1
|
Pan Y, Wei L, Liu H, Wang F, Wang M, Li M, Cheng P, Yan X. Exploring the role of diosgenin in modulating RUNX1 and HIPK2 transcription to mitigate Primary Sjögren's Syndrome. Immunobiology 2025; 230:152910. [PMID: 40424931 DOI: 10.1016/j.imbio.2025.152910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/31/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Primary Sjögren's Syndrome (pSS) is a chronic autoimmune disease characterized by inflammation of the exocrine glands, resulting in symptoms like dry mouth and eyes. Despite existing symptomatic treatments, underlying immune dysregulation remains undefined. Diosgenin, a steroidal saponin derived from Mai Dong, shows potential in modulating immune responses, but its mechanism in pSS remains underexplored. METHODS This study investigated the immunomodulatory effects of diosgenin on pSS using in vivo and in vitro approaches. In vivo, salivary flow rate measurement, histological analysis, quantitative real-time PCR (qRT-PCR), flow cytometry and Western blot were performed on NOD/ShiLtJ mice after treatment with diosgenin at various concentrations. In vitro, CD4+ T cells isolated from these mice were treated with diosgenin to assess T cell differentiation via flow cytometry, qRT-PCR, Enzyme-Linked Immunosorbent Assay (ELISA) and Western blot, where Homeodomain-Interacting Protein Kinase 2 (HIPK2) overexpression and Runt-associated transcription factor 1 (RUNX1) knockdown were manipulated. RESULTS Diosgenin stabilized salivary flow rates, reduced lymphocytic infiltration and inflammatory cytokines levels, upregulated RUNX1 and downregulated HIPK2, which modified T cell dynamics by promoting regulatory T cells (Treg) and reducing T helper 17 (Th17) populations. However, HIPK2 overexpression reversed the effects of diosgenin on inhibiting Th17 differentiation and inflammatory cytokines levels and promoting RUNX1 level. Additionally, RUNX1 knockdown also offset the suppressive effects of diosgenin on Th17 differentiation, inflammatory cytokine levels, and HIPK2 expression. CONCLUSION Diosgenin effectively impacts immune responses in pSS, potentially through the modulation of RUNX1 and HIPK2 transcription factors, leading to a reduction in Th17-mediated inflammation.
Collapse
Affiliation(s)
- Yiwei Pan
- Department of Stomatology, Eye Hospital China Academy of Chinese Medical Sciences, China
| | - Lunquan Wei
- Department of Stomatology, Eye Hospital China Academy of Chinese Medical Sciences, China
| | - Han Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Fang Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Minhua Wang
- Department of Stomatology, Eye Hospital China Academy of Chinese Medical Sciences, China
| | - Meijia Li
- Department of Stomatology, Eye Hospital China Academy of Chinese Medical Sciences, China
| | - Pengfei Cheng
- Department of Stomatology, Eye Hospital China Academy of Chinese Medical Sciences, China.
| | - Xing Yan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China.
| |
Collapse
|
2
|
Ramón-Vázquez A, Flood P, Cashman TL, Patil P, Ghosh S. T lymphocyte plasticity in chronic inflammatory diseases: The emerging role of the Ikaros family as a key Th17-Treg switch. Autoimmun Rev 2025; 24:103735. [PMID: 39719186 DOI: 10.1016/j.autrev.2024.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
T helper (Th) 17 and regulatory T (Treg) cells are highly plastic CD4+ Th cell subsets, being able not only to actively adapt to their microenvironment, but also to interconvert, acquiring mixed identity markers. These phenotypic changes are underpinned by transcriptional control mechanisms, chromatin reorganization events and epigenetic modifications, that can be hereditable and stable over time. The Ikaros family of transcription factors have a predominant role in T cell subset specification through mechanisms of transcriptional program regulation that enable phenotypical diversification. They are crucial factors in maintaining Th17/Treg balance and therefore, homeostatic conditions in the tissues. However, they are also implicated in pathogenic processes, where their transcriptional repression contributes to the control of autoimmune processes. In this review, we discuss how T cell fate, specifically in humans, is regulated by the Ikaros family and its interplay with additional factors like the Notch signaling pathway, gut microbiota and myeloid-T cell interactions. Further, we highlight how the transcriptional activity of the Ikaros family impacts the course of T cell mediated chronic inflammatory diseases like rheumatoid and psoriatic arthritis, inflammatory bowel disease, systemic lupus erythematosus and multiple sclerosis. We conclude by discussing recently developed therapeutics designed to target Ikaros family members.
Collapse
Affiliation(s)
| | - P Flood
- APC Microbiome Ireland, University College Cork, Ireland
| | - T L Cashman
- APC Microbiome Ireland, University College Cork, Ireland
| | - P Patil
- APC Microbiome Ireland, University College Cork, Ireland
| | - S Ghosh
- APC Microbiome Ireland, University College Cork, Ireland; College of Medicine and Health, University College Cork, Ireland
| |
Collapse
|
3
|
El-Kurjieh A, Al-Arab R, Hachem QA, Ibrahim JN, Kobeissy PH. ACSS2 and metabolic diseases: from lipid metabolism to therapeutic target. Lipids Health Dis 2025; 24:74. [PMID: 40001058 PMCID: PMC11853604 DOI: 10.1186/s12944-025-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Elevated incidence of metabolic disorders has been reported worldwide in the recent decade, highlighting the need for developing efficient therapies. These diseases result from a complex interplay of various factors that contribute to disease progression, complications, and resistance to current treatment options. Acetyl-CoA Synthetase Short Chain Family Member 2 (ACSS2) is a nucleo-cytosolic enzyme with both lipogenic and metabolic regulatory roles. Studies on ACSS2 have shown that it is involved in pathways commonly dysregulated in metabolic disorders, leading to fat deposition and disrupted cellular signaling. Although multiple studies have suggested a role of ACSS2 in the metabolic rewiring during tumorigenesis, few studies have examined its involvement in the pathophysiology of metabolic diseases. Recent evidence indicates that ACSS2 may contribute to the pathogenesis of various metabolic disorders making its examination of great interest and potentially aiding in the development of new therapeutic strategies. The objective of this review is to summarize the current understanding of ACSS2's role in metabolic disorders and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Alaa El-Kurjieh
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Reem Al-Arab
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Qamar Abou Hachem
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - José-Noel Ibrahim
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| | - Philippe Hussein Kobeissy
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| |
Collapse
|
4
|
Matar AM, Shehata WA, Kora MA, Shendi SS. Tissue and circulating levels of IL-17A and FoxP3 + in patients with scabies: Correlation with clinical features. Mol Biochem Parasitol 2024; 260:111652. [PMID: 39209219 DOI: 10.1016/j.molbiopara.2024.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The scabies mite is known to induce a complicated immune response that involves both innate and long-term adaptive immunity. Many immune effectors and pathways are involved. Th17/Treg balance can influence the complex immune response to scabies. The immunological effectors including IL-17A, as a pro-inflammatory cytokine, and Treg cells, anti-inflammatory regulatory T cells, are essential for preserving cutaneous immunological homeostasis. So, evaluating these immune effectors may help in comprehending the pathophysiology of scabies and facilitate the development of new treatment approaches. This study examined the expression of IL-17A and FoxP3+ in the skin and serum of 50 scabies patients and 25 healthy controls. An assessment of their correlation with clinical features was performed. Regarding tissue response, scabietic patients exhibited a significant increase in IL-17A and FoxP3+ expression in their epidermis and dermis compared to controls (P<0.001), but the correlation between these factors was not significant in either area (P>0.05). Also, patients showed a significant increase in serum IL-17A levels compared to controls (P<0.001), with a significant association between serum IL-17A levels and lesion severity, but no significant correlation was observed between skin and serum responses (P>0.05). In conclusion, there was increased expression of both IL-17A and FoxP3+, with FoxP3+ being significantly more abundant than IL-17A in the skin of scabies patients. Skin FoxP3+ up-regulation has been linked to the severity of the condition.
Collapse
Affiliation(s)
- Amira M Matar
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Menoufia 6132720, Egypt.
| | - Wafaa A Shehata
- Department of Dermatology and Andrology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Menoufia 6132720, Egypt.
| | - Mona A Kora
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Menoufia 6132720, Egypt.
| | - Sawsan S Shendi
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin al-Kom, Menoufia 6132720, Egypt.
| |
Collapse
|
5
|
Ge L, Xu M, Huang M, Liu S, Zhou Z, Xia Z, Dong S, Zhao Q, Zhu R, Zhou F. The canonical Hippo pathway components modulate the differentiation of lamina propria regulatory T cells and T helper 17-like regulatory T cells in mouse colitis. Int Immunol 2024; 37:25-38. [PMID: 38955508 DOI: 10.1093/intimm/dxae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 07/02/2024] [Indexed: 07/04/2024] Open
Abstract
Regulatory T cells (Tregs) ameliorate inflammatory bowel diseases. However, their plasticity is not completely understood. In this study using a mouse colitis model, Tregs and T helper 17 (Th17)-like Tregs were detected and sorted using flow cytometry, followed by transcriptome sequencing, real-time reverse transcription polymerase chain reaction, and flow cytometry to analyze the mRNA profiles of these cells. Treg plasticity was evaluated by in vitro differentiation assays. The immunosuppressive activities of Tregs and Th17-like Tregs were assessed in an adoptive transfer assay. We found Treg-derived Th17-like Tregs in inflamed colonic lamina propria (LP). LP Th17-like Tregs expressed higher Th17-related cytokines and lower immunosuppressive cytokines compared with LP Tregs. Notably, Tregs expressed higher Yes-associated protein 1 (YAP1) but lower transcriptional coactivator with PDZ-binding motif (TAZ) than Th17-like Tregs. Verteporfin-mediated inhibition of YAP1 activity enhanced Th17-like Treg generation, whereas IBS008739-induced TAZ activation did not affect Th17-like Treg generation. Besides, verteporfin enhanced while IBS008739 suppressed the differentiation of Th17-like Tregs into Th17 cells. Furthermore, YAP1 activated STAT5 signaling in Tregs, whereas YAP1 and TAZ activated STAT3 and STAT5 signaling in Th17-like Tregs. Compared with Tregs, Th17-like Tregs were less efficacious in ameliorating colitis. Therefore, YAP1 suppressed Treg differentiation into Th17-like Tregs. Both YAP1 and TAZ inhibited the differentiation of Th17-like Tregs into Th17 cells. Therefore, YAP1 and TAZ probably maintain the immunosuppressive activities of Tregs and Th17-like Tregs in colitis.
Collapse
Affiliation(s)
- Liuqing Ge
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Min Xu
- Department of Hematology and Oncology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Meifang Huang
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shaoping Liu
- Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhidai Zhou
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ziqin Xia
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shouquan Dong
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ruiping Zhu
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Feng Zhou
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Han L, Yan J, Li T, Shen P, Ba X, Lin W, Zhang R, Yang Y, Li Y, Li C, Huang Y, Qin K, Liu Y, Huang H, Zou L, Wang Y, Chen Z, Huang Y, Tu S. Wutou decoction alleviates arthritis inflammation in CIA mice by regulating Treg cell stability and Treg/Th17 balance via the JAK2/STAT3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118463. [PMID: 38908493 DOI: 10.1016/j.jep.2024.118463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wutou Decoction (WTD) is a classic traditional Chinese medicine formula, which has shown clinical efficacy in treating rheumatoid arthritis (RA). The Treg stability and Th17/Treg imbalance is an important immunological mechanism in RA progression. Whether WTD regulates CD4+ T cell subsets has not been thoroughly investigated yet. AIM OF THE STUDY This study aimed to explore the potential role and mechanisms of WTD in regulating the diminished stability of Treg cells and the imbalance of CD4+ T cell subsets via in vivo and in vitro experiments. MATERIALS AND METHODS Firstly, the therapeutic effects of WTD on the collagen-induced arthritis (CIA) mouse and its potential regulatory function on CD4+ T cell subsets were evaluated in vivo. Animal specimens were collected after 31 days of treatment with WTD. The anti-arthritic and anti-inflammatory effects of WTD were assessed through arthritis scoring, body weight, spleen index, serum IL-6 levels, and micro-PET/CT imaging. Gene enrichment analysis was performed to evaluate the activation T cell-related signaling pathway. Flow cytometry was used to determine the proportions of CD4+ T cell subsets in vitro and in vitro. Additionally, ELISA was used to assess the secretion of IL-10 and TGF-β by Treg cells under inflammatory conditions. The suppressive function of Treg cells on cell proliferation under inflammatory conditions was examined using CFSE labeling. Immunofluorescence staining was performed to detect the phosphorylation levels of STAT3 in CD4+ T cells from mouse spleen tissues. Western blotting was used to evaluate the phosphorylation levels of JAK2/STAT3 in Treg cells. RESULTS WTD significantly alleviated joint inflammation in CIA mice. WTD reduced serum IL-6 levels in CIA mice, improved their body weight and spleen index. WTD treatment inhibited the activation of CD4+ T cell subgroup-related signaling in the joint tissues of CIA mice. In vitro and in vitro experiments showed that WTD increased the proportion of Treg cells and decreased the proportion of Th17 cells in CIA mice spleen. Furthermore, WTD promoted the secretion of IL-10 and TGF-β by Treg cells and enhanced the inhibitory capacity of Treg cells on cell proliferation under inflammatory conditions. Immunofluorescence detected decreased STAT3 phosphorylation levels in CD4+ T cells from CIA mice spleen, while western blotting revealed a decrease in JAK2/STAT3 phosphorylation levels in Treg cells in vitro. CONCLUSIONS Inhibiting JAK2/STAT3 phosphorylation is a potential mechanism through which WTD improves Treg cell stability, balances CD4+ T cell subsets, and attenuates RA joint inflammation.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiyuan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuyao Yang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifei Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chennan Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Huang
- Department of Rheumatology, Jingmen People's Hospital, Jingmen, Hubei, China
| | - Liang Zou
- Department of Rheumatology, Jingmen People's Hospital, Jingmen, Hubei, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Georgia AN, Claudine NE, Carole SN, Loveline NN, Abel L, Flaurent TT, Martin S, Waffo AB, Okeke M, Esimone C, Park CG, Vittorio C, François-Xavier E, Godwin NW. Regulatory T cells modulate monocyte functions in immunocompetent antiretroviral therapy naive HIV-1 infected people. BMC Immunol 2024; 25:68. [PMID: 39402453 PMCID: PMC11472541 DOI: 10.1186/s12865-024-00654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
We previously demonstrated that the overall number of regulatory T (Treg) cells decrease proportionately with helper CD4+ T cells and their frequencies increase in antiretroviral therapy (ART)-naive human immunodeficiency virus type-1 (HIV-1) infected individuals. The question now is whether the discrepancies in Treg cell numbers and frequencies are synonymous to an impairment of their functions. To address this, we purified Treg cells and assessed their ability to modulate autologous monocytes functions. We observed that Treg cells were able to down modulate autologous monocytes activation as well as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production during stimulation with polyinosinic-polycytidylic acid stabilized with poly-L-lysine and carboxymethylcellulose (poly-ICLC). This activity of Treg cells has been shown to be influenced by immunocompetence including but not limited to helper CD4+ T cell counts, in individuals with HIV-1 infection. Compared to immunosuppressed participants (CD4 < 500 cells/µL), immunocompetent participants (CD4 ≥ 500 cells/µL) showed significantly higher levels of transforming growth factor beta (TGF-β) and IL-10 (p < 0.001 and p < 0.05, respectively), key cytokines used by Treg cells to exert their immunosuppressive functions. Our findings suggest the contribution of both TGF-β and IL-10 in the suppressive activity of Treg cells.
Collapse
Affiliation(s)
- Ambada N Georgia
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon.
| | - Ntsama E Claudine
- Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Sake N Carole
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Microbiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Ngu N Loveline
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Lissom Abel
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Faculty of Science, Department of Biological Science, University of Bamenda, Bamenda, Cameroon
| | - Tchouangeu T Flaurent
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
| | - Sosso Martin
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
| | - Alain Bopda Waffo
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | - Malachy Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, Yola, PMB, 2250, Nigeria
| | - Charles Esimone
- Department of Pharmaceutical Microbiology & Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Chae Gyu Park
- Laboratory of Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Nchinda W Godwin
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Pharmaceutical Microbiology & Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
8
|
Cui Y, Hackett RG, Ascue J, Muralidaran V, Patil D, Kang J, Kaufman SS, Khan K, Kroemer A. Innate and Adaptive Immune Responses in Intestinal Transplant Rejection: Through the Lens of Inflammatory Bowel and Intestinal Graft-Versus-Host Diseases. Gastroenterol Clin North Am 2024; 53:359-382. [PMID: 39068000 DOI: 10.1016/j.gtc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal transplantation is a life-saving procedure utilized for patients failing total parenteral nutrition. However, intestinal transplantattion remains plagued with low survival rates and high risk of allograft rejection. The authors explore roles of innate (macrophages, natural killer cells, innate lymphoid cells) and adaptive immune cells (Th1, Th2, Th17, Tregs) in inflammatory responses, particularly inflammatory bowel disease and graft versus host disease, and correlate these findings to intestinal allograft rejection, highlighting which effectors exacerbate or suppress intestinal rejection. Better understanding of this immunology can open further investigation into potential biomolecular targets to develop improved therapeutic treatment options and immunomonitoring techniques to combat allograft rejection and enhance patient lives.
Collapse
Affiliation(s)
- Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan G Hackett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jhalen Ascue
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Stuart S Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
9
|
Soongsathitanon J, Homjan T, Pongcharoen S. Characteristic features of in vitro differentiation of human naïve CD4 + T cells to induced regulatory T cells (iTreg) and T helper (Th) 17 cells: Sharing of lineage-specific markers. Heliyon 2024; 10:e31394. [PMID: 38807879 PMCID: PMC11130651 DOI: 10.1016/j.heliyon.2024.e31394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
In vitro induced regulatory T cells (iTreg) and IL-17 producing T cells (Th17-like cells) can be generated in culture from native CD4+ T cells in peripheral blood by different sets of cytokines. In the presence of transforming growth factor (TGF)-β plus interleukin (IL)-2, cells differentiate into Treg cells with increased expression of the forkhead box P3 (FOXP3). In the presence of TGF-β, IL-6, IL-1β and IL-23, cells differentiate into Th17 cells that produce IL-17A. However, protocols for the generation of human iTreg and Th17 are still controversial. In this study, we characterized the biological features of iTreg and Th17 cells differentiated from peripheral blood naïve CD4+ T cells in vitro using the established protocols. We showed that cells obtained from Treg or Th17 culture conditions shared some phenotypic markers. Cells under Treg conditions had an up-regulated FOXP3 gene and a down-regulated RAR-related orphan receptor C (RORC) gene. Cells derived from the Th17 condition exhibited a down-regulated FOXP3 gene and had significantly higher RORC gene expression than Treg cells. Both resulting cells showed intracellular production of IL-17A and IL-10. Th17 condition-cultured cells exhibited more glycolytic activity and glucose uptake compared to the Treg cells. The findings suggest that cells obtained from established protocols for the differentiation of iTreg and Th17 cells in vitro are possibly in the intermediate stage of differentiation or may be two different types of cells that share a lineage-specific differentiation program.
Collapse
Affiliation(s)
- Jarupa Soongsathitanon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ticha Homjan
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suthatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
10
|
Belyayev L, Kang J, Sadat M, Loh K, Patil D, Muralidaran V, Khan K, Kaufman S, Subramanian S, Gusev Y, Bhuvaneshwar K, Ressom H, Varghese R, Ekong U, Matsumoto CS, Robson SC, Fishbein TM, Kroemer A. Suppressor T helper type 17 cell responses in intestinal transplant recipients with allograft rejection. Hum Immunol 2024; 85:110773. [PMID: 38494386 DOI: 10.1016/j.humimm.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Intestinal transplant (ITx) rejection is associated with memory T helper type 17 cell (Th17) infiltration of grafted tissues. Modulation of Th17 effector cell response is facilitated by T regulatory (Treg) cells, but a phenotypic characterization of this process is lacking in the context of allograft rejection. METHODS Flow cytometry was performed to examine the expression of surface receptors, cytokines, and transcription factors in Th17 and Treg cells in ITx control (n = 34) and rejection patients (n = 23). To elucidate key pathways guiding the rejection biology, we utilized RNA sequencing (RNAseq) and assessed epigenetic stability through pyrosequencing of the Treg-specific demethylated region (TSDR). RESULTS We found that intestinal allograft rejection is characterized by Treg cellular infiltrates, which are polarized toward Th17-type chemokine receptor, ROR-γt transcription factor expression, and cytokine production. These Treg cell subsets have maintained epigenetic stability, as defined by FoxP3-TSDR methylation status, but displayed upregulation of functional Treg and purinergic signaling genes by RNAseq analysis such as CD39, in keeping with suppressor Th17 properties. CONCLUSION We show that ITx rejection is associated with increased polarized cells that express a Th17-like phenotype concurrent with regulatory purinergic markers.
Collapse
Affiliation(s)
- Leonid Belyayev
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA; Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20814, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20007, USA
| | - Mohammed Sadat
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Katrina Loh
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Stuart Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Sukanya Subramanian
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC 20075, USA
| | - Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC 20075, USA
| | - Habtom Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20008, USA
| | - Rency Varghese
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20008, USA
| | - Udeme Ekong
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Cal S Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Thomas M Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA.
| |
Collapse
|
11
|
Chen XC, Li WJ, Zeng JY, Dong YP, Qiu JM, Zhang B, Wang DY, Liu J, Lyu ZH. Shengu granules ameliorate ovariectomy-induced osteoporosis by the gut-bone-immune axis. Front Microbiol 2024; 15:1320500. [PMID: 38525084 PMCID: PMC10959285 DOI: 10.3389/fmicb.2024.1320500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Postmenopausal osteoporosis (PMOP) is a common chronic disease, and the loss of bone density and bone strength after menopause are its main symptoms. Effective treatments for PMOP are still uncertain, but Chinese medicine has some advantages in slowing down bone loss. Shengu granules are often used clinically to treat PMOP. It has been shown to be an effective prescription for the treatment of PMOP, and there is evidence that gut flora may play an important role. However, whether Shengu granules attenuate PMOP by modulating gut flora and related mechanisms remains unclear. Methods In this study, we mainly examined the bone strength of the femur, the structure of the intestinal microbiota, SCFAs in the feces and the level of FOXP3 cells in the colon. To further learn about the inflammation response, the condition of the mucosa and the level of cytokines in the serum also included in the testing. In addition, to get the information of the protein expression, the protein expression of OPG and RANKL in the femur and the protein expression of ZO-1 and Occludin in the colon were taken into account. Results The osteoporosis was significantly improved in the SG group compared with the OVX group, and the diversity of intestinal flora, the secretion level of SCFAs and the expression level of FOXP3 were significantly increased compared with the OVX group. In terms of inflammatory indicators, the intestinal inflammation scores of the SG group was significantly lower than those in the OVX group. Additionally, the serum expression levels of IL-10 and TGF-β in the SG group were significantly increased compared with the OVX group, and the expression levels of IL-17 and TNF-α were significantly decreased compared with the OVX group. In terms of protein expression, the expression levels of ZO-1, Occluding and OPG were significantly increased in the SG group compared with the OVX group, and the expression level of RANKL was significantly decreased compared with the OVX group. Discussion Shengu granules treatment can improve the imbalance of intestinal flora, increase the secretion of SCFAs and the expression of FOXP3, which reduces the inflammatory response and repairs the intestinal barrier, as well as regulates the expression of OPG/RANKL signaling axis. Overall, Shengu granules ameliorate ovariectomy-induced osteoporosis by the gut-bone-immune axis.
Collapse
Affiliation(s)
- Xiao cong Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei ju Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Jia ying Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Yun peng Dong
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Jian ming Qiu
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Bing Zhang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Dong yang Wang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Jun Liu
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Zhao hui Lyu
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Guo Y, Chen J, Huang Y, Ke S, Xie F, Li D, Li B, Lu H. Increased infiltration of CD4 + IL-17A + FOXP3 + T cells in Helicobacter pylori-induced gastritis. Eur J Immunol 2024; 54:e2350662. [PMID: 38366919 DOI: 10.1002/eji.202350662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Helicobacter pylori is one of the main predisposing factors for gastric cancer, causing chronic inflammation and proper glands atrophy in the gastric mucosa. Although H. pylori-induced inflammation is a key inducer of precancerous lesions in the gastric mucosa, it remains unclear which precise immune cell subsets are responsible for the progression of H. pylori-induced gastritis. Here, we observed an abundance of CD4+ IL-17A+ FOXP3+ T cells exhibiting a Th17-like phenotype within the microenvironment of H. pylori-induced gastritis. Mechanistically, H. pylori upregulated the expression of IL-6 in Dendritic cells and macrophages, by activating NF-κB signaling through the virulence factor CagA and thus, induced IL-17A expression in FOXP3+ T cells. Moreover, CD4+ IL-17A+ FOXP3+ T cells were positively associated with advanced precancerous lesions. Therefore, these findings offer essential insights into how FOXP3+ T cells sense inflammatory signals from the environment, such as IL-6, during H. pylori infections, thereby guiding the effector immune response and aggravating the gastritis.
Collapse
Affiliation(s)
- Yixian Guo
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinnan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Huang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shouyu Ke
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Xie
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Huang L, Yang S, Yu X, Fang F, Zhu L, Wang L, Zhang X, Yang C, Qian Q, Zhu T. Association of different cell types and inflammation in early acne vulgaris. Front Immunol 2024; 15:1275269. [PMID: 38357543 PMCID: PMC10864487 DOI: 10.3389/fimmu.2024.1275269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Acne vulgaris, one of the most common skin diseases, is a chronic cutaneous inflammation of the upper pilosebaceous unit (PSU) with complex pathogenesis. Inflammation plays a central role in the pathogenesis of acne vulgaris. During the inflammatory process, the innate and adaptive immune systems are coordinately activated to induce immune responses. Understanding the infiltration and cytokine secretion of differential cells in acne lesions, especially in the early stages of inflammation, will provide an insight into the pathogenesis of acne. The purpose of this review is to synthesize the association of different cell types with inflammation in early acne vulgaris and provide a comprehensive understanding of skin inflammation and immune responses.
Collapse
Affiliation(s)
- Lei Huang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Baoshan, Yunnan, China
| | - Xiuqin Yu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fumin Fang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liping Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Wang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Zhang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Changzhi Yang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qihong Qian
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Ye X, Zhang M, Zhang N, Wei H, Wang B. Gut-brain axis interacts with immunomodulation in inflammatory bowel disease. Biochem Pharmacol 2024; 219:115949. [PMID: 38036192 DOI: 10.1016/j.bcp.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The brain and the gastrointestinal (GI) tract are important sensory organs in the body and the two-way interaction that exists between them regulates key physiological and homeostatic functions. A growing body of research suggests that this bidirectional communication influences the development and progression of functional GI disorders and plays an important role in the treatment of central nervous system (CNS) disorders. Inflammatory bowel disease (IBD) is a classic intestinal disorder with a high prevalence but still unclear pathogenesis that has been widely discussed in recent years. However, in the studies available to date, we find that many authors have chosen to discuss the influence of the brain on intestinal disorders from the top down, starting with physical and psychological disorders. Coming very naturally, based on these substantial research evidence, we focus on exploring the links between bidirectional communication in the gut-brain axis and IBD, and highlight the role of the gut microbiota, vagus nerve (VN), receptors and immune cells involved in regulating IBD through the gut-brain axis in this review.
Collapse
Affiliation(s)
- Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ning Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China.
| |
Collapse
|
16
|
Kumaresan V, Ingle TM, Kilgore N, Zhang G, Hermann BP, Seshu J. Cellular and transcriptome signatures unveiled by single-cell RNA-Seq following ex vivo infection of murine splenocytes with Borrelia burgdorferi. Front Immunol 2023; 14:1296580. [PMID: 38149246 PMCID: PMC10749944 DOI: 10.3389/fimmu.2023.1296580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Lyme disease, the most common tick-borne infectious disease in the US, is caused by a spirochetal pathogen Borrelia burgdorferi (Bb). Distinct host responses are observed in susceptible and resistant strains of inbred of mice following infection with Bb reflecting a subset of inflammatory responses observed in human Lyme disease. The advent of post-genomic methodologies and genomic data sets enables dissecting the host responses to advance therapeutic options for limiting the pathogen transmission and/or treatment of Lyme disease. Methods In this study, we used single-cell RNA-Seq analysis in conjunction with mouse genomics exploiting GFP-expressing Bb to sort GFP+ splenocytes and GFP- bystander cells to uncover novel molecular and cellular signatures that contribute to early stages of immune responses against Bb. Results These data decoded the heterogeneity of splenic neutrophils, macrophages, NK cells, B cells, and T cells in C3H/HeN mice in response to Bb infection. Increased mRNA abundance of apoptosis-related genes was observed in neutrophils and macrophages clustered from GFP+ splenocytes. Moreover, complement-mediated phagocytosis-related genes such as C1q and Ficolin were elevated in an inflammatory macrophage subset, suggesting upregulation of these genes during the interaction of macrophages with Bb-infected neutrophils. In addition, the role of DUSP1 in regulating the expression of Casp3 and pro-inflammatory cytokines Cxcl1, Cxcl2, Il1b, and Ccl5 in Bb-infected neutrophils were identified. Discussion These findings serve as a growing catalog of cell phenotypes/biomarkers among murine splenocytes that can be exploited for limiting spirochetal burden to limit the transmission of the agent of Lyme disease to humans via reservoir hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Taylor MacMackin Ingle
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathan Kilgore
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Janakiram Seshu
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
17
|
Mukherjee S, Chakraborty S, Basak U, Pati S, Dutta A, Dutta S, Roy D, Banerjee S, Ray A, Sa G, Das T. Breast cancer stem cells generate immune-suppressive T regulatory cells by secreting TGFβ to evade immune-elimination. Discov Oncol 2023; 14:220. [PMID: 38038865 PMCID: PMC10692020 DOI: 10.1007/s12672-023-00787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/06/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer stem cells (CSCs), being the primary contributors in tumor initiation, metastasis, and relapse, ought to have seminal roles in evasion of immune surveillance. Tumor-promoting CD4+CD25+FOXP3+ T-regulatory cells (Tregs) have been described to abolish host defense mechanisms by impeding the activities of other immune cells including effector T cells. However, whether CSCs can convert effector T cells to immune-suppressive Treg subset, and if yes, the mechanism underlying CSC-induced Treg generation, are limitedly studied. In this regard, we observed a positive correlation between breast CSC and Treg signature markers in both in-silico and immunohistochemical analyses. Mirroring the conditions during tumor initiation, low number of CSCs could successfully generate CD4+CD25+FOXP3+ Treg cells from infiltrating CD4+ T lymphocytes in a contact-independent manner. Suppressing the proliferation potential as well as IFNγ production capacity of effector T cells, these Treg cells might be inhibiting antitumor immunity, thereby hindering immune-elimination of CSCs during tumor initiation. Furthermore, unlike non-stem cancer cells (NSCCs), CSCs escaped doxorubicin-induced apoptosis, thus constituting major surviving population after three rounds of chemotherapy. These drug-survived CSCs were also able to generate CD4+CD25+FOXP3+ Treg cells. Our search for the underlying mechanism further unveiled the role of CSC-shed immune-suppressive cytokine TGFβ, which was further increased by chemotherapy, in generating tumor Treg cells. In conclusion, during initiation as well as after chemotherapy, when NSCCs are not present in the tumor microenvironment, CSCs, albeit present in low numbers, generate immunosuppressive CD4+CD25+FOXP3+ Treg cells in a contact-independent manner by shedding high levels of immune-suppressive Treg-polarizing cytokine TGFβ, thus escaping immune-elimination and initiating the tumor or causing tumor relapse.
Collapse
Affiliation(s)
- Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Dia Roy
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Shruti Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Arpan Ray
- Department of Pathology, ESI-PGIMSR, Medical College Hospital and ODC (EZ), Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
18
|
Guo N, Lv L. Mechanistic insights into the role of probiotics in modulating immune cells in ulcerative colitis. Immun Inflamm Dis 2023; 11:e1045. [PMID: 37904683 PMCID: PMC10571014 DOI: 10.1002/iid3.1045] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a persistent inflammatory disorder that affects the gastrointestinal tract, mainly the colon, which is defined by inflammatory responses and the formation of ulcers. Probiotics have been shown to directly impact various immune cells, including dendritic cells (DCs), macrophages, natural killer (NK) cells, and T and B cells. By interacting with cell surface receptors, they regulate immune cell activity, produce metabolites that influence immune responses, and control the release of cytokines and chemokines. METHODS This article is a comprehensive review wherein we conducted an exhaustive search across published literature, utilizing reputable databases like PubMed and Web of Science. Our focus centered on pertinent keywords, such as "UC," 'DSS," "TNBS," "immune cells," and "inflammatory cytokines," to compile the most current insights regarding the therapeutic potential of probiotics in managing UC. RESULTS This overview aims to provide readers with a comprehensive understanding of the effects of probiotics on immune cells in relation to UC. Probiotics have a crucial role in promoting the proliferation of regulatory T cells (Tregs), which are necessary for preserving immunological homeostasis and regulating inflammatory responses. They also decrease the activation of pro-inflammatory cells like T helper 1 (Th1) and Th17 cells, contributing to UC development. Thus, probiotics significantly impact both direct and indirect pathways of immune cell regulation in UC, promoting Treg differentiation, inhibiting pro-inflammatory cell activation, and regulating cytokine and chemokine release. CONCLUSION Probiotics demonstrate significant potential in modulating the immune reactions in UC. Their capacity to modulate different immune cells and inflammation-related processes makes them a promising therapeutic approach for managing UC. However, further studies are warranted to optimize their use and fully elucidate the molecular mechanisms underlying their beneficial effects in UC treatment.
Collapse
Affiliation(s)
- Ni Guo
- Department of GastroenterologyShengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch)ShengzhouZhejiang ProvinceChina
| | - Lu‐lu Lv
- Department of GastroenterologyShengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch)ShengzhouZhejiang ProvinceChina
| |
Collapse
|
19
|
Lee WS, Nam KH, Kim JH, Kim WJ, Kim JE, Shin EC, Kim GR, Choi JM. Alleviating psoriatic skin inflammation through augmentation of Treg cells via CTLA-4 signaling peptide. Front Immunol 2023; 14:1233514. [PMID: 37818377 PMCID: PMC10560854 DOI: 10.3389/fimmu.2023.1233514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by hyperplasia of keratinocytes and immune cell infiltration. The IL-17-producing T cells play a key role in psoriasis pathogenesis, while regulatory T (Treg) cells are diminished during psoriatic inflammation. Current psoriasis treatments largely focus on IL-17 and IL-23, however, few studies have explored therapeutic drugs targeting an increase of Treg cells to control immune homeostasis. In this study, we investigated the effects of a cytotoxic T lymphocyte antigen-4 (CTLA-4) signaling peptide (dNP2-ctCTLA-4) in Th17, Tc17, γδ T cells, Treg cells in vitro and a mouse model of psoriasis. Treatment with dNP2-ctCTLA-4 peptide showed a significant reduction of psoriatic skin inflammation with increased Treg cell proportion and reduced IL-17 production by T cells, indicating a potential role in modulating psoriatic skin disease. We compared dNP2-ctCTLA-4 with CTLA-4-Ig and found that only dNP2-ctCTLA-4 ameliorated the psoriasis progression, with increased Treg cells and inhibited IL-17 production from γδ T cells. In vitro experiments using a T cell-antigen presenting cell co-culture system demonstrated the distinct mechanisms of dNP2-ctCTLA-4 compared to CTLA-4-Ig in the induction of Treg cells. These findings highlight the therapeutic potential of dNP2-ctCTLA-4 peptide in psoriasis by augmenting Treg/Teff ratio, offering a new approach to modulating the disease.
Collapse
Affiliation(s)
- Woo-Sung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyung-Ho Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won-Ju Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Jeong Eun Kim
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Chauhan SK, Bartolomé Casado R, Landsverk OJB, Johannessen H, Phung D, Nilsen HR, Sætre F, Jahnsen J, Horneland R, Yaqub S, Aandahl EM, Lundin KEA, Bækkevold ES, Jahnsen FL. Human small intestine contains 2 functionally distinct regulatory T-cell subsets. J Allergy Clin Immunol 2023; 152:278-289.e6. [PMID: 36893861 DOI: 10.1016/j.jaci.2023.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Regulatory T (Treg) CD4 cells in mouse gut are mainly specific for intestinal antigens and play an important role in the suppression of immune responses against harmless dietary antigens and members of the microbiota. However, information about the phenotype and function of Treg cells in the human gut is limited. OBJECTIVE We performed a detailed characterization of Foxp3+ CD4 Treg cells in human normal small intestine (SI) as well as from transplanted duodenum and celiac disease lesions. METHODS Treg cells and conventional CD4 T cells derived from SI were subjected to extensive immunophenotyping and their suppressive activity and ability to produce cytokines assessed. RESULTS SI Foxp3+ CD4 T cells were CD45RA-CD127-CTLA-4+ and suppressed proliferation of autologous T cells. Approximately 60% of Treg cells expressed the transcription factor Helios. When stimulated, Helios-negative Treg cells produced IL-17, IFN-γ, and IL-10, whereas Helios-positive Treg cells produced very low levels of these cytokines. By sampling mucosal tissue from transplanted human duodenum, we demonstrated that donor Helios-negative Treg cells persisted for at least 1 year after transplantation. In normal SI, Foxp3+ Treg cells constituted only 2% of all CD4 T cells, while in active celiac disease, both Helios-negative and Helios-positive subsets expanded 5- to 10-fold. CONCLUSION The SI contains 2 subsets of Treg cells with different phenotypes and functional capacities. Both subsets are scarce in healthy gut but increase dramatically in active celiac disease.
Collapse
Affiliation(s)
- Sudhir Kumar Chauhan
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Raquel Bartolomé Casado
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole J B Landsverk
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Hanna Johannessen
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Department of Gastrointestinal and Pediatric Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Danh Phung
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hogne Røed Nilsen
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Frank Sætre
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jørgen Jahnsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Sheraz Yaqub
- Department of Gastrointestinal Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Einar Martin Aandahl
- Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Knut E A Lundin
- Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen S Bækkevold
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
21
|
Lin N, Yin W, Miller H, Byazrova MG, Herrada AA, Benlagha K, Lee P, Guan F, Lei J, Gong Q, Yan Y, Filatov A, Liu C. The role of regulatory T cells and follicular T helper cells in HBV infection. Front Immunol 2023; 14:1169601. [PMID: 37275865 PMCID: PMC10235474 DOI: 10.3389/fimmu.2023.1169601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.
Collapse
Affiliation(s)
- Nengqi Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Research and Development, BD Biosciences, San Jose, CA, United States
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Youqing Yan
- Department of Infectious Disease, Wuhan No.7 Hospital, Wuhan, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Viswanathan G, Kirshner HF, Nazo N, Ali S, Ganapathi A, Cumming I, Zhuang Y, Choi I, Warman A, Jassal C, Almeida-Peters S, Haney J, Corcoran D, Yu YR, Rajagopal S. Single-Cell Analysis Reveals Distinct Immune and Smooth Muscle Cell Populations that Contribute to Chronic Thromboembolic Pulmonary Hypertension. Am J Respir Crit Care Med 2023; 207:1358-1375. [PMID: 36803741 PMCID: PMC10595445 DOI: 10.1164/rccm.202203-0441oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
Rationale: Chronic thromboembolic pulmonary hypertension (CTEPH) is a sequela of acute pulmonary embolism (PE) in which the PE remodels into a chronic scar in the pulmonary arteries. This results in vascular obstruction, pulmonary microvasculopathy, and pulmonary hypertension. Objectives: Our current understanding of CTEPH pathobiology is primarily derived from cell-based studies limited by the use of specific cell markers or phenotypic modulation in cell culture. Therefore, our main objective was to identify the multiple cell types that constitute CTEPH thrombusy and to study their dysfunction. Methods: Here we used single-cell RNA sequencing of tissue removed at the time of pulmonary endarterectomy surgery from five patients to identify the multiple cell types. Using in vitro assays, we analyzed differences in phenotype between CTEPH thrombus and healthy pulmonary vascular cells. We studied potential therapeutic targets in cells isolated from CTEPH thrombus. Measurements and Main Results: Single-cell RNA sequencing identified multiple cell types, including macrophages, T cells, and smooth muscle cells (SMCs), that constitute CTEPH thrombus. Notably, multiple macrophage subclusters were identified but broadly split into two categories, with the larger group characterized by an upregulation of inflammatory signaling predicted to promote pulmonary vascular remodeling. CD4+ and CD8+ T cells were identified and likely contribute to chronic inflammation in CTEPH. SMCs were a heterogeneous population, with a cluster of myofibroblasts that express markers of fibrosis and are predicted to arise from other SMC clusters based on pseudotime analysis. Additionally, cultured endothelial, smooth muscle, and myofibroblast cells isolated from CTEPH fibrothrombotic material have distinct phenotypes from control cells with regard to angiogenic potential and rates of proliferation and apoptosis. Last, our analysis identified PAR1 (protease-activated receptor 1) as a potential therapeutic target that links thrombosis to chronic PE in CTEPH, with PAR1 inhibition decreasing SMC and myofibroblast proliferation and migration. Conclusions: These findings suggest a model for CTEPH similar to atherosclerosis, with chronic inflammation promoted by macrophages and T cells driving vascular remodeling through SMC modulation, and suggest new approaches for pharmacologically targeting this disease.
Collapse
Affiliation(s)
| | | | - Nour Nazo
- Division of Cardiology, Department of Medicine
| | - Saba Ali
- Division of Cardiology, Department of Medicine
| | | | - Ian Cumming
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Yonghua Zhuang
- Biostatistics Shared Resource, University of Colorado Cancer Center
- Department of Pediatrics, and
| | - Issac Choi
- Division of Cardiology, Department of Medicine
| | | | | | - Susana Almeida-Peters
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - John Haney
- Division of Cardiothoracic Surgery, Department of Surgery
| | | | - Yen-Rei Yu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina; and
| |
Collapse
|
23
|
Kamaeva DA, Kazantseva DV, Boiko AS, Mednova IA, Smirnova LP, Kornetova EG, Ivanova SA. The Influence of Antipsychotic Treatment on the Activity of Abzymes Targeting Myelin and Levels of Inflammation Markers in Patients with Schizophrenia. Biomedicines 2023; 11:biomedicines11041179. [PMID: 37189796 DOI: 10.3390/biomedicines11041179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Catalytic antibodies, or abzymes, are capable of not only binding but also hydrolyzing various proteins. Previously, an increase in the level of myelin basic protein (MBP)-hydrolyzing activity of antibodies was shown in patients with a number of neurological and mental disorders, including schizophrenia. Furthermore, antipsychotic therapy is known to induce a change in cytokine levels in patients with schizophrenia, which affects regulation of the immune response and inflammatory status. This study investigated the influence of typical and atypical antipsychotics on catalytic antibody activity and the 10 major pro- and anti-inflammatory serum cytokine levels. The study included 40 patients with schizophrenia: 15 treated with first-generation antipsychotics and 25 treated with atypical antipsychotics for 6 weeks. It was found that treatment with atypical antipsychotics changed the levels of some pro-inflammatory cytokines. Antipsychotic therapy also caused a significant decrease in MBP-hydrolyzing activity in patients with schizophrenia (p = 0.0002), and associations of catalytic activity with interleukins were observed.
Collapse
Affiliation(s)
- Daria A Kamaeva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Daria V Kazantseva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Anastasiia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Irina A Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Liudmila P Smirnova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt, 2, Tomsk 634050, Russia
| |
Collapse
|
24
|
Gonçalves‐Pereira MH, Santiago L, Ravetti CG, Vassallo PF, de Andrade MVM, Vieira MS, de Fátima Souza de Oliveira F, Carobin NV, Li G, de Paula Sabino A, Nobre V, da Costa Santiago H. Dysfunctional phenotype of systemic and pulmonary regulatory T cells associate with lethal COVID-19 cases. Immunology 2023; 168:684-696. [PMID: 36349514 PMCID: PMC9877711 DOI: 10.1111/imm.13603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Severe cases of COVID-19 present hyperinflammatory condition that can be fatal. Little is known about the role of regulatory responses in SARS-CoV-2 infection. In this study, we evaluated the phenotype of regulatory T cells in the blood (peripheral blood mononuclear cell) and the lungs (broncho-alveolar) of adult patients with severe COVID-19 under invasive mechanical ventilation. Our results show important dynamic variation on Treg cells phenotype during COVID-19 with changes in number and functional parameters from the day of intubation (Day 1 of intensive care unit admission) to Day 7. We observed that compared with surviving patients, non-survivors presented lower numbers of Treg cells in the blood. In addition, lung Tregs of non-survivors also displayed higher PD1 and lower FOXP3 expressions suggesting dysfunctional phenotype. Further signs of Treg dysregulation were observed in non-survivors such as limited production of IL-10 in the lungs and higher production of IL-17A in the blood and in the lungs, which were associated with increased PD1 expression. These findings were also associated with lower pulmonary levels of Treg-stimulating factors like TNF and IL-2. Tregs in the blood and lungs are profoundly dysfunctional in non-surviving COVID-19 patients.
Collapse
Affiliation(s)
- Marcela Helena Gonçalves‐Pereira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Luciana Santiago
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Hospital das ClínicasUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Cecilia Gómez Ravetti
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Paula Frizera Vassallo
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Marcus Vinicius Melo de Andrade
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Mariana Sousa Vieira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | | | - Natália Virtude Carobin
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Guangzhao Li
- Department of MicrobiologyImmunology and Tropical Medicine, The George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Vandack Nobre
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
25
|
de Sousa Palmeira PH, Peixoto RF, Csordas BG, de Medeiros IA, de Azevedo FDLAA, Veras RC, Janebro DI, Amaral IP, Keesen TSL. Differential regulatory T cell signature after recovery from mild COVID-19. Front Immunol 2023; 14:1078922. [PMID: 36969257 PMCID: PMC10030602 DOI: 10.3389/fimmu.2023.1078922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a range of symptoms in which host immune response have been associated with disease progression. However, the putative role of regulatory T cells (Tregs) in determining COVID-19 outcomes has not been thoroughly investigated. Here, we compared peripheral Tregs between volunteers not previously infected with SARS-CoV-2 (healthy control [HC]) and volunteers who recovered from mild (Mild Recovered) and severe (Severe Recovered) COVID-19. Peripheral blood mononuclear cells (PBMC) were stimulated with SARS-CoV-2 synthetic peptides (Pool Spike CoV-2 and Pool CoV-2) or staphylococcal enterotoxin B (SEB). Results of a multicolor flow cytometric assay showed higher Treg frequency and expression of IL-10, IL-17, perforin, granzyme B, PD-1, and CD39/CD73 co-expression in Treg among the PBMC from the Mild Recovered group than in the Severe Recovered or HC groups for certain SARS-CoV-2 related stimulus. Moreover, Mild Recovered unstimulated samples presented a higher Tregs frequency and expression of IL-10 and granzyme B than did that of HC. Compared with Pool CoV-2 stimuli, Pool Spike CoV-2 reduced IL-10 expression and improved PD-1 expression in Tregs from volunteers in the Mild Recovered group. Interestingly, Pool Spike CoV-2 elicited a decrease in Treg IL-17+ frequency in the Severe Recovered group. In HC, the expression of latency-associated peptide (LAP) and cytotoxic granule co-expression by Tregs was higher in Pool CoV-2 stimulated samples. While Pool Spike CoV-2 stimulation reduced the frequency of IL-10+ and CTLA-4+ Tregs in PBMC from volunteers in the Mild Recovered group who had not experienced certain symptoms, higher levels of perforin and perforin+granzyme B+ co-expression by Tregs were found in the Mild Recovered group in volunteers who had experienced dyspnea. Finally, we found differential expression of CD39 and CD73 among volunteers in the Mild Recovered group between those who had and had not experienced musculoskeletal pain. Collectively, our study suggests that changes in the immunosuppressive repertoire of Tregs can influence the development of a distinct COVID-19 clinical profile, revealing that a possible modulation of Tregs exists among volunteers of the Mild Recovered group between those who did and did not develop certain symptoms, leading to mild disease.
Collapse
Affiliation(s)
- Pedro Henrique de Sousa Palmeira
- Postgraduate program in Physiology Science, Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Rephany Fonseca Peixoto
- Postgraduate program in Physiology Science, Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Bárbara Guimarães Csordas
- Postgraduate program in Natural and Synthetic Bioactive Products, Immunology Laboratory of Infectious Diseases, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Isac Almeida de Medeiros
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | | | - Robson Cavalcante Veras
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Daniele Idalino Janebro
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Ian P.G. Amaral
- Biotechnology Graduation Program, Immunology Laboratory of Infectious Diseases, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
26
|
Keller LE, Tait Wojno ED, Begum L, Fortier LA. T Helper 17-Like Regulatory T Cells in Equine Synovial Fluid Are Associated With Disease Severity of Naturally Occurring Posttraumatic Osteoarthritis. Am J Sports Med 2023; 51:1047-1058. [PMID: 36794851 PMCID: PMC10375548 DOI: 10.1177/03635465231153588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND Infiltration of cluster of differentiation (CD) 3+ (CD3+) T cells into the synovium and synovial fluid occurs in most patients with posttraumatic osteoarthritis. During disease progression, proinflammatory T helper 17 cells and anti-inflammatory regulatory T cells infiltrate the joint in response to inflammation. This study aimed to characterize the dynamics of regulatory T and T helper 17 cell populations in synovial fluid from equine clinical patients with posttraumatic osteoarthritis to determine whether phenotype and function are associated with potential immunotherapeutic targets. HYPOTHESIS An imbalance of the ratio of regulatory T cells and T helper 17 cells would be associated with disease progression in posttraumatic osteoarthritis, suggesting opportunities for immunomodulatory therapy. STUDY DESIGN Descriptive laboratory study. METHODS Synovial fluid was aspirated from the joints of equine clinical patients undergoing arthroscopic surgery for posttraumatic osteoarthritis resulting from intra-articular fragmentation. Joints were classified as having mild or moderate posttraumatic osteoarthritis. Synovial fluid was also obtained from nonoperated horses with normal cartilage. Peripheral blood was obtained from horses with normal cartilage and those with mild and moderate posttraumatic osteoarthritis. Synovial fluid and peripheral blood cells were analyzed by flow cytometry, and native synovial fluid was analyzed by enzyme-linked immunosorbent assay. RESULTS CD3+ T cells represented 81% of lymphocytes in synovial fluid, which increased in animals with moderate posttraumatic osteoarthritis to 88.3% (P = .02). CD14+ macrophages were doubled in those with moderate posttraumatic osteoarthritis compared with mild posttraumatic osteoarthritis and controls (P < .001). Less than 5% of CD3+ T cells found within the joint were forkhead box P3 protein+ (Foxp3+) regulatory T cells, but a 4- to 8-times higher percentage of nonoperated and mild posttraumatic osteoarthritis joint regulatory T cells secreted interleukin (IL)-10 than peripheral blood Tregs (P < .005). T regulatory-1 cells that secreted IL-10 but did not express Foxp3 accounted for approximately 5% of CD3+ T cells in all joints. T helper 17 cells and Th17-like regulatory T cells were increased in those with moderate posttraumatic osteoarthritis (P < .0001) compared with mild and nonoperated patients. IL-10, IL-17A, IL-6, chemokine (C-C motif) ligand (CCL) 2 (CCL2), and CCL5 concentrations detected by enzyme-linked immunosorbent assay in synovial fluid were not different between groups. CONCLUSIONS An imbalance of the ratio of regulatory T cells and T helper 17 cells and an increase in T helper 17 cell-like regulatory T cells in synovial fluid from joints with more severe disease provide novel insights into immunological mechanisms that are associated with posttraumatic osteoarthritis progression and pathogenesis. CLINICAL RELEVANCE Early and targeted use of immunotherapeutics in the mitigation of posttraumatic osteoarthritis may improve patient clinical outcomes.
Collapse
Affiliation(s)
- Laura E Keller
- Cornell University, College of Veterinary Medicine, Department of Clinical Sciences, Ithaca, New York, USA
| | - Elia D Tait Wojno
- University of Washington, Department of Immunology, Seattle, Washington, USA
| | - Laila Begum
- Cornell University, College of Veterinary Medicine, Department of Clinical Sciences, Ithaca, New York, USA
| | - Lisa A Fortier
- Cornell University, College of Veterinary Medicine, Department of Clinical Sciences, Ithaca, New York, USA
| |
Collapse
|
27
|
C-type lectin Mincle initiates IL-17-mediated inflammation in acute exacerbations of idiopathic pulmonary fibrosis. Biomed Pharmacother 2023; 159:114253. [PMID: 36680813 DOI: 10.1016/j.biopha.2023.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
RATIONALE Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) has a poor prognosis and high mortality. However, there is limited information regarding the mechanisms of AE-IPF. AIMS We aimed to explore the function of macrophage-inducible C-type lectin (Mincle) in AE-IPF. METHODS In the present study, Mincle was detected in the lung tissues of AE-IPF patients. Mincle-deficient (Mincle-/-) mice and wild-type C57BL/6 mice were administered bleomycin (BLM), followed by HSV1 viral infection to establish the AE-IPF model. RESULTS Mincle was increased in the lung tissues of AE-IPF patients compared with those with stable IPF (P = 0.04) and healthy controls (P = 0.009). The survival rate of the Mincle-/-+BLM+HSV group was higher than that of the WT+BLM+HSV group. The mice in the Mincle-/-+BLM+HSV group exhibited milder inflammation and lower acute lung injury scores (P = 0.008). Mincle was expressed on inflammatory monocytes and neutrophils (CD11b+Gr1 +F4/80-) and monocyte-derived macrophages (Mo-AMs, CD11b+Gr1 +F4/80 +) in the BALF of AE-IPF mice. Mo-AMs were significantly increased in the WT+BLM+HSV group compared with the WT+BLM+PBS (P < 0.0001) and Mincle-/-+BLM+HSV (P = 0.0009) groups. Deletion of Mincle decreased the proportion of Th17 cells and Mo-AMs in the Mincle-/-+BLM+HSV group. CONCLUSIONS Mincle contributed to acute inflammation in AE-IPF by promoting Th17 differentiation.
Collapse
|
28
|
Hang LTT, Trinh HKT, An LB, Tuyet NT, Tho PV, Huy NT, Hoa PTL. Dysregulation of T Cell Differentiation and the IL17A(+)Foxp3(+)Treg Subset in Chronic Hepatitis B Patients with Hepatitis Flare. Viral Immunol 2023; 36:127-135. [PMID: 36857742 DOI: 10.1089/vim.2022.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The regulatory T (Treg) and T helper 17 (Th17) cells modulate the immune response in chronic hepatitis B virus (HBV) infection by promoting immune tolerance and restricting liver damage or stimulating inflammatory response and rendering hepatocyte injury. These cells act through signaling transcription factors and secreting cytokines. We aimed to observe the percentages of Treg, Th17 cells, and their messenger RNA (mRNA) level of forkhead box protein 3 (Foxp3) and retinoid orphan receptor γt (RORγt) in the chronic hepatitis B (CHB)-infected group and CHB patients with hepatitis flare (HF). We recruited 103 participants, including 88 CHB-infected cases and 15 healthy controls (HCs) in Ho Chi Minh City. CHB cases were enrolled into two groups: HBeAg+ CHB infection (e+CHBI; n = 42) and HF (including 20 mild HF and 26 severe HF [sHF]). The Foxp3(+)Treg and Th17 cells were measured by flow cytometry. The mRNA levels of Foxp3 and RORγt were analyzed by real-time polymerase chain reaction. The percentages of Foxp3(+)Treg, of Th17, and the Foxp3(+)Treg/Th17 ratio were significantly higher in the sHF compared to the e+CHBI group. The sHF and e+CHBI groups had significantly higher mRNA levels of Foxp3 and RORγt compared to the HC group. Furthermore, a special subset, interleukin 17A(+)Foxp3(+)Treg cells, were observed with a significantly higher percentage in the sHF compared to the e+CHBI group. This finding revealed the contributions of this new subset on the severe flare cases. Our results explained the diversity of T cells and their subsets in the immune response in CHB. This subset should be further investigated as a specific tool in HBV immune response.
Collapse
Affiliation(s)
- Le Thi Thuy Hang
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Kim Tu Trinh
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Luong Bac An
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Tuyet
- Faculty of Biology and Biotechnology, Ho Chi Minh City University of Science, Ho Chi Minh City, Vietnam
| | - Phan Vinh Tho
- Hospital for Tropical Diseases in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Pham Thi Le Hoa
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
29
|
Zhang M, Zhang X. T cells in ocular autoimmune uveitis: Pathways and therapeutic approaches. Int Immunopharmacol 2023; 114:109565. [PMID: 36535124 DOI: 10.1016/j.intimp.2022.109565] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune uveitis is a non-infectious intraocular condition that affects the uveal tract of the eye and threatens vision if not treated properly. Increasing evidence suggests that activated CD4+ T cells are associated with progressive and permanent destruction of photoreceptors in ocular autoimmune diseases. As such, the purpose of this review is to offer an overview of the role of CD4+ T cells in autoimmune uveitis as well as a justification for the current development and assessment of innovative autoimmune uveitis medications targeting CD4+ T cells. With an emphasis on T helper (Th)17, Th1, and Th2 cells, follicular helper CD4+ T cells, and regulatory T cells, this review presents a summary of recent research related to the pathways and signaling that encourage CD4+ T cells to develop into specialized effector cells. We also describe immunotherapeutic approaches based on CD4+ T cell subsets and their potential as therapeutic agents for autoimmune disorders.
Collapse
Affiliation(s)
- Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
30
|
Kerdidani D, Papaioannou NE, Nakou E, Alissafi T. Rebooting Regulatory T Cell and Dendritic Cell Function in Immune-Mediated Inflammatory Diseases: Biomarker and Therapy Discovery under a Multi-Omics Lens. Biomedicines 2022; 10:2140. [PMID: 36140240 PMCID: PMC9495698 DOI: 10.3390/biomedicines10092140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a group of autoimmune and chronic inflammatory disorders with constantly increasing prevalence in the modern world. The vast majority of IMIDs develop as a consequence of complex mechanisms dependent on genetic, epigenetic, molecular, cellular, and environmental elements, that lead to defects in immune regulatory guardians of tolerance, such as dendritic (DCs) and regulatory T (Tregs) cells. As a result of this dysfunction, immune tolerance collapses and pathogenesis emerges. Deeper understanding of such disease driving mechanisms remains a major challenge for the prevention of inflammatory disorders. The recent renaissance in high throughput technologies has enabled the increase in the amount of data collected through multiple omics layers, while additionally narrowing the resolution down to the single cell level. In light of the aforementioned, this review focuses on DCs and Tregs and discusses how multi-omics approaches can be harnessed to create robust cell-based IMID biomarkers in hope of leading to more efficient and patient-tailored therapeutic interventions.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikos E. Papaioannou
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelia Nakou
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Themis Alissafi
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
31
|
Weißenborn C, von Lenthe S, Hinz N, Langwisch S, Busse M, Schumacher A, Zenclussen AC, Fest S. Depletion of Foxp3+ regulatory T cells but not the absence of
CD19
+
IL
‐10+ regulatory B cells hinders tumor growth in a para‐orthotopic neuroblastoma mouse model. Int J Cancer 2022; 151:2031-2042. [DOI: 10.1002/ijc.34262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Christine Weißenborn
- Pediatric Immunotherapy Group, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Sophie von Lenthe
- Pediatric Immunotherapy Group, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Nicole Hinz
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Stefanie Langwisch
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Anne Schumacher
- Department of Environmental Immunology Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Ana C. Zenclussen
- Department of Environmental Immunology Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Stefan Fest
- Pediatric Immunotherapy Group, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Department of Environmental Immunology Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
- Städtisches Klinikum Dessau, Academic Hospital of University Brandenburg Dessau Germany
| |
Collapse
|
32
|
Regulatory T cells in skeletal muscle repair and regeneration: recent insights. Cell Death Dis 2022; 13:680. [PMID: 35931697 PMCID: PMC9356005 DOI: 10.1038/s41419-022-05142-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/21/2023]
Abstract
Skeletal muscle repair and regeneration after injury is a multi-stage process, involving a dynamic inflammatory microenvironment consisting of a complex network formed by the interaction of immune cells and their secreted cytokines. The homeostasis of the inflammatory microenvironment determines whether skeletal muscle repair tissues will ultimately form scar tissue or regenerative tissue. Regulatory T cells (Tregs) regulate homeostasis within the immune system and self-immune tolerance, and play a crucial role in skeletal muscle repair and regeneration. Dysregulated Tregs function leads to abnormal repair. In this review, we discuss the role and mechanisms of Tregs in skeletal muscle repair and regeneration after injury and provide new strategies for Treg immunotherapy in skeletal muscle diseases.
Collapse
|
33
|
Hassouna SS, Sheta E, Zaki I, Harby SA, Allam EA. Trivalent chromium supplementation ameliorates adjuvant induced rheumatoid arthritis through up-regulation of FOXP3 and decrease in synovial Cathepsin G expression. Inflammopharmacology 2022; 30:2181-2195. [PMID: 35829940 DOI: 10.1007/s10787-022-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a known debilitating autoimmune disease. Immune-suppressants that are used for disease treatment have serious side effects, therefore, trivalent chromium (Cr (III)); which has shown evidence of its influences on some inflammatory pathways and cytokines; was used in this study for the first time to be assessed for its therapeutic effect in RA rat model and was compared to prednisolone in a trial to find a treatment with lesser side effects. METHODS Adult male albino rats were randomly divided into four groups: normal, untreated RA, prednisolone treated RA (1.25 mg/kg/day) and Cr (III) treated RA groups (80 μg/kg/day), induction of RA was done by subcutaneous complete Freund adjuvant injection. Study duration was 4 weeks throughout which arthritis scoring and weight measurement were pursued. Histopathological examination and immunohistochemical FOXP3 assessment were done for joint biopsies. Serum inflammatory markers (interleukin 17, interleukin 10, CRP) and synovial erosive arthritis marker (Cathepsin G) were measured. HDL and non-HDL cholesterol were estimated as well. RESULTS Cr (III) treatment showed marked clinical and histopathological improvement, also astonishing anti-inflammatory effects (increase in FOXP3 expression and interleukin 10, with decrease in interleukin 17, CRP and synovial Cathepsin G) to the extent that Cr (III) effects on inflammation abolishment were comparable to that of prednisolone and even better at some aspects. Moreover, Cr (III) was protective from side effects, i.e., weight gain and dyslipidemia that were seen with prednisolone treatment. CONCLUSIONS Cr (III) is promising in treating RA and it lacks some side effects of accustomed immune-modulatory agents including prednisolone. Further experimental studies and clinical trials should be held to see the efficacy of Cr (III) in different doses and to assess its long term side effects when used for rheumatoid arthritis and other autoimmune diseases treatment.
Collapse
Affiliation(s)
- Sally S Hassouna
- Internal Medicine Department, Rheumatology and Immunology Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Inass Zaki
- Pathology department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sahar A Harby
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman A Allam
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
34
|
Christensen LM, Hancock WW. Nuclear Coregulatory Complexes in Tregs as Targets to Promote Anticancer Immune Responses. Front Immunol 2022; 13:909816. [PMID: 35795673 PMCID: PMC9251111 DOI: 10.3389/fimmu.2022.909816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022] Open
Abstract
T-regulatory (Treg) cells display considerable heterogeneity in their responses to various cancers. The functional differences among this cell type are heavily influenced by multiprotein nuclear complexes that control their gene expression. Many such complexes act mechanistically by altering epigenetic profiles of genes important to Treg function, including the forkhead P3 (Foxp3) transcription factor. Complexes that form with certain members of the histone/protein deacetylase (HDAC) class of enzymes, like HDACs 1, 2, and 3, along with histone methyltransferase complexes, are important in the induction and stabilization of Foxp3 and Treg identity. The functional behavior of both circulating and intratumoral Tregs greatly impacts the antitumor immune response and can be predictive of patient outcome. Thus, targeting these regulatory complexes within Tregs may have therapeutic potential, especially in personalized immunotherapies.
Collapse
Affiliation(s)
- Lanette M. Christensen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Wayne W. Hancock,
| |
Collapse
|
35
|
Brown ME, Peters LD, Hanbali SR, Arnoletti JM, Sachs LK, Nguyen KQ, Carpenter EB, Seay HR, Fuhrman CA, Posgai AL, Shapiro MR, Brusko TM. Human CD4 +CD25 +CD226 - Tregs Demonstrate Increased Purity, Lineage Stability, and Suppressive Capacity Versus CD4 +CD25 +CD127 lo/- Tregs for Adoptive Cell Therapy. Front Immunol 2022; 13:873560. [PMID: 35693814 PMCID: PMC9178079 DOI: 10.3389/fimmu.2022.873560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/28/2022] [Indexed: 01/21/2023] Open
Abstract
Regulatory T cell (Treg) adoptive cell therapy (ACT) represents an emerging strategy for restoring immune tolerance in autoimmune diseases. Tregs are commonly purified using a CD4+CD25+CD127lo/- gating strategy, which yields a mixed population: 1) cells expressing the transcription factors, FOXP3 and Helios, that canonically define lineage stable thymic Tregs and 2) unstable FOXP3+Helios- Tregs. Our prior work identified the autoimmune disease risk-associated locus and costimulatory molecule, CD226, as being highly expressed not only on effector T cells but also, interferon-γ (IFN-γ) producing peripheral Tregs (pTreg). Thus, we sought to determine whether isolating Tregs with a CD4+CD25+CD226- strategy yields a population with increased purity and suppressive capacity relative to CD4+CD25+CD127lo/- cells. After 14d of culture, expanded CD4+CD25+CD226- cells displayed a decreased proportion of pTregs relative to CD4+CD25+CD127lo/- cells, as measured by FOXP3+Helios- expression and the epigenetic signature at the FOXP3 Treg-specific demethylated region (TSDR). Furthermore, CD226- Tregs exhibited decreased production of the effector cytokines, IFN-γ, TNF, and IL-17A, along with increased expression of the immunoregulatory cytokine, TGF-β1. Lastly, CD226- Tregs demonstrated increased in vitro suppressive capacity as compared to their CD127lo/- counterparts. These data suggest that the exclusion of CD226-expressing cells during Treg sorting yields a population with increased purity, lineage stability, and suppressive capabilities, which may benefit Treg ACT for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Matthew E. Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Seif R. Hanbali
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Juan M. Arnoletti
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Lindsey K. Sachs
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Kayla Q. Nguyen
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Emma B. Carpenter
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Howard R. Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- ROSALIND, Inc., San Diego, CA, United States
| | - Christopher A. Fuhrman
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- NanoString Technologies, Inc., Seattle, WA, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Melanie R. Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
36
|
Li X, Guan Y, Li C, Zhang T, Meng F, Zhang J, Li J, Chen S, Wang Q, Wang Y, Peng J, Tang J. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res Ther 2022; 13:18. [PMID: 35033187 PMCID: PMC8760713 DOI: 10.1186/s13287-021-02690-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Various immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs. We also discuss the immunomodulatory potential of MSC-derived extracellular vesicles as a new cell-free treatment for PNI.
Collapse
Affiliation(s)
- Xiangling Li
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Tieyuan Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Fanqi Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,Department of Spine Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Jian Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Junyang Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Qi Wang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yi Wang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.
| | - Jinshu Tang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
37
|
Simsek A, Kizmaz MA, Cagan E, Dombaz F, Tezcan G, Asan A, Ibrahim Demir H, Haldun Bal S, Ermis DY, Dilektaslı AG, Kazak E, Halis Akalin E, Barbaros Oral H, Budak F. Assessment of CD39 expression in regulatory T cell subsets by disease severity in adult and juvenile COVID -19 cases. J Med Virol 2022; 94:2089-2101. [PMID: 35032133 PMCID: PMC9015412 DOI: 10.1002/jmv.27593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/11/2022]
Abstract
COVID‐19 is a disease characterized by acute respiratory failure and is a major health problem worldwide. Here, we aimed to investigate the role of CD39 expression in Treg cell subsets in COVID‐19 immunopathogenesis and its relationship to disease severity. One hundred and ninety COVID‐19 patients (juveniles, adults) and 43 volunteers as healthy controls were enrolled in our study. Flow cytometric analysis was performed using a 10‐color monoclonal antibody panel from peripheral blood samples. In adult patients, CD39+ Tregs increased with disease severity. In contrast, CD39+ Tregs were decreased in juvenile patients in an age‐dependent manner. Overall, our study reveals an interesting profile of CD39‐expressing Tregs in adult and juvenile cases of COVID‐19. Our results provide a better understanding of the possible role of Tregs in the mechanism of immune response in COVID‐19 cases. CD39+ Tregs increased with disease severity in adult COVID‐19 cases. In addition, significant changes were also observed in other Treg subsets. Treg subsets in the juvenile COVID‐19 cases showed age‐related variability but were significantly lower than in the healthy control group. Consistent correlations were found between laboratory findings in adult COVID‐19 cases and Treg subsets.
Collapse
Affiliation(s)
- Abdurrahman Simsek
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.,Department of Immunology, Health Science Institute, Bursa Uludag University, Bursa, Turkey
| | - Muhammed Ali Kizmaz
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.,Department of Immunology, Health Science Institute, Bursa Uludag University, Bursa, Turkey
| | - Eren Cagan
- Department of Pediatric Infectious Diseases, University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Fatma Dombaz
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.,Department of Immunology, Health Science Institute, Bursa Uludag University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Fundamental Science, Faculty of Dentistry, Bursa Uludağ University, Bursa, Turkey
| | - Ali Asan
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - H Ibrahim Demir
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.,Department of Immunology, Health Science Institute, Bursa Uludag University, Bursa, Turkey
| | - S Haldun Bal
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Digdem Yoyen Ermis
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Aslı Gorek Dilektaslı
- Department of Chest Diseases, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Esra Kazak
- Department of Clinical Microbiology and Infection Diseases, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - E Halis Akalin
- Department of Clinical Microbiology and Infection Diseases, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - H Barbaros Oral
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ferah Budak
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| |
Collapse
|
38
|
Cassidy MF, Herbert ZT, Moulton VR. Splicing factor SRSF1 controls distinct molecular programs in regulatory and effector T cells implicated in systemic autoimmune disease. Mol Immunol 2022; 141:94-103. [PMID: 34839165 PMCID: PMC10797198 DOI: 10.1016/j.molimm.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/15/2021] [Accepted: 11/07/2021] [Indexed: 12/30/2022]
Abstract
Systemic autoimmune diseases are characterized by hyperactive effector T cells (Teffs), aberrant cytokines and chemokines, and dysfunctional regulatory T cells (Tregs). We previously uncovered new roles for serine/arginine-rich splicing factor 1 (SRSF1) in the control of genes involved in T cell signaling and cytokine production in human T cells. SRSF1 levels are decreased in T cells from patients with systemic lupus erythematosus (SLE), and low levels correlate with severe disease. Moreover, T cell-conditional Srsf1-deficient mice recapitulate the autoimmune phenotype, exhibiting CD4 T cell hyperactivity, dysfunctional Tregs, systemic autoimmunity, and tissue inflammation. However, the role of SRSF1 in controlling molecular programs in Teffs and Tregs and how these pathways are implicated in autoimmunity is not known. Here, by comparative bioinformatics analysis, we demonstrate that SRSF1 controls largely distinct gene programs in Tregs and Teffs in vivo. SRSF1 regulates 189 differentially expressed genes (DEGs) unique to Tregs, 582 DEGs unique to Teffs, and 29 DEGs shared between both. Shared genes included IL-17A, IL-17F, CSF1, CXCL10, and CXCR4, and were highly enriched for inflammatory response and cytokine-cytokine receptor interaction pathways. SRSF1 controls distinct pathways in Tregs, which include chemokine signaling and immune cell differentiation, compared with pathways in Teffs, which include cytokine production, T cell homeostasis, and activation. We identified putative mRNA binding targets of SRSF1 which include CSF1, CXCL10, and IL-17F. Finally, comparisons with transcriptomics profiles from lupus-prone MRL/lpr mice reveal that SRSF1 controls genes and pathways implicated in autoimmune disease. The target genes of SRSF1 and putative binding targets we discovered, have known roles in systemic autoimmunity. Our findings suggest that SRSF1 controls distinct molecular pathways in Tregs and Teffs and aberrant SRSF1 levels may contribute to their dysfunction and immunopathogenesis of systemic autoimmune disease.
Collapse
Affiliation(s)
- Michael F Cassidy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Tufts University School of Medicine, Boston, MA, United States
| | - Zachary T Herbert
- Molecular Biology Core Facilities at Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vaishali R Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
39
|
Keller LE, Tait Wojno ED, Begum L, Fortier LA. Regulatory T cells provide chondroprotection through increased TIMP1, IL-10 and IL-4, but cannot mitigate the catabolic effects of IL-1β and IL-6 in a tri-culture model of osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100193. [PMID: 36474817 PMCID: PMC9718146 DOI: 10.1016/j.ocarto.2021.100193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023] Open
Abstract
Objective To gain insight into Treg interactions with synovial tissues in early OA, an equine tri-culture model of OA was used to test the hypothesis that Tregs, in the absence of T Helper 17 cells, are sufficient to resolve inflammation elicited by IL-1β. Methods To model normal and OA joints, synoviocytes were co-cultured with chondrocytes in a transwell system and ± stimulated with IL-1β. Tregs were activated and enriched, then added to co-cultures, creating tri-cultures. At culture end, synoviocytes and chondrocytes were analyzed for gene expression, Treg Foxp3 expression was reexamined by flow cytometry, and conditioned media were evaluated by ELISA. Results Tregs increased IL-10 and IL-4 in tri-culture media and increased TIMP1 gene expression in synoviocytes and chondrocytes. Tregs increased IL-6 in conditioned media and Il6 gene expression in synoviocytes, which was additive with IL-1β. In chondrocytes, addition of Tregs decreased Col2b gene expression while Acan gene expression was decreased by IL-1β and addition of Tregs. IL-17A was detected in tri-cultures. CCL2 and CCL5 were increased in tri-cultures. Conclusions In a tri-culture model of OA, addition of Tregs resulted in conditions conducive to chondroprotection including increased concentration of IL-10 and IL-4 in conditioned media and increased gene expression of TIMP1 in both chondrocytes and synoviocytes. However, there was increased concentration of the catabolic cytokine IL-6, and decreased gene expression of Col2b and Acan in IL-1β-stimulated chondrocytes. These results suggest that blocking IL-6 could enhance Treg function in mitigating OA progression.
Collapse
Affiliation(s)
- Laura E. Keller
- Cornell University, College of Veterinary Medicine, Department of Clinical Sciences, USA
| | | | - Laila Begum
- Cornell University, College of Veterinary Medicine, Department of Clinical Sciences, USA
| | - Lisa A. Fortier
- Cornell University, College of Veterinary Medicine, Department of Clinical Sciences, USA
| |
Collapse
|
40
|
Kwon Y, Lee KW, Kim YM, Park H, Jung MK, Choi YJ, Son JK, Hong J, Park SH, Kwon GY, Yoo H, Kim K, Kim SJ, Park JB, Shin EC. Expansion of CD45RA -FOXP3 ++ regulatory T cells is associated with immune tolerance in patients with combined kidney and bone marrow transplantation. Clin Transl Immunology 2021; 10:e1325. [PMID: 34401148 PMCID: PMC8353318 DOI: 10.1002/cti2.1325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives Simultaneous transplantation of a solid organ and bone marrow from the same donor is a possible means of achieving transplant tolerance. Here, we attempted to identify biomarkers that indicate transplant tolerance for discontinuation of immunosuppressants in combined kidney and bone marrow transplantation (CKBMT). Methods Conventional kidney transplant (KT) recipients (n = 20) and CKBMT recipients (n = 6) were included in this study. We examined various immunological parameters by flow cytometry using peripheral blood mononuclear cells (PBMCs), including the frequency and phenotype of regulatory T (Treg) cell subpopulations. We also examined the suppressive activity of the Treg cell population in the setting of mixed lymphocyte reaction (MLR) with or without Treg cell depletion. Results Among six CKBMT recipients, three successfully discontinued immunosuppressants (tolerant group) and three could not (non‐tolerant group). The CD45RA−FOXP3++ Treg cell subpopulation was expanded in CKBMT recipients compared to conventional kidney transplant patients, and this was more obvious in the tolerant group than the non‐tolerant group. In addition, high suppressive activity of the Treg cell population was observed in the tolerant group. The ratio of CD45RA−FOXP3++ Treg cells to CD45RA−FOXP3+ cells indicated good discrimination between the tolerant and non‐tolerant groups. Conclusion Thus, our findings propose a biomarker that can distinguish CKBMT patients who achieve transplant tolerance and are eligible for discontinuation of immunosuppressants and may provide insight into tolerance mechanisms in CKBMT.
Collapse
Affiliation(s)
- Yeongbeen Kwon
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) Graduate School Department of Health Sciences & Technology Sungkyunkwan University Seoul Korea.,Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea
| | - Kyo Won Lee
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Surgery Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - You Min Kim
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| | - Hyojun Park
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Medicine Sungkyunkwan University School of Medicine Suwon Korea.,GenNbio Inc. Seoul Korea
| | - Min Kyung Jung
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| | - Young Joon Choi
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea.,Department of Ophthalmology Ajou University School of Medicine Suwon Korea
| | - Jin Kyung Son
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,GenNbio Inc. Seoul Korea
| | - JuHee Hong
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| | - Ghee Young Kwon
- Department of Pathology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Heejin Yoo
- Statistics and Data Center Samsung Medical Center Research Institute for Future Medicine Seoul Korea
| | - Kyunga Kim
- Statistics and Data Center Samsung Medical Center Research Institute for Future Medicine Seoul Korea.,Department of Digital Health Samsung Advanced Institute for Health Sciences & Technology Sungkyunkwan University Seoul Korea
| | - Sung Joo Kim
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Medicine Sungkyunkwan University School of Medicine Suwon Korea.,GenNbio Inc. Seoul Korea
| | - Jae Berm Park
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) Graduate School Department of Health Sciences & Technology Sungkyunkwan University Seoul Korea.,Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Surgery Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| |
Collapse
|
41
|
Suárez LJ, Arboleda S, Angelov N, Arce RM. Oral Versus Gastrointestinal Mucosal Immune Niches in Homeostasis and Allostasis. Front Immunol 2021; 12:705206. [PMID: 34290715 PMCID: PMC8287884 DOI: 10.3389/fimmu.2021.705206] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Different body systems (epidermis, respiratory tract, cornea, oral cavity, and gastrointestinal tract) are in continuous direct contact with innocuous and/or potentially harmful external agents, exhibiting dynamic and highly selective interaction throughout the epithelia, which function as both a physical and chemical protective barrier. Resident immune cells in the epithelia are constantly challenged and must distinguish among antigens that must be either tolerated or those to which a response must be mounted for. When such a decision begins to take place in lymphoid foci and/or mucosa-associated lymphoid tissues, the epithelia network of immune surveillance actively dominates both oral and gastrointestinal compartments, which are thought to operate in the same immune continuum. However, anatomical variations clearly differentiate immune processes in both the mouth and gastrointestinal tract that demonstrate a wide array of independent immune responses. From single vs. multiple epithelia cell layers, widespread cell-to-cell junction types, microbial-associated recognition receptors, dendritic cell function as well as related signaling, the objective of this review is to specifically contrast the current knowledge of oral versus gut immune niches in the context of epithelia/lymphoid foci/MALT local immunity and systemic output. Related differences in 1) anatomy 2) cell-to-cell communication 3) antigen capture/processing/presentation 4) signaling in regulatory vs. proinflammatory responses and 5) systemic output consequences and its relations to disease pathogenesis are discussed.
Collapse
Affiliation(s)
- Lina J Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Silie Arboleda
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger M Arce
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
42
|
Kim G, Kim W, Lim S, Lee H, Koo J, Nam K, Kim S, Park S, Choi J. In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004973. [PMID: 34306974 PMCID: PMC8292875 DOI: 10.1002/advs.202004973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/01/2021] [Indexed: 05/22/2023]
Abstract
Regulatory T cells play a key role in immune tolerance to self-antigens, thereby preventing autoimmune diseases. However, no drugs targeting Treg cells have been approved for clinical trials yet. Here, a chimeric peptide is generated by conjugation of the cytoplasmic domain of CTLA-4 (ctCTLA-4) with dNP2 for intracellular delivery, dNP2-ctCTLA-4, and evaluated Foxp3 expression during Th0, Th1, Treg, and Th17 differentiation dependent on TGF-β. The lysine motif of ctCTLA-4, not tyrosine motif, is required for Foxp3 expression for Treg induction and amelioration of experimental autoimmune encephalomyelitis (EAE). Transcriptome analysis reveals that dNP2-ctCTLA-4-treated T cells express Treg transcriptomic patterns with properties of suppressive functions. In addition, the molecular interaction between the lysine motif of ctCTLA-4 and PKC-η is critical for Foxp3 expression. Although both CTLA-4-Ig and dNP2-ctCTLA-4 treatment in vivo ameliorated EAE progression, only dNP2-ctCTLA-4 requires Treg cells for inhibition of disease progression and prevention of relapse. Furthermore, the CTLA-4 signaling peptide is able to induce human Tregs in vitro and in vivo as well as from peripheral blood mononuclear cells (PBMCs) of multiple sclerosis patients. These results collectively suggest that the chimeric CTLA-4 signaling peptide can be used for successful induction of regulatory T cells in vivo to control autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Gil‐Ran Kim
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Won‐Ju Kim
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Sangho Lim
- Hubrecht Institute for Developmental Biology and Stem Cell Research‐KNAW, University Medical Centre UtrechtUtrecht3584 CTNetherland
| | - Hong‐Gyun Lee
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Ja‐Hyun Koo
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Kyung‐Ho Nam
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Sung‐Min Kim
- Department of NeurologyCollege of MedicineSeoul National UniversitySeoul National University HospitalSeoul03080Republic of Korea
| | - Sung‐Dong Park
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Je‐Min Choi
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesResearch Institute for Convergence of Basic SciencesHanyang UniversitySeoul04763Republic of Korea
| |
Collapse
|
43
|
Kolobarić N, Drenjančević I, Matić A, Šušnjara P, Mihaljević Z, Mihalj M. Dietary Intake of n-3 PUFA-Enriched Hen Eggs Changes Inflammatory Markers' Concentration and Treg/Th17 Cells Distribution in Blood of Young Healthy Adults-A Randomised Study. Nutrients 2021; 13:nu13061851. [PMID: 34071714 PMCID: PMC8229500 DOI: 10.3390/nu13061851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
In the present study, we aimed to determine the effects of n-3 polyunsaturated acid (PUFA) supplementation (~1053 mg/per day), i.e., α-linolenic (~230 mg), eicosapentaenoic (~15 mg), and docosahexaenoic acid (~105 mg), through hen eggs, on pro- and anti-inflammatory parameters in healthy individuals (23.8 ± 2.57 years old). Here, we demonstrate differential effects of regular hen eggs (N = 21; W/M = 10/11) and n-3 PUFA-enriched hen eggs (N = 19; W/M = 10/9) consumption on the serum levels of lipid mediators, representation of peripheral T helper cell subsets (recently activated T-helper cells, nTreg, Th17 and non-Th17-IL-17A secreting T-helper lymphocytes) and their functional capacity for cytokine secretion. Both diets significantly altered systemic levels of pro-inflammatory and inflammation resolving lipid mediators; however, only the n-3 PUFAs group showed a significant shift towards anti-inflammatory prostanoids and increased levels of pro-resolving oxylipins. Both study groups showed reduced frequencies of peripheral nTreg lymphocytes and decreased rates of peripheral Th17 cells. Their functional capacity for cytokine secretion was significantly altered only in the n-3 PUFAs group in terms of increased transforming growth factor β-1 and reduced interleukin 6 secretion. Diet supplemented with n-3 PUFAs alters immune response towards inflammation resolving conditions through effects on lipid mediators and cytokine secretion by T lymphocytes in human model without underlying comorbidities.
Collapse
Affiliation(s)
- Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (I.D.); (A.M.); (P.Š.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-3151-2800
| |
Collapse
|
44
|
Park DH, Kim JW, Park HJ, Hahm DH. Comparative Analysis of the Microbiome across the Gut-Skin Axis in Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms22084228. [PMID: 33921772 PMCID: PMC8073639 DOI: 10.3390/ijms22084228] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a refractory and relapsing skin disease with a complex and multifactorial etiology. Various congenital malformations and environmental factors are thought to be involved in the onset of the disease. The etiology of the disease has been investigated, with respect to clinical skin symptoms and systemic immune response factors. A gut microbiome–mediated connection between emotional disorders such as depression and anxiety, and dermatologic conditions such as acne, based on the comorbidities of these two seemingly unrelated disorders, has long been hypothesized. Many aspects of this gut–brain–skin integration theory have recently been revalidated to identify treatment options for AD with the recent advances in metagenomic analysis involving powerful sequencing techniques and bioinformatics that overcome the need for isolation and cultivation of individual microbial strains from the skin or gut. Comparative analysis of microbial clusters across the gut–skin axis can provide new information regarding AD research. Herein, we provide a historical perspective on the modern investigation and clinical implications of gut–skin connections in AD in terms of the integration between the two microbial clusters.
Collapse
Affiliation(s)
- Dong Hoon Park
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
| | - Joo Wan Kim
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Dae-Hyun Hahm
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0366
| |
Collapse
|
45
|
Ohya S, Matsui M, Kajikuri J, Endo K, Kito H. Increased Interleukin-10 Expression by the Inhibition of Ca 2+-Activated K + Channel K Ca3.1 in CD4 +CD25 + Regulatory T Cells in the Recovery Phase in an Inflammatory Bowel Disease Mouse Model. J Pharmacol Exp Ther 2021; 377:75-85. [PMID: 33504590 DOI: 10.1124/jpet.120.000395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory diseases of the gastrointestinal tract arising from abnormal responses of the innate and adaptative immune systems. Interleukin (IL)-10-producing CD4+CD25+ regulatory T (Treg) cells play a protective role in the recovery phase of IBD. In the present study, the effects of the administration of the selective Ca2+-activated K+ channel KCa3.1 inhibitor TRAM-34 on disease activities were examined in chemically induced IBD model mice. IBD disease severity, as assessed by diarrhea, visible fecal blood, inflammation, and crypt damage in the colon, was significantly lower in mice administered 1 mg/kg TRAM-34 than in vehicle-administered mice. Quantitative real-time polymerase chain reaction examinations showed that IL-10 expression levels in the recovery phase were markedly increased by the inhibition of KCa3.1 in mesenteric lymph node (mLN) Treg cells of IBD model mice compared with vehicle-administered mice. Among several positive and negative transcriptional regulators (TRs) for IL-10, three positive TRs-E4BP4, KLF4, and Blimp1-were upregulated by the inhibition of KCa3.1 in the mLN Treg cells of IBD model mice. In mouse peripheral CD4+CD25+ Treg cells induced by lectin stimulation, IL-10 expression and secretion were enhanced by the treatment with TRAM-34, together with the upregulation of E4BP4, KLF4, and Blimp1. Collectively, the present results demonstrated that the pharmacological inhibition of KCa3.1 decreased IBD symptoms in the IBD model by increasing IL-10 production in peripheral Treg cells and that IL-10high Treg cells produced by the treatment with KCa3.1 inhibitor may contribute to efficient Treg therapy for chronic inflammatory disorders, including IBD. SIGNIFICANCE STATEMENT: Pharmacological inhibition of Ca2+-activated K+ channel KCa3.1 increased IL-10 expression in peripheral Treg cells, together with the upregulation of the transcriptional regulators of IL-10: Krüppel-like factor 4, E4 promoter-binding protein 4, and/or B lymphocyte-induced maturation protein 1. The manipulation of IL-10high-producing Treg cells by the pharmacological inhibition of KCa3.1 may be beneficial in the treatment of chronic inflammatory diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Miki Matsui
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Endo
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
46
|
Jiang Y, Chen S, Li Q, Liang J, Lin W, Li J, Liu Z, Wen M, Cao M, Hong J. TANK-Binding Kinase 1 (TBK1) Serves as a Potential Target for Hepatocellular Carcinoma by Enhancing Tumor Immune Infiltration. Front Immunol 2021; 12:612139. [PMID: 33679751 PMCID: PMC7930497 DOI: 10.3389/fimmu.2021.612139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Numerous cancer types present the aberrant TANK-binding kinase 1 (TBK1) expression, which plays an important role in driving inflammation and innate immunity. However, the prognostic role of TBK1 and its relationship with immune cell infiltration in hepatocellular carcinoma (HCC) remain unclear. METHODS The expression and prognostic value of TBK1 was analyzed by Tumor Immune Estimation Resource (TIMER), Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and further confirmed in the present cohort of patients with HCC. The association between TBK1 and HCC immune infiltrates, and its potential mechanism were investigated via analyses of the Tumor Immune Estimation Resource, tumor-immune system interactions database (TISIDB), CIBERSORT, STRING, and Metascape. The effect of TBK1 on immune infiltrates and the therapeutic value of targeting TBK1 were further investigated in a HCC mouse model by treatment with a TBK1 antagonist. RESULTS The level of TBK1 expression in HCC was higher than that measured in normal tissues, and associated with poorer overall survival (GEPIA: hazard ratio [HR]=1.80, P=0.038; Kaplan-Meier plotter: HR=1.87, P<0.001; CPTAC: HR=2.23, P=0.007; Our cohort: HR=2.92, P=0.002). In addition, high TBK1 expression was found in HCC with advanced TNM stage and identified as an independent poor prognostic factor for overall survival among patients with HCC. In terms of immune infiltration, tumor tissues from HCC patients with high TBK1 expression had a low proportion of CD8+ T cells, and TBK1 expression did not show prognostic value in HCC patients with enriched CD8+ T cells. Furthermore, TBK1 expression was positively correlated with the markers of T cell exhaustion and immunosuppressive cells in the HCC microenvironment. Mechanistically, the promotion of HCC immunosuppression by TBK1 was involved in the regulation of inflammatory cytokines. In vivo experiments revealed that treatment with a TBK1 antagonist delayed HCC growth by increasing the number of tumor-infiltrating CD8+ T cells. CONCLUSIONS The up-regulated expression of TBK1 may be useful in predicting poor prognosis of patients with HCC. In addition, TBK1, which promotes the HCC immunosuppressive microenvironment, may be a potential immunotherapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Yuchuan Jiang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Siliang Chen
- Department of Hematology, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | - Qiang Li
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Junjie Liang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Weida Lin
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhilong Liu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mingbo Wen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mingrong Cao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
47
|
Roy D, Bose S, Pati S, Guin A, Banerjee K, Saha S, Singhal AK, Chakraborty J, Sarkar DK, Sa G. GFI1/HDAC1-axis differentially regulates immunosuppressive CD73 in human tumor-associated FOXP3 + Th17 and inflammation-linked Th17 cells. Eur J Immunol 2021; 51:1206-1217. [PMID: 33555624 DOI: 10.1002/eji.202048892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Plasticity between Th17 and Treg cells is regarded as a crucial determinant of tumor-associated immunosuppression. Classically Th17 cells mediate inflammatory responses through production of cytokine IL17. Recently, Th17 cells have also been shown to acquire suppressive phenotypes in tumor microenvironment. However, the mechanism by which they acquire such immunosuppressive properties is still elusive. Here, we report that in tumor microenvironment Th17 cell acquires immunosuppressive properties by expressing Treg lineage-specific transcription factor FOXP3 and ectonucleotidase CD73. We designate this cell as Th17reg cell and perceive that such immunosuppressive property is dependent on CD73. It was observed that in classical Th17 cell, GFI1 recruits HDAC1 to change the euchromatin into tightly-packed heterochromatin at the proximal-promoter region of CD73 to repress its expression. Whereas in Th17reg cells GFI1 cannot get access to CD73-promoter due to heterochromatin state at its binding site and, thus, cannot recruit HDAC1, failing to suppress the expression of CD73.
Collapse
Affiliation(s)
- Dia Roy
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Sayantan Bose
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Aharna Guin
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Sudipto Saha
- Department of Bioinformatics, Bose Institute, Kolkata, India
| | | | | | | | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
48
|
Tsai YF, Huang CC, Lin YS, Hsu CY, Huang CP, Liu CY, Chiu JH, Tseng LM. Interleukin 17A promotes cell migration, enhances anoikis resistance, and creates a microenvironment suitable for triple negative breast cancer tumor metastasis. Cancer Immunol Immunother 2021; 70:2339-2351. [PMID: 33512556 DOI: 10.1007/s00262-021-02867-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aim of this study was to investigate the role of IL-17A in the cancer microenvironment and the recurrence of triple negative breast cancer (TNBC). METHODS Using human TNBC cell lines, the role of IL17-A was investigated by knocked down of IL-17A (ΔIL-17A) and by administration of IL-17A into the culture medium. Cell proliferation assays, migration assays, as well as Western blot analysis and real-time PCR, were used to evaluate IL-17A-related signaling. Three types of 4T1 cells were implanted into BALB/c mice, namely wild type (WT), ΔIL-17A, and WT + neutralizing IL-17 antibody (WT + Ab) cells. Tumor weight, necrosis area, and the number of circulating tumor cells (CTCs) were measured. Immunohistochemistry and Western blotting were used to analyze expression of CD34, CD8, and TGF-β1 as well as anoikis resistance. The Kaplan-Meier's method was used to correlate IL-17A expression and patient outcome, including disease-free survival (DFS) and overall survival (OS). RESULTS Our results demonstrated that IL-17A was able to stimulate the migratory activity, but not the growth rate, of MDA-MB-231/468 cells. In vivo, for the ΔIL-17A group, there was an increase in necrosis area, a decrease in tumor CD34 expression and a reduction in the number of CTCs. Furthermore, in WT + Ab group, there was a decreased in tumor expression of CD34, fewer CD8 ( +) cells, and fewer CTCs, but an increase in expression of TGF-β1 expression. Both of the above were compared to the WT group. Knockdown of IL-17A also decreased anoikis resistance in human TNBC and the murine 4T1 cell lines. Kaplan-Meier analysis disclosed a negative correlation between tumor expression of IL-17A and OS in TNBC patients. CONCLUSION We conclude that IL-17A promotes migratory and angiogenic activity in tumors, enhances anoikis resistance, and modulates the immune landscape of the tumor microenvironment such changes favor cancer metastasis.
Collapse
Affiliation(s)
- Yi-Fang Tsai
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Yen-Shu Lin
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC
| | - Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ching-Po Huang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chun-Yu Liu
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jen-Hwey Chiu
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC. .,Department of Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC. .,Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
49
|
Kim DH, Kim HY, Cho S, Yoo SJ, Kim WJ, Yeon HR, Choi K, Choi JM, Kang SW, Lee WW. Induction of the IL-1RII decoy receptor by NFAT/FOXP3 blocks IL-1β-dependent response of Th17 cells. eLife 2021; 10:61841. [PMID: 33507149 PMCID: PMC7872515 DOI: 10.7554/elife.61841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
Derived from a common precursor cell, the balance between Th17 and Treg cells must be maintained within immune system to prevent autoimmune diseases. IL-1β-mediated IL-1 receptor (IL-1R) signaling is essential for Th17-cell biology. Fine-tuning of IL-1R signaling is controlled by two receptors, IL-1RI and IL-RII, IL-1R accessory protein, and IL-1R antagonist. We demonstrate that the decoy receptor, IL-1RII, is important for regulating IL-17 responses in TCR-stimulated CD4+ T cells expressing functional IL-1RI via limiting IL-1β responsiveness. IL-1RII expression is regulated by NFAT via its interaction with Foxp3. The NFAT/FOXP3 complex binds to the IL-1RII promoter and is critical for its transcription. Additionally, IL-1RII expression is dysregulated in CD4+ T cells from patients with rheumatoid arthritis. Thus, differential expression of IL-1Rs on activated CD4+ T cells defines unique immunological features and a novel molecular mechanism underlies IL-1RII expression. These findings shed light on the modulatory effects of IL-1RII on Th17 responses.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunjung Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Yoo
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Won-Ju Kim
- Department of Life Science, College of Natural Sciences and Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hye Ran Yeon
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyungho Choi
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences and Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine; Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
50
|
Soheilifar MH, Vaseghi H, Seif F, Ariana M, Ghorbanifar S, Habibi N, Papari Barjasteh F, Pornour M. Concomitant overexpression of mir-182-5p and mir-182-3p raises the possibility of IL-17-producing Treg formation in breast cancer by targeting CD3d, ITK, FOXO1, and NFATs: A meta-analysis and experimental study. Cancer Sci 2020; 112:589-603. [PMID: 33283362 PMCID: PMC7893989 DOI: 10.1111/cas.14764] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
T cells are polarized toward regulatory T cells (Tregs) in tumor microenvironment by the shuttling of microRNAs that target T cell–activating signaling pathways. We evaluated the expression of the miR‐182 cluster (miR‐96, 182, and 183) in peripheral blood mononuclear cells (PBMCs) of patients with breast cancer (BC), and T cell polarization by the expression of FOXO1, NFATs, ITK, TCR/CD3 complex, and IL‐2/IL‐2RA. Twenty‐six microRNAs overexpressed in tumor tissues and sera of these patients were extracted by a meta‐analysis. Then, the expression of the miR‐182 cluster was investigated in PBMCs and sera of these patients and correlated with their targets in PBMCs. Finally, miR‐182 was cloned into Jurkat cells to evaluate its effects on T cell polarization. FOXO1, CD3d, ITK, NFATc3, NFATc4, and IL‐2RA were targeted by miR‐182, due to which their expression decreased in PBMCs of patients. Although IL‐6, IL‐17, and TGF‐β increased after miR‐182 transduction, IL‐2 dramatically decreased. We revealed CD4+FOXP3+ T cell differentiation in the miR‐182–transduced group. Although miR‐182 has inhibitory effects on T cells by the inhibition of FOXO1, TCR/CD3 complex, NFATs, and IL‐2/IL‐2RA signaling pathways, it increases FOXP3, TGF‐β, and IL‐17 expression to possibly drive T cell deviation toward the transitional state of IL‐17–producing Tregs and Treg formation in the end.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Hajar Vaseghi
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Mehdi Ariana
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Ghorbanifar
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Nazanin Habibi
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Fatemeh Papari Barjasteh
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Majid Pornour
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| |
Collapse
|