1
|
Dagnaw GG, Paltiel O, Shafrir A. Long term outcomes after COVID-19 in patients with schizophrenia: a historical cohort study in a health maintenance organization. Soc Psychiatry Psychiatr Epidemiol 2025:10.1007/s00127-025-02860-0. [PMID: 40029403 DOI: 10.1007/s00127-025-02860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Severe mental illness may affect health behaviors and outcomes during pandemics. Few studies have assessed whether people living with schizophrenia spectrum disorders (SSD) experienced adverse COVID-19 outcomes. METHODS In a population-based historical cohort study comprising members of a health maintenance organization, we included 1273 patients with SSD and 12,730 age- and sex-matched controls tested for SARS-CoV-2 between March 2020 and May 2022. We assessed the association between schizophrenia and hospitalization, hospital length-of-stay, 30-day, and one-year mortality, constructing multiple linear regression and logistic regression models adjusting for sociodemographic factors, BMI, smoking, number of comorbidities, and vaccinations. We also assessed whether vaccination modified the association between schizophrenia and mortality. RESULTS Among patients with SSD, 477 (37.5%) had a positive test, compared to 6203 (48.7%) in the comparison group. patients with SSD were at increased risk of hospitalization (adjusted odds ratio (ORadj) 3.44, 95% confidence interval (CI): 2.88-4.11, p < 0.001); longer length-of-stay (β = 1.20, p < 0.001); increased 30-day (ORadj 9.07, 95%CI 3.11-26.44); and one-year mortality (ORadj 6.27, 95%CI: 2.73-14.39). Further adjustment for vaccination altered the OR for 30-day mortality (ORadj 4.54, 95%CI: 1.54-13.38). Additionally, the association between schizophrenia and 30-day mortality was attenuated in strata of vaccinated (OR 4.79, 95%CI: 0.82-28.13, p = 0.082), vs. unvaccinated individuals (OR 7.53, 95%CI 2.19-25.92, p = 0.001), respectively. CONCLUSIONS In our cohort, patients with SSD experienced a significantly higher rate of hospitalization, length of stay, and mortality following a positive SARS-CoV-2 test, even after adjusting for important prognostic factors. COVID-19 vaccination modified these risks.
Collapse
Affiliation(s)
- Gashaw Getaneh Dagnaw
- College of Veterinary Medicine and Animal Sciences, Department of Epidemiology and Public Health, University of Gondar, Gondar, Ethiopia
| | - Ora Paltiel
- Braun School of Public Health and Community Medicine, Jerusalem, Israel
- Department of Haematology, Faculty of Medicine, Hadassah-Hebrew University, Jerusalem, Israel
| | - Asher Shafrir
- Department of Gastroenterology, Faculty of Medicine, Hadassah-Hebrew University, Jerusalem, Israel.
| |
Collapse
|
2
|
Zhao Y, He C, Peng M, Li M, Liu X, Han X, Fu Q, Wu Y, Yue F, Yan C, Zhao G, Shen C. Large-Scale Screening of CD4 + T-Cell Epitopes From SARS-CoV-2 Proteins and the Universal Detection of SARS-CoV-2 Specific T Cells for Northeast Asian Population. J Med Virol 2025; 97:e70241. [PMID: 39977358 DOI: 10.1002/jmv.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/09/2024] [Accepted: 01/25/2025] [Indexed: 02/22/2025]
Abstract
The polymorphism of human leukocyte antigens in the Northeast Asian populations and the lack of broad-spectrum T-cell epitopes covering this cohort markedly limited the development of T cell-directed vaccines against SARS-CoV-2 infection, and also hampered the universal detection of SARS-CoV-2 specific T cells. In this study, 93 CD4+ T-cell epitopes restricted by 12 prevalent HLA-DRB1 allotypes, which covering over 80% Chinese and Northeast Asian populations, were identified from the S, E, M, N and RdRp proteins of SARS-CoV-2 by in silico prediction, DC-peptide-PBL coculture experiment, and immunization in HLA-A2/DR1 transgenic mice. Furthermore, by using validated 215 CD8+ T cell epitope peptides and 123 CD4+ T-cell epitope peptides covering Northeast Asian cohort, the universal ELISpot detection systems of SARS-CoV-2 specific CD8+ T cells and CD4+ T cells were established, for the first time, and followed by the tests for 50 unexposed and 100 convalescent samples. The median of spot-forming units for CD8+ T cells and CD4+ T cells were 68 and 15, respectively, in the unexposed donors, but were 137 and 52 in the convalescent donors 6 months after recovery while 128 and 47 in the convalescent donors 18 months after recovery. This work initially provided the broad-spectrum CD4+ T-cell epitope library of SARS-CoV-2 for the design of T cell-directed vaccines and the universal T cell detection tool tailoring to Northeast Asian population, and confirmed the long-term memory T cell immunity after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chengtao He
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Min Peng
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Qiang Fu
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Fangping Yue
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chunguang Yan
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
3
|
Wu J, Mao X, Liu X, Mao J, Yang X, Zhou X, Tianzhu L, Ji Y, Li Z, Xu H. Integrative single-cell analysis: dissecting CD8 + memory cell roles in LUAD and COVID-19 via eQTLs and Mendelian Randomization. Hereditas 2024; 161:7. [PMID: 38297377 PMCID: PMC10829297 DOI: 10.1186/s41065-023-00307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 02/02/2024] Open
Abstract
Lung adenocarcinoma exhibits high incidence and mortality rates, presenting a significant health concern. Concurrently, the COVID-19 pandemic has emerged as a grave global public health challenge. Existing literature suggests that T cells, pivotal components of cellular immunity, are integral to both antiviral and antitumor responses. Yet, the nuanced alterations and consequent functions of T cells across diverse disease states have not been comprehensively elucidated. We gathered transcriptomic data of peripheral blood mononuclear cells from lung adenocarcinoma patients, COVID-19 patients, and healthy controls. We followed a standardized analytical approach for quality assurance, batch effect adjustments, and preliminary data processing. We discerned distinct T cell subsets and conducted differential gene expression analysis. Potential key genes and pathways were inferred from GO and Pathway enrichment analyses. Additionally, we implemented Mendelian randomization to probe the potential links between pivotal genes and lung adenocarcinoma susceptibility. Our findings underscored a notable reduction in mature CD8 + central memory T cells in both lung adenocarcinoma and COVID-19 cohorts relative to the control group. Notably, the downregulation of specific genes, such as TRGV9, could impede the immunological efficacy of CD8 + T cells. Comprehensive multi-omics assessment highlighted genetic aberrations in genes, including TRGV9, correlating with heightened lung adenocarcinoma risk. Through rigorous single-cell transcriptomic analyses, this investigation meticulously delineated variations in T cell subsets across different pathological states and extrapolated key regulatory genes via an integrated multi-omics approach, establishing a robust groundwork for future functional inquiries. This study furnishes valuable perspectives into the etiology of multifaceted diseases and augments the progression of precision medicine.
Collapse
Affiliation(s)
- Jintao Wu
- Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, China
| | - Xiaocheng Mao
- Departments of Blood Transfusion, Institute of Transfusion, Jiangxi Key Laboratory of Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaohua Liu
- Departments of Blood Transfusion, Institute of Transfusion, Jiangxi Key Laboratory of Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Junying Mao
- The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xianxin Yang
- The Fifth Affiliated Hospital of Jinan University, Heyuan, Guangdong, China
| | - Xiangwu Zhou
- The Fifth Affiliated Hospital of Shantou University, Shantou, Guangdong, China
| | - Lu Tianzhu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China, 330006
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University), Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yulong Ji
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Jiangxi Province, China
| | - Zhao Li
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Huijuan Xu
- Department of Clinical Laboratory, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens 2024; 13:113. [PMID: 38392851 PMCID: PMC10892713 DOI: 10.3390/pathogens13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens, pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal immunity in the airways is critical for the development of novel therapeutics and next-generation vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses in the airways has expanded. In this review, we describe the latest knowledge regarding the key components of the mucosal immune system in the respiratory tract. In addition, we summarize the host immune responses in the upper and lower airways following SARS-CoV-2 infection and vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Hae-Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Shamabadi NS, Bagasra AB, Pawar S, Bagasra O. Potential use of endemic human coronaviruses to stimulate immunity against pathogenic SARS-CoV-2 and its variants. Libyan J Med 2023; 18:2209949. [PMID: 37186902 DOI: 10.1080/19932820.2023.2209949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes significant morbidity and mortality in humans, there is a wide range of disease outcomes following virus exposures. Some individuals are asymptomatic while others develop complications within a few days after infection that can lead to fatalities in a smaller portion of the population. In the present study, we have analyzed the factors that may influence the outcome of post-SARS-CoV-2 infection. One factor that may influence virus control is pre-existing immunity conferred by an individual's past exposures to endemic coronaviruses (eCOVIDs) which cause the common cold in humans and generally, most children are exposed to one of the four eCOVIDs before 2 years of age. Here, we have carried out protein sequence analyses to show the amino acid homologies between the four eCOVIDs (i.e. OC43, HKU1, 229E, and NL63) as well as examining the cross-reactive immune responses between SARS-CoV-2 and eCOVIDs by epidemiologic analyses. Our results show that the nations where continuous exposures to eCOVIDs are very high due to religious and traditional causes showed significantly lower cases and low mortality rates per 100,000. We hypothesize that in the areas of the globe where Muslims are in majority and due to religious practices are regularly exposed to eCOVIDs they show a significantly lower infection, as well as mortality rate, and that is due to pre-existing cross-immunity against SARS-CoV-2. This is due to cross-reactive antibodies and T-cells that recognize SARS-CoV-2 antigens. We also have reviewed the current literature that has also proposed that human infections with eCOVIDs impart protection against disease caused by subsequent exposure to SARS-CoV-2. We propose that a nasal spray vaccine consisting of selected genes of eCOVIDs would be beneficial against SARS-CoV-2 and other pathogenic coronaviruses.
Collapse
Affiliation(s)
| | - Anisah B Bagasra
- Department of Psychology, Kennesaw State University, Kennesaw, GA, USA
| | - Shrikant Pawar
- Department of Computer Science and Biology, Claflin University, SC, USA
| | - Omar Bagasra
- South Carolina Center for Biotechnology, Claflin University, Orangeburg, SC, USA
| |
Collapse
|
6
|
Choi S, Kim SH, Han MS, Yoon Y, Kim YK, Cho HK, Yun KW, Song SH, Ahn B, Kim YK, Choi SH, Choe YJ, Lim H, Choi EB, Kim K, Hyeon S, Lim HJ, Kim BC, Lee YK, Choi EH, Shin EC, Lee H. SARS-CoV-2 mRNA Vaccine Elicits Sustained T Cell Responses Against the Omicron Variant in Adolescents. Immune Netw 2023; 23:e33. [PMID: 37670807 PMCID: PMC10475828 DOI: 10.4110/in.2023.23.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 09/07/2023] Open
Abstract
Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.
Collapse
Affiliation(s)
- Sujin Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam 13620, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Hoon Kim
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Mi Seon Han
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pediatrics, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul 07061, Korea
| | - Yoonsun Yoon
- Department of Pediatrics, Korea University Guro Hospital, Seoul 08308, Korea
| | - Yun-Kyung Kim
- Department of Pediatrics, Korea University College of Medicine, Seoul 02841, Korea
| | - Hye-Kyung Cho
- Department of Pediatrics, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea
| | - Ki Wook Yun
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Seung Ha Song
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Bin Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Ye Kyung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Sung Hwan Choi
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Young June Choe
- Department of Pediatrics, Korea University Anam Hospital, Seoul 02841, Korea
| | - Heeji Lim
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Eun Bee Choi
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Kwangwook Kim
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Seokhwan Hyeon
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Hye Jung Lim
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Byung-chul Kim
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Yoo-kyoung Lee
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunju Lee
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam 13620, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
7
|
Jeong HW, Lee JS, Ko JH, Hong S, Oh ST, Choi S, Peck KR, Yang JH, Chung S, Kim SH, Kim YS, Shin EC. Corticosteroids reduce pathologic interferon responses by downregulating STAT1 in patients with high-risk COVID-19. Exp Mol Med 2023; 55:653-664. [PMID: 36941461 PMCID: PMC10026241 DOI: 10.1038/s12276-023-00964-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 03/23/2023] Open
Abstract
We do not yet understand exactly how corticosteroids attenuate hyperinflammatory responses and alleviate high-risk coronavirus disease 2019 (COVID-19). We aimed to reveal the molecular mechanisms of hyperinflammation in COVID-19 and the anti-inflammatory effects of corticosteroids in patients with high-risk COVID-19. We performed single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from three independent COVID-19 cohorts: cohort 1 was used for comparative analysis of high-risk and low-risk COVID-19 (47 PBMC samples from 28 patients), cohort 2 for longitudinal analysis during COVID-19 (57 PBMC samples from 15 patients), and cohort 3 for investigating the effects of corticosteroid treatment in patients with high-risk COVID-19 (55 PBMC samples from 13 patients). PBMC samples from healthy donors (12 PBMC samples from 12 donors) were also included. Cohort 1 revealed a significant increase in the proportion of monocytes expressing the long noncoding RNAs NEAT1 and MALAT1 in high-risk patients. Cohort 2 showed that genes encoding inflammatory chemokines and their receptors were upregulated during aggravation, whereas genes related to angiogenesis were upregulated during improvement. Cohort 3 demonstrated downregulation of interferon-stimulated genes (ISGs), including STAT1, in monocytes after corticosteroid treatment. In particular, unphosphorylated STAT-dependent ISGs enriched in monocytes from lupus patients were selectively downregulated by corticosteroid treatment in patients with high-risk COVID-19. Corticosteroid treatment suppresses pathologic interferon responses in monocytes by downregulating STAT1 in patients with high-risk COVID-19. Our study provides insights into the mechanisms underlying COVID-19 aggravation and improvement and the effects of corticosteroid treatment.
Collapse
Affiliation(s)
- Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, 48149, Germany
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Seunghee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Sang Taek Oh
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seongkyun Choi
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| | - Ji Hun Yang
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| |
Collapse
|
8
|
Koh JY, Kim DU, Moon BH, Shin EC. Human CD8 + T-Cell Populations That Express Natural Killer Receptors. Immune Netw 2023; 23:e8. [PMID: 36911797 PMCID: PMC9995994 DOI: 10.4110/in.2023.23.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Genome Insight, Inc., Daejeon 34051, Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bae-Hyeon Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
9
|
Beliakova-Bethell N, Maruthai K, Xu R, Salvador LCM, Garg A. Monocytic-Myeloid Derived Suppressor Cells Suppress T-Cell Responses in Recovered SARS CoV2-Infected Individuals. Front Immunol 2022; 13:894543. [PMID: 35812392 PMCID: PMC9263272 DOI: 10.3389/fimmu.2022.894543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS Coronavirus 2 (CoV2) is associated with massive immune activation and hyperinflammatory response. Acute and severe CoV2 infection is characterized by the expansion of myeloid derived suppressor cells (MDSC) because of cytokine storm, these MDSC suppress T cell functions. However, the presence of MDSC and its effect on CoV2 antigen specific T cell responses in individuals long after first detection of CoV2 and recovery from infection has not been studied. We and others have previously shown that CD11b+CD33+CD14+HLA-DR-/lo monocytic MDSC (M-MDSC) are present in individuals with clinical recovery from viral infection. In this study, we compared the frequency, functional and transcriptional signatures of M-MDSC isolated from CoV2 infected individuals after 5-months of the first detection of the virus (CoV2+) and who were not infected with CoV2 (CoV2-). Compared to CoV2- individuals, M-MDSC were present in CoV2+ individuals at a higher frequency, the level of M-MDSC correlated with the quantity of IL-6 in the plasma. Compared to CoV2-, increased frequency of PD1+, CD57+ and CX3CR1+ T effector memory (TEM) cell subsets was also present in CoV2+ individuals, but these did not correlate with M-MDSC levels. Furthermore, depleting M-MDSC from peripheral blood mononuclear cells (PBMC) increased T cell cytokine production when cultured with the peptide pools of immune dominant spike glycoprotein (S), membrane (M), and nucleocapsid (N) antigens of CoV2. M-MDSC suppressed CoV2 S- antigen-specific T cell in ROS, Arginase, and TGFβ dependent manner. Our gene expression, RNA-seq and pathway analysis studies further confirm that M-MDSC isolated from CoV2+ individuals are enriched in pathways that regulate both innate and adaptive immune responses, but the genes regulating these functions (HLA-DQA1, HLA-DQB1, HLA-B, NLRP3, IL1β, CXCL2, CXCL1) remained downregulated in M-MDSC isolated from CoV2+ individuals. These results demonstrate that M-MDSC suppresses recall responses to CoV2 antigens long after recovery from infection. Our findings suggest M-MDSC as novel regulators of CoV2 specific T cell responses, and should be considered as target to augment responses to vaccine.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- Department of Medicine, University of California San Diego, San Diego, CA, United States
- Veterans Administration (VA) San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Kathirvel Maruthai
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ruijie Xu
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Liliana C. M. Salvador
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Ankita Garg
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Rha MS, Shin EC. Activation or exhaustion of CD8 + T cells in patients with COVID-19. Cell Mol Immunol 2021; 18:2325-2333. [PMID: 34413488 PMCID: PMC8374113 DOI: 10.1038/s41423-021-00750-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
In addition to CD4+ T cells and neutralizing antibodies, CD8+ T cells contribute to protective immune responses against SARS-CoV-2 in patients with coronavirus disease 2019 (COVID-19), an ongoing pandemic disease. In patients with COVID-19, CD8+ T cells exhibiting activated phenotypes are commonly observed, although the absolute number of CD8+ T cells is decreased. In addition, several studies have reported an upregulation of inhibitory immune checkpoint receptors, such as PD-1, and the expression of exhaustion-associated gene signatures in CD8+ T cells from patients with COVID-19. However, whether CD8+ T cells are truly exhausted during COVID-19 has been a controversial issue. In the present review, we summarize the current understanding of CD8+ T-cell exhaustion and describe the available knowledge on the phenotypes and functions of CD8+ T cells in the context of activation and exhaustion. We also summarize recent reports regarding phenotypical and functional analyses of SARS-CoV-2-specific CD8+ T cells and discuss long-term SARS-CoV-2-specific CD8+ T-cell memory.
Collapse
Affiliation(s)
- Min-Seok Rha
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- The Center for Epidemic Preparedness, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Tserel L, Jõgi P, Naaber P, Maslovskaja J, Häling A, Salumets A, Zusinaite E, Soeorg H, Lättekivi F, Ingerainen D, Soots M, Toompere K, Kaarna K, Kisand K, Lutsar I, Peterson P. Long-Term Elevated Inflammatory Protein Levels in Asymptomatic SARS-CoV-2 Infected Individuals. Front Immunol 2021; 12:709759. [PMID: 34603283 PMCID: PMC8484961 DOI: 10.3389/fimmu.2021.709759] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
The clinical features of SARS-CoV-2 infection range from asymptomatic to severe disease with life-threatening complications. Understanding the persistence of immune responses in asymptomatic individuals merit special attention because of their importance in controlling the spread of the infections. We here studied the antibody and T cell responses, and a wide range of inflammation markers, in 56 SARS-CoV-2 antibody-positive individuals, identified by a population screen after the first wave of SARS-CoV-2 infection. These, mostly asymptomatic individuals, were reanalyzed 7-8 months after their infection together with 115 age-matched seronegative controls. We found that 7-8 months after the infection their antibodies to SARS-CoV-2 Nucleocapsid (N) protein declined whereas we found no decrease in the antibodies to Spike receptor-binding domain (S-RBD) when compared to the findings at seropositivity identification. In contrast to antibodies to N protein, the antibodies to S-RBD correlated with the viral neutralization capacity and with CD4+ T cell responses as measured by antigen-specific upregulation of CD137 and CD69 markers. Unexpectedly we found the asymptomatic antibody-positive individuals to have increased serum levels of S100A12, TGF-alpha, IL18, and OSM, the markers of activated macrophages-monocytes, suggesting long-term persistent inflammatory effect associated with the viral infection in asymptomatic individuals. Our results support the evidence for the long-term persistence of the inflammation process and the need for post-infection clinical monitoring of SARS-CoV-2 infected asymptomatic individuals.
Collapse
Affiliation(s)
- Liina Tserel
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Piia Jõgi
- Children’s Clinic of Tartu University Hospital, Tartu, Estonia
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Paul Naaber
- SYNLAB Estonia, Tallinn, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Julia Maslovskaja
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Annika Häling
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ahto Salumets
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Hiie Soeorg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Freddy Lättekivi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Clinical Research Centre, Tartu University Hospital, Tartu, Estonia
| | | | - Mari Soots
- Family Doctor Center Kuressaare, Kuressaare, Estonia
| | - Karolin Toompere
- Department of Epidemiology and Biostatistics, Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Katrin Kaarna
- Clinical Research Centre, Tartu University Hospital, Tartu, Estonia
- Clinical Research Centre, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Irja Lutsar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
12
|
Reuken PA, Andreas N, Grunert PC, Glöckner S, Kamradt T, Stallmach A. T Cell Response After SARS-CoV-2 Vaccination in Immunocompromised Patients with Inflammatory Bowel Disease. J Crohns Colitis 2021; 16:251-258. [PMID: 34379729 PMCID: PMC8385945 DOI: 10.1093/ecco-jcc/jjab147] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Vaccination is a promising strategy to protect vulnerable groups like immunocompromised inflammatory bowel disease [IBD] patients from an infection with SARS-CoV-2. These patients may have lower immune responses. Little is known about the cellular and humoral immune response after a SARS-CoV-2 vaccination in IBD patients. METHODS Totals of 28 patients with IBD and 27 age- and sex-matched healthy controls were recruited at Jena University Hospital. Blood samples were taken before, after the first, and in a subgroup of 11 patients after second dose of a SARS-CoV-2 vaccination. Cellular immune response, including IFN-γ and TNF-α response and antibody titres, were analysed. RESULTS Overall, 71.4% of the IBD patients and 85.2% of the controls showed levels of anti-SARS-CoV-2 antibodies above the cutoff of 33.8 BAU/ml [p = 0.329] after the first dose. Even in the absence of SARS-CoV-2 antibodies, IBD patients showed significant T cell responses after first SARS-CoV-2 vaccination compared with healthy controls, which was not influenced by different immunosuppressive regimens. Associated with the vaccination, we could also detect a slight increase of the TNF production among SARS-CoV-2-reactive TH cells in healthy donorsn [HD] and IBD patients. After the second dose of vaccination, in IBD patients a further increase of humoral immune response in all but one patient was observed. CONCLUSIONS Already after the first dose of a SARS-CoV-2 vaccination, cellular immune response in IBD patients is comparable to controls, indicating a similar efficacy. However, close monitoring of long-term immunity in these patients should be considered.
Collapse
Affiliation(s)
- P A Reuken
- Jena University Hospital, Department of Internal Medicine IV, Jena, Germany,Address for Correspondence: Philipp Reuken, Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Am Klinikum 1, 07747 Jena, Germany. Fax: +49-3641-9324222,
| | - N Andreas
- Institute for Immunology, Jena University Hospital, Jena, Germany
| | - P C Grunert
- Jena University Hospital, Department of Internal Medicine IV, Jena, Germany
| | - S Glöckner
- Institute for Medical Microbiology, Jena University Hospital, Jena, Germany
| | - T Kamradt
- Institute for Immunology, Jena University Hospital, Jena, Germany,Core Facility Cytometry, Jena University Hospital, Jena, Germany
| | - A Stallmach
- Jena University Hospital, Department of Internal Medicine IV, Jena, Germany
| |
Collapse
|
13
|
Shin EC. Scientific Understanding of COVID-19: The First Step to Vanquishing the Current Pandemic. Mol Cells 2021; 44:375-376. [PMID: 34187968 PMCID: PMC8245317 DOI: 10.14348/molcells.2021.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST, Daejeon 34141, Korea
| |
Collapse
|
14
|
Han B, Song Y, Li C, Yang W, Ma Q, Jiang Z, Li M, Lian X, Jiao W, Wang L, Shu Q, Wu Z, Zhao Y, Li Q, Gao Q. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:1645-1653. [PMID: 34197764 PMCID: PMC8238449 DOI: 10.1016/s1473-3099(21)00319-4] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
Background A vaccine against SARS-CoV-2 for children and adolescents will play an important role in curbing the COVID-19 pandemic. Here we aimed to assess the safety, tolerability, and immunogenicity of a candidate COVID-19 vaccine, CoronaVac, containing inactivated SARS-CoV-2, in children and adolescents aged 3–17 years. Methods We did a double-blind, randomised, controlled, phase 1/2 clinical trial of CoronaVac in healthy children and adolescents aged 3–17 years old at Hebei Provincial Center for Disease Control and Prevention in Zanhuang (Hebei, China). Individuals with SARS-CoV-2 exposure or infection history were excluded. Vaccine (in 0·5 mL aluminum hydroxide adjuvant) or aluminum hydroxide only (alum only, control) was given by intramuscular injection in two doses (day 0 and day 28). We did a phase 1 trial in 72 participants with an age de-escalation in three groups and dose-escalation in two blocks (1·5 μg or 3·0 μg per injection). Within each block, participants were randomly assigned (3:1) by means of block randomisation to receive CoronaVac or alum only. In phase 2, participants were randomly assigned (2:2:1) by means of block randomisation to receive either CoronaVac at 1·5 μg or 3·0 μg per dose, or alum only. All participants, investigators, and laboratory staff were masked to group allocation. The primary safety endpoint was adverse reactions within 28 days after each injection in all participants who received at least one dose. The primary immunogenicity endpoint assessed in the per-protocol population was seroconversion rate of neutralising antibody to live SARS-CoV-2 at 28 days after the second injection. This study is ongoing and is registered with ClinicalTrials.gov, NCT04551547. Findings Between Oct 31, 2020, and Dec 2, 2020, 72 participants were enrolled in phase 1, and between Dec 12, 2020, and Dec 30, 2020, 480 participants were enrolled in phase 2. 550 participants received at least one dose of vaccine or alum only (n=71 for phase 1 and n=479 for phase 2; safety population). In the combined safety profile of phase 1 and phase 2, any adverse reactions within 28 days after injection occurred in 56 (26%) of 219 participants in the 1·5 μg group, 63 (29%) of 217 in the 3·0 μg group, and 27 (24%) of 114 in the alum-only group, without significant difference (p=0·55). Most adverse reactions were mild and moderate in severity. Injection site pain was the most frequently reported event (73 [13%] of 550 participants), occurring in 36 (16%) of 219 participants in the 1·5 μg group, 35 (16%) of 217 in the 3·0 μg group, and two (2%) in the alum-only group. As of June 12, 2021, only one serious adverse event of pneumonia has been reported in the alum-only group, which was considered unrelated to vaccination. In phase 1, seroconversion of neutralising antibody after the second dose was observed in 27 of 27 participants (100·0% [95% CI 87·2–100·0]) in the 1·5 μg group and 26 of 26 participants (100·0% [86·8-100·0]) in the 3·0 μg group, with the geometric mean titres of 55·0 (95% CI 38·9–77·9) and 117·4 (87·8–157·0). In phase 2, seroconversion was seen in 180 of 186 participants (96·8% [93·1–98·8]) in the 1·5 μg group and 180 of 180 participants (100·0% [98·0–100·0]) in the 3·0 μg group, with the geometric mean titres of 86·4 (73·9–101·0) and 142·2 (124·7–162·1). There were no detectable antibody responses in the alum-only groups. Interpretation CoronaVac was well tolerated and safe and induced humoral responses in children and adolescents aged 3–17 years. Neutralising antibody titres induced by the 3·0 μg dose were higher than those of the 1·5 μg dose. The results support the use of 3·0 μg dose with a two-immunisation schedule for further studies in children and adolescents. Funding The Chinese National Key Research and Development Program and the Beijing Science and Technology Program.
Collapse
Affiliation(s)
- Bihua Han
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | | | - Changgui Li
- National Institutes for Food and Drug Control, Beijing, China
| | | | - Qingxia Ma
- Zanhuang County Center for Disease Control and Prevention, Zanhuang, Hebei Province, China
| | - Zhiwei Jiang
- Beijing Key Tech Statistics Technology, Beijing, China
| | - Minjie Li
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | | | - Wenbin Jiao
- Zanhuang County Center for Disease Control and Prevention, Zanhuang, Hebei Province, China
| | | | - Qun Shu
- Beijing Key Tech Statistics Technology, Beijing, China
| | - Zhiwei Wu
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Yuliang Zhao
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Qi Li
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China.
| | - Qiang Gao
- Sinovac Life Sciences, Beijing, China.
| |
Collapse
|