1
|
Han Q, Zhao H, Chen M, Xue W, Li J, Sun L, Shang Y. Retinol binding protein 4 restricts PCV2 replication via selective autophagy degradation of viral ORF1 protein. Commun Biol 2024; 7:1438. [PMID: 39500783 PMCID: PMC11538477 DOI: 10.1038/s42003-024-07052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Autophagy is a highly conserved degradative process that has been linked to various functions, including defending host cells against pathogens. Although the involvement of autophagy in porcine circovirus 2 (PCV2) infection has become apparent, it remains unclear whether selective autophagy plays a critical role in PCV2 restriction. Here we show that retinol-binding protein 4 (RBP4), an adipokine for retinol carrier, initiates the autophagic degradation of PCV2 ORF1 protein. PCV2 infection increases RBP4 protein levels through MAPK-eIF4E axis in living cells. Ectopic expression of RBP4 or recombinant RBP4 treatment promotes the degradation of ORF1 protein. Mechanistically, RBP4 activates TRAF6 to induce K63-linked ubiquitination of ORF1, leading to SQSTM1/p62-mediated selective autophagy for degradation. Consequently, RBP4 deficiency increases viral loads and exacerbates the pathogenicity of PCV2 in vivo. Collectively, these results identify RBP4 as a key host restriction factor of PCV2 and reveal a previously undescribed antiviral mechanism against PCV2 in infected cells.
Collapse
Affiliation(s)
- Qingbing Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Hejiao Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Meng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Wenshuo Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Jun Li
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China.
- Institute of Immunology, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
2
|
Li C, Yang K, Song H, Xia C, Wu Q, Zhu J, Liu W, Gao T, Guo R, Liu Z, Yuan F, Tian Y, Zhou D. Porcine circovirus type 2 ORF5 induces an inflammatory response by up-regulating miR-21 levels through targeting nuclear ssc-miR-30d. Virus Res 2024; 346:199396. [PMID: 38763299 PMCID: PMC11144814 DOI: 10.1016/j.virusres.2024.199396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Porcine circovirus type 2 (PCV2) infection leads to multi-system inflammation in pigs, and this effect can be achieved by upregulating host miR-21. The underlying mechanism of miR-21 regulates PCV2-induced inflammation is already known, however, how PCV2 regulates miR-21 levels and function using both autonomic and host factors remains to be further revealed. Here we present the first evidence that PCV2 ORF5 induces an inflammatory response by up-regulating miR-21 level through targeting nuclear miR-30d. In this study, we found that overexpression of ORF5 significantly increased miR-21 level and promoted the expression of inflammatory cytokines and activation of the NF-κB pathway, while ORF5 mutation had the opposite effect. Moreover, the differential expression of miR-21 could significantly change the pro-inflammatory effect of ORF5, indicating that ORF5 promotes inflammatory response by up-regulating miR-21. Bioinformatics analysis and clinical detection found that nuclear miR-30d was significantly down-regulated after ORF5 overexpression and PCV2 infection, and targeted pri-miR-21 and PCV2 ORF5. Functionally, we found that miR-30d inhibited the levels of miR-21 and inflammatory cytokines in cells. Mechanistically, we demonstrated that ORF5 inhibits miR-30d expression levels through direct binding but not via the circRNA pathway, and miR-30d inhibits miR-21 levels by targeting pri-miR-21. In summary, the present study revealed the molecular mechanism of ORF5 upregulation of miR-21, further refined the molecular chain of PCV2-induced inflammatory response and elucidated the role of miRNAs in it.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Haofei Song
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Chuqiao Xia
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Jiajia Zhu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China.
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China.
| |
Collapse
|
3
|
Han C, Xu W, Wang J, Hou X, Zhou S, Song Q, Liu X, Li H. Porcine Circovirus 2 Increases the Frequency of Transforming Growth Factor-β via the C35, S36 and V39 Amino Acids of the ORF4. Viruses 2023; 15:1602. [PMID: 37515288 PMCID: PMC10383414 DOI: 10.3390/v15071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine circovirus 2 (PCV2) is one of the most important endemic swine pathogens, inducing immunosuppression in pigs and predisposing them to secondary bacterial or viral infections. Our previous studies show that PCV2 infection stimulated pig intestinal epithelial cells (IPEC-J2) to produce the secretory transforming growth factor-β (TGF-β), which, in turn, caused CD4+ T cells to differentiate into regulatory T cells (Tregs). This may be one of the key mechanisms by which PCV2 induces immunosuppression. Here, we attempt to identify the viral proteins that affect the TGF-β secretion, as well as the key amino acids that are primarily responsible for this occurrence. The three amino acids C35, S36 and V39 of the ORF4 protein are the key sites at which PCV2 induces a large amount of TGF-β production in IPEC-J2 and influences the frequency of Tregs. This may elucidate the regulatory effect of PCV2 on the Tregs differentiation from the perspective of virus structure and intestinal epithelial cell interaction, laying a theoretical foundation for improving the molecular mechanism of PCV2-induced intestinal mucosal immunosuppression in piglets.
Collapse
Affiliation(s)
- Cheng Han
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Weicheng Xu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Jianfang Wang
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Shuanghai Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Qinye Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xuewei Liu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| |
Collapse
|
4
|
Zhao Y, Jia N, Xie X, Chen Q, Hu T. Whole Transcriptome Analysis of Intervention Effect of Sophora subprostrate Polysaccharide on Inflammation in PCV2 Infected Murine Splenic Lymphocytes. Curr Issues Mol Biol 2023; 45:6067-6084. [PMID: 37504299 PMCID: PMC10377888 DOI: 10.3390/cimb45070383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
(1) Background: Sophora subprostrate, is the dried root and rhizome of Sophora tonkinensis Gagnep. Sophora subprostrate polysaccharide (SSP1) was extracted from Sophora subprostrate, which has shown good anti-inflammatory and antioxidant effects. Previous studies showed SSP1 could modulate inflammatory damage induced by porcine circovirus type 2 (PCV2) in murine splenic lymphocytes, but the specific regulatory mechanism is unclear. (2) Methods: Whole transcriptome analysis was used to characterize the differentially expressed mRNA, lncRNA, and miRNA in PCV2-infected cells and SSP1-treated infected cells. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and other analyses were used to screen for key inflammation-related differentially expressed genes. The sequencing results were verified by RT-qPCR, and western blot was used to verify the key protein in main enriched signal pathways. (3) Results: SSP1 can regulate inflammation-related gene changes induced by PCV2, and its interventional mechanism is mainly involved in the key differential miRNA including miR-7032-y, miR-328-y, and miR-484-z. These inflammation-related genes were mainly enriched in the TNF signal pathway and NF-κB signal pathway, and SSP1 could significantly inhibit the protein expression levels of p-IκB, p-p65, TNF-α, IRF1, GBP2 and p-SAMHD1 to alleviate inflammatory damage. (4) Conclusions: The mechanism of SSP1 regulating PCV2-induced murine splenic lymphocyte inflammation was explored from a whole transcriptome perspective, which provides a theoretical basis for the practical application of SSP1.
Collapse
Affiliation(s)
- Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Nina Jia
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiaodong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Qi Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Tingjun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
5
|
Guo M, Yang K, Lin S, Tang J, Liu M, Zhou H, Lin H, Fan H. Coinfection with porcine circovirus type 2 and Glaesserella parasuis serotype 4 enhances pathogenicity in piglets. Vet Microbiol 2023; 278:109663. [PMID: 36680971 DOI: 10.1016/j.vetmic.2023.109663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Coinfection of Porcine circovirus type 2 (PCV2) and Glaesserella parasuis type 4 (GPS4) is widespread clinically, resulting in high morbidity and mortality, however, interactions between the two pathogens during coinfection and the coinfection pathogenesis are poorly understood. In this study, a piglet model coinfected with PCV2 and GPS4 was established; coinfection of the piglets' group showed more obvious symptoms, such as high fever and emaciation, and more severe histological lesions appeared in various organs. Importantly, piglets in the coinfection group produced lower levels of PCV2 and GPS4 antibodies, and showed high levels of inflammatory cytokines, TLR2, and TLR4, while the levels of CD4, CD8, MHC II, costimulatory molecules, and IL-12p40 were decreased. In addition, a model of macrophage 3D4/21 cells coinfection with PCV2 and GPS4 was established, coinfected cells exhibited increased expression of the cytokines IL-6, IL-8, TNF-α, IL-1β, and the receptors TLR2, TLR4, while decreased MHC II. We further demonstrate that cytokine production is associated with the activation of NF-κB and NLRP3 inflammasome signaling pathways, and TLR4 is also involved. Altogether, our findings suggest that coinfection with PCV2 and GPS4 exacerbates the inflammatory response, resulting in severe tissue damage, and probably impaired macrophage antigen presentation and T cell activation, resulting in immune dysregulation, aggravating host infection.
Collapse
Affiliation(s)
- Mengru Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiyue Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaojie Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinsheng Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingxing Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Differential MicroRNA Expression in Porcine Endometrium Related to Spontaneous Embryo Loss during Early Pregnancy. Int J Mol Sci 2022; 23:ijms23158157. [PMID: 35897733 PMCID: PMC9331794 DOI: 10.3390/ijms23158157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Litter size is an important indicator to measure the production capacity of commercial pigs. Spontaneous embryo loss is an essential factor in determining sow litter size. In early pregnancy, spontaneous embryo loss in porcine is as high as 20–30% during embryo implantation. However, the specific molecular mechanism underlying spontaneous embryo loss at the end of embryo implantation remains unknown. Therefore, we comprehensively used small RNA sequencing technology, bioinformatics analysis, and molecular experiments to determine the microRNA (miRNA) expression profile in the healthy and arresting embryo implantation site of porcine endometrium on day of gestation (DG) 28. A total of 464 miRNAs were identified in arresting endometrium (AE) and healthy endometrium (HE), and 139 differentially expressed miRNAs (DEMs) were screened. We combined the mRNA sequencing dataset from the SRA database to predict the target genes of these miRNAs. A quantitative real-time PCR assay identified the expression levels of miRNAs and mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on differentially expressed target genes of DEMs, mainly enriched in epithelial development and amino acids metabolism-related pathways. We performed fluorescence in situ hybridization (FISH) and the dual-luciferase report gene assay to confirm miRNA and predicted target gene binding. miR-205 may inhibit its expression by combining 3′-untranslated regions (3′ UTR) of tubulointerstitial nephritis antigen-like 1 (TINAGL1). The resulting inhibition of angiogenesis in the maternal endometrium ultimately leads to the formation of arresting embryos during the implantation period. This study provides a reference for the effect of miRNA on the successful implantation of pig embryos in early gestation.
Collapse
|
7
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
8
|
Zhang W, Fu Z, Yin H, Han Q, Fan W, Wang F, Shang Y. Macrophage Polarization Modulated by Porcine Circovirus Type 2 Facilitates Bacterial Coinfection. Front Immunol 2021; 12:688294. [PMID: 34394082 PMCID: PMC8355693 DOI: 10.3389/fimmu.2021.688294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Polarization of macrophages to different functional states is important for mounting responses against pathogen infections. Macrophages are the major target cells of porcine circovirus type 2 (PCV2), which is the primary causative agent of porcine circovirus-associated disease (PCVAD) leading to immense economic losses in the global swine industry. Clinically, PCV2 is often found to increase risk of other pathogenic infections yet the underlying mechanisms remain to be elusive. Here we found that PCV2 infection skewed macrophages toward a M1 status through reprogramming expression of a subset of M1-associated genes and M2-associated genes. Mechanistically, induction of M1-associated genes by PCV2 infection is dependent on activation of nuclear factor kappa B (NF-κB) and c-jun N-terminal kinase (JNK) signaling pathways whereas suppression of M2-associated genes by PCV2 is via inhibiting expression of jumonji domain containing-3 (JMJD3), a histone 3 Lys27 (H3K27) demethylase that regulates M2 activation of macrophages. Finally, we identified that PCV2 capsid protein (Cap) directly inhibits JMJD3 transcription to restrain expression of interferon regulatory factor (IRF4) that controls M2 macrophage polarization. Consequently, sustained infection of PCV2 facilitates bacterial infection in vitro. In summary, these findings showed that PCV2 infection functionally modulated M1 macrophage polarization via targeting canonical signals and epigenetic histone modification, which contributes to bacterial coinfection and virial pathogenesis.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Zhendong Fu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Hongyan Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Qingbing Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
- Institute of Immunology, Shandong Agricultural University, Taian, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
- Institute of Immunology, Shandong Agricultural University, Taian, China
| |
Collapse
|
9
|
Gu C, Gao X, Guo D, Wang J, Wu Q, Nepovimova E, Wu W, Kuca K. Combined Effect of Deoxynivalenol (DON) and Porcine Circovirus Type 2 (Pcv2) on Inflammatory Cytokine mRNA Expression. Toxins (Basel) 2021; 13:toxins13060422. [PMID: 34199278 PMCID: PMC8231776 DOI: 10.3390/toxins13060422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
A host’s immune system can be invaded by mycotoxin deoxynivalenol (DON) poisoning and porcine circovirus type 2 (PCV2) infections, which affect the host’s natural immune function. Pro-inflammatory cytokines, IL-1β and IL-6, are important regulators in the process of natural immune response, which participate in inflammatory response and enhance immune-mediated tissue damage. Preliminary studies have shown that DON promotes PCV2 infection by activating the MAPK signaling pathway. Here, we explored whether the mRNA expression of IL-1β and IL-6, induced by the combination of DON and PCV2, would depend on the MAPK signaling pathway. Specific pharmacological antagonists U0126, SP600125 and SB203580, were used to inhibit the activities of ERK, JNK and p38 in the MAPK signaling pathway, respectively. Then, the mRNA expression of IL-1β and IL-6 in PK-15 cells was detected to explore the effect of the MAPK signaling pathway on IL-1β and IL-6 mRNA induced by DON and PCV2. The results showed that PK-15 cells treated with DON or PCV2 induced the mRNA expression of IL-1β and IL-6 in a time- and dose-dependent manner. The combination of DON and PCV2 has an additive effect on inducing the mRNA expression of IL-1β and IL-6. Additionally, both DON and PCV2 could induce the mRNA expression of IL-1β and IL-6 via the ERK and the p38 MAPK signal pathways, while PCV2 could induce it via the JNK signal pathway. Taken together, our results suggest that MAPKs play a contributory role in IL-1β and IL-6 mRNA expression when induced by both DON and PCV2.
Collapse
Affiliation(s)
- Chao Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Xiuge Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Dawei Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Jiacai Wang
- Shandong Vocational Animal Science and Veterinary College, 88 Shengli East Street, Weifang 261061, China;
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- Correspondence: (W.W.); (K.K.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- Biomedical Research Center, University Hospital Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Correspondence: (W.W.); (K.K.)
| |
Collapse
|
10
|
Basigin-CyP elevated porcine circovirus type2 replication. Virus Res 2020; 289:198152. [PMID: 32896569 DOI: 10.1016/j.virusres.2020.198152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Porcine circovirus type2 (PCV2) is a member of the circoviridae family. PCV2 was identified as the main pathogen of postweaning multisystemic wasting syndrome (PMWS) in weaned piglets and causes massive economic loss. Basigin, is a transmembrane glycoprotein belonging to the immunoglobulin superfamily; which is also a receptor for cyclophilins. CyP belongs to the immunophilin family that has peptidyl-prolyl cis-trans isomerase activity. Basigin-CyP interaction affects the replication stages of several viruses. In this study, we found that Basigin could elevate the replication of PCV2, and the Basigin only affected the replication stage rather than adsorption or endocytosis stages. In addition, the ligands of Basigin, CyPA and CyPB also elevated the replication of PCV2. Basigin-CyP interation was necessary for elevating PCV2 replication; At last, CyPs were proved to promote the replication of PCV2 by activating ERK signaling.
Collapse
|
11
|
Zhang L, Qiu S, Lu M, Huang C, Lv Y. Nuclear transporter karyopherin subunit alpha 3 levels modulate Porcine circovirus type 2 replication in PK-15 cells. Virology 2020; 548:31-38. [PMID: 32838944 DOI: 10.1016/j.virol.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022]
Abstract
Entering the nucleus is important for Porcine circovirus type 2 (PCV2) replication. Karyopherins (KPNs) mediate the nuclear import of many cytoplasmic proteins. Our previous study showed that KPNA3 is involved in interferon production during PCV2 infection induced by Poly I:C and ISD (Interferon stimulatory DNA). However, it remains unclear whether PCV2 replication is associated with KPNA3. In the present study, knockdown of KPNA3 promoted the replication of PCV2, whereas overexpression of KPNA3 inhibited PCV2 replication in PK-15 cells. Furthermore, KPNA3 knockdown inhibited IRF3 and reduced the expression of antiviral genes including IFN-β, ISG54, Mx1 and ISG56, while the opposite results were obtained after KPNA3 overexpression. KPNA3 knockdown also promoted p65 nuclear translocation and increased the mRNA expression of IL-10 and IL-1β. These results suggested that KPNA3 facilitates IRF3 entry into the nucleus and the production of an antiviral response, resulting in PCV2 replication inhibition and blockage of NF-κB signal activation.
Collapse
Affiliation(s)
- Lili Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siyu Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingqing Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Canping Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Wang Q, Zhou H, Hao Q, Li M, Liu J, Fan H. Coinfection with porcine circovirus type 2 and Streptococcus suis serotype 2 enhances pathogenicity by dysregulation of the immune responses in piglets. Vet Microbiol 2020; 243:108653. [PMID: 32273000 DOI: 10.1016/j.vetmic.2020.108653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Porcine circovirus type 2 (PCV-2) and Streptococcus suis (S. suis) are common pathogens in pigs. Both pathogens are associated with the porcine respiratory disease complex. Clinically, coinfection of PCV-2 and S. suis are often detected in pigs with respiratory symptoms, while interactions between the two pathogens during coinfection and the coinfection pathogenesis are poorly understood. In this study, a piglet model coinfected with PCV-2 and Streptococcus suis serotype 2 (SS2) was established; coinfection of piglets increased the contents of SS2 in blood, and piglets showed more severe pneumonia, myocarditis and arthritis. Peripheral blood mononuclear cells (PBMCs) were collected and coinfected piglets showed high expression levels of inflammatory cytokines and TLR2, TLR4, while levels of CD4, CD8 and MHC II were reduced. In addition, in order to further explore the mechanisms of coinfection induced cytokine overexpression, an in vitro model of coinfection with PCV-2 and SS2 was established using cells of the porcine monocytic line 3D4/21. Similar to the in vivo results,coinfected cells exhibited increased expression of the cytokines IL-6, IL-8, TNF-α and the receptors TLR2, TLR4, while they showed a lower expression of MHC II than cells infected with SS2 alone. Furthermore, in coinfected 3D4/21 cells, both MAPK and NF-κB signaling pathways were activated, and the increased expression of IL-8 was related to TLR4. In general, coinfection with PCV-2 and SS2 exacerbated the inflammatory response and probably impaired macrophage antigen presentation, resulting in immune dysregulation and increasing the severity of host infection.
Collapse
Affiliation(s)
- Qing Wang
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hong Zhou
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qinfang Hao
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Minxue Li
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Junchi Liu
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hongjie Fan
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
13
|
Porcine Circovirus Type 2 Induces Single Immunoglobulin Interleukin-1 Related Receptor (SIGIRR) Downregulation to Promote Interleukin-1β Upregulation in Porcine Alveolar Macrophage. Viruses 2019; 11:v11111021. [PMID: 31684202 PMCID: PMC6893714 DOI: 10.3390/v11111021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
Multisystemic inflammation in pigs affected by porcine circovirus type 2 (PCV2) indicates the disordered expression of inflammatory cytokines. However, the PCV2-induced expression profile of inflammation cytokines and its regulating mechanism remain poorly understood. In this study, inflammatory cytokines and receptors in porcine alveolar macrophages (PAMs) after PCV2 infection were profiled in vitro by an RT2 ProfilerTM PCR array assay. The regulatory mechanism of interleukin-1β (IL-1β) expression was investigated. Results showed that 49 of 84 inflammation cytokines and receptors were differentially expressed (p < 0.05, absolute fold change ≥2) in PAMs at different stages post-PCV2 infection. Moreover, the overexpression of single-immunoglobulin interleukin-1 related receptor (SIGIRR) or the blocking of NF-κB activation by its inhibitor markedly decreased IL-1β secretion. This finding suggested that PCV2-induced overexpression of IL-1β was associated with the downregulation of SIGIRR and the activation of NF-κB. Furthermore, the excessive activity of NF-κB in SIGIRR-knockout PAMs cell line, indicating that SIGIRR negatively regulated IL-1β production by inhibiting the activation of NF-κB. Overall, PCV2-induced downregulation of SIGIRR induction of NF-κB activation is a critical process in enhancing IL-1β production in PAMs. This study may provide insights into the underlying inflammatory response that occurs in pigs following PCV2 infection.
Collapse
|
14
|
Zhang L, Li Z, Deng X, Li J, Li T, Lv Y. Tylvalosin administration in pregnant sows attenuates the enlargement and bluish coloration of inguinal lymph nodes in newborn piglets. Res Vet Sci 2019; 125:148-152. [PMID: 31228738 DOI: 10.1016/j.rvsc.2019.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
In the porcine industry, some piglets show slightly enlarged and bluish inguinal lymph nodes. However, the causative factors for these signs and prevention of these signs remain unclear. Tylvalosin is a broad-spectrum antibiotic with an immunomodulatory function. This study was aimed at evaluating the effect of tylvalosin on the abovementioned signs. Thus, fifteen 90-day pregnant sows were divided into an untreated control group and 0.1 and 0.2 g/kg feed tylvalosin-treated groups until delivery. Forty-five piglets on day 2 after birth (15 each group) were blooded, then oxidative stress, serum cytokine levels, routine blood analysis, and effect of sera on macrophage phagocytic activity were examined. Fifteen piglets on day 2 after birth (5 in each group) were euthanized and pathological changes in the inguinal lymph nodes were observed. The untreated piglets showed hemorrhage, hemosiderin accumulation, and increased macrophages in the inguinal lymph nodes. However, tylvalosin administration in sows alleviated these signs in their piglets; increased total antioxidant capacity and serum glutathione levels; decreased serum IL-1β, TNF-α, and IL-10 levels; improved the percentages of neutrophils and lymphocytes in the blood; and increased the body weight of the weaning piglets. In addition, the serum of newborn piglets also showed enhanced RAW264.7 macrophage phagocytic activity. These results demonstrated that tylvalosin administration in pregnant sows attenuates the enlargement and bluish coloration of inguinal lymph nodes in newborn piglets.
Collapse
Affiliation(s)
- Lili Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohong Deng
- ECO-BIOK Animal Health, English-Chinese Joint Venture of Two Public Stock Companies, Shanghai 200042, China
| | - Jiansheng Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Taomei Li
- ECO-BIOK Animal Health, English-Chinese Joint Venture of Two Public Stock Companies, Shanghai 200042, China
| | - Yingjun Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Hai-Lan C, Hong-Lian T, Jian Y, Manling S, Heyu F, Na K, Wenyue H, Si-Yu C, Ying-Yi W, Ting-Jun H. Inhibitory effect of polysaccharide of Sargassum weizhouense on PCV2 induced inflammation in mice by suppressing histone acetylation. Biomed Pharmacother 2019; 112:108741. [PMID: 30970528 DOI: 10.1016/j.biopha.2019.108741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Seaweeds are excellent source of bioactive compounds and seaweed-derived polysaccharides have demonstrated an array of biological effects. Here, we investigated the effect of polysaccharide of Sargassum weizhouense (PSW) on the inflammatory response in porcine circovirus type 2 (PCV2) infected mice and the underlying mechanism was studied according to the histone acetylation. After PCV2 infection, the levels of TNF-α, IL-1β, IL-6, IL-8, IL-10, MCP-1, COX-1, COX-2 and HAT in both serum and spleen were significantly increased (P <0.05). The mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65 were elevated in PCV2 infected mice (P <0.05). The HDAC content in both serum and spleen as well the mRNA expression of HDAC1 were greatly decreased (P <0.05). PSW treatment dramatically inhibited the secretions of inflammatory cytokines and HATs, reduced mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65, but promoted HDAC secretion and mRNA expression of HDAC1 in PCV2-infected mice. The acetylation of both H3 and H4 was significantly up-regulated in PCV2-infected mice, and strongly inhibited by PSW treatment (P <0.01). These results suggested that PCV2 mediate the equilibrium between HATs and HDACs, alternate the histone acetylation and thus DNA packaging, and then activate the transcription of inflammatory cytokines. PSW could inhibit the histone acetylation and the production of inflammatory cytokines, showing excellent potentials in improving the resistance of host against PCV2 infection.
Collapse
Affiliation(s)
- Chen Hai-Lan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Tan Hong-Lian
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China; Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China
| | - Yang Jian
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Song Manling
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Feng Heyu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Kuang Na
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Hu Wenyue
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chen Si-Yu
- Laboratory of Land Ecology, Field Science Center, Graduate School of Agricultural Science, Tohoku University, Miyagi 9896711, Japan
| | - Wei Ying-Yi
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Hu Ting-Jun
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
16
|
Fang M, Yang Y, Wang N, Wang A, He Y, Wang J, Jiang Y, Deng Z. Genome-wide analysis of long non-coding RNA expression profile in porcine circovirus 2-infected intestinal porcine epithelial cell line by RNA sequencing. PeerJ 2019; 7:e6577. [PMID: 30863688 PMCID: PMC6408913 DOI: 10.7717/peerj.6577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Porcine circovirus-associated disease (PCVAD), which is induced by porcine circovirus type 2 (PCV2), is responsible for severe economic losses. Recently, the role of noncoding RNAs, and in particular microRNAs, in PCV2 infection has received great attention. However, the role of long noncoding RNA (lncRNA) in PCV2 infection is unclear. Here, for the first time, we describe the expression profiles of lncRNAs in an intestinal porcine epithelial cell line (IPEC-J2) after PCV2 infection, and analyze the features of differently expressed lncRNAs and their potential target genes. After strict filtering of approximately 150 million reads, we identified 13,520 lncRNAs, including 199 lncRNAs that were differentially expressed in non-infected and PCV2-infected cells. Furthermore, trans analysis found lncRNA-regulated target genes enriched for specific Gene Ontology terms (P < 0.05), such as DNA binding, RNA binding, and transcription factor activity, which are closely associated with PCV2 infection. In addition, we analyzed the predicted target genes of differentially expressed lncRNAs, including SOD2, TNFAIP3, and ARG1, all of which are involved in infectious diseases. Our study identifies many candidate lncRNAs involved in PCV2 infection and provides new insight into the mechanisms underlying the pathogenesis of PCVAD.
Collapse
Affiliation(s)
- Manxin Fang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Yi Yang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Naidong Wang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Aibing Wang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Yanfeng He
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Jiaoshun Wang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - You Jiang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Zhibang Deng
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| |
Collapse
|
17
|
Yu L, Dong J, Wang Y, Zhang P, Liu Y, Zhang L, Liang P, Wang L, Song C. Porcine epidemic diarrhea virus nsp4 induces pro-inflammatory cytokine and chemokine expression inhibiting viral replication in vitro. Arch Virol 2019; 164:1147-1157. [DOI: 10.1007/s00705-019-04176-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
|