1
|
Riana E, Sri-In C, Songkasupa T, Bartholomay LC, Thontiravong A, Tiawsirisup S. Infection, dissemination, and transmission of lumpy skin disease virus in Aedes aegypti (Linnaeus), Culex tritaeniorhynchus (Giles), and Culex quinquefasciatus (Say) mosquitoes. Acta Trop 2024; 254:107205. [PMID: 38579960 DOI: 10.1016/j.actatropica.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Lumpy skin disease virus (LSDV) is a transboundary viral disease in cattle and water buffaloes. Although this Poxvirus is supposedly transmitted by mechanical vectors, only a few studies have investigated the role of local vectors in the transmission of LSDV. This study examined the infection, dissemination, and transmission rates of LSDV in Aedes aegypti, Culex tritaeniorhynchus, and Culex quinquefasciatus following artificial membrane feeding of 102.7, 103.7, 104.7 TCID50/mL LSDV in sheep blood. The results demonstrated that these mosquito species were susceptible to LSDV, with Cx tritaeniorhynchus exhibiting significantly different characteristics from Ae. aegypti and Cx. quinquefasciatus. These three mosquito species were susceptible to LSDV. Ae. aegypti showed it as early as 2 days post-infection (dpi), indicating swift dissemination in this particular species. The extrinsic incubation period (EIP) of LSDV in Cx. tritaeniorhynchus and Cx. quinquefasciatus was 8 and 14 dpi, respectively. Ingestion of different viral titers in blood did not affect the infection, dissemination, or transmission rates of Cx. tritaeniorhynchus and Cx. quinquefasciatus. All rates remained consistently high at 8-14 dpi for Cx. tritaeniorhynchus. In all three species, LSDV remained detectable until 14 dpi. The present findings indicate that, Ae. aegypti, Cx. tritaeniorhynchus, and Cx. quinquefasciatus may act as vectors during the LSDV outbreak; their involvement may extend beyond being solely mechanical vectors.
Collapse
Affiliation(s)
- Elizabeth Riana
- The International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chalida Sri-In
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tapanut Songkasupa
- Virology section, National Institute of Animal Health, Department of Livestock Development, Bangkok, Thailand
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Aunyaratana Thontiravong
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sonthaya Tiawsirisup
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Hug DOH, Kropf A, Amann MO, Koella JC, Verhulst NO. Unexpected behavioural adaptation of yellow fever mosquitoes in response to high temperatures. Sci Rep 2024; 14:3659. [PMID: 38351076 PMCID: PMC10864274 DOI: 10.1038/s41598-024-54374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
Temperature is a major ecological driver of mosquito-borne diseases as it influences the life-history of both the mosquito and the pathogen harboured within it. Understanding the mosquitoes' thermal biology is essential to inform risk prediction models of such diseases. Mosquitoes can respond to temperatures by microhabitat selection through thermal preference. However, it has not yet been considered that mosquitoes are likely to adapt to changing temperatures, for example during climate change, and alter their preference over evolutionary time. We investigated this by rearing six cohorts of the yellow fever mosquito Aedes aegypti at two temperatures (24 °C, 30 °C) for 20 generations and used these cohorts to explicitly separate the effects of long-term evolution and within-generation acclimation on their thermal preferences in a thermal gradient of 20-35 °C. We found that warm-evolved mosquitoes spent 31.5% less time at high temperatures, which affects their efficiency as a vector. This study reveals the complex interplay of experimental evolution, rearing temperatures, and thermal preference in Ae. aegypti mosquitoes. It highlights the significance of incorporating mosquito microhabitat selection in disease transmission models, especially in the context of climate change.
Collapse
Affiliation(s)
- David O H Hug
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zurich, Switzerland
| | - Alida Kropf
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Marine O Amann
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jacob C Koella
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zurich, Switzerland.
| |
Collapse
|
3
|
Manzano-Alvarez J, Terradas G, Holmes CJ, Benoit JB, Rasgon JL. Dehydration stress and Mayaro virus vector competence in Aedes aegypti. J Virol 2023; 97:e0069523. [PMID: 38051046 PMCID: PMC10734514 DOI: 10.1128/jvi.00695-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Relative humidity (RH) is an environmental variable that affects mosquito physiology and can impact pathogen transmission. Low RH can induce dehydration in mosquitoes, leading to alterations in physiological and behavioral responses such as blood-feeding and host-seeking behavior. We evaluated the effects of a temporal drop in RH (RH shock) on mortality and Mayaro virus vector competence in Ae. aegypti. While dehydration induced by humidity shock did not impact virus infection, we detected a significant effect of dehydration on mosquito mortality and blood-feeding frequency, which could significantly impact transmission dynamics.
Collapse
Affiliation(s)
- Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Universidad El Bosque, Vicerrectoría de Investigación, Saneamiento Ecológico, Salud y Medio Ambiente, Bogotá, Colombia
| | - Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Christofferson RC, Turner EA, Peña-García VH. Identifying Knowledge Gaps through the Systematic Review of Temperature-Driven Variability in the Competence of Aedes aegypti and Ae. albopictus for Chikungunya Virus. Pathogens 2023; 12:1368. [PMID: 38003832 PMCID: PMC10675276 DOI: 10.3390/pathogens12111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Temperature is a well-known effector of several transmission factors of mosquito-borne viruses, including within mosquito dynamics. These dynamics are often characterized by vector competence and the extrinsic incubation period (EIP). Vector competence is the intrinsic ability of a mosquito population to become infected with and transmit a virus, while EIP is the time it takes for the virus to reach the salivary glands and be expectorated following an infectious bloodmeal. Temperatures outside the optimal range act on life traits, decreasing transmission potential, while increasing temperature within the optimal range correlates to increasing vector competence and a decreased EIP. These relatively well-studied effects of other Aedes borne viruses (dengue and Zika) are used to make predictions about transmission efficiency, including the challenges presented by urban heat islands and climate change. However, the knowledge of temperature and chikungunya (CHIKV) dynamics within its two primary vectors-Ae. aegypti and Ae. albopictus-remains less characterized, even though CHIKV remains a virus of public-health importance. Here, we review the literature and summarize the state of the literature on CHIKV and temperature dependence of vector competence and EIP and use these data to demonstrate how the remaining knowledge gap might confound the ability to adequately predict and, thus, prepare for future outbreaks.
Collapse
Affiliation(s)
| | - Erik A. Turner
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | | |
Collapse
|
5
|
Fernández D, Yun R, Zhou J, Parise PL, Mosso-González C, Villasante-Tezanos A, Weaver SC, Pando-Robles V, Aguilar PV. Differential Susceptibility of Aedes aegypti and Aedes albopictus Mosquitoes to Infection by Mayaro Virus Strains. Am J Trop Med Hyg 2023; 109:115-122. [PMID: 37253447 PMCID: PMC10323988 DOI: 10.4269/ajtmh.22-0777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 06/01/2023] Open
Abstract
Mayaro virus (MAYV) is an arthropod-borne virus (arbovirus) belonging to the family Togaviridae, genus Alphavirus. In recent years, the geographic distribution of MAYV may have expanded north from South and Central America into the Caribbean Islands. Although Haemagogus janthinomys is considered the main vector for MAYV, the virus has also been isolated from other mosquitoes, including Aedes aegypti, a widespread species that serves as the main vector for highly epidemic viruses. Given the possible expansion and outbreaks of MAYV in Latin America, it is possible that MAYV might be adapting to be efficiently transmitted by urban vectors. Therefore, to investigate this possibility, we evaluated the vector competence of Ae. aegypti and Ae. albopictus mosquitoes to transmit MAYV isolated during a year of low or high MAYV transmission. Adult Ae. aegypti and Ae. albopictus were orally infected with the MAYV strains, and the infection, dissemination, and transmission rates were calculated to evaluate their vector competence. Overall, we found higher infection, dissemination, and transmission rates in both Ae. aegypti and Ae. albopictus mosquitoes infected with the strain isolated during a MAYV outbreak, whereas low/no transmission was detected with the strain isolated during a year of low MAYV activity. Our results confirmed that both Ae. aegypti and Ae. albopictus are competent vectors for the emergent MAYV. Our data suggest that strains isolated during MAYV outbreaks might be better fit to infect and be transmitted by urban vectors, raising serious concern about the epidemic potential of MAYV.
Collapse
Affiliation(s)
- Diana Fernández
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Ruimei Yun
- Department of Microbiology, University of Texas Medical Branch, Galveston, Texas
| | - Jiehua Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Pierina L. Parise
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Clemente Mosso-González
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | | | - Scott C. Weaver
- Department of Microbiology, University of Texas Medical Branch, Galveston, Texas
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Victoria Pando-Robles
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
6
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
7
|
Peña-García VH, Luvall JC, Christofferson RC. Arbovirus Transmission Predictions Are Affected by Both Temperature Data Source and Modeling Methodologies across Cities in Colombia. Microorganisms 2023; 11:1249. [PMID: 37317223 PMCID: PMC10223750 DOI: 10.3390/microorganisms11051249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
Weather variables has been described as major drivers of vector proliferation and arbovirus transmission. Among them, temperature has consistently been found to be impactful in transmission dynamics, and models that incorporate temperature have been widely used to evaluate and forecast transmission or arboviruses like dengue, zika, or chikungunya virus. Further, there is growing evidence of the importance of micro-environmental temperatures in driving transmission of Aedes aegypti-borne viruses, as these mosquitoes tend to live within domiciles. Yet there is still a considerable gap in our understanding of how accounting for micro-environmental temperatures in models varies from the use of other widely-used, macro-level temperature measures. This effort combines field-collected data of both indoor and outdoor household associated temperatures and weather station temperature data from three Colombian cities to describe the relationship between the measures representing temperature at the micro- and macro-levels. These data indicate that weather station data may not accurately capture the temperature profiles of indoor micro-environments. However, using these data sources, the basic reproductive number for arboviruses was calculated by means of three modeling efforts to investigate whether temperature measure differences translated to differential transmission predictions. Across all three cities, it was determined that the modeling method was more often impactful rather than the temperature data-source, though no consistent pattern was immediately clear. This suggests that temperature data sources and modeling methods are important for precision in arbovirus transmission predictions, and more studies are needed to parse out this complex interaction.
Collapse
Affiliation(s)
- Víctor Hugo Peña-García
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín 50010, Colombia
| | - Jeffrey C. Luvall
- Marshall Space Flight Center, National Aeronautics Space Administration (NASA), Huntsville, AL 35824, USA
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
8
|
Christofferson RC, Wearing HJ, Turner EA, Walsh CS, Salje H, Tran-Kiem C, Cauchemez S. How do i bite thee? let me count the ways: Exploring the implications of individual biting habits of Aedes aegypti for dengue transmission. PLoS Negl Trop Dis 2022; 16:e0010818. [PMID: 36194617 PMCID: PMC9565401 DOI: 10.1371/journal.pntd.0010818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/14/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
In models of mosquito-borne transmission, the mosquito biting rate is an influential parameter, and understanding the heterogeneity of the process of biting is important, as biting is usually assumed to be relatively homogeneous across individuals, with time-between-bites described by an exponentially distributed process. However, these assumptions have not been addressed through laboratory experimentation. We experimentally investigated the daily biting habits of Ae. aegypti at three temperatures (24°C, 28°C, and 32°C) and determined that there was individual heterogeneity in biting habits (number of bites, timing of bites, etc.). We further explored the consequences of biting heterogeneity using an individual-based model designed to examine whether a particular biting profile determines whether a mosquito is more or less likely to 1) become exposed given a single index case of dengue (DENV) and 2) transmit to a susceptible human individual. Our experimental results indicate that there is heterogeneity among individuals and among temperature treatments. We further show that this results in altered probabilities of transmission of DENV to and from individual mosquitoes based on biting profiles. While current model representation of biting may work under some conditions, it might not uniformly be the best fit for this process. Our data also confirm that biting is a non-monotonic process with temperatures around 28°C being optimum.
Collapse
Affiliation(s)
- Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Helen J. Wearing
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Erik A. Turner
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Christine S. Walsh
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris, France
| | - Cécile Tran-Kiem
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris, France
| |
Collapse
|
9
|
House-Level Risk Factors for Aedes aegypti Infestation in the Urban Center of Castilla la Nueva, Meta State, Colombia. J Trop Med 2021; 2021:8483236. [PMID: 34725551 PMCID: PMC8557085 DOI: 10.1155/2021/8483236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti is the main vector of the dengue virus in Colombia. Some factors have been associated with its presence; however, in the local context, it has not been sufficiently evaluated. The present study seeks to identify the socioeconomic, environmental, and behavioral factors associated with the presence and abundance of A. aegypti in urban dwellings in the municipality of Castilla la Nueva. A cross-sectional cohort study was conducted in houses in the urban area of the municipality of Castilla la Nueva, where 307 houses were sampled by systematic random sampling during May 2018. A multifactorial survey was used to measure the socioeconomic, environmental, and behavioral factors as explanatory variables. The infestation and relative abundance were established by the presence of larval stages and ovitraps. The associated factors for the presence and abundance of A. aegypti were identified using negative binomial and logistic regression models. A positive housing infestation of 33.2% was identified by direct inspection and 78.5% with ovitraps. The main factors positively associated with the presence and abundance of A. aegypti were one-story homes (PR = 2.26; 95% CI: 1.31-3.87), the storage of water for domestic use (PR = 1.91; 95% CI: 1.18-3.09), and local conditions such as disorganized backyard (PR = 79.95; 95% CI: 10.96-583.24) and the proportion of shade greater than 50% of the backyard (PR = 62.32; 95% CI: 6.47-600.32). And, it is negatively associated with residential gas service (PR = 0.3; 95% CI: 0.16-0.58) and self-administered internal fumigation (PR = 0.37; 95% CI: 0.2-0.69). The presence and abundance of A. aegypti were explained by interrelated socioeconomic, environmental, and behavioral factors where local conditions and habits such as the organization of the patio, knowledge about vector biology, and cleaning containers are identified as main topics for future prevention strategies for the transmission of dengue in the local and national context.
Collapse
|
10
|
Kopanke J, Lee J, Stenglein M, Carpenter M, Cohnstaedt LW, Wilson WC, Mayo C. Exposure of Culicoides sonorensis to Enzootic Strains of Bluetongue Virus Demonstrates Temperature- and Virus-Specific Effects on Virogenesis. Viruses 2021; 13:v13061016. [PMID: 34071483 PMCID: PMC8228769 DOI: 10.3390/v13061016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/25/2023] Open
Abstract
Bluetongue virus (BTV) is a segmented RNA virus transmitted by Culicoides midges. Climatic factors, animal movement, vector species, and viral mutation and reassortment may all play a role in the occurrence of BTV outbreaks among susceptible ruminants. We used two enzootic strains of BTV (BTV-2 and BTV-10) to explore the potential for Culicoides sonorensis, a key North American vector, to be infected with these viruses, and identify the impact of temperature variations on virogenesis during infection. While BTV-10 replicated readily in C. sonorensis following an infectious blood meal, BTV-2 was less likely to result in productive infection at biologically relevant exposure levels. Moreover, when C. sonorensis were co-exposed to both viruses, we did not detect reassortment between the two viruses, despite previous in vitro findings indicating that BTV-2 and BTV-10 are able to reassort successfully. These results highlight that numerous factors, including vector species and exposure dose, may impact the in vivo replication of varying BTV strains, and underscore the complexities of BTV ecology in North America.
Collapse
Affiliation(s)
- Jennifer Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Lee W. Cohnstaedt
- Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture—Agricultural Research Service, Manhattan, KS 66502, USA;
| | - William C. Wilson
- National Bio and Agro-Defense Facility (NBAF), United States Department of Agriculture—Agricultural Research Service, 1880 Kimball Ave, Suite 300 CGAHR, Manhattan, KS 66502, USA;
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
- Correspondence:
| |
Collapse
|
11
|
Mayton EH, Hernandez HM, Vitek CJ, Christofferson RC. A Method for Repeated, Longitudinal Sampling of Individual Aedes aegypti for Transmission Potential of Arboviruses. INSECTS 2021; 12:292. [PMID: 33801709 PMCID: PMC8065608 DOI: 10.3390/insects12040292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022]
Abstract
Mosquito-borne viruses are the cause of significant morbidity and mortality worldwide, especially in low- and middle-income countries. Assessing risk for viral transmission often involves characterization of the vector competence of vector-virus pairings. The most common determination of vector competence uses discreet, terminal time points, which cannot be used to investigate variation in transmission aspects, such as biting behavior, over time. Here, we present a novel method to longitudinally measure individual biting behavior and Zika virus (ZIKV) transmission. Individual mosquitoes were exposed to ZIKV, and from 9 to 24 days post-exposure, individuals were each offered a 180 μL bloodmeal every other day. Biting behavior was observed and characterized as either active probing, feeding, or no bite. The bloodmeal was then collected, spun down, serum collected, and tested for ZIKV RNA via qRT-PCR to determine individuals' vector competence over time. This included whether transmission to the bloodmeal was successful and the titer of expectorated virus. Additionally, serum was inoculated onto Vero cells in order to determine infectiousness of positive recovered sera. Results demonstrate heterogeneity in not only biting patterns but expectorated viral titers among individual mosquitoes over time. These findings demonstrate that the act of transmission is a complex process governed by mosquito behavior and mosquito-virus interaction, and herein we offer a method to investigate this phenomenon.
Collapse
Affiliation(s)
- E. Handly Mayton
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Heather M. Hernandez
- Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.M.H.); (C.J.V.)
| | - Christopher J. Vitek
- Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.M.H.); (C.J.V.)
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
12
|
Raksakoon C, Potiwat R. Current Arboviral Threats and Their Potential Vectors in Thailand. Pathogens 2021; 10:pathogens10010080. [PMID: 33477699 PMCID: PMC7831943 DOI: 10.3390/pathogens10010080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/26/2023] Open
Abstract
Arthropod-borne viral diseases (arboviruses) are a public-health concern in many regions of the world, including Thailand. This review describes the potential vectors and important human and/or veterinary arboviruses in Thailand. The medically important arboviruses affect humans, while veterinary arboviruses affect livestock and the economy. The main vectors described are mosquitoes, but other arthropods have been reported. Important mosquito-borne arboviruses are transmitted mainly by members of the genus Aedes (e.g., dengue, chikungunya, and Zika virus) and Culex (e.g., Japanese encephalitis, Tembusu and West Nile virus). While mosquitoes are important vectors, arboviruses are transmitted via other vectors, such as sand flies, ticks, cimicids (Family Cimicidae) and Culicoides. Veterinary arboviruses are reported in this review, e.g., duck Tembusu virus (DTMUV), Kaeng Khoi virus (KKV), and African horse sickness virus (AHSV). During arbovirus outbreaks, to target control interventions appropriately, it is critical to identify the vector(s) involved and their ecology. Knowledge of the prevalence of these viruses, and the potential for viral infections to co-circulate in mosquitoes, is also important for outbreak prediction.
Collapse
Affiliation(s)
- Chadchalerm Raksakoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Rutcharin Potiwat
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
13
|
Bellone R, Failloux AB. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front Microbiol 2020; 11:584846. [PMID: 33101259 PMCID: PMC7545027 DOI: 10.3389/fmicb.2020.584846] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Mosquito-borne diseases having the greatest impact on human health are typically prevalent in the tropical belt of the world. However, these diseases are conquering temperate regions, raising the question of the role of temperature on their dynamics and expansion. Temperature is one of the most significant abiotic factors affecting, in many ways, insect vectors and the pathogens they transmit. Here, we debate the veracity of this claim by synthesizing current knowledge on the effects of temperature on arboviruses and their vectors, as well as the outcome of their interactions.
Collapse
Affiliation(s)
- Rachel Bellone
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
14
|
Ferreira PG, Tesla B, Horácio ECA, Nahum LA, Brindley MA, de Oliveira Mendes TA, Murdock CC. Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito-Zika Virus Interactions. Front Microbiol 2020; 11:901. [PMID: 32595607 PMCID: PMC7303344 DOI: 10.3389/fmicb.2020.00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquito-pathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28°C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20°C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.
Collapse
Affiliation(s)
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Elvira Cynthia Alves Horácio
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Promove College of Technology, Belo Horizonte, Brazil
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | - Courtney Cuinn Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Odum School of Ecology, University of Georgia, Athens, GA, United States.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States.,Center for Emerging and Global Tropical Diseases, University of Georgia, Athens, GA, United States.,River Basin Center, University of Georgia, Athens, GA, United States.,Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Tramonte AR, Christofferson RC. Investigating the probability of establishment of Zika virus and detection through mosquito surveillance under different temperature conditions. PLoS One 2019; 14:e0214306. [PMID: 30921386 PMCID: PMC6438564 DOI: 10.1371/journal.pone.0214306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/11/2019] [Indexed: 01/21/2023] Open
Abstract
Because of the increasing threat that Zika virus (ZIKV) poses to more sub-tropical area due to increased global travel, there is a need for better understanding of the effect(s) of temperature on the establishment potential of ZIKV within these subtropical, temperate, and/or seasonal Ae. aegypti populations. The first step to determining risk establishment of ZIKV in these regions is to assess ZIKV's ability to infect mosquitoes at less tropical temperatures, and thus be detected through common surveillance programs. To that end, the effect of two rearing temperatures (RT) and extrinsic incubation temperatures (EIT) on infection and dissemination rates was evaluated, as well as the interactions of such. Total, there were four combinations (RT24-EIT24, RT24-EIT28, RT28-EIT24, RT28-EIT28). Further, a stochastic SEIR framework was adapted to determine whether observed data could lead to differential success of establishment of ZIKV in naive mosquito populations. There was no consistent pattern in significant differences found across treatments for either infection or dissemination rates (p>0.05), where only a significant difference was found in infection rates between RT24-EIT24 (44%) and RT28-EIT24 (82.6%). Across all temperature conditions, the model predicted between a 76.4% and 95.4% chance of successful establishment of ZIKV in naive mosquito populations under model assumptions. We further show that excluding the maximum observed infection and dissemination rates likely overestimates the probability of local establishment of ZIKV. These results indicate that 1) there is no straightforward relationship between RT, EIT, and infection/dissemination rates, 2) in more temperate climates, ZIKV may still have the ability to establish in populations of Aedes aegypti, 3) despite an overall lack of significant differences in infection/dissemination rates, temperature may still alter the kinetics of ZIKV within the mosquito enough to affect the likelihood of infection establishment and detection within the context of mosquito surveillance programs, and 4) both the temporal and magnitude qualities of vector competence are necessary for parameterization of within-mosquito virus kinetics.
Collapse
Affiliation(s)
- A. Ryan Tramonte
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
16
|
Borkakoty B, Das M, Sarma K, Jakharia A, Das PK, Bhattacharya C, Apum B, Biswas D. Molecular characterisation and phylogenetic analysis of dengue outbreak in Pasighat, Arunachal Pradesh, Northeast India. Indian J Med Microbiol 2018; 36:37-42. [PMID: 29735824 DOI: 10.4103/ijmm.ijmm_17_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background and Objectives Dengue is one of the most prevalent arboviral diseases in the world with 390 million dengue infections per year. In this study, we report the molecular characterisation of dengue outbreak in Pasighat, Arunachal Pradesh, Northeast India during 2015. Subjects and Methods : A total of 613 dengue-suspected cases were screened for dengue virus by dengue NS1 Ag and anti-dengue IgM antibody depending on the duration of sample collection and onset of symptom. Further, molecular characterisation was done by amplifying the C-PrM region by real-time polymerase chain reaction followed by phylogenetic analysis. Results Molecular characterisation revealed that the dengue outbreak was predominantly due to dengue virus serotype-1 (DENV-1) (90.9%) while DENV-2 was detected in 7.5% of samples. Co-infection of DENV-1 and DENV-2 was detected in one case. Phylogenetic analysis of the DENV-1 strains with the prototype revealed that the DENV-1 strains were grouped within genotype III. Similarly, DENV-2 strains were clustered within genotype IV. The study revealed a change in the predominant serotype in recent years with DENV-3 in 2012 to DENV-1, 2, 3 and 4 in 2014 to DENV-1 in 2015 in the study region. A unique L24M mutation was observed in the DENV-1 strains of Arunachal Pradesh which was absent in all the circulating strains in India except one strain from the state of Kerala in South India. Marked variation within the DENV-2 strains was observed at A102V and I163V in one strain similar to earlier circulating isolates in India. Conclusions The present study reveals a shift in the serotype dominance in the study region. As serotype shifts and secondary infection with a heterologous DENV serotype are frequently associated with disease severity, there is an urgent need for sustained monitoring of the circulating serotypes and enhanced surveillance operations, especially in the monsoon and post-monsoon periods to prevent large-scale, severe dengue outbreaks in this region.
Collapse
Affiliation(s)
| | - Mandakini Das
- ICMR- Regional Medical Research Centre, N. E. Region, Dibrugarh, Assam, India
| | - Kishore Sarma
- ICMR- Regional Medical Research Centre, N. E. Region, Dibrugarh, Assam, India
| | - Aniruddha Jakharia
- ICMR- Regional Medical Research Centre, N. E. Region, Dibrugarh, Assam, India
| | - Palash Kumar Das
- ICMR- Regional Medical Research Centre, N. E. Region, Dibrugarh, Assam, India
| | | | - Basumoti Apum
- Department of Microbiology, General Hospital, Pasighat, East Siang, Arunachal Pradesh, India
| | - Dipankar Biswas
- ICMR- Regional Medical Research Centre, N. E. Region, Dibrugarh, Assam, India
| |
Collapse
|
17
|
Cheng YH, Lin YJ, Chen SC, You SH, Chen WY, Hsieh NH, Yang YF, Liao CM. Assessing health burden risk and control effect on dengue fever infection in the southern region of Taiwan. Infect Drug Resist 2018; 11:1423-1435. [PMID: 30233221 PMCID: PMC6132233 DOI: 10.2147/idr.s169820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The high prevalence of dengue in Taiwan and the consecutive large dengue outbreaks in the period 2014-2015 suggest that current control interventions are suboptimal. Understanding the effect of control effort is crucial to inform future control strategies. OBJECTIVES We developed a framework to measure season-based health burden risk from 2001 to 2014. We reconstructed various intervention coverage to assess the attributable effect of dengue infection control efforts. MATERIALS AND METHODS A dengue-mosquito-human transmission dynamic was used to quantify the vector-host interactions and to estimate the disease epidemics. We used disability-adjusted life years (DALYs) to assess health burden risk. A temperature-basic reproduction number (R0)-DALYs relationship was constructed to examine the potential impacts of temperature on health burden. Finally, a health burden risk model linked a control measure model to evaluate the effect of dengue control interventions. RESULTS We showed that R0 and DALYs peaked at 25°C with estimates of 2.37 and 1387, respectively. Results indicated that most dengue cases occurred in fall with estimated DALYs of 323 (267-379, 95% CI) at 50% risk probability. We found that repellent spray had by far the largest control effect with an effectiveness of ~71% in all seasons. Pesticide spray and container clean-up have both made important contributions to reducing prevalence/incidence. Repellent, pesticide spray, container clean-up together with Wolbachia infection suppress dengue outbreak by ~90%. CONCLUSION Our presented modeling framework provides a useful tool to measure dengue health burden risk and to quantify the effect of dengue control on dengue infection prevalence and disease incidence in the southern region of Taiwan.
Collapse
Affiliation(s)
- Yi-Hsien Cheng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan, Republic of China,
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, Republic of China,
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Nan-Hung Hsieh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, Republic of China,
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, Republic of China,
| |
Collapse
|
18
|
Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R0 of Zika in Aedes aegypti. PLoS Negl Trop Dis 2018; 12:e0006733. [PMID: 30133450 PMCID: PMC6122838 DOI: 10.1371/journal.pntd.0006733] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 09/04/2018] [Accepted: 08/06/2018] [Indexed: 11/19/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus primarily transmitted by Aedes mosquitoes. Like most viral infections, ZIKV viremia varies over several orders of magnitude, with unknown consequences for transmission. To determine the effect of viral concentration on ZIKV transmission risk, we exposed field-derived Ae. aegypti mosquitoes to four doses (103, 104, 105, 106 PFU/mL) representative of potential variation in the field. We demonstrate that increasing ZIKV dose in the blood-meal significantly increases the probability of mosquitoes becoming infected, and consequently disseminating virus and becoming infectious. Additionally, we observed significant interactions between dose and days post-infection on dissemination and overall transmission efficiency, suggesting that variation in ZIKV dose affects the rates of midgut escape and salivary gland invasion. We did not find significant effects of dose on mosquito mortality. We also demonstrate that detecting virus using RT-qPCR approaches rather than plaque assays potentially over-estimates key transmission parameters, including the time at which mosquitoes become infectious and viral burden. Finally, using these data to parameterize an R0 model, we showed that increasing viremia from 104 to 106 PFU/mL increased relative R0 3.8-fold, demonstrating that variation in viremia substantially affects transmission risk. The number of people at risk for contracting Zika virus (ZIKV) is difficult to estimate accurately because most infected hosts are asymptomatic and the relationship between variation in host viremia and transmission to local mosquitoes is unclear. Controlling ZIKV transmission remains a major challenge due to lack of basic information on transmission mechanisms and gaps in mechanistic models. Therefore, our study highlights the importance of variation in viral concentration that current modeling efforts ignore, which will enhance our ability to predict the number of people at risk for arbovirus infection, overall disease transmission, and the efficacy of current and future intervention strategies. We demonstrated that increased concentration of ZIKV in the blood significantly increases the probability and the rate at which mosquitoes become infectious, which increases the risk of ZIKV transmission.
Collapse
|
19
|
Tesla B, Demakovsky LR, Mordecai EA, Ryan SJ, Bonds MH, Ngonghala CN, Brindley MA, Murdock CC. Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc Biol Sci 2018; 285:20180795. [PMID: 30111605 PMCID: PMC6111177 DOI: 10.1098/rspb.2018.0795] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
Temperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29°C, and had a thermal range of 22.7°C-34.7°C. Thus, as temperatures move towards the predicted thermal optimum (29°C) owing to climate change, urbanization or seasonality, Zika could expand north and into longer seasons. By contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5°C warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.
Collapse
Affiliation(s)
- Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Leah R Demakovsky
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- College of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Matthew H Bonds
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Population Health, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- River Basin Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
20
|
Ciota AT, Chin PA, Ehrbar DJ, Micieli MV, Fonseca DM, Kramer LD. Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by Aedes aegypti in Argentina. Am J Trop Med Hyg 2018; 99:417-424. [PMID: 29869610 PMCID: PMC6090362 DOI: 10.4269/ajtmh.18-0097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/16/2018] [Indexed: 11/07/2022] Open
Abstract
Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus-population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.
Collapse
Affiliation(s)
- Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York
- Department of Biomedical Sciences, Albany School of Public Health, State University of New York, Albany, New York
| | - Pamela A. Chin
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York
| | - Dylan J. Ehrbar
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York
| | - Maria Victoria Micieli
- Centro de Estudios Parasitológicos y de Vectores, CONICET, La Plata, Buenos Aires, Argentina
| | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey
| | - Laura D. Kramer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York
- Department of Biomedical Sciences, Albany School of Public Health, State University of New York, Albany, New York
| |
Collapse
|
21
|
Koo C, Tien WP, Xu H, Ong J, Rajarethinam J, Lai YL, Ng LC, Hapuarachchi HC. Highly Selective Transmission Success of Dengue Virus Type 1 Lineages in a Dynamic Virus Population: An Evolutionary and Fitness Perspective. iScience 2018; 6:38-51. [PMID: 30240624 PMCID: PMC6137288 DOI: 10.1016/j.isci.2018.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/19/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
Arbovirus transmission is modulated by host, vector, virus, and environmental factors. Even though viral fitness plays a salient role in host and vector adaptation, the transmission success of individual strains in a heterogeneous population may be stochastic. Our large-scale molecular epidemiological analyses of a dengue virus type 1 population revealed that only a subset of strains (16.7%; n = 6) were able to sustain transmission, despite the population being widely dispersed, dynamic, and heterogeneous. The overall dominance was variable even among the “established” lineages, albeit sharing comparable evolutionary characteristics and replication profiles. These findings indicated that virological parameters alone were unlikely to have a profound effect on the survival of viral lineages, suggesting an important role for non-viral factors in the transmission success of lineages. Our observations, therefore, emphasize the strategic importance of a holistic understanding of vector, human host, and viral factors in the control of vector-borne diseases. The sustained transmission of dengue virus 1 lineages is highly selective The overall dominance is variable even among the “established” lineages The lineage dominance is not merely determined by virus evolution and fitness The non-viral factors play an important role in the survival of virus lineages
Collapse
Affiliation(s)
- Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Wei Ping Tien
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Helen Xu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Janet Ong
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Jayanthi Rajarethinam
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Yee Ling Lai
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | |
Collapse
|
22
|
Rivas GBS, Teles-de-Freitas R, Pavan MG, Lima JBP, Peixoto AA, Bruno RV. Effects of Light and Temperature on Daily Activity and Clock Gene Expression in Two Mosquito Disease Vectors. J Biol Rhythms 2018; 33:272-288. [DOI: 10.1177/0748730418772175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gustavo B. S. Rivas
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Rayane Teles-de-Freitas
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz – Fiocruz & Instituto de Biologia do Exército, Rio de Janeiro, Brazil
| | - Márcio G. Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - José B. P. Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz – Fiocruz & Instituto de Biologia do Exército, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil
| | - Alexandre A. Peixoto
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil
| | - Rafaela Vieira Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Kramer LD. Complexity of virus-vector interactions. Curr Opin Virol 2016; 21:81-86. [PMID: 27580489 PMCID: PMC5138088 DOI: 10.1016/j.coviro.2016.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022]
Abstract
The inter-relationships among viruses, vectors and vertebrate hosts are complex and dynamic and shaped by biotic (e.g., viral strain, vector genetics, host susceptibility) and abiotic (e.g., temperature, rainfall, human land use) factors. It is anticipated that changes in climate, as predicted by the most recent Report of the Intergovernmental Panel on Climate Change, will result in landscape changes and consequent changes in spatiotemporal patterns of arbovirus transmission. To anticipate evolving patterns of virus activity in a dynamically changing environment, it is important to understand how interconnectedness of mosquito and virus biology together with climate influence arbovirus transmission intensity. Vector competence, survivorship, and feeding behavior, among other aspects of vectorial capacity are intrinsically important to estimate risk and design control approaches.
Collapse
Affiliation(s)
- Laura D Kramer
- Wadsworth Center, NYSDOH, United States, Zoonotic Diseases, 5668 State Farm Rd, Slingerlands, NY 12159, USA; School of Public Health, SUNY Albany, One University Place, Rensselaer, NY 12144, USA.
| |
Collapse
|