1
|
Jamali H, Akrami F, Bouakkaz S, Dozois CM. Prevalence of specific serogroups, antibiotic resistance and virulence factors of avian pathogenic Escherichia coli (APEC) isolated from clinical cases: A systematic review and meta-analysis. Microb Pathog 2024; 194:106843. [PMID: 39117015 DOI: 10.1016/j.micpath.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Pathogenic strains of Escherichia coli infecting poultry, commonly called avian pathogenic E. coli (APEC) present significant risks, to the health of both poultry and the general public. This systematic review aimed to examine the prevalence of APEC serotypes, sequence types (ST), phylogenetic groups, virulence factors and antibiotic resistance patterns based on 189 research papers sourced from PubMed, Web of Science, and ProQuest. Then, data were extracted from the selected studies and analyzed to assess the global distribution and characteristics of APEC strains. The metaprop codes in the Meta and Metafor packages of R as implemented in RStudio were then used to conduct meta-analysis. Among APEC strains identified from these different research reports serogroup O78 had the highest overall prevalence (16 %), followed by serogroups O2 (10 %), and O117 (8 %). The most common ST profiles were ST117 (20 %), ST140 (15 %), ST95 (12 %), and ST131 (9 %). ST117 and ST140 are known reservoirs for pathogenic E. coli in humans. Moreover, phylogenetic assessment highlighted the prevalence of phylogroups A, A1, F, D, and B2 among APEC strains indicating diversity in phylogenetic origin within poultry populations. The presence of antimicrobial resistance was notable among APEC strains against antibiotics such as tetracyclines, penicillins, and cephalosporins. This resistance may be linked to use of antimicrobials in poultry production in certain regions presenting challenges for both animal health management and human infection control. Analysis of sequences linked to adherence or virulence indicated that genes encoding adhesins (csg, fimC), iron/metal uptake (sitB, sitC, iroD) and cytotoxicity (estB, hlyF), and serum resistance (traT, iss) were highly prevalent. These factors have been reported to contribute to APEC host colonization and virulence in poultry. In summary, this overview of the characteristics of APEC highlights the pressing importance of monitoring and implementing management approaches to reduce antimicrobial resistance considering that a phylogenetic diversity of E. coli strains causes infections in both poultry and humans and represents a risk to both animal and public health. Further, determining the major conserved aspects and predominant mechanisms of virulence of APEC is critical for improving diagnostics and developing preventative measures to reduce the burden of infection caused by pathogenic E. coli in poultry and lower risks associated with foodborne transmission of E. coli to humans through poultry and poultry products.
Collapse
Affiliation(s)
- Hossein Jamali
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Fariba Akrami
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Souhaib Bouakkaz
- École de Technologie Supérieure, 1100 R. Notre Dame Ouest, Montréal, QC H3C 1K3, Canada
| | - Charles M Dozois
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
2
|
Gutierrez L, Guzman-Flores A, Monroy-Barreto M, Ocampo L, Sumano H. Oral pharmacokinetics of a pharmaceutical preparation of florfenicol in broiler chickens. Front Vet Sci 2023; 10:1208221. [PMID: 37351554 PMCID: PMC10284592 DOI: 10.3389/fvets.2023.1208221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction The use of florfenicol must follow particular pharmacokinetic/pharmacodynamic (PK/PD) ratios, i.e., it requires achieving serum concentrations at or slightly above the pathogen's minimum inhibitory concentration (MIC) during the dosing interval and that the ratio of area under the concentration vs. time curve (AUC)/MIC should be as high as possible (still undetermined for poultry). As an alternative to the standard soluble florfenicol that is administered to the flock through drinking water, florfenicol premix is often recommended as feed medication in Latin America. However, no particular pharmaceutical design has been proposed. Methods This study compared the PK of two preparations of florfenicol in broiler chickens and pondered the possibility of each covering the referred PK-PD ratios as predictors of clinical efficacy. The preparations comprise a pharmaceutical form as FOLA pellets (F = bioavailability; O = optimum; and LA = long-acting) and the premix formulation. The former are small colored pellets with vehicles and absorption enhancers of florfenicol designed for long action, and the latter is the reference premix of the antibiotic. First, these two pharmaceutical forms of florfenicol were administered as oral boluses (30 mg/kg), aided by a probe. In a second trial of the dosing form, both pharmaceutical preparations of florfenicol were administered in feed and ad libitum (110 ppm; ~30 mg/kg). Results In both cases, FOLA-florfenicol presented much higher relative bioavailability (3.27 times higher) and mean better residence time than florfenicol premix (two times high when forced as bolus dose). Consequently, FOLA-florfenicol possesses better PK/PD ratios than less sensitive pathogens, i.e., E. coli. It is proposed that if a metaphylactic treatment of a bacterial outbreak in poultry is implemented with florfenicol prepared as FOLA, better PK/PD ratios will be obtained than those of standard florfenicol premix. Discussion Clinicians must confirm that feed consumption in the flock has not been affected by the particular disease if FOLA pellets of florfenicol are used.
Collapse
Affiliation(s)
- Lilia Gutierrez
- Departamento de Fisiología y Farmacologia, Faculta de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Aline Guzman-Flores
- Departamento de Fisiología y Farmacologia, Faculta de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Minerva Monroy-Barreto
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Ocampo
- Departamento de Fisiología y Farmacologia, Faculta de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hector Sumano
- Departamento de Fisiología y Farmacologia, Faculta de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Trif E, Cerbu C, Olah D, Zăblău SD, Spînu M, Potârniche AV, Pall E, Brudașcă F. Old Antibiotics Can Learn New Ways: A Systematic Review of Florfenicol Use in Veterinary Medicine and Future Perspectives Using Nanotechnology. Animals (Basel) 2023; 13:ani13101695. [PMID: 37238125 DOI: 10.3390/ani13101695] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Florfenicol is a broad-spectrum bacteriostatic antibiotic used exclusively in veterinary medicine in order to treat the pathology of farm and aquatic animals. It is a synthetic fluorinated analog of thiamphenicol and chloramphenicol that functions by inhibiting ribosomal activity, which disrupts bacterial protein synthesis and has shown over time a strong activity against Gram-positive and negative bacterial groups. Florfenicol was also reported to have anti-inflammatory activity through a marked reduction in immune cell proliferation and cytokine production. The need for improvement came from (1) the inappropriate use (to an important extent) of this antimicrobial, which led to serious concerns about florfenicol-related resistance genes, and (2) the fact that this antibiotic has a low water solubility making it difficult to formulate an aqueous solution in organic solvents, and applicable for different routes of administration. This review aims to synthesize the various applications of florfenicol in veterinary medicine, explore the potential use of nanotechnology to improve its effectiveness and analyze the advantages and limitations of such approaches. The review is based on data from scientific articles and systematic reviews identified in several databases.
Collapse
Affiliation(s)
- Emilia Trif
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Constantin Cerbu
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Diana Olah
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Sergiu Dan Zăblău
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Marina Spînu
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Adrian Valentin Potârniche
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Emoke Pall
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Florinel Brudașcă
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Kumari M, Gupta RP, Bagri P, Singh R. Immunopathological studies on Escherichia coli infected broiler chickens fed on Aloe vera leaf extract. Vet Immunol Immunopathol 2023; 258:110562. [PMID: 36801725 DOI: 10.1016/j.vetimm.2023.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Escherichia coli infection is the major bacterial disease affecting the poultry industry and the continuous use of antibiotics in poultry farming has resulted in antibiotic resistance. So this study was planned to evaluate the use of an ecologically safe alternative to fight against infections. The leaf gel of the Aloe vera plant was selected based on its antibacterial activity assessed in in-vitro tests. The objective of the present study was to evaluate the effect of A. vera leaf extract supplementation on the severity of clinical signs and pathological lesions, mortality rate, levels of antioxidant enzymes, and immune response in experimentally E. coli-infected broiler chicks. Broiler chicks were supplemented with aqueous Aloe vera Leaf (AVL) extract @ 20 ml per liter of water from day one of age. After seven days of age, they were experimentally infected with E. coli O78 @ 107 CFU/0.5 ml intraperitoneally. Blood was collected at weekly intervals up to 28 days and assayed for antioxidant enzyme assays, and humoral and cellular immune response. The birds were observed daily for clinical signs and mortality. Dead birds were examined for gross lesions and representative tissues were processed for histopathology. The activities of antioxidants, Glutathione reductase (GR), and Glutathione-S-Transferase (GST) were significantly higher than the control infected group. The E. coli-specific antibody titer and Lymphocyte stimulation Index were comparatively higher in the AVL extract-supplemented infected group as compared to the control infected group. No considerable change was noted in the severity of clinical signs and pathological lesions, and mortality. Thus, Aloe vera Leaf gel extract enhanced the antioxidant activities and cellular immune responses of infected broiler chicks to combat this infection.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Veterinary Pathology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, Haryana, India.
| | - Rajendar P Gupta
- Department of Veterinary Pathology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, Haryana, India.
| | - Preeti Bagri
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, Haryana, India.
| | - Renu Singh
- Department of Veterinary Pathology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, Haryana, India.
| |
Collapse
|
5
|
Hu J, Afayibo DJA, Zhang B, Zhu H, Yao L, Guo W, Wang X, Wang Z, Wang D, Peng H, Tian M, Qi J, Wang S. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Front Microbiol 2022; 13:1049391. [PMID: 36583051 PMCID: PMC9793750 DOI: 10.3389/fmicb.2022.1049391] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Although most Escherichia coli (E. coli) strains are commensal and abundant, certain pathogenic strains cause severe diseases from gastroenteritis to extraintestinal infections. Extraintestinal pathogenic E. coli (ExPEC) contains newborn meningitis E. coli (NMEC), uropathogenic E. coli (UPEC), avian pathogenic E. coli (APEC), and septicemic E. coli (SEPEC) based on their original host and clinical symptom. APEC is a heterogeneous group derived from human ExPEC. APEC causes severe respiratory and systemic diseases in a variety of avians, threatening the poultry industries, food security, and avian welfare worldwide. APEC has many serotypes, and it is a widespread pathogenic bacterium in poultry. In addition, ExPEC strains share significant genetic similarities and similar pathogenic mechanisms, indicating that APEC potentially serves as a reservoir of virulence and resistance genes for human ExPEC, and the virulence and resistance genes can be transferred to humans through food animals. Due to economic losses, drug resistance, and zoonotic potential, APEC has attracted heightened awareness. Various virulence factors and resistance genes involved in APEC pathogenesis and drug resistance have been identified. Here, we review the characteristics, epidemiology, pathogenic mechanism zoonotic potential, and drug resistance of APEC, and summarize the current status of diagnosis, alternative control measures, and vaccine development, which may help to have a better understanding of the pathogenesis and resistance of APEC, thereby reducing economic losses and preventing the spread of multidrug-resistant APEC to humans.
Collapse
|
6
|
Antibiotic Resistance in Bacteria—A Review. Antibiotics (Basel) 2022; 11:antibiotics11081079. [PMID: 36009947 PMCID: PMC9404765 DOI: 10.3390/antibiotics11081079] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background: A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as “foodborne pathoges” isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.
Collapse
|
7
|
Hussain HI, Iqbal Z, Iqbal M, Kuang X, Wang Y, Yang L, Ihsan A, Aqib AI, Kaleem QM, Gu Y, Hao H. Coexistence of virulence and β-lactamase genes in avian pathogenic Escherichia coli. Microb Pathog 2022; 163:105389. [PMID: 34998933 DOI: 10.1016/j.micpath.2022.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Emergence of multidrug resistance in E. coli and advent of newer strains is becoming serious concern which requires keen observations. This study was designed to find the ciprofloxacin resistant E. coli isolates co-existed with multi-drug resistance along with β-lactamase production from poultry source, and finally the genome sequencing of these strains to explore genetic variations. Study constituted on isolation of n = 225 E. coli from broiler farms of central China which were further subjected to identification of resistance against ciprofloxacin followed by antibiogram of n = 26 antibiotics and identification of β-lactamase production. Whole genome resequencing was performed using Illumina HiSeq 4000 system. PCR results revealed predominant β-lactamase genes i.e.CTX-M, CTX-M-1, CTX-M3, TEM-1 and OXA. Furthermore, the MDR isolates were containing most of the tested virulence genes. The most prevalent virulence genes were pap-C, fim-C, fim-H, iuc-D, irp-2, tra-T, iro-N and iut-A. The single nucleotide polymorphisms (SNPs) loci mentioned in this data give valuable genetic markers to growing high-throughput techniques for fine-determination of genotyping of MDR and virulent isolates. Characterization of SNPs on functional basis shed new bits of knowledge on the evolution, disease transmission and pathogenesis of MDR E. coli isolates. In conclusion, these findings provide evidence that most of poultry E. coli are MDR, β-lactamase producers, and virulent which could be a zoonotic threat to the humans. The whole genome resequencing data provide higher resolution of resistance and virulence characteristics in E. coli which can further be used for the development of prevention and treatment strategies.
Collapse
Affiliation(s)
- Hafiz Iftikhar Hussain
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China; Department of Pathology, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Zahid Iqbal
- Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Xiuhua Kuang
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China; Medicinal Engineering Department, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450011, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingquan Yang
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | | | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Kumari M, Gupta RP, Lather D, Bagri P. Ameliorating effect of Withania somnifera root extract in Escherichia coli-infected broilers. Poult Sci 2020; 99:1875-1887. [PMID: 32241467 PMCID: PMC7587908 DOI: 10.1016/j.psj.2019.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022] Open
Abstract
The present study was undertaken to investigate the effect of aqueous Withania somnifera root (WSR) extract in broiler chicks experimentally infected with Escherichia coli O78 @ 107 CFU/0.5 ml intraperitoneally. Clinical signs and mortality due to colibacillosis observed in infected chicks were mild and lasted for short duration in WSR extract supplemented group as compared with the nonsupplemented group. A significant increase in serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, and creatine phosphokinase activities and a decrease in total protein and albumin concentrations were observed in the infected groups, though these changes were of lower magnitude in WSR extract supplemented group. A significantly higher activity of oxidative blood parameters such as superoxide dismutase, catalase, glutathione reductase, and glutathione-S-transferase enzymes were noticed in WSR extract supplemented group. The WSR extract supplemented group revealed significantly higher E. coli-specific antibody titer and enhanced lymphocyte proliferation response as compared with the nonsupplemented group. The gross and histopathological lesions of colibacillosis were mild in the WSR extract-supplemented infected group as compared with the nonsupplemented infected group. Withania somnifera root extract supplementation produced 31.48 and 34.38% protection in the gross and histopathological lesions in E. coli infected chicks, respectively. It is concluded that supplementation of 20% WSR extract @ 20 ml/L of water caused a reduction in the severity, mortality, and recovery period of E. coli infection and enhanced the humoral and cellular immune responses suggesting its protective effect on limiting the pathology of E. coli infection in broiler chickens.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Veterinary Pathology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Science, Hisar 125004, Haryana, India.
| | - Rajendar P Gupta
- Department of Veterinary Pathology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Science, Hisar 125004, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Science, Hisar 125004, Haryana, India
| | - Preeti Bagri
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Science, Hisar 125004, Haryana, India
| |
Collapse
|
9
|
Saeed M, Naveed M, Leskovec J, Ali Kamboh A, Kakar I, Ullah K, Ahmad F, Sharif M, Javaid A, Rauf M, Abd El-Hack ME, Abdel-Latif MA, Chao S. Using Guduchi (Tinospora cordifolia) as an eco-friendly feed supplement in human and poultry nutrition. Poult Sci 2019; 99:801-811. [PMID: 32029162 PMCID: PMC7587696 DOI: 10.1016/j.psj.2019.10.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Guduchi (Tinospora cordifolia) is a well-recognized and widely distributed traditional plant that is used successfully in Indian Ayurveda medicine. T. cordifolia has shown many promising biological activities, such as antioxidative, antimicrobial, antihyperglycemic, anti-inflammatory, osteoprotective, hepatoprotective, antidiarrheal, and antistress effects. Guduchi is a rich source of protein and micronutrients, such as iron, zinc, copper, calcium, phosphorus, and manganese. It also contains many secondary plant metabolites, such as terpenes, alkaloids, flavonoids, steroids, and glycosides. Based on previous studies in poultry, the supplementation levels of Guduchi range from 1 to 5 g/kg of diet (different sources, such as powder, extracts, roots, and leaves, have been used). It was suggested that this variation in supplementation levels depends on different factors, including the extraction method, the supplementation proposed, the method of supplementation (either in feed or drinking water), and the species and physiological status of the birds. Generally, dietary supplementation of poultry broilers with T. cordifolia yielded positive impacts on growth performance, body gains (increased by 4.8%), dressing percentage (increased by 7.1%), meat quality traits, and the shelf life of the meat. In addition, T. cordifolia exerted a palliative effect on the general health status of the birds through reducing live enzymes and plasma uric acids and enhancing the immune response, as indicated by the leukocyte count, hemagglutinin titer, interleukin activity, and mortality levels. Further investigations concluded that T. cordifolia showed strong antimicrobial effects against Escherichia coli and Salmonella enteritidis, with subsequent reductions in mortality. Moreover, T. cordifolia showed an ability to improve humoral and cell-mediated immunity against Newcastle disease, infectious anemia, gout, and aflatoxicosis. The current review discusses many beneficial properties of T. cordifolia, although the lack of pharmacological trials limits the use of this extract in poultry. Further research should be performed regarding the composition of the active compound, the possible mechanisms of action, and the effective doses to fully understand the activities and benefits of T. cordifolia as a growth performance improvement supplement.
Collapse
Affiliation(s)
- Muhammad Saeed
- College of Animal Sciences and Technology, Northwest A & F University, Yangling 712100, China; Department of Poultry Science, Faculty of Animal Production & Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China
| | - Jakob Leskovec
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia 1230 Domžale, Slovenia
| | - Asgahr Ali Kamboh
- Department of Microbiology, Sindh Agriculture University Tandojam, Sindh Province, Pakistan
| | - Ihsanullah Kakar
- Clinical Medicine and Surgery Department LUAWMS, Uthal, Balochistan, Pakistan
| | - Kifayat Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Fawwad Ahmad
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sharif
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Asif Javaid
- Department of Animal Nutrition, Faculty of Animal Production & Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Mubasher Rauf
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, code 63100, Pakistan
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mervat A Abdel-Latif
- Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Sun Chao
- College of Animal Sciences and Technology, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
10
|
Lu J, Zhang J, Xu L, Liu Y, Li P, Zhu T, Cheng C, Lu S, Xu T, Yi H, Li K, Zhou W, Li P, Ni L, Bao Q. Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China. Antimicrob Resist Infect Control 2018; 7:127. [PMID: 30410748 PMCID: PMC6211440 DOI: 10.1186/s13756-018-0415-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Florfenicol is a derivative of chloramphenicol that is used only for the treatment of animal diseases. A key resistance gene for florfenicol, floR, can spread among bacteria of the same and different species or genera through horizontal gene transfer. To analyze the potential transmission of resistance genes between animal and human pathogens, we investigated floR in Klebsiella pneumoniae isolates from patient samples. floR in human pathogens may originate from animal pathogens and would reflect the risk to human health of using antimicrobial agents in animals. Methods PCR was used to identify floR-positive strains. The floR genes were cloned, and the minimum inhibitory concentrations (MICs) were determined to assess the relative resistance levels of the genes and strains. Sequencing and comparative genomics methods were used to analyze floR gene-related sequence structure as well as the molecular mechanism of resistance dissemination. Results Of the strains evaluated, 20.42% (67/328) were resistant to florfenicol, and 86.96% (20/23) of the floR-positive strains demonstrated high resistance to florfenicol with MICs ≥512 μg/mL. Conjugation experiments showed that transferrable plasmids carried the floR gene in three isolates. Sequencing analysis of a plasmid approximately 125 kb in size (pKP18-125) indicated that the floR gene was flanked by multiple copies of mobile genetic elements. Comparative genomics analysis of a 9-kb transposon-like fragment of pKP18-125 showed that an approximately 2-kb sequence encoding lysR-floR-virD2 was conserved in the majority (79.01%, 83/105) of floR sequences collected from NCBI nucleotide database. Interestingly, the most similar sequence was a 7-kb fragment of plasmid pEC012 from an Escherichia coli strain isolated from a chicken. Conclusions Identified on a transferable plasmid in the human pathogen K. pneumoniae, the floR gene may be disseminated through horizontal gene transfer from animal pathogens. Studies on the molecular mechanism of resistance gene dissemination in different bacterial species of animal origin could provide useful information for preventing or controlling the spread of resistance between animal and human pathogens.
Collapse
Affiliation(s)
- Junwan Lu
- School of Medicine and Health, Lishui University, Lishui, 323000 China
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jinfang Zhang
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Lei Xu
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Yabo Liu
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Pingping Li
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Tingyuan Zhu
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Cong Cheng
- School of Medicine and Health, Lishui University, Lishui, 323000 China
| | - Shunfei Lu
- School of Medicine and Health, Lishui University, Lishui, 323000 China
| | - Teng Xu
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Huiguang Yi
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Kewei Li
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Wu Zhou
- School of Medicine and Health, Lishui University, Lishui, 323000 China
| | - Peizhen Li
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Liyan Ni
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Qiyu Bao
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| |
Collapse
|
11
|
Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products. Transgenic Res 2018; 28:51-76. [PMID: 30374651 DOI: 10.1007/s11248-018-0101-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
Zoonotic and foodborne diseases pose a significant burden, decreasing both human and animal health. Modifying chickens to overexpress antimicrobials has the potential to decrease bacterial growth on poultry products and boost chicken innate immunity. Chickens overexpressing either ovotransferrin or avian β-defensin-3 (AvβD3) were generated using Tol-2 transposons. Transgene expression at the RNA and protein level was seen in egg white, breast muscle, and serum. There were significant differences in the immune cell populations in the blood, bursa, and spleen associated with transgene expression including an increased proportion of CD8+ cells in the blood of ovotransferrin and AvβD3 transgenic birds. Expression of the antimicrobials inhibited the in vitro growth of human and chicken bacterial pathogens and spoilage bacteria. For example, transgene expression significantly reduced growth of aerobic and coliform bacteria in breast muscle and decreased the growth of Salmonella enterica in egg white. Overall these results indicate that overexpression of antimicrobials in the chicken can impact the immune system and increase the antimicrobial capacity of poultry products.
Collapse
|
12
|
Amer MM, Mekky HM, Amer AM, Fedawy HS. Antimicrobial resistance genes in pathogenic Escherichia coli isolated from diseased broiler chickens in Egypt and their relationship with the phenotypic resistance characteristics. Vet World 2018; 11:1082-1088. [PMID: 30250367 PMCID: PMC6141278 DOI: 10.14202/vetworld.2018.1082-1088] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/29/2018] [Indexed: 12/02/2022] Open
Abstract
Aim: The aim of this study was to determine the relationship between phenotypic resistance and genotypic resistance of isolated serotyped pathogenic Escherichia coli isolates from the clinically diseased broiler. Materials and Methods: A total of 160 samples (heart, liver, kidney, and lung) were collected from 18 to 34 days old clinically diseased broiler from 40 broiler farms (3-5 birds/farm) reared in Giza and Kaluobaia Governorates for the isolation of pathogenic E. coli. Various E. coli isolates were tested for the pathogenicity based on Congo red (CR) dye binding assay. The obtained CR-positive E. coli isolates were subjected to serological identification using slide agglutination test. Disc diffusion test was used to study the sensitivity pattern of E. coli isolates to available 12 antibiotics. Polymerase chain reaction was performed for the detection of antimicrobial resistance genes in the studied pathogenic E. coli isolates. Results: The results revealed that 56 samples (35 %) were positive for E. coli. The results of the CR assay indicates that 20 isolates of 56 (35.7%) were positive and 36 isolates (64.3%) were negative. Identified E. coli serotypes of CR-positive isolates were 1 (O24), 2 (O44), 2 (O55), 5 (O78), 2 (O86), 1 (124), 3 (O127), 1 (O158), and 3 untyped. Resistance rate in disc diffusion test was 85% to oxytetracycline and kanamycin; 80% to ampicillin (AMP), clindamycin, and streptomycin (S); 75% to enrofloxacin; 65% to chloramphenicol; 55% to cefotaxime and gentamicin (CN); 45% to trimethoprim+sulfamethoxazole; 35% to erythromycin (ERI); and 30% to oxacillin. All strains are multidrug-resistant (MDR). Antibacterial resistance genes CITM, ere, aac (3)-(IV), tet(A), tet(B), dfr(A1), and aad(A1) were detected in 14 (70%), 12 (60%), 12 (60%), 8 (40%), 11 (55%), 8 (40%), and 9 (45%) of tested 20 isolates, respectively. Multidrug resistance was detected in the form of resistance to 42%-83.3% of tested 12 antibiotics. Three isolates (15%) of 20 tested isolates showed a relationship between phenotype and genotype and 17 (85%) showed irregular relation. Strains are sensitive and show resistant gene (P-G+) presented in three isolates for AMP (beta-lactam), one for ERI (Macrolide), as well as five isolates for trimethoprim (pyrimidine inhibitor). E. coli isolates had resistance and lacked gene (P+ G-) reported meanly in one isolate for CN (aminoglycoside), two isolates for tetracycline, four isolates for ERI, seven isolates for trimethoprim, and eight isolates for S (aminoglycoside). Conclusion: The study demonstrates that E. coli is still a major pathogen responsible for disease conditions in broiler. E. coli isolates are pathogenic and MDR. Responsible gene was detected for six antibiotics in most of the isolates, but some do not show gene expression, this may be due to few numbers of resistance genes tested or other resistance factors not included in this study.
Collapse
Affiliation(s)
- Mohamed M Amer
- Department of Poultry Diseases, Faculty Veterinary Medicine, Cairo University, P.O. 12211, Giza, Egypt
| | - Hoda M Mekky
- Department of Poultry Diseases, Veterinary Research Division, National Research Centre, P.O. 12622, Giza, Egypt
| | - Aziza M Amer
- Department of Pharmacology, Faculty Veterinary Medicine, Cairo University, P.O. 12211, Giza, Egypt
| | - Hanaa S Fedawy
- Department of Poultry Diseases, Veterinary Research Division, National Research Centre, P.O. 12622, Giza, Egypt
| |
Collapse
|
13
|
Natarajan M, Kumar D, Mandal J, Biswal N, Stephen S. A study of virulence and antimicrobial resistance pattern in diarrhoeagenic Escherichia coli isolated from diarrhoeal stool specimens from children and adults in a tertiary hospital, Puducherry, India. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2018; 37:17. [PMID: 30005599 PMCID: PMC6045864 DOI: 10.1186/s41043-018-0147-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Emergence of atypical enteropathogenic Escherichia coli (EPEC) and hybrid E. coli (harboring genes of more than one DEC pathotypes) strains have complicated the issue of growing antibiotic resistance in diarrhoeagenic Escherichia coli (DEC). This ongoing evolution occurs in nature predominantly via horizontal gene transfers involving the mobile genetic elements like integrons notably class 1 integron. This study was undertaken to determine the virulence pattern and antibiotic resistance among the circulating DEC strains in a tertiary care center in south of India. METHODS Diarrhoeal stool specimens were obtained from 120 children (< 5 years) and 100 adults (> 18 years), subjected to culture and isolation of diarrhoeal pathogens. Conventional PCR was performed to detect 10 virulence and 27 antimicrobial resistance (AMR) genes among the E. coli isolated. RESULTS DEC infection was observed in 45 (37.5%) children and 18 (18%) adults, among which [18 (40%), 10 (10%)] atypical EPEC was most commonly detected followed by [6 (13.3%), 4 (4%)] ETEC, [5 (11.1%) 2 (2%)] EAEC, [(3 (6.6%), 0 (0%)] EIEC, [3 (6.6%), 0 (0%] typical EPEC, and [4 (8.8%), 1 (1%)] STEC, and no NTEC and CDEC was detected. DEC co-infection in 3 (6.6%) children, and 1(1%) adult and sole hybrid DEC infection in 3 (6.6%) children was detected. The distribution of sulphonamide resistance genes (sulI, sulII, and sulIII were 83.3 and 21%, 60.41 and 42.1%, and 12.5 and 26.3%, respectively) and class 1 integron (int1) genes (41.6 and 26.31%) was higher in DEC strains isolated from children and adults, respectively. Other AMR genes detected were qnrS, qnrB, aac(6')Ib-cr, dhfr1, aadB, aac(3)-IV, tetA, tetB, tetD, catI, blaCTX, blaSHV, and blaTEM. None harbored qnrA, qnrC, qepA, tetE, tetC, tetY, ermA, mcr1, int2, and int3 genes. CONCLUSIONS Atypical EPEC was a primary etiological agent of diarrhea in children and adults among the DEC pathotypes. Detection of high numbers of AMR genes and class 1 integron genes indicate the importance of mobile genetic elements in spreading of multidrug resistance genes among these strains.
Collapse
Affiliation(s)
- Mailan Natarajan
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | - Deepika Kumar
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | - Jharna Mandal
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | - Niranjan Biswal
- Department of Paediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | - Selvaraj Stephen
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute (MGMC & RI), Puducherry, 607 402 India
| |
Collapse
|
14
|
Yaqoob M, Wang LP, Kashif J, Memon J, Umar S, Iqbal MF, Fiaz M, Lu CP. Genetic characterization of phenicol-resistant Escherichia coli and role of wild-type repressor/regulator gene (acrR) on phenicol resistance. Folia Microbiol (Praha) 2018; 63:443-449. [PMID: 29307119 DOI: 10.1007/s12223-017-0579-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/11/2017] [Indexed: 11/25/2022]
Abstract
The genetic basis for phenicol resistance was examined in 38 phenicol-resistant clinical Escherichia coli isolates from poultry. Out of 62 isolates, 38 showed resistance for chloramphenicol and nine for florfenicol, respectively. Each strain also demonstrated resistance to a variety of other antibiotics. Molecular detection revealed that the incidence rates of the cat1, cat2, flo, flo-R, cmlA, and cmlB were 32, 29, 18, 13, 0, and 0%, respectively. Nineteen strains were tolerant to organic solvents. PCR amplification of the complete acrR (regulator/repressor) gene of five isolates revealed the amino acid changes in four isolates. DNA sequencing showed the non-synonymous mutations which change the amino acid, silent mutation, and nucleotide deletion in four isolates. MY09C10 showed neither deletion nor mutation in nucleotide. The AcrA protein of the AcrAB multidrug efflux pump was overexpressed in these strains. Complementation with a plasmid-borne wild-type acrR gene reduced the expression level of AcrA protein in the mutants and partially restored antibiotic susceptibility one- to fourfold. This study shows that mutations in acrR are an additional genetic basis for phenicol resistance.
Collapse
Affiliation(s)
- Muhammad Yaqoob
- Department of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.,Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Li Ping Wang
- Department of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jam Kashif
- Department of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Javed Memon
- Department of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Sajid Umar
- Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Farooq Iqbal
- Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Fiaz
- Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Cheng-Ping Lu
- Department of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
15
|
Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front Vet Sci 2017; 4:126. [PMID: 28848739 PMCID: PMC5554362 DOI: 10.3389/fvets.2017.00126] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global health threat, and antimicrobial usage and AMR in animal production is one of its contributing sources. Poultry is one of the most widespread types of meat consumed worldwide. Poultry flocks are often raised under intensive conditions using large amounts of antimicrobials to prevent and to treat disease, as well as for growth promotion. Antimicrobial resistant poultry pathogens may result in treatment failure, leading to economic losses, but also be a source of resistant bacteria/genes (including zoonotic bacteria) that may represent a risk to human health. Here we reviewed data on AMR in 12 poultry pathogens, including avian pathogenic Escherichia coli (APEC), Salmonella Pullorum/Gallinarum, Pasteurella multocida, Avibacterium paragallinarum, Gallibacterium anatis, Ornitobacterium rhinotracheale (ORT), Bordetella avium, Clostridium perfringens, Mycoplasma spp., Erysipelothrix rhusiopathiae, and Riemerella anatipestifer. A number of studies have demonstrated increases in resistance over time for S. Pullorum/Gallinarum, M. gallisepticum, and G. anatis. Among Enterobacteriaceae, APEC isolates displayed considerably higher levels of AMR compared with S. Pullorum/Gallinarum, with prevalence of resistance over >80% for ampicillin, amoxicillin, tetracycline across studies. Among the Gram-negative, non-Enterobacteriaceae pathogens, ORT had the highest levels of phenotypic resistance with median levels of AMR against co-trimoxazole, enrofloxacin, gentamicin, amoxicillin, and ceftiofur all exceeding 50%. In contrast, levels of resistance among P. multocida isolates were less than 20% for all antimicrobials. The study highlights considerable disparities in methodologies, as well as in criteria for phenotypic antimicrobial susceptibility testing and result interpretation. It is necessary to increase efforts to harmonize testing practices, and to promote free access to data on AMR in order to improve treatment guidelines as well as to monitor the evolution of AMR in poultry bacterial pathogens.
Collapse
Affiliation(s)
- Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | | | - Juan J Carrique-Mas
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Sharma V, Jakhar KK, Dahiya S. Immuno-pathological studies on broiler chicken experimentally infected with Escherichia coli and supplemented with neem (Azadirachta indica) leaf extract. Vet World 2016; 9:735-41. [PMID: 27536035 PMCID: PMC4983125 DOI: 10.14202/vetworld.2016.735-741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/15/2016] [Indexed: 01/23/2023] Open
Abstract
AIM The present study was conducted to evaluate the effects of neem leaf extract (NLE) supplementation on immunological response and pathology of different lymphoid organs in experimentally Escherichia coli challenged broiler chickens. MATERIALS AND METHODS For this study, we procured 192-day-old broiler chicks from local hatchery and divided them into Groups A and Group B containing 96 birds each on the first day. Chicks of Group A were supplemented with 10% NLE in water, whereas chicks of Group B were not supplemented with NLE throughout the experiment. At 7(th) day of age, chicks of Group A were divided into A1 and A2 and Group B into B1 and B2 with 54 and 42 chicks, respectively, and chicks of Groups A1 and B1 were injected with E. coli O78 at 10(7) colony-forming units/0.5 ml intraperitoneally. Six chicks from each group were sacrificed at 0, 2, 4, 7, 14, 21, and 28 days post infection; blood was collected and thorough post-mortem examination was conducted. Tissue pieces of spleen and bursa of Fabricius were collected in 10% buffered formalin for histopathological examination. Serum was separated for immunological studies. RESULT E. coli specific antibody titer was significantly higher in Group A1 in comparison to Group B1. Delayed-type hypersensitivity response against 2,4 dinirochlorobenzene (DNCB) antigen was significantly higher in Group A1 as compared to Group B1. Pathological studies revealed that E. coli infection caused depletion of lymphocytes in bursa of Fabricius and spleen. Severity of lesions in Group A1 was significantly lower in comparison to Group B1. CONCLUSION 10% NLE supplementation enhanced the humoral as well as cellular immune responses attributed to its immunomodulatory property in experimentally E. coli infected broiler chicken.
Collapse
Affiliation(s)
- Vikash Sharma
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, Haryana, India
| | - K K Jakhar
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, Haryana, India
| | - Swati Dahiya
- Department of Veterinary Microbiology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
17
|
Miranda CD, Rojas R, Geisse J, Romero J, González-Rocha G. Scallop larvae hatcheries as source of bacteria carrying genes encoding for non-enzymatic phenicol resistance. MARINE POLLUTION BULLETIN 2015; 95:173-182. [PMID: 25956439 DOI: 10.1016/j.marpolbul.2015.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/21/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
The main aim of the study was to evaluate the role of scallop hatcheries as source of the floR and cmlA genes. A number of 133 and 121 florfenicol-resistant strains were isolated from scallop larval cultures prior to their transfer to seawater and from effluent samples from 2 commercial hatcheries and identified by 16S rRNA gene sequence analysis, observing a predominance of the Pseudomonas, Pseudoalteromonas and Halomonas genera and exhibiting an important incidence of co-resistance to streptomycin, oxytetracycline and co-trimoxazole. A high percentage of strains from both hatcheries carried the floR gene (68.4% and 89.3% of strains), whereas a lower carriage of the cmlA gene was detected (27.1% and 54.5% of strains). The high prevalence of floR-carrying bacteria in reared scallop larvae and hatchery effluents contributes to enrich the marine resistome in marine environments, prompting the need of a continuous surveillance of these genes in the mariculture environments.
Collapse
Affiliation(s)
- Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Larrondo 1281, Coquimbo, Chile.
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Julieta Geisse
- Laboratorio de Antibióticos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| | - Jaime Romero
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Gerardo González-Rocha
- Laboratorio de Antibióticos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
18
|
Kumari M, Gupta RP. In vitro antibacterial effect of Withania somnifera root extract on Escherichia coli. Vet World 2015; 8:57-60. [PMID: 27046997 PMCID: PMC4777812 DOI: 10.14202/vetworld.2015.57-60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
AIM The aim was to investigate antibacterial activity of Withania somnifera (Ashwagandha), an Indian traditional medicinal plant against Escherichia coli O78, a pathogenic strain. MATERIALS AND METHODS Two-fold serial dilutions of 20% aqueous W. somnifera root (WSR) extract were inoculated with E. coli O78 @ 1*10(7) colony forming units grown in nutrient broth. Following inoculation, turbidity optical density was measured by spectrophotometer at 600 nm in all the tubes at 0, 2, 4, 6 and 8 h of incubation at 37°C. RESULT The results revealed that the maximum inhibition of bacterial growth was observed at 1:8 dilution of WSR extract. The highest dilution of the extract that showed inhibited growth of the test organism when compared with control was 1:16. Therefore, the minimum inhibitory concentration of aqueous extract of WSR is 1:16. CONCLUSION It is concluded that WSR possessed good antibacterial activity, confirming the great potential of bioactive compounds and its rationalizing use in health care.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - R P Gupta
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
19
|
Ma L, Shen Z, Naren G, Li H, Xia X, Wu C, Shen J, Zhang Q, Wang Y. Identification of a novel G2073A mutation in 23S rRNA in amphenicol-selected mutants of Campylobacter jejuni. PLoS One 2014; 9:e94503. [PMID: 24728007 PMCID: PMC3984149 DOI: 10.1371/journal.pone.0094503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/17/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES This study was conducted to examine the development and molecular mechanisms of amphenicol resistance in Campylobacter jejuni by using in vitro selection with chloramphenicol and florfenicol. The impact of the resistance development on growth rates was also determined using in vitro culture. METHODS Chloramphenicol and florfenicol were used as selection agents to perform in vitro stepwise selection. Mutants resistant to the selective agents were obtained from the selection process. The mutant strains were compared with the parent strain for changes in MICs and growth rates. The 23S rRNA gene and the L4 and L22 ribosomal protein genes in the mutant strains and the parent strain were amplified and sequenced to identify potential resistance-associated mutations. RESULTS C. jejuni strains that were highly resistant to chloramphenicol and florfenicol were obtained from in vitro selection. A novel G2073A mutation in all three copies of the 23S rRNA gene was identified in all the resistant mutants examined, which showed resistance to both chloramphenicol and florfenicol. In addition, all the mutants selected by chloramphenicol also exhibited the G74D modification in ribosomal protein L4, which was previously shown to confer a low-level erythromycin resistance in Campylobacter species. The mutants selected by florfenicol did not have the G74D mutation in L4. Notably, the amphenicol-resistant mutants also exhibited reduced susceptibility to erythromycin, suggesting that the selection resulted in cross resistance to macrolides. CONCLUSIONS This study identifies a novel point mutation (G2073A) in 23S rRNA in amphenicol-selected mutants of C. jejuni. Development of amphenicol resistance in Campylobacter likely incurs a fitness cost as the mutant strains showed slower growth rates in antibiotic-free media.
Collapse
Affiliation(s)
- Licai Ma
- Key Laboratory of Development and Evaluation of Chemical and Herbal Drugs for Animal Use, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Zhangqi Shen
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Gaowa Naren
- Key Laboratory of Development and Evaluation of Chemical and Herbal Drugs for Animal Use, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Hui Li
- Key Laboratory of Development and Evaluation of Chemical and Herbal Drugs for Animal Use, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xi Xia
- Key Laboratory of Development and Evaluation of Chemical and Herbal Drugs for Animal Use, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Congming Wu
- Key Laboratory of Development and Evaluation of Chemical and Herbal Drugs for Animal Use, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jianzhong Shen
- Key Laboratory of Development and Evaluation of Chemical and Herbal Drugs for Animal Use, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (QZ); (YW)
| | - Yang Wang
- Key Laboratory of Development and Evaluation of Chemical and Herbal Drugs for Animal Use, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- * E-mail: (QZ); (YW)
| |
Collapse
|
20
|
Santos MM, Alcântara ACM, Perecmanis S, Campos A, Santana AP. Antimicrobial resistance of bacterial strains isolated from avian cellulitis. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2014. [DOI: 10.1590/s1516-635x2014000100002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - S Perecmanis
- Universidade de Brasília; Faculdade de Agronomia e Medicina Veterinária, Brasil
| | - A Campos
- Ministério da Agricultura, Pecuária e Abastecimento, Brasil
| | - AP Santana
- Faculdade de Agronomia e Medicina Veterinária, Brasil
| |
Collapse
|
21
|
Randall LP, Mueller-Doblies D, Lemma FL, Horton RA, Teale CJ, Davies RH. Characteristics of ciprofloxacin and cephalosporin resistant Escherichia coli isolated from turkeys in Great Britain. Br Poult Sci 2013; 54:96-105. [PMID: 23444859 DOI: 10.1080/00071668.2013.763902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. A field study was performed to investigate the presence and characteristics of ciprofloxacin-resistant, extended spectrum β-lactamase (ESBL) and AmpC Escherichia coli from turkeys in Great Britain. E. coli were isolated from ~9000 boot swab samples from 27 different farms owned by four different companies. Between 1 and 14 visits were made to each farm (mean 3) at between 0 and 15 m intervals (mean ~5 m). 2. CHROMagar ECC with and without ciprofloxacin or cephalosporin antibiotics was used as selective isolation media. Representative isolates with different phenotypes were tested for mutations in gyrA and for: qnrA, B, S, qepA and aac(6')-Ib genes, for ESBL phenotype, the presence of bla genes and plasmid type, and for ampC genes Representative ciprofloxacin-resistant and CTX-M isolates were further tested for serotype and PFGE type. On ciprofloxacin selective media 55% of samples yielded ciprofloxacin resistant E. coli and of those further analysed, most had ciprofloxacin MICs >4 mg/l and mutations in gyrA. 3. For the different companies, the mean number of samples per farm with cefoxitin- or cefotaxime-resistant isolates ranged from 1·0% to 61·9% and 4·7% to 31·7% respectively. Cefotaxime-resistance was most commonly associated with an ESBL phenotype, a CTX-M-1 or CTX-M-14 sequence type and an I1-γ or K plasmid inc type. The mechanism of cefoxitin resistance was not determined for most isolates, but where determined it was bla . 4. PFGE and serotyping showed clonally-related isolates persisting over multiple visits suggesting both more prudent use of antibiotics and improved farm hygiene are needed to address the issue of antimicrobial resistance in isolates from turkeys.
Collapse
Affiliation(s)
- L P Randall
- Animal Health and Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey, United Kingdom.
| | | | | | | | | | | |
Collapse
|
22
|
Mellata M. Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog Dis 2013; 10:916-32. [PMID: 23962019 DOI: 10.1089/fpd.2013.1533] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns, elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs), newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare concerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of containment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfortunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the elderly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed by ExPEC would greatly enhance food safety and positively impact human health.
Collapse
Affiliation(s)
- Melha Mellata
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University , Tempe, Arizona
| |
Collapse
|
23
|
Ozawa M, Asai T. Relationships between mutant prevention concentrations and mutation frequencies against enrofloxacin for avian pathogenic Escherichia coli isolates. J Vet Med Sci 2013; 75:709-13. [PMID: 23328636 DOI: 10.1292/jvms.12-0131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical efficacies of mutant prevention concentration (MPC) and mutant selection window (MSW) hypotheses have been evaluated for human clinical isolates. We tested the MSW hypothesis by evaluating the relationships between MPCs and mutation frequencies against enrofloxacin for avian pathogenic Escherichia coli (APEC) isolates. Mutation frequencies of strains with MPC:MIC ratios of 8 to 16 were significantly higher than those of strains with an MPC:MIC ratio of 4. Mutation frequencies and MPCs of serogroup O2 strains were lower than those of the other strains; these results may correlate with the absence of fluoroquinolone-resistant O2 strains. Our results support the MSW hypothesis that the range of the MSW is involved in selection of resistant mutants.
Collapse
Affiliation(s)
- Manao Ozawa
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan.
| | | |
Collapse
|
24
|
Gosling RJ, Clouting CS, Randall LP, Horton RA, Davies RH. Ciprofloxacin resistance inE. coliisolated from turkeys in Great Britain. Avian Pathol 2012; 41:83-9. [DOI: 10.1080/03079457.2011.640659] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Xinxin C, Chi C, Xiao C, Xue X, Yongjun Y, Junqing C, Xuming D. Florfenicol inhibits allergic airway inflammation in mice by p38 MAPK-mediated phosphorylation of GATA 3. Clin Immunol 2010; 138:231-8. [PMID: 21163707 DOI: 10.1016/j.clim.2010.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/10/2010] [Accepted: 11/15/2010] [Indexed: 11/28/2022]
Abstract
Florfenicol has been shown to possess anti-inflammatory activity. However, its possible use for asthma has not yet been studied. First we investigated the anti-inflammatory properties of florfenicol using mice asthma model. BALB/c mice were immunized and challenged by ovalbumin. Treatment with florfenicol caused a marked reduction in inflammatory cells and three Th2 type cytokines in the bronchoalveolar lavage fluids of mice. The levels of ovalbumin-specific IgE and airway hyperresponsiveness were significantly altered after treatment with florfenicol. Histological studies using H&E and AB-PAS staining demonstrate that florfenicol substantially inhibited ovalbumin-induced inflammatory cells infiltration in lung tissue and goblet cell hyperplasia in the airway. These results were similar to those obtained with dexamethasone treatment. We then investigated which signal transduction mechanisms could be implicated in florfenicol activity. Our results suggested that the protective effect of florfenicol was mediated by the inhibition of the p38 MAPK-mediated phosphorylation of GATA 3.
Collapse
Affiliation(s)
- Ci Xinxin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Rad M, Kooshan M, Mesgarani H. Quinolone resistance among Salmonella enterica and Escherichia coli of animal origin. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s00580-010-1078-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Lutful Kabir SM. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:89-114. [PMID: 20195435 PMCID: PMC2819778 DOI: 10.3390/ijerph7010089] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/11/2010] [Indexed: 11/16/2022]
Abstract
Avian colibacillosis and salmonellosis are considered to be the major bacterial diseases in the poultry industry world-wide. Colibacillosis and salmonellosis are the most common avian diseases that are communicable to humans. This article provides the vital information on the epidemiology, pathogenesis, diagnosis, control and public health concerns of avian colibacillosis and salmonellosis. A better understanding of the information addressed in this review article will assist the poultry researchers and the poultry industry in continuing to make progress in reducing and eliminating avian colibacillosis and salmonellosis from the poultry flocks, thereby reducing potential hazards to the public health posed by these bacterial diseases.
Collapse
Affiliation(s)
- S M Lutful Kabir
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.
| |
Collapse
|
28
|
Inter- and intraspecies plasmid-mediated transfer of florfenicol resistance in Enterobacteriaceae isolates from swine. Appl Environ Microbiol 2009; 75:5700-3. [PMID: 19592530 DOI: 10.1128/aem.02816-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Florfenicol resistance was analyzed in 230 enteric pig isolates collected between 1998 and 2006. PCR, plasmid profiling, Southern blot hybridization, and a mixed-broth conjugation assay suggested the intra- and interspecies plasmid-mediated transfer of florfenicol resistance among the isolates that exhibited MICs for florfenicol between 4 to 128 mg/liter.
Collapse
|
29
|
Abstract
AbstractThis paper reviews the present state of antimicrobial resistance (AMR) in the zoonotic bacteria Salmonella, Campylobacter jejuni and Campylobacter coli, and in Escherichia coli from chickens and turkeys. For Salmonella, the frequencies and patterns of AMR vary depending on time, region, serovar, the particular farm, layers versus broilers, and the antimicrobial agent. There is usually a higher frequency of AMR in Salmonella from turkeys compared with Salmonella from chickens. Clonal and horizontal transmission of AMR occur and there is concern about the spread of transmissible plasmids that encode extended spectrum cephalosporinases. Resistance to fluoroquinolones is generally low. For Campylobacter, resistance to tetracycline is usually at moderate to high frequency, resistance to quinolones/fluoroquinolones varies from low to high, and resistance to macrolides is usually low. There are high levels of fluoroquinolone resistance in some countries. Avian pathogenic E. coli are often highly resistant, especially to tetracycline, streptomycin, and sulfonamides. Plasmid-mediated resistance is common. High levels of resistance to ciprofloxacin have been reported from China. Commensal E. coli from poultry have similar patterns of resistance but at lower frequencies. Integron associated resistance occurs commonly in Salmonella and E. coli but has not been detected in Campylobacter.
Collapse
|