1
|
Prasad K, Kaul SC, Wadhwa R, Guruprasad KP, Satyamoorthy K. Cellular oxidative stress and sirtuins mediate regulation of senescence and neuronal differentiation by withaferin A. Free Radic Biol Med 2025; 233:174-185. [PMID: 40154756 DOI: 10.1016/j.freeradbiomed.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Withaferin A (WA) and Withanone (WN), the steroidal lactones are pharmacologically established for anticancer and chemopreventive effects in certain cancers. However, their effects on redox modulations, mechanisms stimulating senescence and neuronal differentiation in neuroblastoma cells are less understood. Here we examined the influence of WA on perturbations in the molecular architecture of growth, differentiation and senescence of human brain cancer cell SH SY5Y in vitro and test its efficacy in mouse tumor models. We found senescence induction amplified by WA as determined by a senescence-associated β-galactosidase assay. This led us to evaluate DNA damage which was enhanced as measured by phospho-γH2AX foci formation, directed by reactive oxygen species (ROS) production as determined by flow cytometry and confocal imaging. Furthermore, we assessed the influence of DNA damage on cell cycle arrest and DNA repair. Neurosphere formation assay was performed to demonstrate the stem cell inhibitory potential of WA. Subcutaneous xenograft of neuroblastoma cells in athymic Balb/c mice was performed followed by treatment with WA and tumor growth inhibition was established. Withania somnifera (WS) extract and WA induced alterations in ROS, triggering DNA damage and concomitantly regulated SIRTs expression leading to activation of senescence in SH SY5Y cells. Upon prolonged incubation, differentiation into neuronal lineages was confirmed by using differentiation markers such as neurofilament medium, nestin, MAP2 and synaptophysin as measured by immunofluorescence and flow cytometry. The results suggest a complex interplay between the induction of senescence and concurrent neuronal differentiation of SH SY5Y cells mediated by early alterations in SIRT1 and SIRT3. Thus, we report the senescence and differentiation potential of WS extracts and WA through ROS that are mediated via modulation of SIRT1, SIRT3 and mitochondria function.
Collapse
Affiliation(s)
- Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Kanive P Guruprasad
- Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- SDM Centre for Cellular and Molecular Sciences, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India.
| |
Collapse
|
2
|
Liu Y, Fleishman JS, Wang H, Huo L. Pharmacologically Targeting Ferroptosis and Cuproptosis in Neuroblastoma. Mol Neurobiol 2025; 62:3863-3876. [PMID: 39331355 PMCID: PMC11790790 DOI: 10.1007/s12035-024-04501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Neuroblastoma is a deadly pediatric cancer that originates from the neural crest and frequently develops in the abdomen or adrenal gland. Although multiple approaches, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, are recommended for treating neuroblastoma, the tumor will eventually develop resistance, leading to treatment failure and cancer relapse. Therefore, a firm understanding of the molecular mechanisms underlying therapeutic resistance is vital for the development of new effective therapies. Recent research suggests that cancer-specific modifications to multiple subtypes of nonapoptotic regulated cell death (RCD), such as ferroptosis and cuproptosis, contribute to therapeutic resistance in neuroblastoma. Targeting these specific types of RCD may be viable novel targets for future drug discovery in the treatment of neuroblastoma. In this review, we summarize the core mechanisms by which the inability to properly execute ferroptosis and cuproptosis can enhance the pathogenesis of neuroblastoma. Therefore, we focus on emerging therapeutic compounds that can induce ferroptosis or cuproptosis, delineating their beneficial pharmacodynamic effects in neuroblastoma treatment. Cumulatively, we suggest that the pharmacological stimulation of ferroptosis and ferroptosis may be a novel and therapeutically viable strategy to target neuroblastoma.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 100012, China.
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| |
Collapse
|
3
|
Manoharan S, Perumal E. A strategic review of STAT3 signaling inhibition by phytochemicals for cancer prevention and treatment: Advances and insights. Fitoterapia 2024; 179:106265. [PMID: 39437855 DOI: 10.1016/j.fitote.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Cancer remains a significant global health concern. The dysregulation of signaling networks in tumor cells greatly affects their functions. This review intends to explore phytochemicals possessing potent anticancer properties that specifically target the STAT3 signaling pathway, elucidating strategies and emphasizing their potential as promising candidates for cancer therapy. The review comprehensively examines various STAT3 inhibitors designed to disrupt the signaling cascade, including those targeting upstream activation, SH2 domain phosphorylation, DNA binding domain (DBD), N-terminal domain (NTD), nuclear translocation, and enhancing endogenous STAT3 negative regulators. A literature review was conducted to identify phytochemicals with anticancer activity targeting the STAT3 signaling pathway. Popular research databases such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, and ResearchGate were searched from the years 1989 - 2023 based on the keywords "Cancer", "STAT3", "Phytochemicals", "Phytochemicals targeting STAT3 signaling", "upstream activation of STAT3", "SH2 domain of STAT3", "DBD of STAT3", "NTD of STAT3, "endogenous negative regulators of STAT3", or "nuclear translocation of STAT3", and their combinations. A total of 264 relevant studies were selected and analyzed based on the mechanisms of action and the efficacy of the phytocompounds. The majority of the discussed phytochemicals primarily focus on inhibiting upstream activation of STAT3. Additionally, flavonoid and terpenoid compounds exhibit multifaceted effects by targeting one or more checkpoints within the STAT3 pathway. Analysis reveals that phytochemicals targeting upstream activation predominantly belong to the classes of flavonoids and terpenoids, which hold significant promise as effective anticancer therapeutics. Future research in this field can be directed towards exploring and developing these scrutinized classes of phytochemicals to achieve desired therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
4
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
5
|
Al Awadh AA, Sakagami H, Amano S, Sayed AM, Abouelela ME, Alhasaniah AH, Aldabaan N, Refaey MS, Abdelhamid RA, Khalil HMA, Hamdan DI, Abdel-Sattar ES, Orabi MAA. In vitro cytotoxicity of Withania somnifera (L.) roots and fruits on oral squamous cell carcinoma cell lines: a study supported by flow cytometry, spectral, and computational investigations. Front Pharmacol 2024; 15:1325272. [PMID: 38303989 PMCID: PMC10830635 DOI: 10.3389/fphar.2024.1325272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Oral cancer is a severe health problem that accounts for an alarmingly high number of fatalities worldwide. Withania somnifera (L.) Dunal has been extensively studied against various tumor cell lines from different body organs, rarely from the oral cavity. We thus investigated the cytotoxicity of W. somnifera fruits (W-F) and roots (W-R) hydromethanolic extracts and their chromatographic fractions against oral squamous cell carcinoma (OSCC) cell lines [Ca9-22 (derived from gingiva), HSC-2, HSC-3, and HSC-4 (derived from tongue)] and three normal oral mesenchymal cells [human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF), and human pulp cells (HPC)] in comparison to standard drugs. The root polar ethyl acetate (W-R EtOAc) and butanol (W-R BuOH) fractions exhibited the strongest cytotoxicity against the Ca9-22 cell line (CC50 = 51.8 and 40.1 μg/mL, respectively), which is relatively the same effect as 5-FU at CC50 = 69.4 μM and melphalan at CC50 = 36.3 μM on the same cancer cell line. Flow cytometric analysis revealed changes in morphology as well as in the cell cycle profile of the W-R EtOAc and W-R BuOH-treated oral cancer Ca9-22 cells compared to the untreated control. The W-R EtOAc (125 μg/mL) exerted morphological changes and induced subG1 accumulation, suggesting apoptotic cell death. A UHPLC MS/MS analysis of the extract enabled the identification of 26 compounds, mainly alkaloids, withanolides, withanosides, and flavonoids. Pharmacophore-based inverse virtual screening proposed that BRD3 and CDK2 are the cancer-relevant targets for the annotated withanolides D (18) and O (12), and the flavonoid kaempferol (11). Molecular modeling studies highlighted the BRD3 and CDK2 as the most probable oncogenic targets of anticancer activity of these molecules. These findings highlight W. somnifera's potential as an affordable source of therapeutic agents for a range of oral malignancies.
Collapse
Affiliation(s)
- Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Saitama, Japan
| | - Shigeru Amano
- Meikai University Research Institute of Odontology (M-RIO), Saitama, Japan
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, Basra, Iraq
| | - Mohamed E. Abouelela
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Nayef Aldabaan
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed S. Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufiya, Egypt
| | - Reda A. Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut, Egypt
| | - Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dalia I. Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Shibin Elkom, Egypt
| | - El-Shaymaa Abdel-Sattar
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| |
Collapse
|
6
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Sun SQ, Du FX, Zhang LH, Hao-Shi, Gu FY, Deng YL, Ji YZ. Prevention of STAT3-related pathway in SK-N-SH cells by natural product astaxanthin. BMC Complement Med Ther 2023; 23:430. [PMID: 38031104 PMCID: PMC10685499 DOI: 10.1186/s12906-023-04267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Neuroblastoma (NB) is the most common solid malignancy in children. Despite current intensive treatment, the long-term event-free survival rate is less than 50% in these patients. Thus, patients with NB urgently need more valid treatment strategies. Previous research has shown that STAT3 may be an effective target in high-risk NB patients. However, there are no effective inhibitors in clinical evaluation with low toxicity and few side effects. Astaxanthin is a safe and natural anticancer product. In this study, we investigated whether astaxanthin could exert antitumor effects in the SK-N-SH neuroblastoma cancer cell line. METHOD MTT and colony formation assays were used to determine the effect of astaxanthin on the proliferation and colony formation of SK-N-SH cells. Flow cytometry assays were used to detect the apoptosis of SK-N-SH cells. The migration and invasion ability of SK-N-SH cells were detected by migration and invasion assays. Western blot and RT-PCR were used to detect the protein and mRNA levels. Animal experiments were carried out and cell apoptosis in tissues were assessed using a TUNEL assay. RESULT We confirmed that astaxanthin repressed proliferation, clone formation ability, migration and invasion and induced apoptosis in SK-N-SH cells through the STAT3 pathway. Furthermore, the highest inhibitory effect was observed when astaxanthin was combined with si-STAT3. The reason for this may be that the combination of astaxanthin and si-STAT3 can lower STAT3 expression further than astaxanthin or si-STAT3 alone. CONCLUSION Astaxanthin can exert anti-tumor effect on SK-N-SH cells. The inhibitory effect was the higher when astaxanthin was combined with si-STAT3.
Collapse
Affiliation(s)
- Shao-Qian Sun
- School of Medical Technology, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Feng-Xiang Du
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Li-Hua Zhang
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Hao-Shi
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Fu-Ying Gu
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Yu-Lin Deng
- School of Medical Technology, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Yi-Zhi Ji
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China.
| |
Collapse
|
8
|
Xing Z, Su A, Mi L, Zhang Y, He T, Qiu Y, Wei T, Li Z, Zhu J, Wu W. Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms. Drug Des Devel Ther 2023; 17:2909-2929. [PMID: 37753228 PMCID: PMC10519218 DOI: 10.2147/dddt.s422512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer, as the leading cause of death worldwide, poses a serious threat to human health, making the development of effective tumor treatments a significant challenge. Natural products continue to serve as crucial resources for drug discovery. Among them, Withaferin A (WA), the most active phytocompound extracted from the renowned dietary supplement Withania somnifera (L.) Dunal, exhibits remarkable anti-tumor efficacy. In this manuscript, we aim to comprehensively summarize the pharmacological characteristics of WA as a potential anti-tumor drug candidate, with the objective of contributing to its further development and the discovery of prospective drugs. Through an extensive review of literature from PubMed, Science Direct, and Web of Science, we have gathered substantial evidence showcasing WA's significant anti-tumor effects against a wide range of cancers in both in vitro and in vivo studies. Mechanistically, WA exerts its anti-tumor influence by inducing cell cycle arrest, apoptosis, autophagy, and ferroptosis. Additionally, it inhibits cell proliferation, cancer stem cells, tumor metastasis, and also suppresses epithelial-mesenchymal transition (EMT) and angiogenesis. Several studies have identified direct target proteins of WA, such as vimentin, Hsp90, annexin II and mFAM72A, while BCR-ABL, Mortalin (mtHsp70), Nrf2, and c-MYB are potential targets of WA. Notwithstanding its remarkable anti-tumor efficacy, there are some limitations associated with WA, including potential toxicity and poor oral bioavailability, which need to be addressed when considering it as an anti-tumor candidate agent. Nevertheless, I given its promising anti-tumor attributes, WA remains an encouraging candidate for future drug development. Unveiling the exact target and comprehensive mechanism of WA's action represents a crucial research direction to pursue in the future.
Collapse
Affiliation(s)
- Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuxuan Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Kumar Gupta S, Gohil D, Dutta D, Panigrahi GC, Gupta P, Dalvi K, Khanka T, Yadav S, Kumar Kaushal R, Chichra A, Punatar S, Gokarn A, Mirgh S, Jindal N, Nayak L, Tembhare PR, Khizer Hasan S, Kumar Sandur S, Hingorani L, Khattry N, Gota V. Withaferin-A alleviates acute graft versus host disease without compromising graft versus leukemia effect. Int Immunopharmacol 2023; 121:110437. [PMID: 37311352 DOI: 10.1016/j.intimp.2023.110437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Acute graft versus host disease (aGvHD) contributes to a significant proportion of non-relapse mortality and morbidity in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT). Withaferin-A (WA), a phytomolecule obtained from Withania somnifera (Ashwagandha), is known to have anti-inflammatory, anti-proliferative and immunomodulatory properties. The efficacy of WA for the prevention and treatment of aGvHD was evaluated using a murine model of alloHSCT. Prophylactic administration of WA to mice mitigated the clinical symptoms of aGvHD and improved survival significantly compared to the GvHD control [HR = 0.07 (0.01-0.35); P < 0.001]. Furthermore, WA group had better overall survival compared to standard prophylactic regimen of CSA + MTX [HR = 0.19 (0.03-1.1), P < 0.05]. At the same time, WA did not compromise the beneficial GvL effect. In addition, WA administered to animals after the onset of aGvHD could reverse the clinical severity and improved survival, thus establishing its therapeutic potential. Our findings suggest that WA reduced the systemic levels of Th1, Th2 and Th17 inflammatory cytokine and increased the anti-inflammatory cytokine IL-10 levels significantly (P < 0.05). WA also inhibited lymphocytes migration to gut, liver, skin and lung and protected these organs from damage. Ex-vivo, WA inhibited proliferation of human peripheral blood mononuclear cells (hPBMCs), modulated immune cell phenotype and decreased cytokine release. In addition, WA inhibited pJAK2 and pSTAT3 protein levels in mouse splenocytes and hPBMCs. In conclusion, our study demonstrates the utility of WA for the prevention and treatment of aGvHD, which should be further evaluated in a clinical setting.
Collapse
Affiliation(s)
- Saurabh Kumar Gupta
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Dievya Gohil
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Deepshikha Dutta
- Cell and Tumor Biology Group, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Girish Ch Panigrahi
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Puja Gupta
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Kajal Dalvi
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Subhash Yadav
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Rajiv Kumar Kaushal
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Akanksha Chichra
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Sachin Punatar
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Anant Gokarn
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Sumeet Mirgh
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Nishant Jindal
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Lingaraj Nayak
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Prashant R Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Syed Khizer Hasan
- Cell and Tumor Biology Group, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Santosh Kumar Sandur
- Radiation Biology and Health Science Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai 400094, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Navin Khattry
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Vikram Gota
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India.
| |
Collapse
|
10
|
Vilaboa N, Lopez JA, de Mesa M, Escudero-Duch C, Winfield N, Bayford M, Voellmy R. Disruption of Proteostasis by Natural Products and Synthetic Compounds That Induce Pervasive Unfolding of Proteins: Therapeutic Implications. Pharmaceuticals (Basel) 2023; 16:ph16040616. [PMID: 37111374 PMCID: PMC10145903 DOI: 10.3390/ph16040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure of many cancer cells, including multiple myeloma cells, to cytotoxic concentrations of natural products celastrol and withaferin A or synthetic compounds of the IHSF series resulted in denaturation of a luciferase reporter protein. Proteomic analysis of detergent-insoluble extract fractions from HeLa-derived cells revealed that withaferin A, IHSF058 and IHSF115 caused denaturation of 915, 722 and 991 of 5132 detected cellular proteins, respectively, of which 440 were targeted by all three compounds. Western blots showed that important fractions of these proteins, in some cases approaching half of total protein amounts, unfolded. Relatively indiscriminate covalent modification of target proteins was observed; 1178 different proteins were modified by IHSF058. Further illustrating the depth of the induced proteostasis crisis, only 13% of these proteins detectably aggregated, and 79% of the proteins that aggregated were not targets of covalent modification. Numerous proteostasis network components were modified and/or found in aggregates. Proteostasis disruption caused by the study compounds may be more profound than that mediated by proteasome inhibitors. The compounds act by a different mechanism that may be less susceptible to resistance development. Multiple myeloma cells were particularly sensitive to the compounds. Development of an additional proteostasis-disrupting therapy of multiple myeloma is suggested.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Marco de Mesa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Clara Escudero-Duch
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Natalie Winfield
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | - Melanie Bayford
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | | |
Collapse
|
11
|
Nectin2 influences cell apoptosis by regulating ANXA2 expression in neuroblastoma. Acta Biochim Biophys Sin (Shanghai) 2023; 55:356-366. [PMID: 36916296 PMCID: PMC10160223 DOI: 10.3724/abbs.2023020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer of the peripheral sympathetic nervous system and represents the most frequent solid malignancy in infants. Nectin2 belongs to the immunoglobulin superfamily and has been shown to play a role in tumorigenesis. In the current study, we demonstrate that serum Nectin2 level is increased in NB patients compared with that in healthy controls and Nectin2 level is correlated with neuroblastoma international neuroblastoma staging system (INSS) classification. There is a positive correlation between Nectin2 level and shorter overall survival in NB patients. Knockdown of Nectin2 reduces the migration of SH-SY5Y and SK-N-BE2 cells and induces their apoptosis and cell cycle arrest. RNA-seq analysis demonstrates that Nectin2 knockdown affects the expressions of 258 genes, including 240 that are upregulated and 18 that are downregulated compared with negative controls. qRT-PCR and western blot analysis confirm that ANXA2 expression is decreased in Nectin2-knockdown SH-SY5Y cells, consistent with the RNA-seq results. ANXA2 overexpression rescues the percentage of apoptotic NB cells induced by Nectin2 knockdown and compensates for the impact of Nectin2 knockdown on cleaved caspase3 and bax expressions. In addition, western blot analysis results show that ANXA2 overexpression rescues the effect of Nectin2 knockdown on MMP2 and MMP9 expressions. The current data highlight the importance of Nectin2 in NB progression and the potential of Nectin2 as a novel candidate target for gene therapy.
Collapse
|
12
|
Yang J, Wang L, Guan X, Qin JJ. Inhibiting STAT3 signaling pathway by natural products for cancer prevention and therapy: In vitro and in vivo activity and mechanisms of action. Pharmacol Res 2022; 182:106357. [PMID: 35868477 DOI: 10.1016/j.phrs.2022.106357] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in signal transmission from the plasma membrane to the nucleus, regulating the expression of genes involved in essential cell functions and controlling the processes of cell cycle progression and apoptosis. Thus, STAT3 has been elucidated as a promising target for developing anticancer drugs. Many natural products have been reported to inhibit the STAT3 signaling pathway during the past two decades and have exhibited significant anticancer activities in vitro and in vivo. However, there is no FDA-approved STAT3 inhibitor yet. The major mechanisms of these natural product inhibitors of the STAT3 signaling pathway include targeting the upstream regulators of STAT3, directly binding to the STAT3 SH2 domain and inhibiting its activation, inhibiting STAT3 phosphorylation and/or dimerization, and others. In the present review, we have systematically discussed the development of these natural product inhibitors of STAT3 signaling pathway as well as their in vitro and in vivo anticancer activity and mechanisms of action. Outlooks and perspectives on the associated challenges are provided as well.
Collapse
Affiliation(s)
- Jing Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lingling Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
13
|
Li X, Shong K, Kim W, Yuan M, Yang H, Sato Y, Kume H, Ogawa S, Turkez H, Shoaie S, Boren J, Nielsen J, Uhlen M, Zhang C, Mardinoglu A. Prediction of drug candidates for clear cell renal cell carcinoma using a systems biology-based drug repositioning approach. EBioMedicine 2022; 78:103963. [PMID: 35339898 PMCID: PMC8960981 DOI: 10.1016/j.ebiom.2022.103963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The response rates of the clinical chemotherapies are still low in clear cell renal cell carcinoma (ccRCC). Computational drug repositioning is a promising strategy to discover new uses for existing drugs to treat patients who cannot get benefits from clinical drugs. METHODS We proposed a systematic approach which included the target prediction based on the co-expression network analysis of transcriptomics profiles of ccRCC patients and drug repositioning for cancer treatment based on the analysis of shRNA- and drug-perturbed signature profiles of human kidney cell line. FINDINGS First, based on the gene co-expression network analysis, we identified two types of gene modules in ccRCC, which significantly enriched with unfavorable and favorable signatures indicating poor and good survival outcomes of patients, respectively. Then, we selected four genes, BUB1B, RRM2, ASF1B and CCNB2, as the potential drug targets based on the topology analysis of modules. Further, we repurposed three most effective drugs for each target by applying the proposed drug repositioning approach. Finally, we evaluated the effects of repurposed drugs using an in vitro model and observed that these drugs inhibited the protein levels of their corresponding target genes and cell viability. INTERPRETATION These findings proved the usefulness and efficiency of our approach to improve the drug repositioning researches for cancer treatment and precision medicine. FUNDING This study was funded by Knut and Alice Wallenberg Foundation and Bash Biotech Inc., San Diego, CA, USA.
Collapse
Affiliation(s)
- Xiangyu Li
- Bash Biotech Inc, 600 est Broadway, Suite 700, San Diego, CA 92101, USA; Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Koeun Shong
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Meng Yuan
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Hong Yang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm SE-17177, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Saeed Shoaie
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg SE-41345, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-41296, Sweden; BioInnovation Institute, Copenhagen N DK-2200, Denmark
| | - Mathias Uhlen
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden; Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmaceutical Sciences, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK.
| |
Collapse
|
14
|
Shiragannavar VD, Gowda NGS, Santhekadur PK. Discovery of eukaryotic cellular receptor for withaferin A, a multifaceted drug from Withania somnifera plant. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
15
|
Mallepalli S, Gupta MK, Vadde R. Neuroblastoma: An Updated Review on Biology and Treatment. Curr Drug Metab 2020; 20:1014-1022. [PMID: 31878853 DOI: 10.2174/1389200221666191226102231] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuroblastoma (NB) is the second leading extracranial solid tumors of early childhood and clinically characterized by the presence of round, small, monomorphic cells with excess nuclear pigmentation (hyperchromasia).Owing to a lack of definitive treatment against NB and less survival rate in high-risk patients, there is an urgent requirement to understand molecular mechanisms associated with NB in a better way, which in turn can be utilized for developing drugs towards the treatment of NB in human. OBJECTIVES In this review, an approach was adopted to understand major risk factors, pathophysiology, the molecular mechanism associated with NB, and various therapeutic agents that can serve as drugs towards the treatment of NB in humans. CONCLUSION Numerous genetic (e.g., MYCN amplification), perinatal, and gestational factors are responsible for developing NB. However, no definite environmental or parental exposures responsible for causing NB have been confirmed to date. Though intensive multimodal treatment approaches, namely, chemotherapy, surgery & radiation, may help in improving the survival rate in children, these approaches have several side effects and do not work efficiently in high-risk patients. However, recent studies suggested that numerous phytochemicals, namely, vincristine, and matrine have a minimal side effect in the human body and may serve as a therapeutic drug during the treatment of NB. Most of these phytochemicals work in a dose-dependent manner and hence must be prescribed very cautiously. The information discussed in the present review will be useful in the drug discovery process as well as treatment and prevention on NB in humans.
Collapse
Affiliation(s)
- Suresh Mallepalli
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa-516003, A.P., India
| | - Manoj Kumar Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa-516003, A.P., India
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa-516003, A.P., India
| |
Collapse
|
16
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
17
|
Gelain A, Mori M, Meneghetti F, Villa S. Signal Transducer and Activator of Transcription Protein 3 (STAT3): An Update on its Direct Inhibitors as Promising Anticancer Agents. Curr Med Chem 2019; 26:5165-5206. [PMID: 30027840 DOI: 10.2174/0929867325666180719122729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/08/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Since Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor which plays an important role in multiple aspects of cancer, including progression and migration, and it is constitutively activated in various human tumors, STAT3 inhibition has emerged as a validated strategy for the treatment of several malignancies. The aim of this review is to provide an update on the identification of new promising direct inhibitors targeting STAT3 domains, as potential anticancer agents. METHODS A thorough literature search focused on recently reported STAT3 direct inhibitors was undertaken. We considered the relevant developments regarding the STAT3 domains, which have been identified as potential drug targets. RESULTS In detail, 135 peer-reviewed papers and 7 patents were cited; the inhibitors we took into account targeted the DNA binding domain (compounds were grouped into natural derivatives, small molecules, peptides, aptamers and oligonucleotides), the SH2 binding domain (natural, semi-synthetic and synthetic compounds) and specific residues, like cysteines (natural, semi-synthetic, synthetic compounds and dual inhibitors) and tyrosine 705. CONCLUSION The huge number of direct STAT3 inhibitors recently identified demonstrates a strong interest in the investigation of this target, although it represents a challenging task considering that no drug targeting this enzyme is currently available for anticancer therapy. Notably, many studies on the available inhibitors evidenced that some of them possess a dual mechanism of action.
Collapse
Affiliation(s)
- Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
18
|
Chhipa AS, Borse SP, Baksi R, Lalotra S, Nivsarkar M. Targeting receptors of advanced glycation end products (RAGE): Preventing diabetes induced cancer and diabetic complications. Pathol Res Pract 2019; 215:152643. [PMID: 31564569 DOI: 10.1016/j.prp.2019.152643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/15/2019] [Indexed: 12/13/2022]
|
19
|
Yogev O, Almeida GS, Barker KT, George SL, Kwok C, Campbell J, Zarowiecki M, Kleftogiannis D, Smith LM, Hallsworth A, Berry P, Möcklinghoff T, Webber HT, Danielson LS, Buttery B, Calton EA, da Costa BM, Poon E, Jamin Y, Lise S, Veal GJ, Sebire N, Robinson SP, Anderson J, Chesler L. In Vivo Modeling of Chemoresistant Neuroblastoma Provides New Insights into Chemorefractory Disease and Metastasis. Cancer Res 2019; 79:5382-5393. [PMID: 31405846 DOI: 10.1158/0008-5472.can-18-2759] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is a pediatric cancer that is frequently metastatic and resistant to conventional treatment. In part, a lack of natively metastatic, chemoresistant in vivo models has limited our insight into the development of aggressive disease. The Th-MYCN genetically engineered mouse model develops rapidly progressive chemosensitive neuroblastoma and lacks clinically relevant metastases. To study tumor progression in a context more reflective of clinical therapy, we delivered multicycle treatment with cyclophosphamide to Th-MYCN mice, individualizing therapy using MRI, to generate the Th-MYCN CPM32 model. These mice developed chemoresistance and spontaneous bone marrow metastases. Tumors exhibited an altered immune microenvironment with increased stroma and tumor-associated fibroblasts. Analysis of copy number aberrations revealed genomic changes characteristic of human MYCN-amplified neuroblastoma, specifically copy number gains at mouse chromosome 11, syntenic with gains on human chromosome 17q. RNA sequencing revealed enriched expression of genes associated with 17q gain and upregulation of genes associated with high-risk neuroblastoma, such as the cell-cycle regulator cyclin B1-interacting protein 1 (Ccnb1ip1) and thymidine kinase (TK1). The antiapoptotic, prometastatic JAK-STAT3 pathway was activated in chemoresistant tumors, and treatment with the JAK1/JAK2 inhibitor CYT387 reduced progression of chemoresistant tumors and increased survival. Our results highlight that under treatment conditions that mimic chemotherapy in human patients, Th-MYCN mice develop genomic, microenvironmental, and clinical features reminiscent of human chemorefractory disease. The Th-MYCN CPM32 model therefore is a useful tool to dissect in detail mechanisms that drive metastasis and chemoresistance, and highlights dysregulation of signaling pathways such as JAK-STAT3 that could be targeted to improve treatment of aggressive disease. SIGNIFICANCE: An in vivo mouse model of high-risk treatment-resistant neuroblastoma exhibits changes in the tumor microenvironment, widespread metastases, and sensitivity to JAK1/2 inhibition.
Collapse
Affiliation(s)
- Orli Yogev
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Gilberto S Almeida
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Karen T Barker
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Sally L George
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Colin Kwok
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - James Campbell
- CRUK-center Informatics Facility, The Institute of Cancer Research, London, United Kingdom
| | - Magdalena Zarowiecki
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- CRUK-center Informatics Facility, The Institute of Cancer Research, London, United Kingdom
| | | | - Laura M Smith
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Albert Hallsworth
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Philip Berry
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Till Möcklinghoff
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hannah T Webber
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Laura S Danielson
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Bliss Buttery
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Elizabeth A Calton
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Barbara M da Costa
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Gareth J Veal
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Neil Sebire
- Paediatric and Development Pathology, Institute of Child Health, University College London, London, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - John Anderson
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
20
|
Bioactive Compounds: Multi-Targeting Silver Bullets for Preventing and Treating Breast Cancer. Cancers (Basel) 2019; 11:cancers11101563. [PMID: 31618928 PMCID: PMC6826729 DOI: 10.3390/cancers11101563] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Each cell in our body is designed with a self-destructive trigger, and if damaged, can happily sacrifice itself for the sake of the body. This process of self-destruction to safeguard the adjacent normal cells is known as programmed cell death or apoptosis. Cancer cells outsmart normal cells and evade apoptosis and it is one of the major hallmarks of cancer. The cardinal quest for anti-cancer drug discovery (bioactive or synthetic compounds) is to be able to re-induce the so called “programmed cell death” in cancer cells. The importance of bioactive compounds as the linchpin of cancer therapeutics is well known as many effective chemotherapeutic drugs such as vincristine, vinblastine, doxorubicin, etoposide and paclitaxel have natural product origins. The present review discusses various bioactive compounds with known anticancer potential, underlying mechanisms by which they induce cell death and their preclinical/clinical development. Most bioactive compounds can concurrently target multiple signaling pathways that are important for cancer cell survival while sparing normal cells hence they can potentially be the silver bullets for targeting cancer growth and metastatic progression.
Collapse
|
21
|
Hsu JHM, Chang PMH, Cheng TS, Kuo YL, Wu ATH, Tran TH, Yang YH, Chen JM, Tsai YC, Chu YS, Huang TH, Huang CYF, Lai JM. Identification of Withaferin A as a Potential Candidate for Anti-Cancer Therapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11071003. [PMID: 31319622 PMCID: PMC6678286 DOI: 10.3390/cancers11071003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Low response rate and recurrence are common issues in lung cancer; thus, identifying a potential compound for these patients is essential. Utilizing an in silico screening method, we identified withaferin A (WA), a cell-permeable steroidal lactone initially extracted from Withania somnifera, as a potential anti-lung cancer and anti-lung cancer stem-like cell (CSC) agent. First, we demonstrated that WA exhibited potent cytotoxicity in several lung cancer cells, as evidenced by low IC50 values. WA concurrently induced autophagy and apoptosis and the activation of reactive oxygen species (ROS), which plays an upstream role in mediating WA-elicited effects. The increase in p62 indicated that WA may modulate the autophagy flux followed by apoptosis. In vivo research also demonstrated the anti-tumor effect of WA treatment. We subsequently demonstrated that WA could inhibit the growth of lung CSCs, decrease side population cells, and inhibit lung cancer spheroid-forming capacity, at least through downregulation of mTOR/STAT3 signaling. Furthermore, the combination of WA and chemotherapeutic drugs, including cisplatin and pemetrexed, exerted synergistic effects on the inhibition of epidermal growth factor receptor (EGFR) wild-type lung cancer cell viability. In addition, WA can further enhance the cytotoxic effect of cisplatin in lung CSCs. Therefore, WA alone or in combination with standard chemotherapy is a potential treatment option for EGFR wild-type lung cancer and may decrease the occurrence of cisplatin resistance by inhibiting lung CSCs.
Collapse
Affiliation(s)
- Jade H-M Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Peter M-H Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Lun Kuo
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Alexander T-H Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Thu-Ha Tran
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan
| | - Yun-Hsuan Yang
- The Ph.D. Program in Pharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Jing-Ming Chen
- Graduate Institute of Applied Science and Engineering, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Chen Tsai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Tse-Hung Huang
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 110, Taiwan.
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| | - Chi-Ying F Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Jin-Mei Lai
- The Ph.D. Program in Pharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
- Graduate Institute of Applied Science and Engineering, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
22
|
Arora L, Kumar AP, Arfuso F, Chng WJ, Sethi G. The Role of Signal Transducer and Activator of Transcription 3 (STAT3) and Its Targeted Inhibition in Hematological Malignancies. Cancers (Basel) 2018; 10:cancers10090327. [PMID: 30217007 PMCID: PMC6162647 DOI: 10.3390/cancers10090327] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT protein family, can be phosphorylated by receptor-associated Janus kinases (JAKs) in response to stimulation by cytokines and growth factors. It forms homo- or heterodimers that can translocate to the cell nucleus where they act as transcription activators. Constitutive activation of STAT3 has been found to be associated with initiation and progression of various cancers. It can exert proliferative as well as anti-apoptotic effects. This review focuses on the role of STAT3 in pathogenesis i.e., proliferation, differentiation, migration, and apoptosis of hematological malignancies viz. leukemia, lymphoma and myeloma, and briefly highlights the potential therapeutic approaches developed against STAT3 activation pathway.
Collapse
Affiliation(s)
- Loukik Arora
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore.
- Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia.
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119074, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| |
Collapse
|
23
|
Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget 2018; 8:50284-50304. [PMID: 28514737 PMCID: PMC5564849 DOI: 10.18632/oncotarget.17466] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/18/2017] [Indexed: 01/01/2023] Open
Abstract
Concepts of individualized therapy in the 1970s and 1980s attempted to develop predictive in vitro tests for individual drug responsiveness without reaching clinical routine. Precision medicine attempts to device novel individual cancer therapy strategies. Using bioinformatics, relevant knowledge is extracted from huge data amounts. However, tumor heterogeneity challenges chemotherapy due to genetically and phenotypically different cell subpopulations, which may lead to refractory tumors. Natural products always served as vital resources for cancer therapy (e.g., Vinca alkaloids, camptothecin, paclitaxel, etc.) and are also sources for novel drugs. Targeted drugs developed to specifically address tumor-related proteins represent the basis of precision medicine. Natural products from plants represent excellent resource for targeted therapies. Phytochemicals and herbal mixtures act multi-specifically, i.e. they attack multiple targets at the same time. Network pharmacology facilitates the identification of the complexity of pharmacogenomic networks and new signaling networks that are distorted in tumors. In the present review, we give a conceptual overview, how the problem of drug resistance may be approached by integrating phytochemicals and phytotherapy into academic western medicine. Modern technology platforms (e.g. “-omics” technologies, DNA/RNA sequencing, and network pharmacology) can be applied for diverse treatment modalities such as cytotoxic and targeted chemotherapy as well as phytochemicals and phytotherapy. Thereby, these technologies represent an integrative momentum to merge the best of two worlds: clinical oncology and traditional medicine. In conclusion, the integration of phytochemicals and phytotherapy into cancer precision medicine represents a valuable asset to chemically synthesized chemicals and therapeutic antibodies.
Collapse
|
24
|
Dom M, Offner F, Vanden Berghe W, Van Ostade X. Proteomic characterization of Withaferin A-targeted protein networks for the treatment of monoclonal myeloma gammopathies. J Proteomics 2018; 179:17-29. [PMID: 29448055 DOI: 10.1016/j.jprot.2018.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 02/05/2018] [Indexed: 02/09/2023]
Abstract
Withaferin A (WA), a natural steroid lactone from the plant Withania somnifera, is often studied because of its antitumor properties. Although many in vitro and in vivo studies have been performed, the identification of Withaferin A protein targets and its mechanism of antitumor action remain incomplete. We used quantitative chemoproteomics and differential protein expression analysis to characterize the WA antitumor effects on a multiple myeloma cell model. Identified relevant targets were further validated by Ingenuity Pathway Analysis and Western blot and indicate that WA targets protein networks that are specific for monoclonal gammopathy of undetermined significance (MGUS) and other closely related disorders, such as multiple myeloma (MM) and Waldenström macroglobulinemia (WM). By blocking the PSMB10 proteasome subunit, downregulation of ANXA4, potential association with HDAC6 and upregulation of HMOX1, WA puts a massive blockage on both proteotoxic and oxidative stress responses pathways, leaving cancer cells defenseless against WA induced stresses. These results indicate that WA mediated apoptosis is preceded by simultaneous targeting of cellular stress response pathways like proteasome degradation, autophagy and unfolded protein stress response and thus suggests that WA can be used as an effective treatment for MGUS and other closely related disorders. SIGNIFICANCE Multifunctional antitumor compounds are of great potential since they reduce the risk of multidrug resistance in chemotherapy. Unfortunately, characterization of all protein targets of a multifunctional compound is lacking. Therefore, we optimized an SILAC quantitative chemoproteomics workflow to identify the potential protein targets of Withaferin A (WA), a natural multifunctional compound with promising antitumor properties. To further understand the antitumor mechanisms of WA, we performed a differential protein expression analysis and combined the altered expression data with chemoproteome WA target data in the highly curated Ingenuity Pathway database. We provide a first global overview on how WA kills multiple myeloma cancer cells and serve as a starting point for further in depth experiments. Furthermore, the combined approach can be used for other types of cancer and/or other promising multifunctional compounds, thereby increasing the potential development of new antitumor therapies.
Collapse
Affiliation(s)
- Martin Dom
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium
| | - Fritz Offner
- Hematology, Department Internal Medicine, Ghent University, Ghent, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium
| | - Xaveer Van Ostade
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium.
| |
Collapse
|
25
|
Subramanian C, Grogan PT, Opipari VP, Timmermann BN, Cohen MS. Novel natural withanolides induce apoptosis and inhibit migration of neuroblastoma cells through down regulation of N-myc and suppression of Akt/mTOR/NF-κB activation. Oncotarget 2018; 9:14509-14523. [PMID: 29581860 PMCID: PMC5865686 DOI: 10.18632/oncotarget.24429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in intensive chemotherapy treatments, long-term success is achieved in less than 30% of children with high-risk neuroblastoma (NB). Key regulatory pathways including the PI3K/Akt, mTOR and NF-κB are implicated in the pathogenesis of NB. Although drugs targeting these individual pathways are in clinical trials, they are not effective due to the activation of compensatory mechanisms. We have previously reported that natural novel withanolides from Physalis longifolia can potently inhibit these key regulatory pathways simultaneously. In the present study, we examined the efficacy and mechanisms through which novel withanolides and their acetate derivatives (WGA-TA and WGB-DA) from P.longifolia kill NB cells. The results from the study demonstrated that our novel acetate derivatives are highly effective in inhibiting the proliferation, shifting the cell cycle and inducing apoptosis in a dose dependent manner. Analysis of oncogenic pathway proteins targeted by withanolides indicated induction of heat shock response due to oxidative stress. Dose dependent decrease in clients of HSP90 chaperone function due to suppression of Akt, mTOR, and NF-κB pathways led to decrease in the expressions of target genes such as cyclin D1, N-myc and Survivin. Additionally, there was a dose dependent attenuation of the migration and invasion of NB cells. Furthermore, the lead compound WGA-TA showed significant reduction in tumor growth of NB xenografts. Taken together, these results suggest that withanolides are an effective therapeutic option against NBs.
Collapse
Affiliation(s)
| | - Patrick T Grogan
- Department of Internal Medicine, University of Wisconsin, Madison, WI, USA
| | - Valerie P Opipari
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Tomolonis JA, Agarwal S, Shohet JM. Neuroblastoma pathogenesis: deregulation of embryonic neural crest development. Cell Tissue Res 2017; 372:245-262. [PMID: 29222693 DOI: 10.1007/s00441-017-2747-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Neuroblastoma (NB) is an aggressive pediatric cancer that originates from neural crest tissues of the sympathetic nervous system. NB is highly heterogeneous both from a clinical and a molecular perspective. Clinically, this cancer represents a wide range of phenotypes ranging from spontaneous regression of 4S disease to unremitting treatment-refractory progression and death of high-risk metastatic disease. At a cellular level, the heterogeneous behavior of NB likely arises from an arrest and deregulation of normal neural crest development. In the present review, we summarize our current knowledge of neural crest development as it relates to pathways promoting 'stemness' and how deregulation may contribute to the development of tumor-initiating CSCs. There is an emerging consensus that such tumor subpopulations contribute to the evolution of drug resistance, metastasis and relapse in other equally aggressive malignancies. As relapsed, refractory disease remains the primary cause of death for neuroblastoma, the identification and targeting of CSCs or other primary drivers of tumor progression remains a critical, clinically significant goal for neuroblastoma. We will critically review recent and past evidence in the literature supporting the concept of CSCs as drivers of neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Julie A Tomolonis
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA.,Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA.,Translational Biology & Molecular Medicine (TBMM) Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Saurabh Agarwal
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA. .,Neuroblastoma Research Program, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Natural Withanolides in the Treatment of Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:329-373. [PMID: 27671823 PMCID: PMC7121644 DOI: 10.1007/978-3-319-41334-1_14] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Withanolides, and in particular extracts from Withania somnifera, have been used for over 3,000 years in traditional Ayurvedic and Unani Indian medical systems as well as within several other Asian countries. Traditionally, the extracts were ascribed a wide range of pharmacologic properties with corresponding medical uses, including adaptogenic, diuretic, anti-inflammatory, sedative/anxiolytic, cytotoxic, antitussive, and immunomodulatory. Since the discovery of the archetype withaferin A in 1965, approximately 900 of these naturally occurring, polyoxygenated steroidal lactones with 28-carbon ergostane skeletons have been discovered across 24 diverse structural types. Subsequently, extensive pharmacologic research has identified multiple mechanisms of action across key inflammatory pathways. In this chapter we identify and describe the major withanolides with anti-inflammatory properties, illustrate their role within essential and supportive inflammatory pathways (including NF-κB, JAK/STAT, AP-1, PPARγ, Hsp90 Nrf2, and HIF-1), and then discuss the clinical application of these withanolides in inflammation-mediated chronic diseases (including arthritis, autoimmune, cancer, neurodegenerative, and neurobehavioral). These naturally derived compounds exhibit remarkable biologic activity across these complex disease processes, while showing minimal adverse effects. As novel compounds and analogs continue to be discovered, characterized, and clinically evaluated, the interest in withanolides as a novel therapeutic only continues to grow.
Collapse
|
28
|
Issa ME, Cuendet M. Withaferin A induces cell death and differentiation in multiple myeloma cancer stem cells. MEDCHEMCOMM 2016; 8:112-121. [PMID: 30108696 DOI: 10.1039/c6md00410e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/17/2016] [Indexed: 01/08/2023]
Abstract
Multiple myeloma (MM) remains an incurable malignancy despite the development of novel therapeutics. This is believed to be due to a subset of rare chemotherapy-resistant cancer stem cells (CSCs). Differentiation therapy represents one strategy aimed at reducing the stemness of CSCs. The anticancer effect of withaferin A (WFA) was studied in MM-CSCs and RPMI 8226 MM tumoral plasma cells (RPMIs). WFA exhibited growth inhibitory effects in both MM-CSCs and RPMIs, with IC50 values of 649 and 224 nM, respectively. WFA also induced a G2 cell cycle arrest, as well as cell death and apoptosis. Although, WFA did not exhibit a direct anti-migratory effect, a remarkable morphological change was observed in MM-CSCs in response to WFA treatment. Using qPCR gene expression analyses, WFA caused a reduction in stemness markers, and a promotion of differentiation markers in MM-CSCs. These results warrant further investigation of WFA in relevant MM animal models.
Collapse
Affiliation(s)
- Mark E Issa
- School of Pharmaceutical Sciences , University of Geneva , University of Lausanne , Rue Michel Servet 1 , CH-1211 Geneva 4 , Switzerland . ; ; Tel: +41 22 379 3386
| | - Muriel Cuendet
- School of Pharmaceutical Sciences , University of Geneva , University of Lausanne , Rue Michel Servet 1 , CH-1211 Geneva 4 , Switzerland . ; ; Tel: +41 22 379 3386
| |
Collapse
|
29
|
Tang Q, Lu M, Chen D, Liu P. Combination of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles and pHsp 70-HSV-TK/GCV with magnet-induced heating for treatment of hepatoma. Int J Nanomedicine 2015; 10:7129-43. [PMID: 26604760 PMCID: PMC4655962 DOI: 10.2147/ijn.s92179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background To explore a new combination of thermal treatment and gene therapy for hepatoma, a heat-inducible herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy system was developed in which thermal energy generated by Mn0.5Zn0.5Fe2O4 nanoparticles (MZF-NPs) under an alternating magnetic field was used to activate gene expression. Methods First, a recombinant eukaryotic plasmid, pHsp 70-HSV-TK, was constructed as a target gene for therapy. This recombinant plasmid was used to transfect SMMC-7721 hepatoma cells and the gene expression was evaluated. Magnet-induced heating was then applied to cells to assess the antihepatoma effects of the polyethylenimine (PEI)-MZF-NPs/pHsp 70-HSV-TK/GCV complex, in vitro and in vivo. Results The results showed that cells were successfully transfected with pHsp 70-HSV-TK and that expression levels of HSV-TK remained stable. Both in vitro and in vivo results indicated that the combination of gene therapy and heat treatment resulted in better therapeutic effects than heating-alone group. The rates of apoptosis and necrosis in the combined treatment group were 49.0% and 7.21%, respectively. The rate of inhibition of cell proliferation in the combined treatment group was significantly higher (87.5%) than that in the heating-alone group (65.8%; P<0.01). The tumor volume and mass inhibition rates of the combined treatment group were 91.3% and 87.91%, respectively, and were significantly higher than the corresponding rates of the heating-alone group (70.41% and 57.14%; P<0.01). The expression levels of Stat3 and Bcl-xL messenger RNA and p-Stat3 and Bcl-xL protein in the combined treatment group were significantly lower than those in the other groups (P<0.01). The expression levels of Bax messenger RNA and protein in the recombinant plasmid group were significantly higher than those in the other groups (P<0.01). Conclusion It can therefore be concluded that the combined application of heat treatment and gene therapy has a synergistic and complementary effect and that PEI-MZF-NPs can simultaneously act both as a nonviral gene vector and a magnet-induced source of heat, thereby representing a viable approach for the treatment of cancer.
Collapse
Affiliation(s)
- Qiusha Tang
- School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Mudan Lu
- Genetic Laboratory, Wuxi Hospital for Maternal and Child Health Care, the Affiliated Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Daozhen Chen
- Genetic Laboratory, Wuxi Hospital for Maternal and Child Health Care, the Affiliated Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Choi BY, Kim BW. Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity. J Cancer Prev 2015; 20:185-92. [PMID: 26473157 PMCID: PMC4597807 DOI: 10.15430/jcp.2015.20.3.185] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Withania somnifera (known as Ashwagandha) is a medicinal plant used in the ayurvedic medicines in India. Withaferin-A, a withanolide derived from the leaf extract of W. somnifera, has been reported to exhibit anti-tumor activity against various cancer cells, such as leukemia, breast cancer and colon cancer cells. METHODS We investigated the anti-cancer effects of withaferin-A on the proliferation and migration of human colorectal cancer (HCT116) cells. And we evaluated the effects of withaferin-A on the transcriptional activity of STAT3 and the growth of HCT116 cells in xenograft mouse tumor model. RESULTS In the present study, we found that withaferin-A inhibited the proliferation and migration of HCT116 cells in a concentration-dependent manner. Treatment of HCT116 cells with withaferin-A attenuated interleukin-6-induced activation of STAT3, which has been implicated in the development and progression of colon cancer. To examine the effect of withaferin-A on HCT116 cells proliferation in vivo, we generated HCT116 cells xenograft tumors in Balb/c nude mice and treated the tumor bearing mice with or without withaferin-A intraperitoneally. Treatment with withaferin-A exhibited significant decrease in the volume and weight of tumors as compared to untreated controls. CONCLUSIONS The present study suggests that withaferin-A holds the potential to be developed as a small molecule inhibitor of STAT3 for the treatment of HCT116.
Collapse
Affiliation(s)
- Bu Young Choi
- Department of Pharmaceutical Science and Engineering, Seowon University, Cheongju, Korea
| | - Bong-Woo Kim
- Department of Cosmetic Science and Technology, Seowon University, Cheongju, Korea
| |
Collapse
|
31
|
Abstract
Plant-based Ayurvedic medicine has been practiced in India for thousands of years for the treatment of a variety of disorders. They are rich sources of bioactive compounds potentially useful for prevention and treatment of cancer. Withania somnifera (commonly known as Ashwagandha in Ayurvedic medicine) is a widely used medicinal plant whose anticancer value was recognized after isolation of steroidal compounds withanolides from the leaves of this shrub. Withaferin A is the first member of withanolides to be isolated, and it is the most abundant withanolide present in W. somnifera. Its cancer-protective role has now been established using chemically induced and oncogene-driven rodent cancer models. The present review summarizes the key preclinical studies demonstrating anticancer effects of withaferin along with its molecular targets and mechanisms related to its anticancer effects. Anticancer potential of other withanolides is also discussed.
Collapse
|
32
|
Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol Ther 2015; 151:141-51. [PMID: 25850036 DOI: 10.1016/j.pharmthera.2015.04.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 12/25/2022]
Abstract
The Anaphase Promoting Complex (APC, also called APC/C) regulates cell cycle progression by forming two closely related, but functionally distinct E3 ubiquitin ligase sub-complexes, APC(Cdc20) and APC(Cdh1), respectively. Emerging evidence has begun to reveal that Cdc20 and Cdh1 have opposing functions in tumorigenesis. Specifically, Cdh1 functions largely as a tumor suppressor, whereas Cdc20 exhibits an oncogenic function, suggesting that Cdc20 could be a promising therapeutic target for combating human cancer. However, the exact underlying molecular mechanisms accounting for their differences in tumorigenesis remain largely unknown. Therefore, in this review, we summarize the downstream substrates of Cdc20 and the critical functions of Cdc20 in cell cycle progression, apoptosis, ciliary disassembly and brain development. Moreover, we briefly describe the upstream regulators of Cdc20 and the oncogenic role of Cdc20 in a variety of human malignancies. Furthermore, we summarize multiple pharmacological Cdc20 inhibitors including TAME and Apcin, and their potential clinical benefits. Taken together, development of specific Cdc20 inhibitors could be a novel strategy for the treatment of human cancers with elevated Cdc20 expression.
Collapse
|