such as improving immunity, and reducing the risk of heart disease, diabetes, and some cancers. Scientific evidence even shows that just an increased vegetable intake can decrease the occurrence of chronic diseases caused by viruses, such as hepatitis viruses, and reduce the risk of severe coronavirus disease 2019. Therefore, this mini review discusses the effectiveness of adopting a plant-based diet in ameliorating diseases caused by selected viruses and its limitations.
Collapse
Affiliation(s)
| | - Cheng Wei Lim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Kong Yen Liew
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ji Wei Tan
- School of Science, Monash University Malaysia, Selangor, Malaysia
- *Correspondence: Ji Wei Tan
| | - Hui Yee Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Hui Yee Chee
| |
Collapse
|
7
|
A Novel Multiplex RT-PCR Assay for Simultaneous Detection of Dengue and Chikungunya Viruses. Int J Mol Sci 2020; 21:ijms21218281. [PMID: 33167379 PMCID: PMC7663808 DOI: 10.3390/ijms21218281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/20/2022] Open
Abstract
The goal of the study was to develop a specific, sensitive, and cost-effective molecular RT-PCR diagnostic assay for the rapid and simultaneous detection of the serotypes of dengue virus (DENV) and Chikungunya virus (CHIKV) from sera of suspected febrile patients. A single-tube, single-step multiplex RT-PCR (mRT-PCR) assay was designed for the detection of viral genomes from clinical and field samples. Specificity and sensitivity of the mRT-PCR assay were evaluated against six different combinations using two reverse transcriptases (AMV-RT and RT-Ace) and three DNA polymerases (LA-Taq, rTaq, and Tth). Among the six combinations, the AMV-RT and LA-Taq combination was more specific and sensitive than other enzyme combinations for detecting viral genomes of DENV-1, DENV-2, DENV-3, and DENV-4 (p < 0.01), and for detecting viral genomes of CHIKV (p < 0.05). The detection limits of the mRT-PCR were 10 focus forming units (FFU) for CHIKV and 1 FFU, 20 FFU, 0.1 FFU, and 10 FFU for DENV-1, DENV-2, DENV-3, and DENV-4, respectively. The primers used for the mRT-PCR did not show any cross-reactivity among the serotypes of DENV or CHIKV. Specificity and sensitivity of the newly developed mRT-PCR were validated using serum samples collected from febrile patients during dengue outbreaks in Bangladesh. The sensitivity for serotype detection of DENV and CHIKV was superior to the virus isolation method and the antigen detection method using the Dengue NS1-Ag assay. This novel mRT-PCR method can be used for molecular epidemiological surveillance of DENV and CHIKV in epidemic and endemic countries.
Collapse
|
8
|
Tizaoui K, Zidi I, Lee KH, Ghayda RA, Hong SH, Li H, Smith L, Koyanagi A, Jacob L, Kronbichler A, Shin JI. Update of the current knowledge on genetics, evolution, immunopathogenesis, and transmission for coronavirus disease 19 (COVID-19). Int J Biol Sci 2020; 16:2906-2923. [PMID: 33061805 PMCID: PMC7545713 DOI: 10.7150/ijbs.48812] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
In December 2019, an acute respiratory disease caused by novel species of coronavirus (SARS-CoV-2), emerged in China and has spread throughout the world. On 11th March 2020, the World Health Organization (WHO) officially declared coronavirus disease 19 (COVID-19) a pandemic, severe coronavirus-mediated human disease. Based on genomic and phylogenetic studies, SARS-CoV-2 might originate from bat coronaviruses and infects humans directly or through intermediate zoonotic hosts. However, the exact origin or the host intermediate remains unknown. Genetically, SARS-CoV-2 is similar to several existing coronaviruses, particularly SARS-CoV, but differs by silent and non-silent mutations. The virus uses different transmission routes and targets cells and tissues with angiotensin-converting enzyme 2 (ACE2) protein, which makes it contagious. COVID-19 shares both the main clinical features and excessive/dysregulated cell responses with the two previous Middle East respiratory syndrome coronavirus (MERS) and severe acute respiratory syndrome coronavirus (SARS) epidemics. In this review, we provide an update of the current knowledge on the COVID-19 pandemic. Gaining a deeper understanding of SARS-CoV-2 structure, transmission routes, and molecular responses, will assist in the prevention and control of COVID-19 outbreaks in the future.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Ines Zidi
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ramy Abou Ghayda
- Division of Urology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Sung Hwi Hong
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston MA, USA
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han Li
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78000 Versailles, France
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck 6020, Austria
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Zhou M, Zhang N, Zhang M, Ma G. Culture, eating behavior, and infectious disease control and prevention. JOURNAL OF ETHNIC FOODS 2020; 7:40. [PMCID: PMC7686948 DOI: 10.1186/s42779-020-00076-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/18/2020] [Indexed: 07/25/2023]
Abstract
Humans need to obtain nutrients from foods for survival and health. Culture and belief play important roles in food selection and intake. Throughout human history, dietary factor has been one of the important factors inducing and causing outbreaks of infectious diseases. If unhealthy eating behavior, like eating raw/undercooked food or meat and products from wild animals, are not abandoned, foodborne infectious diseases will remain an important risk factor of outbreaks and epidemics. The misconception of dietary culture is one of the important factors that triggers unhealthy eating behavior. Therefore, it is vital to change people’s conceptions and knowledge about what is healthy to eat, in order to completely eliminate unhealthy eating behavior and prevent the recurrence of foodborne infectious diseases. Meanwhile, many factors such as family, society, region, and religion should be involved in.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing, 100191 China
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing, 100191 China
| | - Na Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing, 100191 China
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing, 100191 China
| | - Man Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing, 100191 China
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing, 100191 China
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing, 100191 China
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing, 100191 China
| |
Collapse
|
10
|
Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q 2019; 39:26-55. [PMID: 31006350 PMCID: PMC6830995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/20/2023] Open
Abstract
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Collapse
Affiliation(s)
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, West Tripura, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Senthilkumar Natesan
- Biomac Life Sciences Pvt Ltd., Indian Institute of Public Health Gandhinagar, Gujarat, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Kranti Suresh Vora
- Wheels India Niswarth (WIN) Foundation, Maternal and Child Health (MCH), University of Canberra, Gujarat, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Devendra T. Mourya
- National Institute of Virology, Ministry of Health and Family Welfare, Govt of India, Pune, India
| |
Collapse
|
11
|
Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q 2019. [PMID: 31006350 PMCID: PMC6830995 DOI: 10.1080/01652176.2019.1580827] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Collapse
Affiliation(s)
- Raj Kumar Singh
- a ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Sandip Chakraborty
- c Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry , West Tripura , India
| | - Ruchi Tiwari
- d Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Senthilkumar Natesan
- e Biomac Life Sciences Pvt Ltd. , Indian Institute of Public Health Gandhinagar , Gujarat , India
| | - Rekha Khandia
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Ashok Munjal
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Kranti Suresh Vora
- g Wheels India Niswarth (WIN) Foundation, Maternal and Child Health (MCH) , University of Canberra , Gujarat , India
| | - Shyma K Latheef
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kumaragurubaran Karthik
- h Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Yashpal Singh Malik
- i Division of Biological Standardization , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rajendra Singh
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Wanpen Chaicumpa
- j Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Devendra T Mourya
- k National Institute of Virology , Ministry of Health and Family Welfare, Govt of India , Pune , India
| |
Collapse
|
12
|
Mourya DT, Yadav PD, Ullas P, Bhardwaj SD, Sahay RR, Chadha MS, Shete AM, Jadhav S, Gupta N, Gangakhedkar RR, Khasnobis P, Singh SK. Emerging/re-emerging viral diseases & new viruses on the Indian horizon. Indian J Med Res 2019; 149:447-467. [PMID: 31411169 PMCID: PMC6676836 DOI: 10.4103/ijmr.ijmr_1239_18] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases remain as the major causes of human and animal morbidity and mortality leading to significant healthcare expenditure in India. The country has experienced the outbreaks and epidemics of many infectious diseases. However, enormous successes have been obtained against the control of major epidemic diseases, such as malaria, plague, leprosy and cholera, in the past. The country's vast terrains of extreme geo-climatic differences and uneven population distribution present unique patterns of distribution of viral diseases. Dynamic interplays of biological, socio-cultural and ecological factors, together with novel aspects of human-animal interphase, pose additional challenges with respect to the emergence of infectious diseases. The important challenges faced in the control and prevention of emerging and re-emerging infectious diseases range from understanding the impact of factors that are necessary for the emergence, to development of strengthened surveillance systems that can mitigate human suffering and death. In this article, the major emerging and re-emerging viral infections of public health importance have been reviewed that have already been included in the Integrated Disease Surveillance Programme.
Collapse
Affiliation(s)
| | | | - P.T. Ullas
- Maximum Containment Laboratory, Pune, India
| | | | | | | | | | | | - Nivedita Gupta
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Raman R. Gangakhedkar
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | | | |
Collapse
|
13
|
Chu DT, Ngoc TU, Chu-Dinh T, Ngoc VTN, Van Nhon B, Pham VH, Nghia LL, Anh LQ, Van Pham TH, Truong ND. The possible zoonotic diseases transferring from pig to human in Vietnam. Eur J Clin Microbiol Infect Dis 2019; 38:1003-1014. [PMID: 30680568 DOI: 10.1007/s10096-018-03466-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022]
Abstract
Southeast Asia is considered one of worldwide hotspots consisting many distinct zoonotic infections. With optimal condition for the development of various pathogens, Vietnam is facing serious risks of zoonotic diseases. Besides, more than 50% Vietnamese people settle in rustic areas and earn their livings through small-scale animal breeding. It is possible that zoonotic diseases can be easily spread to the population by close contact with the infected animals, their infected residues, contaminated water, soil, or other possible means of transmission. In fact, zoonotic infections-transmissible infections between vertebrate animals and humans-cover a wide range of diseases with distinctive clinical and epidemiological highlights. With insufficient understanding and swift alteration in toxicity of the pathogens, these infections have gained more concerns due to sophisticated routes of transmission and harmful threats to humans. Recently emerging viral diseases exerted potential dangers to human beings, which required many countries to impose immediate actions to prevent any complications. Vietnam has recorded several cases of zoonotic diseases, especially pig-related illnesses; however, the studies on these diseases in this country remain limited. This work aims to highlight the zoonotic diseases transferring from pigs to humans and discuss risk factors of these diseases in Vietnam.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Tran Uyen Ngoc
- Faculty of Veterinary Medicine, Nong Lam University, Ho Chi Minh, Vietnam
| | - Thien Chu-Dinh
- Institute for Research and Development, Duy Tan University, 03 Quang Trung, Danang, Vietnam.
| | | | - Bui Van Nhon
- Department of Science and Technology, Hanoi Medical University, Hanoi, Vietnam
| | - Van-Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Le Long Nghia
- School of Odonto Stomatology, Hanoi Medical University, Hanoi, Vietnam
| | - Le Quynh Anh
- School of Odonto Stomatology, Hanoi Medical University, Hanoi, Vietnam
| | - Thi Hong Van Pham
- Faculty of Veterinary Medicine, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Nguyen Duc Truong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| |
Collapse
|