1
|
Mathias K, Machado RS, Cardoso T, Tiscoski ADB, Piacentini N, Prophiro JS, Generoso JS, Barichello T, Petronilho F. The Blood-Cerebrospinal Fluid Barrier Dysfunction in Brain Disorders and Stroke: Why, How, What For? Neuromolecular Med 2024; 26:38. [PMID: 39278883 DOI: 10.1007/s12017-024-08806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Ischemic stroke (IS) results in the interruption of blood flow to the brain, which can cause significant damage. The pathophysiological mechanisms of IS include ionic imbalances, oxidative stress, neuroinflammation, and impairment of brain barriers. Brain barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (B-CSF), protect the brain from harmful substances by regulating the neurochemical environment. Although the BBB is widely recognized for its crucial role in protecting the brain and its involvement in conditions such as stroke, the B-CSF requires further study. The B-CSF plays a fundamental role in regulating the CSF environment and maintaining the homeostasis of the central nervous system (CNS). However, the impact of B-CSF impairment during pathological events such as IS is not yet fully understood. In conditions like IS and other neurological disorders, the B-CSF can become compromised, allowing the entry of inflammatory substances and increasing neuronal damage. Understanding and preserving the integrity of the B-CSF are crucial for mitigating damage and facilitating recovery after ischemic stroke, highlighting its fundamental role in regulating the CNS during adverse neurological conditions.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taise Cardoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Natália Piacentini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Silva Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
- Laboratory of Experimental Neurology, University of Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
2
|
Knudtzon SL, Nordengen K, Grøntvedt GR, Jarholm J, Eliassen IV, Selnes P, Pålhaugen L, Espenes J, Gísladóttir B, Waterloo K, Fladby T, Kirsebom BE. Age-adjusted CSF t-tau and NfL do not improve diagnostic accuracy for prodromal Alzheimer's disease. Neurobiol Aging 2024; 141:74-84. [PMID: 38838442 DOI: 10.1016/j.neurobiolaging.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Cerebrospinal fluid total-tau (t-tau) and neurofilament light chain (NfL) are biomarkers of neurodegeneration and are increased in Alzheimer's disease (AD). In order to adjust for age-related increases in t-tau and NfL, cross-sectional age-adjusted norms were developed based on amyloid negative cognitively normal (CN) adults aged 41-78 years (CN, n = 137). The age-adjusted norms for t-tau and NfL did not improve receiver operating curve based diagnostic accuracies in individuals with mild cognitive impairment (MCI) due to AD (AD-MCI, n = 144). Furthermore, while NfL was correlated with higher age in AD-MCI, no significant correlation was found for t-tau. The cox proportional hazard models, applied in 429 participants with baseline t-tau and NfL, showed higher hazard ratio of progression to MCI or dementia without age-adjustments (HR = 3.39 for t-tau and HR = 3.17 for NfL), as compared to using our norms (HR = 2.29 for t-tau and HR = 1.89 for NfL). Our results indicate that utilizing normative reference data could obscure significant age-related increases in these markers associated with neurodegeneration and AD leading to a potential loss of overall diagnostic accuracy.
Collapse
Affiliation(s)
- Stephanie Lindgård Knudtzon
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Kaja Nordengen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Vøllo Eliassen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jacob Espenes
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Sandau US, Magaña SM, Costa J, Nolan JP, Ikezu T, Vella LJ, Jackson HK, Moreira LR, Palacio PL, Hill AF, Quinn JF, Van Keuren‐Jensen KR, McFarland TJ, Palade J, Sribnick EA, Su H, Vekrellis K, Coyle B, Yang Y, Falcón‐Perez JM, Nieuwland R, Saugstad JA. Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. J Extracell Vesicles 2024; 13:e12397. [PMID: 38158550 PMCID: PMC10756860 DOI: 10.1002/jev2.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world-wide survey to ISEV members to assess methods considered 'best practices' for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Setty M. Magaña
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa, Avenida da RepúblicaOeirasPortugal
| | - John P. Nolan
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Laura J. Vella
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | - Hannah K. Jackson
- Department of PathologyUniversity of CambridgeCambridgeUK
- Exosis, Inc.Palm BeachFloridaUSA
| | - Lissette Retana Moreira
- Department of Parasitology, Faculty of MicrobiologyUniversity of Costa RicaSan JoséCosta Rica, Central America
- Centro de Investigación en Enfermedades TropicalesUniversity of Costa RicaSan JoséCosta Rica, Central America
| | - Paola Loreto Palacio
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Joseph F. Quinn
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- Portland VA Medical CenterPortlandOregonUSA
| | | | - Trevor J. McFarland
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Joanna Palade
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixArizonaUSA
| | - Eric A. Sribnick
- Department of NeurosurgeryNationwide Children's Hospital, The Ohio State UniversityColumbusOhioUSA
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | | | - Beth Coyle
- Children's Brain Tumour Research Centre, School of MedicineUniversity of Nottingham Biodiscovery Institute, University of NottinghamNottinghamNottinghamshireUK
| | - You Yang
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Juan M. Falcón‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | |
Collapse
|
4
|
Naik A, Adeleye O, Koester SW, Winkler EA, Hartke JN, Karahalios K, Mihaljevic S, Rani A, Raikwar S, Rulney JD, Desai SM, Scherschinski L, Ducruet AF, Albuquerque FC, Lawton MT, Catapano JS, Jadhav AP, Jha RM. Cerebrospinal Fluid Biomarkers for Diagnosis and the Prognostication of Acute Ischemic Stroke: A Systematic Review. Int J Mol Sci 2023; 24:10902. [PMID: 37446092 DOI: 10.3390/ijms241310902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the high incidence and burden of stroke, biological biomarkers are not used routinely in clinical practice to diagnose, determine progression, or prognosticate outcomes of acute ischemic stroke (AIS). Because of its direct interface with neural tissue, cerebrospinal fluid (CSF) is a potentially valuable source for biomarker development. This systematic review was conducted using three databases. All trials investigating clinical and preclinical models for CSF biomarkers for AIS diagnosis, prognostication, and severity grading were included, yielding 22 human trials and five animal studies for analysis. In total, 21 biomarkers and other multiomic proteomic markers were identified. S100B, inflammatory markers (including tumor necrosis factor-alpha and interleukin 6), and free fatty acids were the most frequently studied biomarkers. The review showed that CSF is an effective medium for biomarker acquisition for AIS. Although CSF is not routinely clinically obtained, a potential benefit of CSF studies is identifying valuable biomarkers from the pathophysiologic microenvironment that ultimately inform optimization of targeted low-abundance assays from peripheral biofluid samples (e.g., plasma). Several important catabolic and anabolic markers can serve as effective measures of diagnosis, etiology identification, prognostication, and severity grading. Trials with large cohorts studying the efficacy of biomarkers in altering clinical management are still needed.
Collapse
Affiliation(s)
- Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Olufunmilola Adeleye
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Stefan W Koester
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Ethan A Winkler
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Joelle N Hartke
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Katherine Karahalios
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Sandra Mihaljevic
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Anupama Rani
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Sudhanshu Raikwar
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Jarrod D Rulney
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Shashvat M Desai
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Lea Scherschinski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Felipe C Albuquerque
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Ruchira M Jha
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
5
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
6
|
Li J, He Y, Wang H, Chen J. Microglial/macrophage activation in the cerebrospinal fluid of neuromyelitis optica spectrum disorders. Brain Behav 2022; 12:e2798. [PMID: 36306394 PMCID: PMC9759122 DOI: 10.1002/brb3.2798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/07/2022] Open
Abstract
AIM The aims of this pilot study were to investigate the levels of biomarkers of microglial/macrophage activation-YKL-40, sCD163, and sCD14-in patients with neuromyelitis optica spectrum disorder (NMOSD) and determine the possible associations between these biomarkers and Expanded Disability Status Scale (EDSS) scores. METHODS We measured the levels of three microglia-/macrophage-related proteins (YKL-40, soluble CD163, and soluble CD14) in cerebrospinal fluid (CSF) using enzyme-linked immunosorbent assays. In addition, patients' neurological disability levels were assessed using EDSS scores. RESULTS NMOSD patients had significantly higher CSF levels of YKL-40(210.52 ± 161.62 for NMOSD and 63.18 ± 9.22 for control), sCD163 (87.23 ± 56.85 for NMOSD and 58.14 ± 7.66 for control), and sCD14 (68.22 ± 24.11 for NMOSD and 55.75 ± 9.48 for control) compared with controls. Furthermore, these biomarker levels were positively correlated with EDSS scores in patients with NMOSD (r = 0.303, p = .002 for YKL-40; r = 0310, p = .001 for sCD14; r = 0.250, p = .011 for sCD163), but not in patients with multiple sclerosis or glial fibrillary acidic protein astrocytopathy. CONCLUSION Our findings suggest that microglial/macrophage activation may be implicated in the pathogenesis of NMOSD.
Collapse
Affiliation(s)
- Jinghong Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Chenzhou, China
| | - Yan He
- Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Honghao Wang
- Neuroimmunology & Neuroinfection Group, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinyu Chen
- Neuroimmunology & Neuroinfection Group, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Proteomic Discovery and Validation of Novel Fluid Biomarkers for Improved Patient Selection and Prediction of Clinical Outcomes in Alzheimer’s Disease Patient Cohorts. Proteomes 2022; 10:proteomes10030026. [PMID: 35997438 PMCID: PMC9397030 DOI: 10.3390/proteomes10030026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by progressive cognitive decline. The two cardinal neuropathological hallmarks of AD include the buildup of cerebral β amyloid (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau. The current disease-modifying treatments are still not effective enough to lower the rate of cognitive decline. There is an urgent need to identify early detection and disease progression biomarkers that can facilitate AD drug development. The current established readouts based on the expression levels of amyloid beta, tau, and phospho-tau have shown many discrepancies in patient samples when linked to disease progression. There is an urgent need to identify diagnostic and disease progression biomarkers from blood, cerebrospinal fluid (CSF), or other biofluids that can facilitate the early detection of the disease and provide pharmacodynamic readouts for new drugs being tested in clinical trials. Advances in proteomic approaches using state-of-the-art mass spectrometry are now being increasingly applied to study AD disease mechanisms and identify drug targets and novel disease biomarkers. In this report, we describe the application of quantitative proteomic approaches for understanding AD pathophysiology, summarize the current knowledge gained from proteomic investigations of AD, and discuss the development and validation of new predictive and diagnostic disease biomarkers.
Collapse
|
8
|
Zhang S, Mao C, Li X, Miao W, Teng J. Advances in Potential Cerebrospinal Fluid Biomarkers for Autoimmune Encephalitis: A Review. Front Neurol 2022; 13:746653. [PMID: 35937071 PMCID: PMC9355282 DOI: 10.3389/fneur.2022.746653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Autoimmune encephalitis (AE) is a severe inflammatory disease of the brain. Patients with AE demonstrate amnesia, seizures, and psychosis. Recent studies have identified numerous associated autoantibodies (e.g., against NMDA receptors (NMDARs), LGI1, etc.) involved in the pathogenesis of AE, and the levels of diagnosis and treatment are thus improved dramatically. However, there are drawbacks of clinical diagnosis and treatment based solely on antibody levels, and thus the application of additional biomarkers is urgently needed. Considering the important role of immune mechanisms in AE development, we summarize the relevant research progress in identifying cerebrospinal fluid (CSF) biomarkers with a focus on cytokines/chemokines, demyelination, and nerve damage.
Collapse
|
9
|
Shin SS, Hefti MM, Mazandi VM, Issadore DA, Meaney DF, Schneider ALC, Diaz-Arrastia R, Kilbaugh TJ. Plasma Neurofilament Light and Glial Fibrillary Acidic Protein Levels over Thirty Days in a Porcine Model of Traumatic Brain Injury. J Neurotrauma 2022; 39:935-943. [PMID: 35369719 PMCID: PMC9836679 DOI: 10.1089/neu.2022.0070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To establish the clinical relevance of porcine model of traumatic brain injury (TBI) using the plasma biomarkers of injury with diffusion tensor imaging (DTI) over 30 days, we performed a randomized, blinded, pre-clinical trial using Yorkshire pigs weighing 7-10 kg. Twelve pigs were subjected to Sham injury (n = 5) by skin incision or TBI (n = 7) by controlled cortical impact. Blood samples were collected before the injury, then at approximately 5-day intervals until 30 days. Both groups also had DTI at 24 h and at 30 days after injury. Plasma samples were isolated and single molecule array (Simoa) was performed for glial fibrillary acidic protein (GFAP) and neurofilament light (NFL) levels. Afterwards, brain tissue samples were stained for β-APP. DTI showed fractional anisotropy (FA) decrease in the right corona radiata (ipsilateral to injury), contralateral corona radiata, and anterior corpus callosum at 1 day. At 30 days, ipsilateral corona radiata showed decreased FA. Pigs with TBI also had increase in GFAP and NFL at 1-5 days after injury. Significant difference between Sham and TBI animals continued up to 20 days. Linear regression showed significant negative correlation between ipsilateral corona radiata FA and both NFL and GFAP levels at 1 day. To further validate the degree of axonal injury found in DTI, β-APP immunohistochemistry was performed on a perilesional tissue as well as corona radiata bilaterally. Variable degree of staining was found in ipsilateral corona radiata. Porcine model of TBI replicates the acute increase in plasma biomarkers seen in clinical TBI. Further, long term white matter injury is confirmed in the areas such as the splenium and corona radiata. However, future study stratifying severe and mild TBI, as well as comparison with other subtypes of TBI such as diffuse axonal injury, may be warranted.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| | - Vanessa M. Mazandi
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A. Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea L. C. Schneider
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Huang LK, Chao SP, Hu CJ, Chien LN, Chiou HY, Lo YC, Hsieh YC. Plasma Phosphorylated-tau181 Is a Predictor of Post-stroke Cognitive Impairment: A Longitudinal Study. Front Aging Neurosci 2022; 14:889101. [PMID: 35572134 PMCID: PMC9099290 DOI: 10.3389/fnagi.2022.889101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Post-stroke cognitive impairment (PSCI) cannot be neglected because it drastically influences the daily life of patients and their families. However, there are no studies exploring the association between preclinical blood biomarkers of neurodegeneration including plasma amyloid-β (Aβ), tau, and brain-derived neurotrophic factor (BDNF) together with the risk of PSCI. This longitudinal study was to investigate whether these blood biomarkers with imaging markers of cerebral small vessel disease can improve the prediction for PSCI. In addition, we also explored the association between blood biomarkers with the trajectories of PSCI. Methods Adult patients with first-ever acute ischemic stroke were recruited, and the cognitive and functional abilities of these patients were evaluated. Furthermore, blood biomarkers of neurodegeneration including plasma Aβ-40, Aβ-42, total tau, phosphorylated tau 181 (p-tau181), and BDNF levels and image markers of cerebral small vessel disease were measured. Each patient was followed up at 3 and 12 months at the outpatient department. Results Of 136 patients, 40 and 50 patients developed PSCI at 3 and 12 months after stroke, respectively. In functional trajectories, 27 patients did not have PSCI at 3 months but did at 12 months. By contrast, the PSCI status of 17 patients at 3 months was reversed at 12 months. Patients with high-acute plasma p-tau181 had a significantly lower PSCI risk at 3 months (odds ratio [OR] = 0.62, 95% CI = 0.40-0.94, p = 0.0243) and 12 months (OR = 0.69, 95% CI = 0.47-0.99, p = 0.0443) after adjustment for covariates and image biomarkers. Discrimination and reclassification statistics indicated that the p-tau181 level can improve discrimination ability for PSCI at 3 and 12 months, respectively. In addition, the plasma p-tau181 level was the highest in subjects without PSCI followed by those with delayed-onset PSCI and early-onset PSCI with reversal, whereas the lowest plasma p-tau181 level was found among those with persistent PSCI, showing a significant trend test (p = 0.0081). Conclusion Plasma p-tau181 is a potential biomarker for predicting early- and delayed-onset PSCI. Future studies should incorporate plasma p-tau181 as an indicator for timely cognitive intervention in the follow-up of patients with stroke.
Collapse
Affiliation(s)
- Li-Kai Huang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Shu-Ping Chao
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Nien Chien
- Graduate Institution of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yi Chiou
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- Master Program in Applied Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Hsieh
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program in Applied Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Nouri-Vaskeh M, Khalili N, Sadighi A, Yazdani Y, Zand R. Biomarkers for Transient Ischemic Attack: A Brief Perspective of Current Reports and Future Horizons. J Clin Med 2022; 11:jcm11041046. [PMID: 35207321 PMCID: PMC8877275 DOI: 10.3390/jcm11041046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Cerebrovascular disease is the leading cause of long-term disability in the world and the third-leading cause of death in the United States. The early diagnosis of transient ischemic attack (TIA) is of great importance for reducing the mortality and morbidity of cerebrovascular diseases. Patients with TIA have a high risk of early subsequent ischemic stroke and the development of permanent nervous system lesions. The diagnosis of TIA remains a clinical diagnosis that highly relies on the patient's medical history assessment. There is a growing list of biomarkers associated with different components of the ischemic cascade in the brain. In this review, we take a closer look at the biomarkers of TIA and their validity with a focus on the more clinically important ones using recent evidence of their reliability for practical usage.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr 7618815676, Iran;
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran 1419733151, Iran
| | - Neda Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran 1449614535, Iran;
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Alireza Sadighi
- Neuroscience Institute, Geisinger Health System, Danville, PA 17822, USA;
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Ramin Zand
- Neuroscience Institute, Geisinger Health System, Danville, PA 17822, USA;
- Neuroscience Institute, Pennsylvania State University, State College, PA 16801, USA
- Correspondence: or ; Tel.: +1-570-808-7330; Fax: +1-570-808-3209
| |
Collapse
|
12
|
Margraf NG, Jensen-Kondering U, Weiler C, Leypoldt F, Maetzler W, Philippen S, Bartsch T, Flüh C, Röcken C, Möller B, Royl G, Neumann A, Brüggemann N, Roeben B, Schulte C, Bender B, Berg D, Kuhlenbäumer G. Cerebrospinal Fluid Biomarkers in Cerebral Amyloid Angiopathy: New Data and Quantitative Meta-Analysis. Front Aging Neurosci 2022; 14:783996. [PMID: 35237145 PMCID: PMC8884145 DOI: 10.3389/fnagi.2022.783996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/03/2022] [Indexed: 01/31/2023] Open
Abstract
Background To evaluate the diagnostic accuracy of cerebrospinal fluid (CSF) biomarkers in patients with probable cerebral amyloid angiopathy (CAA) according to the modified Boston criteria in a retrospective multicentric cohort. Methods Beta-amyloid 1-40 (Aβ40), beta-amyloid 1-42 (Aβ42), total tau (t-tau), and phosphorylated tau 181 (p-tau181) were measured in 31 patients with probable CAA, 28 patients with Alzheimer’s disease (AD), and 30 controls. Receiver-operating characteristics (ROC) analyses were performed for the measured parameters as well as the Aβ42/40 ratio to estimate diagnostic parameters. A meta-analysis of all amenable published studies was conducted. Results In our data Aβ42/40 (AUC 0.88) discriminated best between CAA and controls while Aβ40 did not perform well (AUC 0.63). Differentiating between CAA and AD, p-tau181 (AUC 0.75) discriminated best in this study while Aβ40 (AUC 0.58) and Aβ42 (AUC 0.54) provided no discrimination. In the meta-analysis, Aβ42/40 (AUC 0.90) showed the best discrimination between CAA and controls followed by t-tau (AUC 0.79), Aβ40 (AUC 0.76), and p-tau181 (AUC 0.71). P-tau181 (AUC 0.76), Aβ40 (AUC 0.73), and t-tau (AUC 0.71) differentiated comparably between AD and CAA while Aβ42 (AUC 0.54) did not. In agreement with studies examining AD biomarkers, Aβ42/40 discriminated excellently between AD and controls (AUC 0.92–0.96) in this study as well as the meta-analysis. Conclusion The analyzed parameters differentiate between controls and CAA with clinically useful accuracy (AUC > ∼0.85) but not between CAA and AD. Since there is a neuropathological, clinical and diagnostic continuum between CAA and AD, other diagnostic markers, e.g., novel CSF biomarkers or other parameters might be more successful.
Collapse
Affiliation(s)
- Nils G. Margraf
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
- *Correspondence: Nils G. Margraf,
| | - Ulf Jensen-Kondering
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Caroline Weiler
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel/Lübeck, Germany
| | - Walter Maetzler
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Thorsten Bartsch
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Charlotte Flüh
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Bettina Möller
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Georg Royl
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Alexander Neumann
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Benjamin Roeben
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Neuroradiology, Diagnostical and Interventional Neuroradiology, University Hospital of Tübingen, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
13
|
Datta A, Sarmah D, Bhattacharya P. Response to Letter to Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res 2021; 13:359-361. [PMID: 34778940 DOI: 10.1007/s12975-021-00967-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/12/2023]
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
14
|
Mages B, Fuhs T, Aleithe S, Blietz A, Hobusch C, Härtig W, Schob S, Krueger M, Michalski D. The Cytoskeletal Elements MAP2 and NF-L Show Substantial Alterations in Different Stroke Models While Elevated Serum Levels Highlight Especially MAP2 as a Sensitive Biomarker in Stroke Patients. Mol Neurobiol 2021; 58:4051-4069. [PMID: 33931805 PMCID: PMC8280005 DOI: 10.1007/s12035-021-02372-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
In the setting of ischemic stroke, the neurofilament subunit NF-L and the microtubule-associated protein MAP2 have proven to be exceptionally ischemia-sensitive elements of the neuronal cytoskeleton. Since alterations of the cytoskeleton have been linked to the transition from reversible to irreversible tissue damage, the present study investigates underlying time- and region-specific alterations of NF-L and MAP2 in different animal models of focal cerebral ischemia. Although NF-L is increasingly established as a clinical stroke biomarker, MAP2 serum measurements after stroke are still lacking. Therefore, the present study further compares serum levels of MAP2 with NF-L in stroke patients. In the applied animal models, MAP2-related immunofluorescence intensities were decreased in ischemic areas, whereas the abundance of NF-L degradation products accounted for an increase of NF-L-related immunofluorescence intensity. Accordingly, Western blot analyses of ischemic areas revealed decreased protein levels of both MAP2 and NF-L. The cytoskeletal alterations are further reflected at an ultrastructural level as indicated by a significant reduction of detectable neurofilaments in cortical axons of ischemia-affected areas. Moreover, atomic force microscopy measurements confirmed altered mechanical properties as indicated by a decreased elastic strength in ischemia-affected tissue. In addition to the results from the animal models, stroke patients exhibited significantly elevated serum levels of MAP2, which increased with infarct size, whereas serum levels of NF-L did not differ significantly. Thus, MAP2 appears to be a more sensitive stroke biomarker than NF-L, especially for early neuronal damage. This perspective is strengthened by the results from the animal models, showing MAP2-related alterations at earlier time points compared to NF-L. The profound ischemia-induced alterations further qualify both cytoskeletal elements as promising targets for neuroprotective therapies.
Collapse
Affiliation(s)
- Bianca Mages
- Institute of Anatomy, Leipzig University, Leipzig, Germany.
| | - Thomas Fuhs
- Section of Soft Matter Physics, Faculty of Physics and Geosciences, Leipzig University, Leipzig, Germany
| | - Susanne Aleithe
- Department of Neurology, Leipzig University, Leipzig, Germany
| | | | | | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, Leipzig University, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
15
|
Onatsu J, Vanninen R, JÄkÄlÄ P, Mustonen P, Pulkki K, Korhonen M, Hedman M, HÖglund K, Blennow K, Zetterberg H, Herukka SK, Taina M. Tau, S100B and NSE as Blood Biomarkers in Acute Cerebrovascular Events. In Vivo 2021; 34:2577-2586. [PMID: 32871787 DOI: 10.21873/invivo.12075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM We aimed to analyze the diagnostic value of total tau (T-tau), S-100 calcium-binding protein B (S100B) and neuron-specific enolase (NSE) as blood-based biomarkers in acute ischemic stroke (AIS) or transient ischemic attack (TIA), and their correlation with symptom severity, infarct size, etiology and outcome. PATIENTS AND METHODS A total of 102 patients with stroke and 35 with TIA were analyzed. Subacute (63.8±50.1 h) plasma T-tau was measured with the single-molecule array (Simoa) method and NSE and S100B were evaluated for comparison. We evaluated biomarkers associations with: (i) diagnosis of AIS or TIA, (ii) cerebral infarction volume in the brain computed tomography, (iii) stroke etiology, (iv) clinical stroke severity and (iv) functional outcome after three months. RESULTS T-tau was higher in patients with stroke [1.0 pg/ml (IQR=0.3-2.2)] than with TIA [0.5 pg/ml (IQR=0.2-1.0), p=0.02]. The levels of S100B were also increased in stroke [0.082 μg/l (IQR=0.049-0.157)] patients compared to TIA patients [0.045 μg/l (IQR=0.03-0.073), p<0.001]. However, when the results were adjusted for confounders, significance was lost. Serum levels of NSE among patients with AIS [11.85 μg/l (IQR=9.30-16.14)] compared to those with TIA [10.96 μg/l (IQR=7.98-15.33), p=0.30] were equal. T-tau and S100B concentrations significantly correlated with cerebral infarction volume (r=0.412, p<0.001) and (r=0.597, p<0.001), also after corrections (p<0.001). mRS scores at three-month follow-up correlated with T-tau (r=0.248, p=0.016) and S100B concentrations (r=0.205, p=0.045). CONCLUSION For the diagnosis of TIA vs. AIS, blood T-tau and S100B concentrations discriminated only modestly. Additionally, groups were not separable after measuring of T-tau and S100B levels in the blood. T-tau and S100B concentrations correlated with the infarct size, but were not alone predictive for functional outcome at 3 months.
Collapse
Affiliation(s)
- Juha Onatsu
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland .,Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland.,Department of Clinical Radiology, University of Eastern Finland, Kuopio, Finland
| | - Pekka JÄkÄlÄ
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland.,Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Pirjo Mustonen
- Department of Cardiology, Keski-Suomi Central Hospital, Jyväskylä, Finland
| | - Kari Pulkki
- Department of Clinical Chemistry, University of Eastern Finland, Kuopio, Finland.,Eastern Finland Laboratory Centre, Kuopio, Finland
| | - Miika Korhonen
- Department of Clinical Radiology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Marja Hedman
- Department of Clinical Radiology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Kina HÖglund
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, U.K.,UK Dementia Research Institute, London, U.K
| | - Sanna-Kaisa Herukka
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland.,Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Taina
- Department of Clinical Radiology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland.,Department of Clinical Radiology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Hansen RB, Laursen CCH, Nawaz N, Madsen JS, Nielsen HH, Kruuse C, Møller A, Degn M, Lambertsen KL. Leukocyte TNFR1 and TNFR2 Expression Contributes to the Peripheral Immune Response in Cases with Ischemic Stroke. Cells 2021; 10:cells10040861. [PMID: 33918875 PMCID: PMC8069317 DOI: 10.3390/cells10040861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Tumor necrosis factor receptor 1 and 2 (TNFR1 and TNFR2) have been found in brain parenchyma of stroke patients, and plasma levels are increased in the acute phase of stroke. We evaluated associations between TNFR1 and TNFR2 plasma levels and stroke severity, infarct size, and functional outcome. Furthermore, we examined cellular expression of TNFR1 and TNFR2 on leukocyte subpopulations to explore the origin of the increased receptor levels. Blood samples were taken from 33 acute ischemic stroke patients and 10 healthy controls. TNFR1 and TNFR2 plasma concentrations were measured and correlated against the Scandinavian Stroke Scale at admission, infarct volume, and the modified Rankin Scale score three months after stroke onset. Classical, intermediate, and non-classical monocytes as well as neutrophils were purified, and cellular expression of TNFR1 and TNFR2 was examined using flow cytometry. TNFR1 and TNFR2 plasma levels were both increased after ischemic stroke, but we found no correlation with patient outcome measurements. Compared to healthy controls, ischemic stroke patients had decreased non-classical monocyte and neutrophil populations expressing TNFR1 and increased neutrophils expressing TNFR2, and decreased non-classical populations co-expressing both TNFR1 and TNFR2. This study supports the hypothesis of an acute immunological response orchestrated by the peripheral immune system following an ischemic stroke. However, the origin of the increased TNFR1 and TNFR2 plasma levels could not be clearly linked to peripheral monocytes or neutrophils. Future studies are needed and will help clarify the potential role as treatment target.
Collapse
Affiliation(s)
- Rikke B. Hansen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (R.B.H.); (C.C.H.L.); (N.N.); (H.H.N.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Cathrine C. H. Laursen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (R.B.H.); (C.C.H.L.); (N.N.); (H.H.N.)
- Brain Research—Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Niala Nawaz
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (R.B.H.); (C.C.H.L.); (N.N.); (H.H.N.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Jonna S. Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (R.B.H.); (C.C.H.L.); (N.N.); (H.H.N.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Brain Research—Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Christina Kruuse
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark;
- Department of Neurology, Herlev Gentofte Hospital, 2730 Herlev, Denmark
| | - Arne Møller
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Institute of Clinical Medicine, Center of Functionally Integrative Neuroscience, 8000 Aarhus, Denmark
| | - Matilda Degn
- Pediatric Oncology Laboratory, Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Correspondence: (M.D.); (K.L.L.); Tel.: +45-6061-0084 (M.D.); +45-6550-3806 (K.L.L.)
| | - Kate L. Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (R.B.H.); (C.C.H.L.); (N.N.); (H.H.N.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Brain Research—Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- OPEN—Open Patient data Explorative Network, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Correspondence: (M.D.); (K.L.L.); Tel.: +45-6061-0084 (M.D.); +45-6550-3806 (K.L.L.)
| |
Collapse
|
17
|
Prediction of Outcome After Endovascular Embolectomy in Anterior Circulation Stroke Using Biomarkers. Transl Stroke Res 2021; 13:65-76. [PMID: 33723754 PMCID: PMC8766380 DOI: 10.1007/s12975-021-00905-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 10/29/2022]
Abstract
Stroke is a major public health problem that can cause a long-term disability or death due to brain damage. Serious stroke is frequently caused by a large vessel occlusion in the anterior circulation, which should be treated by endovascular embolectomy if possible. In this study, we investigated the use of the brain damage biomarkers tau, NFL, NSE, GFAp, and S100B to understand the progression of nervous tissue damage and their relationship to outcome in such stroke after endovascular treatment. Blood samples were taken from 90 patients pre-treatment and 2 h, 24 h, 48 h, 72 h and 3 months after endovascular treatment. Stroke-related neurological deficit was estimated using the National Institute of Health Stroke Scale (NIHSS) at admission and at 24 h. Neurological outcome was evaluated at 3 months. After stroke, tau, NFL, GFAp and S100B increased in a time dependent manner, while NSE remained constant over time. At 3 months, tau and GFAp levels were back to normal whereas NFL was still high. Tau, NFL and GFAp correlated well to outcome, as well as to infarct volume and NIHSS at 24 h. The best time for prediction of poor outcome was different for each biomarker. However, the combination of NIHSS at 24 h with either tau, NFL or GFAp at 48 h gave the best prediction. The use of biomarkers in the early setting after endovascular treatment of stroke will lead to a simplified and standardized way to estimate the nervous tissue damage and possibly complement the clinical judgement in foreseeing the need of rehabilitation measures.
Collapse
|
18
|
Wang Y, Li B, Jiang Y, Zhang R, Meng X, Zhao X, Wang Y, Zhao X, Liu G. YKL-40 Is Associated With Ultrasound-Determined Carotid Atherosclerotic Plaque Instability. Front Neurol 2021; 12:622869. [PMID: 33679587 PMCID: PMC7925412 DOI: 10.3389/fneur.2021.622869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Aims: YKL-40, an inflammatory biomarker, has been reported to be involved in the process and progression of atherosclerosis. Several studies have investigated the association between YKL-40 and plaque and suggested YKL-40 might be a potential biomarker for plaque instability. This study aimed to investigate the association between YKL-40 and carotid plaque instability. Methods: Based on a community-based study in Beijing from February 2014 to May 2016, 1,132 participants with carotid plaques were enrolled in this study. Data on demographics and medical history were collected through face-to-face interviews, and fasting blood samples were collected and stored. We used ultrasound to evaluate the presence of carotid plaque and its instability. The level of YKL-40 was measured by enzyme-linked immunosorbent assay (ELISA). Multivariate logistic regression analysis was performed to investigate the association between YKL-40 level and carotid atherosclerotic plaque instability. Results: The mean age of the 1,132 participants was 58.0 (52.0-64.0) years, and 560 (49.5%) were male. Unstable plaques were detected in 855 (75.53%) participants. YKL-40 level was classified into four groups according to its quartile: quartile 1: <25.47 ng/mL, quartile 2: 25.47-39.53 ng/mL, quartile 3: 39.53-70.55 ng/mL, quartile 4: ≥70.55 ng/mL. After adjusting for age, sex, smoking, alcohol drinking, medical history, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, homocysteine, high-sensitivity C-reactive protein, and plaque thickness, the top quartiles of YKL-40 level were significantly associated with unstable plaque (quartile 3: OR 2.10, 95% CI 1.29-3.40; quartile 4: OR 1.70, 95% CI 1.04-2.80). Conclusion: This study found that YKL-40 was associated with carotid plaque instability determined by ultrasound. Individuals with high YKL-40 may have a higher risk of unstable carotid plaque.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bohong Li
- Department of Rehabilitation Medicine, The People's Hospital of Xiangzhou District, Zhuhai, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Runhua Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xihai Zhao
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School for Medicine, Tsinghua University, Beijing, China
| | - Gaifen Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
19
|
Sisman AB, Bayar MD, İçöz S, Yilmaz V, Kürtüncü M, Tüzün E, Ertaş M, Baştan B. A Case of HaNDL with Low Cerebrospinal Fluid Level of Neurofilament Light Chain. Case Rep Neurol 2020; 12:334-338. [PMID: 33173493 PMCID: PMC7588683 DOI: 10.1159/000508944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 11/19/2022] Open
Abstract
Diagnosis of the syndrome of headache and neurological deficits with cerebrospinal fluid (CSF) lymphocytosis (HaNDL) is based on clinical features, and no diagnostic biomarkers are available. We present a case presenting with characteristic features of HaNDL and an MRI lesion in the splenium of corpus callosum. CSF neurofilament light chain (NFL) levels were assessed in this patient together with 7 additional HaNDL patients, 18 multiple sclerosis (MS) patients, and 15 primary headache patients. Both HaNDL and primary headache patients showed significantly lower NFL levels than MS patients. Our results suggest that increased CSF levels of NFL and neuroaxonal loss are not characteristic features of HaNDL. Neurological disorders mimicking HaNDL often present with increased levels of NFL, and thus CSF measurement of NFL might be useful in differential diagnosis of HaNDL.
Collapse
Affiliation(s)
- Aysel Büsra Sisman
- Department of Neurology, Haseki Research and Training Hospital, Health Sciences University, Istanbul, Turkey
| | - Muhammet Duran Bayar
- Department of Neurology, Haseki Research and Training Hospital, Health Sciences University, Istanbul, Turkey
| | - Sema İçöz
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Turkey
| | - Murat Kürtüncü
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Turkey
| | - Mustafa Ertaş
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Birgül Baştan
- Department of Neurology, Haseki Research and Training Hospital, Health Sciences University, Istanbul, Turkey
| |
Collapse
|
20
|
Babapour Mofrad R, Tijms BM, Scheltens P, Barkhof F, van der Flier WM, Sikkes SA, Teunissen CE. Sex differences in CSF biomarkers vary by Alzheimer disease stage and APOE ε4 genotype. Neurology 2020; 95:e2378-e2388. [DOI: 10.1212/wnl.0000000000010629] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
ObjectiveTo evaluate sex differences in CSF biomarkers, taking the potential modifying role of clinical disease stage and APOE ε4 genotype into account.MethodWe included participants (n = 1,801) with probable Alzheimer disease (AD) dementia (n = 937), mild cognitive impairment (MCI; n = 437), and subjective cognitive decline (SCD; n = 427). Main outcomes were CSF β-amyloid1–42 (Aβ42), total tau (t-Tau), and tau phosphorylated at threonine 181 (p-Tau) levels. Age-corrected 3-way interactions between sex, disease stage (i.e., syndrome diagnosis at baseline), and APOE ε4 were tested with linear regression analyses for each outcome measure. In case of significant interactions (p < 0.05), sex differences were further evaluated by stratifying analyses for clinical disease stage and APOE ε4 genotype, including age as a covariate.ResultsThree-way interactions were significant for t-Tau (p < 0.001) and p-Tau (p < 0.01) but not Aβ42. In APOE ε4 carriers, women showed higher p-Tau concentrations than men in SCD (Cohen d [95% confidence interval]: t-Tau = 0.52 [0.19–0.84], p < 0.001; p-Tau = 0.44 [0.11–0.77] p = 0.004) and MCI (Cohen d [95% CI]: t-Tau = 0.54 [0.28–0.80], p < 0.001; p-Tau = 0.52 [0.26–0.77], p < 0.001) but not in AD dementia. In APOE ε4 noncarriers, women showed higher p-Tau concentrations in MCI (Cohen d [95% CI]: t-Tau = 0.49 [0.17–0.80], p = 0.002; p-Tau = 0.47 [0.16–0.78], p = 0.003) and AD dementia (Cohen d [95% CI]: t-Tau = 0.42 [0.19–0.65], p < 0.001; p-Tau = 0.38 [0.15–0.61] p = 0.002) but not in SCD.ConclusionsWithin APOE ε4 carriers, sex differences in CSF p-Tau are more evident in early disease stages, whereas for APOE ε4 noncarriers, sex differences are more evident in advanced disease stages. These findings suggest that the effect of APOE ε4 on sex differences in CSF biomarkers depends on disease stage in AD.
Collapse
|
21
|
Wijerathne H, Witek MA, Baird AE, Soper SA. Liquid biopsy markers for stroke diagnosis. Expert Rev Mol Diagn 2020; 20:771-788. [PMID: 32500751 PMCID: PMC8157911 DOI: 10.1080/14737159.2020.1777859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION There is a short time window (4.5 h) for the effective treatment of acute ischemic stroke (AIS), which uses recombinant tissue plasminogen activator (rt-PA). Unfortunately, this short therapeutic timeframe is a contributing factor to the relatively small number of patients (~7%) that receive rt-PA. While neuroimaging is the major diagnostic for AIS, more timely decisions could be made using a molecular diagnostic. AREAS COVERED In this review, we survey neuroimaging techniques used to diagnose stroke and their limitations. We also highlight the potential of various molecular/cellular biomarkers, especially peripheral blood-based (i.e. liquid biopsy) biomarkers, for diagnosing stroke to allow for precision decisions on managing stroke in a timely manner. Both protein and nucleic acid molecular biomarkers are reviewed. In particular, mRNA markers are discussed for AIS and hemorrhagic stroke diagnosis sourced from both cells and extracellular vesicles. EXPERT OPINION While there are a plethora of molecular markers for stroke diagnosis that have been reported, they have yet to be FDA-cleared. Possible reasons include the inability for these markers to appear in sufficient quantities for highly sensitive clinical decisions within the rt-PA therapeutic time.
Collapse
Affiliation(s)
- Harshani Wijerathne
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS, USA
| | - Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS, USA
- Department of Cancer Biology and KU Cancer Center, University of Kansas Medical Center, Cancer Center, Kansas City, KS, USA
| | - Alison E. Baird
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS, USA
- Department of Cancer Biology and KU Cancer Center, University of Kansas Medical Center, Cancer Center, Kansas City, KS, USA
- Bio Engineering Program, The University of Kansas, Lawrence, KS, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS, USA
- Biofluidica, Inc, San Diego, CA, USA
| |
Collapse
|
22
|
Nielsen HH, Soares CB, Høgedal SS, Madsen JS, Hansen RB, Christensen AA, Madsen C, Clausen BH, Frich LH, Degn M, Sibbersen C, Lambertsen KL. Acute Neurofilament Light Chain Plasma Levels Correlate With Stroke Severity and Clinical Outcome in Ischemic Stroke Patients. Front Neurol 2020; 11:448. [PMID: 32595585 PMCID: PMC7300211 DOI: 10.3389/fneur.2020.00448] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Ischemic stroke causes increased blood–brain barrier permeability and release of markers of axonal damage and inflammation. To investigate diagnostic and prognostic roles of neurofilament light chain (NF-L), we assessed levels of NF-L, S100B, interleukin-6 (IL-6), E-selectin, vascular endothelial growth factor-A (VEGF-A), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) in patients with acute ischemic stroke or transient ischemic attack (TIA) and healthy controls. Methods: We studied neurofilament (NF) expression in 2 cases of human postmortem ischemic stroke, representing infarcts aged 3- to >7-days. In a prospective study, we measured plasma NF-L and inflammatory markers <8 h of symptom onset and at 72 h in acute ischemic stroke (n = 31), TIA (n = 9), and healthy controls (n = 29). We assessed whether NF-L, S100B, and IL-6 were associated with clinical severity on admission (Scandinavian Stroke Scale, SSS), diagnosis of ischemic stroke vs. TIA, and functional outcome at 3 months (modified Rankin Scale, mRS). Results: NF expression increased in ischemic neurons and in the infarcted brain parenchyma after stroke. Plasma NF-L levels were higher in stroke patients than in TIA patients and healthy controls, but IL-6 levels were similar. Higher acute NF-L levels were associated with lower SSS scores at admission and higher mRS scores at 3 months. No correlation was observed between NF-L and S100B, NF-L and IL-6, nor between S100B or IL-6 and SSS or mRS. Compared to controls, stroke patients had significantly higher VEGF-A and VCAM-1 at <8 h that remained elevated at 72 h, with significantly higher VEGF-A at <8 h; ICAM-1 was significantly increased at <8 h, while S100B and E-selectin were unchanged. Conclusions: Plasma NF-L levels, but not IL-6 and S100B, were significant predictors of clinical severity on admission and functional outcome at 3 months. Plasma NF-L is a promising biomarker of functional outcome after ischemic stroke.
Collapse
Affiliation(s)
- Helle H Nielsen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, Odense, Denmark
| | - Catarina B Soares
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sofie S Høgedal
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Jonna S Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Rikke B Hansen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Charlotte Madsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Bettina H Clausen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, Odense, Denmark
| | - Lars Henrik Frich
- The Orthopaedic Research Unit, Department of Clinical Research, Odense, Denmark.,OPEN, Open Patient data Explorative Network, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Matilda Degn
- Pediatric Oncology Laboratory, Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Sibbersen
- BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, Odense, Denmark.,Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Kate L Lambertsen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, Odense, Denmark.,OPEN, Open Patient data Explorative Network, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Manniche C, Simonsen AH, Hasselbalch SG, Andreasson U, Zetterberg H, Blennow K, Høgh P, Juhler M, Hejl AM. Cerebrospinal Fluid Biomarkers to Differentiate Idiopathic Normal Pressure Hydrocephalus from Subcortical Ischemic Vascular Disease. J Alzheimers Dis 2020; 75:937-947. [PMID: 32390628 DOI: 10.3233/jad-200036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) remains a challenge to differentiate from subcortical ischemic vascular disease (SIVD). Despite major research efforts, the cerebrospinal fluid (CSF) biomarker profiles of the two diseases are still not known in detail. OBJECTIVE To determine if novel CSF biomarkers, neurofilament light (NFL) reflecting axonal damage, the synaptic protein neurogranin (NG), and the astroglial marker chitinase-3-like protein 1 (YKL-40), and the core Alzheimer's disease (AD) biomarkers, amyloid-β 42 (Aβ42), total tau (t-tau), phosphorylated tau (p-tau), can differentiate iNPH from SIVD. Patients with AD and healthy controls (HC) were included for comparison purposes. METHODS Patients with iNPH (n = 28), SIVD (n = 30), AD (n = 57), and HC (n = 33) were retrospectively included from the Danish Dementia Biobank. All patients with iNPH had effect of shunt surgery with a follow-up period of 4 to 69 months. CSF biomarkers were measured using immunoassays. RESULTS Lower levels of NFL, NG, Aβ42, and t-tau were found in patients with iNPH versus SIVD, while YKL-40 and p-tau were similar in the two diseases. NFL and Aβ42 were the most reliable biomarkers to differentiate iNPH from SIVD with an area under the curve (AUC) on 0.82 and 0.80, respectively. Combining NFL with Aβ42, t-tau, and p-tau resulted in an AUC of 0.90, which was equivalent to the diagnostic accuracy of all six biomarkers combined. CONCLUSION An addition of NFL to the CSF panel of Aβ42, t-tau, and p-tau may improve the differentiation of iNPH from SIVD.
Collapse
Affiliation(s)
- Christina Manniche
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Peter Høgh
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
24
|
Lambertsen KL, Soares CB, Gaist D, Nielsen HH. Neurofilaments: The C-Reactive Protein of Neurology. Brain Sci 2020; 10:brainsci10010056. [PMID: 31963750 PMCID: PMC7016784 DOI: 10.3390/brainsci10010056] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofilaments (NFs) are quickly becoming the biomarkers of choice in the field of neurology, suggesting their use as an unspecific screening marker, much like the use of elevated plasma C-reactive protein (CRP) in other fields. With sensitive techniques being readily available, evidence is growing regarding the diagnostic and prognostic value of NFs in many neurological disorders. Here, we review the latest literature on the structure and function of NFs and report the strengths and pitfalls of NFs as markers of neurodegeneration in the context of neurological diseases of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Kate L. Lambertsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
| | - Catarina B. Soares
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
| | - David Gaist
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
- Department of Clinical Research, Neurology Research Unit, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
- Department of Clinical Research, Neurology Research Unit, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Correspondence:
| |
Collapse
|
25
|
Hermansson L, Yilmaz A, Price RW, Nilsson S, McCallister S, Makadzange T, Das M, Zetterberg H, Blennow K, Gisslen M. Plasma concentration of neurofilament light chain protein decreases after switching from tenofovir disoproxil fumarate to tenofovir alafenamide fumarate. PLoS One 2019; 14:e0226276. [PMID: 31826005 PMCID: PMC6905536 DOI: 10.1371/journal.pone.0226276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
Background Because tenofovir alafenamide (TAF) leads to significantly lower plasma tenofovir concentrations than tenofovir disoproxil fumarate (TDF) and is a stronger substrate for P-glycoprotein (P-gp) than TDF, TAF could lead to decreased central nervous system (CNS) tenofovir exposure than TDF. We aimed to determine if switching from TDF to TAF increases the risk of neuronal injury, by quantifying plasma levels of neurofilament light protein (NfL), a sensitive marker of neuronal injury in HIV CNS infection. Methods Plasma NfL concentration was measured at baseline, week 24, and week 84 in stored plasma samples from 416 participants (272 switching to elvitegravir (E)/cobicistat (C)/emtricitabine (F)/TAF and 144 continuing E/C/F/TDF) enrolled in the randomized, active-controlled, multicenter, open-label, noninferiority Gilead GS-US-292-0109 trial. Results While plasma NfL levels in both groups were within the normal range, we found a small but significant decrease in the E/C/F/TAF arm after 84 weeks from a geometric mean of 9.3 to 8.8 pg/mL (5.4% decline, 95% CI 2.0–8.4, p = 0.002). This change was significantly different (p = 0.001) from that of the E/C/F/TDF arm, in which plasma NfL concentration changed from 9.7 pg/mL at baseline to 10.2 pg/mL at week 84 (5.8% increase, 95% CI -0.8–12.9, p = 0.085). This increase is in line with what could be expected in normal ageing. Plasma NfL concentrations significantly correlated with age. No correlation was found between plasma NfL and serum creatinine. Conclusions We found no biomarker evidence of CNS injury when switching from TDF to TAF. It is unclear whether the small decrease in plasma NfL found after switch to TAF is of any clinical relevance, particularly with plasma NfL levels in both arms remaining within the limits found in HIV-negative controls. These results indicate that switching from TDF to TAF appears safe with regard to neuronal injury.
Collapse
Affiliation(s)
- Linn Hermansson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, United States of America
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Scott McCallister
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
| | - Tariro Makadzange
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
| | - Moupali Das
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, UCL, London, United Kingdom
| | - Kaj Blennow
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
26
|
Zhao J, Wang C, Zhang Y, Sun R, Wang H, Li G, Zhang J. Elevated CHI3L1 and OPN levels in patients with anti-N-methyl-d-aspartate receptor encephalitis. J Neuroimmunol 2019; 334:577005. [DOI: 10.1016/j.jneuroim.2019.577005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
|
27
|
Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE. Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis. JAMA Neurol 2019; 76:1035-1048. [PMID: 31206160 PMCID: PMC6580449 DOI: 10.1001/jamaneurol.2019.1534] [Citation(s) in RCA: 512] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Neurofilament light protein (NfL) is elevated in cerebrospinal fluid (CSF) of a number of neurological conditions compared with healthy controls (HC) and is a candidate biomarker for neuroaxonal damage. The influence of age and sex is largely unknown, and levels across neurological disorders have not been compared systematically to date. OBJECTIVES To assess the associations of age, sex, and diagnosis with NfL in CSF (cNfL) and to evaluate its potential in discriminating clinically similar conditions. DATA SOURCES PubMed was searched for studies published between January 1, 2006, and January 1, 2016, reporting cNfL levels (using the search terms neurofilament light and cerebrospinal fluid) in neurological or psychiatric conditions and/or in HC. STUDY SELECTION Studies reporting NfL levels measured in lumbar CSF using a commercially available immunoassay, as well as age and sex. DATA EXTRACTION AND SYNTHESIS Individual-level data were requested from study authors. Generalized linear mixed-effects models were used to estimate the fixed effects of age, sex, and diagnosis on log-transformed NfL levels, with cohort of origin modeled as a random intercept. MAIN OUTCOME AND MEASURE The cNfL levels adjusted for age and sex across diagnoses. RESULTS Data were collected for 10 059 individuals (mean [SD] age, 59.7 [18.8] years; 54.1% female). Thirty-five diagnoses were identified, including inflammatory diseases of the central nervous system (n = 2795), dementias and predementia stages (n = 4284), parkinsonian disorders (n = 984), and HC (n = 1332). The cNfL was elevated compared with HC in a majority of neurological conditions studied. Highest levels were observed in cognitively impaired HIV-positive individuals (iHIV), amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and Huntington disease. In 33.3% of diagnoses, including HC, multiple sclerosis, Alzheimer disease (AD), and Parkinson disease (PD), cNfL was higher in men than women. The cNfL increased with age in HC and a majority of neurological conditions, although the association was strongest in HC. The cNfL overlapped in most clinically similar diagnoses except for FTD and iHIV, which segregated from other dementias, and PD, which segregated from atypical parkinsonian syndromes. CONCLUSIONS AND RELEVANCE These data support the use of cNfL as a biomarker of neuroaxonal damage and indicate that age-specific and sex-specific (and in some cases disease-specific) reference values may be needed. The cNfL has potential to assist the differentiation of FTD from AD and PD from atypical parkinsonian syndromes.
Collapse
Affiliation(s)
- Claire Bridel
- Neurochemistry Laboratory, Department of Clinical Chemistry, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Wessel N. van Wieringen
- Department of Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, the Netherlands
- Department of Mathematics, VU University, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Dementia Research Institute at UCL, London, United Kingdom
| | - Betty M. Tijms
- Department of Neurology and Alzheimer Centre, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
28
|
Pedersen A, Stanne TM, Nilsson S, Klasson S, Rosengren L, Holmegaard L, Jood K, Blennow K, Zetterberg H, Jern C. Circulating neurofilament light in ischemic stroke: temporal profile and outcome prediction. J Neurol 2019; 266:2796-2806. [PMID: 31375988 PMCID: PMC6803587 DOI: 10.1007/s00415-019-09477-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/23/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Background and purpose Neurofilament light chain (NfL) is a marker of neuroaxonal damage. We aimed to study associations between serum NfL (sNfL) concentrations at different time points after ischemic stroke and outcomes. Methods We prospectively included ischemic stroke cases (n = 595, mean age 59 years, 64% males) and assessed outcomes by both the modified Rankin Scale (mRS) and the NIH stroke scale (NIHSS) at 3 months and by mRS at 2 years. In a subsample, long-term (7-year) outcomes were also assessed by both mRS and NIHSS. We used the ultrasensitive single-molecule array assay to measure sNfL in the acute phase (range 1–14, median 4 days), after 3 months and 7 years in cases and once in controls (n = 595). Results Acute-phase sNfL increased by the time to blood-draw and highest concentrations were observed at 3 months post-stroke. High sNfL associated to stroke severity and poor outcomes, and both associations were strongest for 3-month sNfL. After adjusting for age, previous stroke, stroke severity, and day of blood draw, 3-month sNfL was significantly associated to both outcomes at all time points (p < 0.01 throughout). For all main etiological subtypes, both acute phase and 3-month sNfL were significantly higher than in controls, but the dynamics of sNfL differed by stroke subtype. Conclusions The results from this study inform on sNfL in ischemic stroke and subtypes over time, and show that sNfL predicts short- and long-term neurological and functional outcomes. Our findings suggest a potential utility of sNfL in ischemic stroke outcome prediction. Electronic supplementary material The online version of this article (10.1007/s00415-019-09477-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annie Pedersen
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Tara M Stanne
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden
- Department of Mathematical Statistics, Chalmers University of Technology, Gothenburg, Sweden
| | - Sofia Klasson
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden
| | - Lars Rosengren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lukas Holmegaard
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Christina Jern
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
29
|
Pawlitzki M, Butryn M, Kirchner F, Färber J, Beuing O, Minnerup J, Meuth SG, Neumann J. CSF Neurofilament light chain level predicts axonal damage in cerebral vasculitis. Ann Clin Transl Neurol 2019; 6:1134-1137. [PMID: 31211179 PMCID: PMC6562033 DOI: 10.1002/acn3.790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
The rarity of primary angiitis of the central nervous system (PACNS) demands diagnostic and prognostic biomarkers. We retrospectively measured Neurofilament light chain (NFL) concentrations in cerebrospinal fluid in a severely relapsing PACNS patient at multiple time points during the course of the disease. A marked increase in NFL levels preceding the onset of neuro‐axonal damage and arterial‐vessel abnormalities was observed with magnetic resonance imaging as well as with MR‐ and conventional angiography. Thus, marked elevation of NFL in PACNS seems to occur ahead of definitive radiological abnormalities and might serve as a diagnostic biomarker.
Collapse
Affiliation(s)
- Marc Pawlitzki
- Department of Neurology Otto-von-Guericke University Leipziger Straße 44 39120 Magdeburg Germany.,Department of Neurology with Institute of Translational Neurology Albert-Schweitzer-Campus 1 48149 Münster Germany
| | - Michaela Butryn
- Department of Neurology Otto-von-Guericke University Leipziger Straße 44 39120 Magdeburg Germany
| | - Florian Kirchner
- Department of Neurology AMEOS Klinikum Bernburg Kustrenaer Str. 98 06406 Bernburg Germany
| | - Jacqueline Färber
- Institute of Medical Microbiology Infection Control and Prevention Otto-von-Guericke University Leipziger Straße 44 39120 Magdeburg Germany
| | - Oliver Beuing
- Department of Neuroradiology Otto-von-Guericke University Leipziger Straße 44 39120 Magdeburg Germany
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology Albert-Schweitzer-Campus 1 48149 Münster Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology Albert-Schweitzer-Campus 1 48149 Münster Germany
| | - Jens Neumann
- Department of Neurology Otto-von-Guericke University Leipziger Straße 44 39120 Magdeburg Germany
| |
Collapse
|
30
|
Onatsu J, Vanninen R, Jäkälä P, Mustonen P, Pulkki K, Korhonen M, Hedman M, Zetterberg H, Blennow K, Höglund K, Herukka SK, Taina M. Serum Neurofilament Light Chain Concentration Correlates with Infarct Volume but Not Prognosis in Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2019; 28:2242-2249. [PMID: 31151840 DOI: 10.1016/j.jstrokecerebrovasdis.2019.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE We studied serum neurofilaments diagnostic value in patients with acute ischemic stroke (AIS) or TIA and evaluated any correlation with symptom severity, cerebral infarction volume, aetiology, and clinical outcome. METHODS One hundred and thirty-six patients (101 with AIS, and 35 with TIA) were included. Acute-phase serum neurofilament light chain (sNfL) was analyzed with a novel ultrasensitive single molecule array (Simoa). Cerebral infarction volume was measured from brain computed tomography in the subacute phase (>2 days). Stroke aetiology was defined by trial of ORG 10172 in acute stroke treatment classification, severity by National Institute of Health stroke scale (NIHSS) and the degree of disability by the Modified Rankin Scale (mRS) after 90 days. RESULTS sNfL was markedly higher in patients with AIS (89.5 pg/mL [IQR: 44.7-195.3]) than with TIA (25.2 pg/mL [IQR: 14.6-48.0]), P= <.001), also after adjusting for age, NIHSS, and stroke volume (P= .003). In receiver operating characteristic analysis, sNfL concentration greater than or equal to 49 pg/mL proved to be the best cut-off value to differentiate between patients with stroke and those with TIA (sensitivity of 73% and specificity of 80%). sNfL concentration significantly correlated with cerebral infarction volume (r = .413, P= <.001), this association remained significant after adjusting for established predictors (P= .019). Patients with AIS due to cardioembolism or large artery atherosclerosis had the highest sNfL concentrations. NIHSS on admission (r = .343, P = <.001) and mRS scores after 3 months (r = .306, P = .004) correlated with sNfL concentration, however functional outcome 3 months after stroke was not associated with sNfL after adjusting for potential confounders. CONCLUSIONS Cases with stroke were distinguishable from those with TIA following the determination of sNfL in the blood samples. The presence and amount of axonal damage estimated by sNfL correlated with the final cerebral infarction volume but was not predictive of degree of disability.
Collapse
Affiliation(s)
- Juha Onatsu
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland.
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Radiology, University of Eastern Finland, Kuopio Finland
| | - Pekka Jäkälä
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland; Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Pirjo Mustonen
- Department of Cardiology, Keski-Suomi Central Hospital, Jyväskylä, Finland
| | - Kari Pulkki
- Department of Clinical Radiology and Clinical Chemistry, Kuopio, Finland; Eastern Finland Laboratory Center and Department of Clinical Chemistry, University of Eastern Finland, Kuopio, Finland
| | - Miika Korhonen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Marja Hedman
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sanna-Kaisa Herukka
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland; Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Taina
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
31
|
Bjerke M, Engelborghs S. Cerebrospinal Fluid Biomarkers for Early and Differential Alzheimer's Disease Diagnosis. J Alzheimers Dis 2019; 62:1199-1209. [PMID: 29562530 PMCID: PMC5870045 DOI: 10.3233/jad-170680] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An accurate and early diagnosis of Alzheimer’s disease (AD) is important to select optimal patient care and is critical in current clinical trials targeting core AD neuropathological features. The past decades, much progress has been made in the development and validation of cerebrospinal fluid (CSF) biomarkers for the biochemical diagnosis of AD, including standardization and harmonization of (pre-) analytical procedures. This has resulted in three core CSF biomarkers for AD diagnostics, namely the 42 amino acid long amyloid-beta peptide (Aβ1-42), total tau protein (T-tau), and tau phosphorylated at threonine 181 (P-tau181). These biomarkers have been incorporated into research diagnostic criteria for AD and have an added value in the (differential) diagnosis of AD and related disorders, including mixed pathologies, atypical presentations, and in case of ambiguous clinical dementia diagnoses. The implementation of the CSF Aβ1-42/Aβ1-40 ratio in the core biomarker panel will improve the biomarker analytical variability, and will also improve early and differential AD diagnosis through a more accurate reflection of pathology. Numerous biomarkers are being investigated for their added value to the core AD biomarkers, aiming at the AD core pathological features like the amyloid mismetabolism, tau pathology, or synaptic or neuronal degeneration. Others aim at non-AD neurodegenerative, vascular or inflammatory hallmarks. Biomarkers are essential for an accurate identification of preclinical AD in the context of clinical trials with potentially disease-modifying drugs. Therefore, a biomarker-based early diagnosis of AD offers great opportunities for preventive treatment development in the near future.
Collapse
Affiliation(s)
- Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
32
|
Nadeem R, Nida M, Jawed S, Nasrallah B. Elevation in Circulating YKL-40 Levels in Patients with Stroke: A Review and Meta-Analysis. DUBAI MEDICAL JOURNAL 2019. [DOI: 10.1159/000500496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
Pujol-Calderón F, Portelius E, Zetterberg H, Blennow K, Rosengren LE, Höglund K. Neurofilament changes in serum and cerebrospinal fluid after acute ischemic stroke. Neurosci Lett 2019; 698:58-63. [DOI: 10.1016/j.neulet.2018.12.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 02/02/2023]
|
34
|
Zhang H, Tan JZ, Luo J, Wang W. Chitinase-3-like protein 1 may be a potential biomarker in patients with drug-resistant epilepsy. Neurochem Int 2018; 124:62-67. [PMID: 30584894 DOI: 10.1016/j.neuint.2018.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/30/2023]
Abstract
The mechanisms of the pathogenesis of epilepsy remain unclear. Recent research shows that the inflammatory process occurring in the brain may be a common and critical mechanism of seizures. Chitinase-3-like protein 1 (CHI3L1 or YKL-40) is a newly discovered inflammatory factor. We aimed to evaluate the role of YKL-40 as a biomarker for epilepsy. 124 subjects were classified as control group (n = 23), new-diagnosis epilepsy group (NDE, n = 34), drug responsive epilepsy group (DPE, n = 37), and drug-resistant epilepsy group (DRE, n = 30) YKL-40 was measured by ELISA in serum and cerebrospinal fluid (CSF). The concentrations of serum and CSF YKL-40 and its diagnostic accuracy for epilepsy were analysed. Patients with DRE had higher concentrations of YKL-40 in serum and CSF, while patients with NDE and DPE had increased YKL-40 levels in CSF but not serum in comparison with control. Moreover, serum and CSF YKL-40 provide high diagnostic accuracy for DRE. YKL-40 may play a possible pathogenic role in epilepsy. YKL-40 may represent a potential biomarker of brain inflammation in patients with DRE.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jia-Ze Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
35
|
Chen J, Ding Y, Zheng D, Wang Z, Pan S, Ji T, Shen HY, Wang H. Elevation of YKL-40 in the CSF of Anti-NMDAR Encephalitis Patients Is Associated With Poor Prognosis. Front Neurol 2018; 9:727. [PMID: 30369903 PMCID: PMC6194180 DOI: 10.3389/fneur.2018.00727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022] Open
Abstract
Objective: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis predominantly affects children and young women; the disease can have a multistage presentation and exhibit a wide variety of neuropsychiatric features. This study aimed to investigate the profile of YKL-40 (Chitinase 3-like 1) in anti-NMDAR encephalitis patients and evaluate its association with modified Rankin Scale (mRS) scores and expression of inflammatory cytokines. Methods: A total of 66 patients were enrolled in this study, 33 with anti-NMDAR encephalitis, 13 with viral meningitis and 20 with non-inflammatory neurological disease. Patients were evaluated to determine mRS scores at disease onset and at the 3 month follow-up; cerebrospinal fluid (CSF) samples were collected in the meantime. CSF levels of YKL-40 and cytokines (TNF-α, IL-6, IL-10) were measured by enzyme-linked immunosorbent assay. Results: CSF levels of YKL-40 and inflammatory cytokines (TNF-α, IL-6, IL-10) were all more highly elevated in patients with anti-NMDAR encephalitis at the acute stage of disease compared with the controls. Levels of CSF YKL-40 were correlated with levels of IL-6 both at disease onset and at the 3 month follow-up. Changes in YKL-40 levels were significantly correlated with improved mRS scores in patients with anti-NMDAR encephalitis. Conclusion: Our study suggests that CSF levels of YKL-40 in patients with anti-NMDAR encephalitis were increased and correlated with clinical mRS scores. This may be reflective of the underlying neuroinflammatory process. YKL-40 demonstrates potential as a possible biomarker for the prognosis of anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Jinyu Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuewen Ding
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhang Wang
- Department of Neurology, 39 Brain Hospital, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Teng Ji
- Department of Neurology, Randall Children's Hospital, Legacy Health, Portland, OR, United States
| | - Hai-Ying Shen
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Legacy Health, Portland, OR, United States
| | - Honghao Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Zhang H, Ng KP, Therriault J, Kang MS, Pascoal TA, Rosa-Neto P, Gauthier S. Cerebrospinal fluid phosphorylated tau, visinin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer's disease. Transl Neurodegener 2018; 7:23. [PMID: 30311914 PMCID: PMC6161434 DOI: 10.1186/s40035-018-0127-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/20/2018] [Indexed: 03/20/2023] Open
Abstract
Background Visinin-like protein-1 (VILIP-1) and chitinase-3-like protein 1 (CHI3L1 or YKL-40) in cerebrospinal fluid (CSF) are newly discovered markers indicating neuronal damage and microglial activation, respectively. Phosphorylated tau (p-tau) reflects the neuropathology of Alzheimer's disease (AD) and is useful as diagnostic markers for AD. However, it is unknown whether these biomarkers have similar or complementary information in AD. Methods We stratified 121 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database into cognitively normal (CN), stable mild cognitive impairment (sMCI), progressive MCI (pMCI), and dementia due to AD. Analysis of covariance (ANOVA) and chi-square analyses, Spearman correlation, and logistic regression models were performed to test the demographic, associations between biomarkers, and diagnostic accuracies, respectively. Linear mixed-effects models were used to evaluate the effects of CSF amyloid-β (Aβ) on above biomarkers within diagnostic groups, the combination of diagnostic group and Aβ status as predictor, and CSF biomarkers as predictors of AD features, including cognition measured by Mini-Mental State Examination (MMSE) and brain structure and white matter hyperintensity (WMH) measured by magnetic resonance imaging (MRI). Results P-tau, VILIP-1, and YKL-40 were all predictors of AD diagnosis, but combinations of biomarkers did not improve the diagnostic accuracy (AUC 0.924 for p-tau, VILIP-1, and YKL-40) compared to p-tau (AUC 0.922). P-tau and VILIP-1 were highly correlated (r = 0.639, p < 0.001) and strongly associated with Aβ pathology across clinical stages of AD, while YKL-40 was correlated with Aβ pathology in CN and AD groups. VILIP-1 was associated with acceleration of cognitive decline, hippocampal atrophy, and expansion of ventricles in longitudinal analyses. YKL-40 was associated with hippocampal atrophy at baseline and follow-up, while p-tau was only associated with worsening WMH at baseline. Conclusions CSF levels of p-tau, VILIP-1, and YKL-40 may have utility for discriminating between cognitively normal subjects and patients with AD. Increased levels of both VILIP-1 and YKL-40 may be associated with disease degeneration. These CSF biomarkers should be considered for future assessment in the characterization of the natural history of AD.
Collapse
Affiliation(s)
- Hua Zhang
- 1Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Kok Pin Ng
- 2Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Joseph Therriault
- 3The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Min Su Kang
- 3The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Tharick A Pascoal
- 3The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- 3The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Serge Gauthier
- 3The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | | |
Collapse
|
37
|
Ge F, Ding J, Liu Y, Lin H, Chang T. Cerebrospinal fluid NFL in the differential diagnosis of parkinsonian disorders: A meta-analysis. Neurosci Lett 2018; 685:35-41. [PMID: 30036569 DOI: 10.1016/j.neulet.2018.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022]
Abstract
Neurofilament light chain (NFL) in cerebrospinal fluid (CSF) is a promising biomarker candidate which may discriminate atypical parkinsonian disorders (APD), mainly including multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), from Parkinson's disease (PD). We aim to evaluate the diagnostic accuracy of CSF NFL level as a differentiating biomarker between APD and PD. Databases of PubMed, OVID and Web of Science were searched for studies (published until May 31, 2017) that reported on CSF NFL as a diagnostic biomarker between APD and PD. Eight studies were pooled in this meta-analysis, including 341 PD and 396 APD patients and 388 healthy controls. The pooled sensitivity was 82% (95% CI, 68%-91%) and specificity was 85% (95% CI, 79%-89%) in differentiating APD from PD. The pooled positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR) were 5.4 (95% CI, 3.6%-8.1%), 0.21 (95% CI, 0.11%-0.40%), and 25 (95% CI, 9%-69%) respectively; and the area under the curve (AUC) was 0.89 (95% CI, 0.86%-0.91%). Subgroup analysis revealed sensitivity and specificity were significantly influenced by study design. The APD subtypes, disease duration and severity were the main heterogeneity sources in specificity. The results of Deeks' test revealed a low risk of publication bias. The CSF NFL level may be used as a biomarker in discriminating APD from PD with high diagnostic accuracy at an early stage of disease. Large and longitudinal studies are still needed on individuals who are suspected to have APD.
Collapse
Affiliation(s)
- Fangfang Ge
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Jiaqi Ding
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Yu Liu
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Hong Lin
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, PR China.
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, PR China.
| |
Collapse
|
38
|
Xu M, Wang MM, Gao Y, Keep RF, Shi Y. The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiol Dis 2018; 126:13-22. [PMID: 30017454 DOI: 10.1016/j.nbd.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
White matter injury is a crucial component of human stroke, but it has often been neglected in preclinical studies. Most human stroke is associated with one or more comorbidities, including aging, hypertension, diabetes and metabolic syndrome including hyperlipidemia. The purpose of this review is to examine how age and hypertension impact stroke-induced white matter injury as well as white matter repair in both human stroke and preclinical models. It is essential that comorbidities be examined in preclinical trials as they may impact translatability to the clinic. In addition, understanding how comorbidities impact white matter injury and repair may provide new therapeutic opportunities for patients with those conditions.
Collapse
Affiliation(s)
- Mingyue Xu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Michael M Wang
- Departments of Neurology and Physiology, University of Michigan, Ann Arbor, MI 48109, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
39
|
Mages B, Aleithe S, Altmann S, Blietz A, Nitzsche B, Barthel H, Horn AKE, Hobusch C, Härtig W, Krueger M, Michalski D. Impaired Neurofilament Integrity and Neuronal Morphology in Different Models of Focal Cerebral Ischemia and Human Stroke Tissue. Front Cell Neurosci 2018; 12:161. [PMID: 29967576 PMCID: PMC6015914 DOI: 10.3389/fncel.2018.00161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
As part of the neuronal cytoskeleton, neurofilaments are involved in maintaining cellular integrity. In the setting of ischemic stroke, the affection of the neurofilament network is considered to mediate the transition towards long-lasting tissue damage. Although peripheral levels of distinct neurofilament subunits are shown to correlate with the clinically observed severity of cerebral ischemia, neurofilaments have so far not been considered for neuroprotective approaches. Therefore, the present study systematically addresses ischemia-induced alterations of the neurofilament light (NF-L), medium (NF-M), and heavy (NF-H) subunits as well as of α-internexin (INA). For this purpose, we applied a multi-parametric approach including immunofluorescence labeling, western blotting, qRT-PCR and electron microscopy. Analyses comprised ischemia-affected tissue from three stroke models of middle cerebral artery occlusion (MCAO), including approaches of filament-based MCAO in mice, thromboembolic MCAO in rats, and electrosurgical MCAO in sheep, as well as human autoptic stroke tissue. As indicated by altered immunosignals, impairment of neurofilament subunits was consistently observed throughout the applied stroke models and in human tissue. Thereby, altered NF-L immunoreactivity was also found to reach penumbral areas, while protein analysis revealed consistent reductions for NF-L and INA in the ischemia-affected neocortex in mice. At the mRNA level, the ischemic neocortex and striatum exhibited reduced expressions of NF-L- and NF-H-associated genes, whereas an upregulation for Ina appeared in the striatum. Further, multiple fluorescence labeling of neurofilament proteins revealed spheroid and bead-like structural alterations in human and rodent tissue, correlating with a cellular edema and lost cytoskeletal order at the ultrastructural level. Thus, the consistent ischemia-induced affection of neurofilament subunits in animals and human tissue, as well as the involvement of potentially salvageable tissue qualify neurofilaments as promising targets for neuroprotective strategies. During ischemia formation, such approaches may focus on the maintenance of neurofilament integrity, and appear applicable as co-treatment to modern recanalizing strategies.
Collapse
Affiliation(s)
- Bianca Mages
- Department of Neurology, University of Leipzig, Leipzig, Germany.,Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.,Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Susanne Aleithe
- Department of Neurology, University of Leipzig, Leipzig, Germany.,Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Stephan Altmann
- Department of Neurology, University of Leipzig, Leipzig, Germany.,Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Alexandra Blietz
- Department of Neurology, University of Leipzig, Leipzig, Germany.,Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Björn Nitzsche
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Anja K E Horn
- Institute of Anatomy and Cell Biology I and German Center for Vertigo and Balance Disorders, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
40
|
Michalski D, Keck AL, Grosche J, Martens H, Härtig W. Immunosignals of Oligodendrocyte Markers and Myelin-Associated Proteins Are Critically Affected after Experimental Stroke in Wild-Type and Alzheimer Modeling Mice of Different Ages. Front Cell Neurosci 2018; 12:23. [PMID: 29467621 PMCID: PMC5807905 DOI: 10.3389/fncel.2018.00023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
Because stroke therapies are still limited and patients are often concerned by long-term sequelae with significant impairment of daily living, elaborated neuroprotective strategies are needed. During the last decades, research substantially improved the knowledge on cellular pathologies responsible for stroke-related tissue damage. In this context, the neurovascular unit (NVU) concept has been established, summarizing the affections of neurons, associated astrocytes and the vasculature. Although oligodendrocytes were already identified to play a major role in other brain pathologies, their role during stroke evolution and long-lasting tissue damage is poorly understood. This study aims to explore oligodendrocyte structures, i.e., oligodendrocytes and their myelin-associated proteins, after experimental focal cerebral ischemia. For translational issues, different ages and genotypes including an Alzheimer-like background were considered to mimic potential co-morbidities. Three- and 12-month-old wild-type and triple-transgenic mice were subjected to unilateral middle cerebral artery occlusion. Immunofluorescence labeling was performed on forebrain tissues affected by 24 h of ischemia to visualize the oligodendrocyte-specific protein (OSP), the myelin basic protein (MBP), and the neuron-glia antigen 2 (NG2) with reference to the ischemic lesion. Subsequent analyses concomitantly detected the vasculature and the 2′, 3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) to consider the NVU concept and to explore the functional relevance of histochemical data on applied oligodendrocyte markers. While the immunosignal of NG2 was found to be nearly absent 24 h after ischemia onset, enhanced immunoreactivities for OSP and especially MBP were observed in close regional association to the vasculature. Added quantitative analyses based on inter-hemispheric differences of MBP-immunoreactivity revealed a shell-like pattern with a significant increase directly in the ischemic core, followed by a gradual decline toward the striatum, the ischemic border zone and the lateral neocortex. This observation was consistent in subsequent analyses on the potential impact of age and genetic background. Furthermore, immunoreactivities for CNPase, MBP, and OSP were found to be simultaneously enhanced. In conclusion, this study provides evidence for a critical role of oligodendrocyte structures in the early phase after experimental stroke, strengthening their involvement in the ischemia-affected NVU. Consequently, oligodendrocytes and their myelin-associated proteins may qualify as potential targets for neuroprotective and regenerative approaches in stroke.
Collapse
Affiliation(s)
| | - Anna L Keck
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | | | | | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
41
|
Plasma phosphorylated neurofilament heavy chains as a potential marker for ischemic stroke patients. REV ROMANA MED LAB 2018. [DOI: 10.2478/rrlm-2018-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Background: The aim of the study was to determine the utility of plasma NfH in correlation with serum hsCRP for severity and short-term functional outcome prediction after ischemic stroke. Methods: 124 patients and 40 healthy controls were enrolled, serial plasma neurofilament heavy chains and hsCRP concentrations were measured and evaluated for TOAST subtype, stroke severity and functional outcome at discharge. Results: Serum level of hsCRP was significantly higher in patients versus controls (p<0.05) with no difference between TOAST subtypes. Plasma NfH concentration on day 5 was higher in CE stroke compared to LAA group and SVO group. A positive correlation between NfH levels on day 5 and mRS at discharge (r=0.304, p=0.001) and a gender stratification of hsCRP and mRS at discharge was found. Values of 6.04 mg/l for hsCRP and 46.4 ng/ml for NfH were found predictive for unfavorable short-term outcome, but after adjusting for age, sex and stroke severity, the prediction power was lost. Conclusions: Plasma concentration of NfH shows a significant increase over the first five days after ischemic stroke, in correlation with inflammatory status and short-term evolution.
Collapse
|
42
|
Abstract
Diseases of the central nervous system that are caused by an underlying vascular pathology typically result in either hemorrhage or ischemia. Most prominent entities include spontaneous subarachnoid hemorrhage, spontaneous intracerebral hemorrhage, and ischemic stroke. For anatomic reasons, cerebrospinal fluid (CSF) qualifies as body fluid for the exploration of biomarkers in these disorders. Even though in subarachnoid hemorrhage a few CSF parameters have been established for routine diagnostic purposes, there is still an unmet need and broad interest in the identification of molecules that would allow further insight into disease mechanisms and supplement patients' medical care. This chapter provides an overview on what is presently known about CSF biomarkers in spontaneous subarachnoid hemorrhage, spontaneous intracerebral hemorrhage, and ischemic stroke. We recapitulate current evidence on established diagnostic tests, discuss the role of various CSF molecules in the pathophysiology of these diseases, and illuminate their potential use in future clinical practice. Furthermore, we address methodologic aspects as well as shortcomings of research in this field.
Collapse
Affiliation(s)
- Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
43
|
Barten DM, Cadelina GW, Weed MR. Dosing, collection, and quality control issues in cerebrospinal fluid research using animal models. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:47-64. [PMID: 29110779 DOI: 10.1016/b978-0-12-804279-3.00004-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cerebrospinal fluid (CSF) is a complex fluid filling the ventricular system and surrounding the brain and spinal cord. Although the bulk of CSF is created by the choroid plexus, a significant fraction derives from the interstitial fluid in the brain and spinal cord parenchyma. For this reason, CSF can often be used as a source of pharmacodynamic and prognostic biomarkers to reflect biochemical changes occurring within the brain. For instance, CSF biomarkers can be used to diagnose and track progression of disease as well as understand pharmacokinetic and pharmacodynamic relationships in clinical trials. To facilitate the use of these biomarkers in humans, studies in preclinical species are often valuable. This review summarizes methods for preclinical CSF collection for biomarkers from mice, rats, and nonhuman primates. In addition, dosing directly into CSF is increasingly being used to improve drug levels in the brain. Therefore, this review also summarizes the state of the art in CSF dosing in these preclinical species.
Collapse
Affiliation(s)
- Donna M Barten
- Genetically Defined Diseases, Bristol-Myers Squibb, Wallingford, CT, United States
| | - Gregory W Cadelina
- Genetically Defined Diseases, Bristol-Myers Squibb, Wallingford, CT, United States
| | - Michael R Weed
- Genetically Defined Diseases, Bristol-Myers Squibb, Wallingford, CT, United States; RxGen, Inc, New Haven, CT, United States.
| |
Collapse
|
44
|
Llorens F, Thüne K, Tahir W, Kanata E, Diaz-Lucena D, Xanthopoulos K, Kovatsi E, Pleschka C, Garcia-Esparcia P, Schmitz M, Ozbay D, Correia S, Correia Â, Milosevic I, Andréoletti O, Fernández-Borges N, Vorberg IM, Glatzel M, Sklaviadis T, Torres JM, Krasemann S, Sánchez-Valle R, Ferrer I, Zerr I. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 2017; 12:83. [PMID: 29126445 PMCID: PMC5681777 DOI: 10.1186/s13024-017-0226-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing. METHODS In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures. RESULTS YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer's disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around β-amyloid plaques, and surrounding vessels with β-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson's disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations. CONCLUSIONS Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component.
Collapse
Affiliation(s)
- Franc Llorens
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Katrin Thüne
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Waqas Tahir
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniela Diaz-Lucena
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Present address: Unit of Lymphoid Malignancies, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Eleni Kovatsi
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Paula Garcia-Esparcia
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Duru Ozbay
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Susana Correia
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Ângela Correia
- Department of Neurology, University Medical School, Göttingen, Germany
| | | | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | | | - Ina M. Vorberg
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isidro Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
45
|
Effects of Gualou Guizhi Decoction Aqueous Extract on Axonal Regeneration in Organotypic Cortical Slice Culture after Oxygen-Glucose Deprivation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5170538. [PMID: 29075304 PMCID: PMC5624132 DOI: 10.1155/2017/5170538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/28/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022]
Abstract
Gualou Guizhi decoction (GLGZD) is effective for the clinical treatment of limb spasms caused by ischemic stroke, but its underlying mechanism is unclear. Propidium iodide (PI) fluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), immunohistochemistry, western blot, and real-time qPCR were used to observe the axonal regeneration and neuroprotective effects of GLGZD aqueous extract on organotypic cortical slices exposed to oxygen-glucose deprivation (OGD) and further elucidate the potential mechanisms. Compared with the OGD group, the GLGZD aqueous extract decreased the red PI fluorescence intensity; inhibited neuronal apoptosis; improved the growth of slice axons; upregulated the protein expression of tau and growth-associated protein-43; and decreased protein and mRNA expression of neurite outgrowth inhibitor protein-A (Nogo-A), Nogo receptor 1 (NgR1), ras homolog gene family A (RhoA), rho-associated coiled-coil-containing protein kinase (ROCK), and phosphorylation of collapsin response mediator protein 2 (CRMP2). Our study found that GLGZD had a strong neuroprotective effect on brain slices after OGD injury. GLGZD plays a vital role in promoting axonal remodeling and functional remodeling, which may be related to regulation of the expression of Nogo-A and its receptor NgR1, near the injured axons, inhibition of the Rho-ROCK pathway, and reduction of CRMP2 phosphorylation.
Collapse
|
46
|
Niemantsverdriet E, Valckx S, Bjerke M, Engelborghs S. Alzheimer's disease CSF biomarkers: clinical indications and rational use. Acta Neurol Belg 2017; 117:591-602. [PMID: 28752420 PMCID: PMC5565643 DOI: 10.1007/s13760-017-0816-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022]
Abstract
This review focusses on the validation and standardization of Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers, as well as on the current clinical indications and rational use of CSF biomarkers in daily clinical practice. The validated AD CSF biomarkers, Aβ1-42, T-tau, and P-tau181, have an added value in the (differential) diagnosis of AD and related disorders, including mixed pathologies, atypical presentations, and in case of ambiguous clinical dementia diagnosis. CSF biomarkers should not be routinely used in the diagnostic work-up of dementia and cannot be used to diagnose non-AD dementias. In cognitively healthy subjects, CSF biomarkers can only be applied for research purposes, e.g., to identify pre-clinical AD in the context of clinical trials with potentially disease-modifying drugs. Therefore, biomarker-based early diagnosis of AD offers great opportunities for preventive treatment development in the near future.
Collapse
Affiliation(s)
- Ellis Niemantsverdriet
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp (UAntwerp), Antwerp, Belgium
| | - Sara Valckx
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp (UAntwerp), Antwerp, Belgium
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp (UAntwerp), Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp (UAntwerp), Antwerp, Belgium.
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.
| |
Collapse
|
47
|
De Vos A, Bjerke M, Brouns R, De Roeck N, Jacobs D, Van den Abbeele L, Guldolf K, Zetterberg H, Blennow K, Engelborghs S, Vanmechelen E. Neurogranin and tau in cerebrospinal fluid and plasma of patients with acute ischemic stroke. BMC Neurol 2017; 17:170. [PMID: 28854881 PMCID: PMC5577791 DOI: 10.1186/s12883-017-0945-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Background While neurogranin has no value as plasma biomarker for Alzheimer’s disease, it may be a potential blood biomarker for traumatic brain injury. This evokes the question whether there are changes in neurogranin levels in blood in other conditions of brain injury, such as acute ischemic stroke (AIS). Methods We therefore explored neurogranin in paired cerebrospinal fluid (CSF)/plasma samples of AIS patients (n = 50) from a well-described prospective study. In parallel, we investigated another neuronal protein, i.e. tau, which has already been suggested as potential AIS biomarker in CSF and blood. ELISA as well as Single Molecule Array (Simoa) technology were used for the biochemical analyses. Statistical analyses included Shapiro-Wilk testing, Mann-Whitney analyses and Pearson’s correlation analysis. Results In contrast to tau, of which high levels in both CSF and plasma were related to stroke characteristics like severity and long-term outcome, plasma neurogranin levels were only correlated with infarct volume. Likewise, CSF neurogranin levels were significantly higher in patients with an infarct volume > 5 mL than in patients with smaller infarct volumes. Finally, neurogranin and tau were significantly correlated in CSF, whereas a weaker relationship was observed in plasma. Conclusions These findings indicate that although plasma and CSF neurogranin may reflect the volume of acute cerebral ischemia, this synaptic protein is less likely to be a potential AIS biomarker. Levels of tau correlated with severity and outcome of stroke in both plasma and CSF, in the present study as well as previous reports, confirming the potential of tau as an AIS biomarker. Electronic supplementary material The online version of this article (10.1186/s12883-017-0945-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ann De Vos
- ADx NeuroSciences NV, Technologiepark 4, 9052, Ghent, Belgium
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Raf Brouns
- Department of Neurology, Hospital ZorSaam, Terneuzen, The Netherlands
| | - Naomi De Roeck
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Dirk Jacobs
- ADx NeuroSciences NV, Technologiepark 4, 9052, Ghent, Belgium
| | | | - Kaat Guldolf
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | | |
Collapse
|
48
|
Abstract
Over the last decades, the importance of inflammatory processes in pediatric stroke have become increasingly evident. Ischemia launches a cascade of events: activation and inhibition of inflammation by a large network of cytokines, adhesion and small molecules, protease, and chemokines. There are major differences in the neonatal brain compared to adult brain, but developmental trajectories of the process during childhood are not yet well known. In neonatal stroke ischemia is the leading pathophysiology, but infectious and inflammatory processes have a significant input into the course and degree of tissue damage. In childhood, beside inflammation lanced by ischemia itself, the event of ischemia might be provoked by an underlying inflammatory pathophysiology: transient focal arteriopathy, dissection, sickle cell anemia, Moyamoya and more generalized in meningitides, generalized vasculitis or genetic arteriopathies (as in ADA2). Focal inflammatory reactions tend to be located in the distal part of the carotid artery or the proximal medial arteries, but generalized processes rather tend to affect the small arteries.
Collapse
|
49
|
Chen XL, Li Q, Huang WS, Lin YS, Xue J, Wang B, Jin KL, Shao B. Serum YKL-40, a prognostic marker in patients with large-artery atherosclerotic stroke. Acta Neurol Scand 2017; 136:97-102. [PMID: 27650381 DOI: 10.1111/ane.12688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Inflammation comprises important aspects of large-artery atherosclerosis (LAA) stroke pathophysiology. YKL-40 is a new and emerging biomarker that is associated with both acute and chronic inflammations. Elevated serum concentrations of YKL-40 have been reported in patients with atherosclerosis and other cardiovascular diseases. This study investigates whether serum YKL-40 concentrations on admission can predict 3-month clinical outcomes after LAA stroke. METHODS We recruited control patients (n=85) and those with LAA stroke (n=141) according to the TOAST classification system. The modified Rankin scale at 3 months after stroke was used to evaluate the prognosis. The prognostic accuracy was assessed by the receiver operating characteristic curve. RESULTS Serum YKL-40 level was significantly higher for LAA patients than for controls (P<.001). Patients with poor outcomes (n=36) had significantly increased serum YKL-40 concentrations on admission (P=.01). High YKL-40 levels predicted poor functional outcome (OR=6.47, P=.02). Moreover, the combination of YKL-40 level and the NIHSS score could improve the prognostic accuracy of the NIHSS in predicting functional outcome (combined areas under the curve, 0.87; 95% CI, 0.80-0.94; P<.001). CONCLUSIONS The level of serum YKL-40 is a significant and independent biomarker to predict the clinical outcome of LAA stroke.
Collapse
Affiliation(s)
- X.-L. Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research; First Affiliated Hospital, Wenzhou Medical University; Wenzhou China
- Department of Rehabilitation; Wenzhou people’s hospital; Wenzhou China
| | - Q. Li
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research; First Affiliated Hospital, Wenzhou Medical University; Wenzhou China
| | - W.-S. Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research; First Affiliated Hospital, Wenzhou Medical University; Wenzhou China
| | - Y.-S. Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research; First Affiliated Hospital, Wenzhou Medical University; Wenzhou China
| | - J. Xue
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research; First Affiliated Hospital, Wenzhou Medical University; Wenzhou China
| | - B. Wang
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center; Fort Worth TX USA
| | - K.-L. Jin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research; First Affiliated Hospital, Wenzhou Medical University; Wenzhou China
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center; Fort Worth TX USA
| | - B. Shao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research; First Affiliated Hospital, Wenzhou Medical University; Wenzhou China
| |
Collapse
|
50
|
Zavialova MG, Shevchenko VE, Nikolaev EN, Zgoda VG. Is myelin basic protein a potential biomarker of brain cancer? EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:192-196. [PMID: 29028399 DOI: 10.1177/1469066717719810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Myelin basic protein is a potential biomarker for the central nervous system diseases in which the myelin sheath is destroyed. Using pseudo-selected reaction monitoring and the method of standard additions, we have measured the myelin basic protein level in the cerebrospinal fluid of patients with neurotrauma (n = 6), chronic neurodegenerative diseases (n = 2) and brain cancer (n = 5). Myelin basic protein was detected only in four out of five cerebrospinal fluid samples of patients with brain cancer. The cerebrospinal fluid myelin basic protein level ranged from 3.7 to 8.8 ng ml-1. We suggest that monitoring of myelin basic protein in cerebrospinal fluid can serve as a diagnostic test for the brain cancer.
Collapse
Affiliation(s)
- M G Zavialova
- 1 Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - V E Shevchenko
- 2 Blokhin Russian Cancer Research Center, Moscow, Russia
| | - E N Nikolaev
- 1 Institute of Biomedical Chemistry (IBMC), Moscow, Russia
- 3 Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Russia
| | - V G Zgoda
- 1 Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| |
Collapse
|