1
|
Deng Y, Li L, Xu J, Yao Y, Ding J, Wang L, Luo C, Yang W, Li L. A biomimetic human disease model of bacterial keratitis using a cornea-on-a-chip system. Biomater Sci 2024; 12:5239-5252. [PMID: 39233608 DOI: 10.1039/d4bm00833b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Bacterial keratitis is a common form of inflammation caused by the bacterial invasion of the corneal stroma after trauma. In extreme cases, it can lead to severe visual impairment or even blindness; therefore, timely medical intervention is imperative. Unfortunately, widespread misuse of antibiotics has led to the development of drug resistance. In recent years, organ-on-chips that integrate multiple cell co-cultures have extensive applications in fundamental research and drug screening. In this study, immortalized human corneal epithelial cells and primary human corneal fibroblasts were co-cultured on a porous polydimethylsiloxane membrane to create a cornea-on-a-chip model. The developed multilayer epithelium closely mimicked clinical conditions, demonstrating high structural resemblance and repeatability. By introducing a consistently defective epithelium and bacterial infection using the space-occupying method, we successfully established an in vitro model of bacterial keratitis using S. aureus. We validate this model by evaluating the efficacy of antibiotics, such as levofloxacin, tobramycin, and chloramphenicol, through simultaneously observing the reactions of bacteria and the two cell types to these antibiotics. Our study has revealed the barrier function of epithelium of the model and differentiated efficacy of three drugs in terms of bactericidal activity, reducing cellular apoptosis, and mitigating scar formation. Altogether, the cornea on chip enables the assessment of ocular antibiotics, distinguishing the impact on corneal cells and structural integrity. This study introduced a biomimetic in vitro disease model to evaluate drug efficacy and provided significant insights into the extensive effects of antibiotics on diverse cell populations within the cornea.
Collapse
Affiliation(s)
- Yudan Deng
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lingjun Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Wenzhou Key Laboratory of Biomedical Imaging, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Jian Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Yili Yao
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Jiangtao Ding
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lei Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Chunxiong Luo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Wei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lingli Li
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Alexandre-Franco MF, Kouider R, Kassir Al-Karany R, Cuerda-Correa EM, Al-Kassir A. Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview. MICROMACHINES 2024; 15:1137. [PMID: 39337797 PMCID: PMC11433824 DOI: 10.3390/mi15091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in polymer materials, such as flexible, biocompatible, and structurally robust polymers, have been pivotal in developing advanced microfluidic systems. Techniques like replica molding, microcontact printing, solvent-assisted molding, injection molding, and 3D printing are examined, highlighting their advantages and recent developments. Additionally, the review discusses the diverse applications of polymer-based microfluidic devices in biomedical diagnostics, drug delivery, organ-on-chip models, environmental monitoring, and industrial processes. This paper also addresses future challenges, including enhancing chemical resistance, achieving multifunctionality, ensuring biocompatibility, and scaling up production. By overcoming these challenges, the potential for widespread adoption and impactful use of polymer-based microfluidic technologies can be realized.
Collapse
Affiliation(s)
- María F Alexandre-Franco
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Rahmani Kouider
- Department of Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria
| | | | - Eduardo M Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Awf Al-Kassir
- School of Industrial Engineers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
3
|
Christfort JF, Ortis M, Nguyen HV, Marsault R, Doglio A. Centrifugal Microfluidic Cell Culture Platform for Physiologically Relevant Virus Infection Studies: A Case Study with HSV-1 Infection of Periodontal Cells. BIOSENSORS 2024; 14:401. [PMID: 39194630 DOI: 10.3390/bios14080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Static well plates remain the gold standard to study viral infections in vitro, but they cannot accurately mimic dynamic viral infections as they occur in the human body. Therefore, we established a dynamic cell culture platform, based on centrifugal microfluidics, to study viral infections in perfusion. To do so, we used human primary periodontal dental ligament (PDL) cells and herpes simplex virus-1 (HSV-1) as a case study. By microscopy, we confirmed that the PDL cells efficiently attached and grew in the chip. Successful dynamic viral infection of perfused PDL cells was monitored using fluorescent imaging and RT-qPCR-based experiments. Remarkably, viral infection in flow resulted in a gradient of HSV-1-infected cells gradually decreasing from the cell culture chamber entrance towards its end. The perfusion of acyclovir in the chip prevented HSV-1 spreading, demonstrating the usefulness of such a platform for monitoring the effects of antiviral drugs. In addition, the innate antiviral response of PDL cells, measured by interferon gene expression, increased significantly over time in conventional static conditions compared to the perfusion model. These results provide evidence suggesting that dynamic viral infections differ from conventional static infections, which highlights the need for more physiologically relevant in vitro models to study viral infections.
Collapse
Affiliation(s)
- Juliane Fjelrad Christfort
- MICORALIS (E.A. 7354), Faculty of Dental Surgery and Odontology, University Côte d'Azur, 06300 Nice, France
| | - Morgane Ortis
- MICORALIS (E.A. 7354), Faculty of Dental Surgery and Odontology, University Côte d'Azur, 06300 Nice, France
| | - Hau Van Nguyen
- IDUN Centre of Excellence, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Robert Marsault
- MICORALIS (E.A. 7354), Faculty of Dental Surgery and Odontology, University Côte d'Azur, 06300 Nice, France
| | - Alain Doglio
- MICORALIS (E.A. 7354), Faculty of Dental Surgery and Odontology, University Côte d'Azur, 06300 Nice, France
| |
Collapse
|
4
|
Zheng H, Tai L, Xu C, Wang W, Ma Q, Sun W. Microfluidic-based cardiovascular systems for advanced study of atherosclerosis. J Mater Chem B 2024. [PMID: 38948949 DOI: 10.1039/d4tb00756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Atherosclerosis (AS) is a significant global health concern due to its high morbidity and mortality rates. Extensive efforts have been made to replicate the cardiovascular system and explore the pathogenesis, diagnosis, and treatment of AS. Microfluidics has emerged as a valuable technology for modeling the cardiovascular system and studying AS. Here a brief review of the advances of microfluidic-based cardiovascular systems for AS research is presented. The critical pathogenetic mechanisms of AS investigated by microfluidic-based cardiovascular systems are categorized and reviewed, with a detailed summary of accurate diagnostic methods for detecting biomarkers using microfluidics represented. Furthermore, the review covers the evaluation and screening of AS drugs assisted by microfluidic systems, along with the fabrication of novel drug delivery carriers. Finally, the challenges and future prospects for advancing microfluidic-based cardiovascular systems in AS research are discussed and proposed, particularly regarding new opportunities in multi-disciplinary fundamental research and therapeutic applications for a broader range of disease treatments.
Collapse
Affiliation(s)
- Huiyuan Zheng
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Lei Tai
- Pharmacy Department, Shandong Qingdao Hospital of Integrated Traditional and Western Medicine, Qingdao 266002, China
| | - Chengbin Xu
- Pharmacy Department, Shandong Qingdao Hospital of Integrated Traditional and Western Medicine, Qingdao 266002, China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
5
|
Xie R, Pal V, Yu Y, Lu X, Gao M, Liang S, Huang M, Peng W, Ozbolat IT. A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications. Biomaterials 2024; 304:122408. [PMID: 38041911 PMCID: PMC10843844 DOI: 10.1016/j.biomaterials.2023.122408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
The limitations of traditional two-dimensional (2D) cultures and animal testing, when it comes to precisely foreseeing the toxicity and clinical effectiveness of potential drug candidates, have resulted in a notable increase in the rate of failure during the process of drug discovery and development. Three-dimensional (3D) in-vitro models have arisen as substitute platforms with the capacity to accurately depict in-vivo conditions and increasing the predictivity of clinical effects and toxicity of drug candidates. It has been found that 3D models can accurately represent complex tissue structure of human body and can be used for a wide range of disease modeling purposes. Recently, substantial progress in biomedicine, materials and engineering have been made to fabricate various 3D in-vitro models, which have been exhibited better disease progression predictivity and drug effects than convention models, suggesting a promising direction in pharmaceutics. This comprehensive review highlights the recent developments in 3D in-vitro tissue models for preclinical applications including drug screening and disease modeling targeting multiple organs and tissues, like liver, bone, gastrointestinal tract, kidney, heart, brain, and cartilage. We discuss current strategies for fabricating 3D models for specific organs with their strengths and pitfalls. We expand future considerations for establishing a physiologically-relevant microenvironment for growing 3D models and also provide readers with a perspective on intellectual property, industry, and regulatory landscape.
Collapse
Affiliation(s)
- Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Vaibhav Pal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yanrong Yu
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Xiaolu Lu
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Mengwei Gao
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Shijie Liang
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Miao Huang
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China; School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China.
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Materials Research Institute, Pennsylvania State University, University Park, PA, USA; Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA; Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey; Biotechnology Research and Application Center, Cukurova University, Adana, 01130, Turkey.
| |
Collapse
|
6
|
Fayazbakhsh F, Hataminia F, Eslam HM, Ajoudanian M, Kharrazi S, Sharifi K, Ghanbari H. Evaluating the antioxidant potential of resveratrol-gold nanoparticles in preventing oxidative stress in endothelium on a chip. Sci Rep 2023; 13:21344. [PMID: 38049439 PMCID: PMC10696074 DOI: 10.1038/s41598-023-47291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/11/2023] [Indexed: 12/06/2023] Open
Abstract
Vascular endothelial cells play a vital role in the health and maintenance of vascular homeostasis, but hyperglycemia disrupts their function by increasing cellular oxidative stress. Resveratrol, a plant polyphenol, possesses antioxidant properties that can mitigate oxidative stress. Addressing the challenges of its limited solubility and stability, gold nanoparticles (GNps) were utilized as carriers. A microfluidic chip (MFC) with dynamic flow conditions was designed to simulate body vessels and to investigate the antioxidant properties of resveratrol gold nanoparticles (RGNps), citrate gold nanoparticles (CGNps), and free Resveratrol on human umbilical vein endothelial cells (HUVEC). The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay was employed to measure the extracellular antioxidant potential, and cell viability was determined using the Alamar Blue test. For assessing intracellular oxidative stress, the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay was conducted, and results from both the cell culture plate and MFC were compared. Free Resveratrol demonstrated peak DPPH scavenging activity but had a cell viability of about 24-35%. RGNPs, both 3.0 ± 0.5 nm and 20.2 ± 4.7 nm, consistently showed high cell viability (more than about 90%) across tested concentrations. Notably, RGNPs (20 nm) exhibited antioxidative properties through DPPH scavenging activity (%) in the range of approximately 38-86% which was greater than that of CGNps at about 21-32%. In the MFC,the DCFH-DA analysis indicated that RGNPs (20 nm) reduced cellular oxidative stress by 57-82%, surpassing both CGNps and free Resveratrol. Morphologically, cells in the MFC presented superior structure compared to those in traditional cell culture plates, and the induction of hyperglycemia successfully led to the formation of multinucleated variant endothelial cells (MVECs). The MFC provides a distinct advantage in observing cell morphology and inducing endothelial cell dysfunction. RGNps have demonstrated significant potential in alleviating oxidative stress and preventing endothelial cell disorders.
Collapse
Affiliation(s)
- Farzaneh Fayazbakhsh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hataminia
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houra Mobaleghol Eslam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ajoudanian
- Department of Biotechnology and Molecular Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Sharifi
- Department of Biotechnology and Molecular Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Boaks M, Roper C, Viglione M, Hooper K, Woolley AT, Christensen KA, Nordin GP. Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration. MICROMACHINES 2023; 14:1589. [PMID: 37630125 PMCID: PMC10456398 DOI: 10.3390/mi14081589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone's absorption spectrum. Complete overlap is essential to effectively limit the optical penetration depth, which is required to achieve high out-of-plane resolution. We demonstrate the high resolution in practice by 3D printing 15 μm square pillars in a microfluidic chamber, where the pillars are separated by 7.7 μm and are printed with 5 μm layers. Furthermore, we show reliable membrane valves and pumps using the biocompatible resin. Valves are tested to 1,000,000 actuations with no observable degradation in performance. Finally, we create a concentration gradient generation (CG) component and utilize it in two device designs for cell chemotaxis studies. The first design relies on an external dual syringe pump to generate source and sink flows to supply the CG channel, while the second is a complete integrated device incorporating on-chip pumps, valves, and reservoirs. Both device types are seeded with adherent cells that are subjected to a chemoattractant CG, and both show clear evidence of chemotactic cellular migration. Moreover, the integrated device demonstrates cellular migration comparable to the external syringe pump device. This demonstration illustrates the effectiveness of our integrated chemotactic assay approach and high-resolution biocompatible resin 3D printing fabrication process. In addition, our 3D printing process has been tuned for rapid fabrication, as printing times for the two device designs are, respectively, 8 and 15 min.
Collapse
Affiliation(s)
- Mawla Boaks
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Connor Roper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Matthew Viglione
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Kent Hooper
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Kenneth A. Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Gregory P. Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
8
|
Li C, Zhao R, Yang H, Ren L. Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms. Int J Mol Sci 2023; 24:ijms24086999. [PMID: 37108162 PMCID: PMC10139217 DOI: 10.3390/ijms24086999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Zhao
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Prashantha K, Krishnappa A, Muthappa M. 3D bioprinting of gastrointestinal cancer models: A comprehensive review on processing, properties, and therapeutic implications. Biointerphases 2023; 18:020801. [PMID: 36963961 DOI: 10.1116/6.0002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Gastrointestinal tract (GIT) malignancies are an important public health problem considering the increased incidence in recent years and the high morbidity and mortality associated with it. GIT malignancies constitute 26% of the global cancer incidence burden and 35% of all cancer-related deaths. Gastrointestinal cancers are complex and heterogenous diseases caused by the interplay of genetic and environmental factors. The tumor microenvironment (TME) of gastrointestinal tract carcinomas is dynamic and complex; it cannot be recapitulated in the basic two-dimensional cell culture systems. In contrast, three-dimensional (3D) in vitro models can mimic the TME more closely, enabling an improved understanding of the microenvironmental cues involved in the various stages of cancer initiation, progression, and metastasis. However, the heterogeneity of the TME is incompletely reproduced in these 3D culture models, as they fail to regulate the orientation and interaction of various cell types in a complex architecture. To emulate the TME, 3D bioprinting has emerged as a useful technique to engineer cancer tissue models. Bioprinted cancer tissue models can potentially recapitulate cancer pathology and increase drug resistance in an organ-mimicking 3D environment. In this review, we describe the 3D bioprinting methods, bioinks, characterization of 3D bioprinted constructs, and their application in developing gastrointestinal tumor models that integrate their microenvironment with different cell types and substrates, as well as bioprinting modalities and their application in therapy and drug screening. We review prominent studies on the 3D bioprinted esophageal, hepatobiliary, and colorectal cancer models. In addition, this review provides a comprehensive understanding of the cancer microenvironment in printed tumor models, highlights current challenges with respect to their clinical translation, and summarizes future perspectives.
Collapse
Affiliation(s)
- Kalappa Prashantha
- Centre for Research and Innovation, Adichunchanagiri School of Natural Sciences, Adichunchanagiri University, BGSIT, B.G. Nagara, Mandya District 571448, Karnataka, India
| | - Amita Krishnappa
- Department of Pathology, Adichunchanagiri Institute of Medicinal Sciences Adichunchanagiri University, B.G. Nagara, Mandya District 571448, Karnataka, India
| | - Malini Muthappa
- Department of Physiology, Adichunchanagiri Institute of Medicinal Sciences Adichunchanagiri University, B.G. Nagara, Mandya District 571448, Karnataka, India
| |
Collapse
|
10
|
Serioli L, Gruzinskyte L, Zappalà G, Hwu ET, Laksafoss TZ, Jensen PL, Demarchi D, Müllertz A, Boisen A, Zór K. Moving perfusion culture and live-cell imaging from lab to disc: proof of concept toxicity assay with AI-based image analysis. LAB ON A CHIP 2023; 23:1603-1612. [PMID: 36790123 DOI: 10.1039/d2lc00984f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In vitro, cell-based assays are essential in diagnostics and drug development. There are ongoing efforts to establish new technologies that enable real-time detection of cell-drug interaction during culture under flow conditions. Our compact (10 × 10 × 8.5 cm) cell culture and microscope on disc (CMoD) platform aims to decrease the application barriers of existing lab-on-a-chip (LoC) approaches. For the first time in a centrifugal device, (i) cells were cultured for up to six days while a spindle motor facilitated culture medium perfusion, and (ii) an onboard microscope enabled live bright-field imaging of cells while the data wirelessly transmitted to a computer. The quantification of cells from the acquired images was done using artificial intelligence (AI) software. After optimization, the obtained cell viability data from the AI-based image analysis proved to correlate well with data collected from commonly used image analysis software. The CMoD was also suitable for conducting a proof-of-concept toxicity assay with HeLa cells under continuous flow. The half-maximal inhibitory time (IT50) for various concentrations of doxorubicin (DOX) in the case of HeLa cells in flow, was shown to be lower than the IT50 obtained from a static cytotoxicity assay, indicating a faster onset of cell death in flow. The CMoD proved to be easy to handle, enabled cell culture and monitoring without assistance, and is a promising tool for examining the dynamic processes of cells in real-time assays.
Collapse
Affiliation(s)
- Laura Serioli
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
| | - Lina Gruzinskyte
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | - Giulia Zappalà
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- Department of Electronics and Telecommunications, Politecnico di Torino, Italy
| | - En Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | - Trygvi Zachariassen Laksafoss
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | | | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, Italy
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
| |
Collapse
|
11
|
Villata S, Canta M, Baruffaldi D, Pavan A, Chiappone A, Pirri CF, Frascella F, Roppolo I. 3D printable acrylate polydimethylsiloxane resins for cell culture and drug testing. Biomater Sci 2023; 11:2950-2959. [PMID: 36912680 DOI: 10.1039/d3bm00152k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Nowadays, most of the microfluidic devices for biological applications are fabricated with only few well-established materials. Among these, polydimethylsiloxane (PDMS) is the most used and known. However, it has many limitations, like the operator dependent and time-consuming manufacturing technique and the high molecule retention. TEGORad or Acrylate PDMS is an acrylate polydimethylsiloxane copolymer that can be 3D printed through Digital Light Processing (DLP), a technology that can boast reduction of waste products and the possibility of low cost and rapid manufacturing of complex components. Here, we developed 3D printed Acrylate PDMS-based devices for cell culture and drug testing. Our in vitro study shows that Acrylate PDMS can sustain cell growth of lung and skin epithelium, both of great interest for in vitro drug testing, without causing any genotoxic effect. Moreover, flow experiments with a drug-like solution (Rhodamine 6G) show that Acrylate PDMS drug retention is negligible unlike the high signal shown by PDMS. In conclusion, the study demonstrates that this acrylate resin can be an excellent alternative to PDMS to design stretchable platforms for cell culture and drug testing.
Collapse
Affiliation(s)
- Simona Villata
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Marta Canta
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Alice Pavan
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Annalisa Chiappone
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy. .,Center for Sustainable Futures @PolitoIstituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Ignazio Roppolo
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| |
Collapse
|
12
|
Development of 3D-Bioprinted Colitis-Mimicking Model to Assess Epithelial Barrier Function Using Albumin Nano-Encapsulated Anti-Inflammatory Drugs. Biomimetics (Basel) 2023; 8:biomimetics8010041. [PMID: 36810372 PMCID: PMC9944493 DOI: 10.3390/biomimetics8010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Physiological barrier function is very difficult to replicate in vitro. This situation leads to poor prediction of candidate drugs in the drug development process due to the lack of preclinical modelling for intestinal function. By using 3D bioprinting, we generated a colitis-like condition model that can evaluate the barrier function of albumin nanoencapsulated anti-inflammatory drugs. Histological characterization demonstrated the manifestation of the disease in 3D-bioprinted Caco-2 and HT-29 constructs. A comparison of proliferation rates in 2D monolayer and 3D-bioprinted models was also carried out. This model is compatible with currently available preclinical assays and can be implemented as an effective tool for efficacy and toxicity prediction in drug development.
Collapse
|
13
|
Ma Y, Liu C, Cao S, Chen T, Chen G. Microfluidics for diagnosis and treatment of cardiovascular disease. J Mater Chem B 2023; 11:546-559. [PMID: 36542463 DOI: 10.1039/d2tb02287g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD), a type of circulatory system disease related to the lesions of the cardiovascular system, has become one of the main diseases that endanger human health. Currently, the clinical diagnosis of most CVDs relies on a combination of imaging technology and blood biochemical test. However, the existing technologies for diagnosis of CVDs still have limitations in terms of specificity, detection range, and cost. In order to break through the current bottleneck, microfluidic with the advantages of low cost, simple instruments and easy integration, has been developed to play an important role in the early prevention, diagnosis and treatment of CVDs. Here, we have reviewed the recent various applications of microfluidic in the clinical diagnosis and treatment of CVDs, including microfluidic devices for detecting CVD markers, the cardiovascular models based on microfluidic, and the microfluidic used for CVDs drug screening and delivery. In addition, we have briefly looked forward to the prospects and challenges of microfluidics in diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Yonggeng Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenbin Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Siyu Cao
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Guifang Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
14
|
Yadav S, Tawade P, Bachal K, Rakshe MA, Pundlik Y, Gandhi PS, Majumder A. Scalable large-area mesh-structured microfluidic gradient generator for drug testing applications. BIOMICROFLUIDICS 2022; 16:064103. [PMID: 36483022 PMCID: PMC9726219 DOI: 10.1063/5.0126616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Microfluidic concentration gradient generators are useful in drug testing, drug screening, and other cellular applications to avoid manual errors, save time, and labor. However, expensive fabrication techniques make such devices prohibitively costly. Here, in the present work, we developed a microfluidic concentration gradient generator (μCGG) using a recently proposed non-conventional photolithography-less method. In this method, ceramic suspension fluid was shaped into a square mesh by controlling Saffman Taylor instability in a multiport lifted Hele-Shaw cell (MLHSC). Using the shaped ceramic structure as the template, μCGG was prepared by soft lithography. The concentration gradient was characterized and effect of the flow rates was studied using COMSOL simulations. The simulation result was further validated by creating a fluorescein dye (fluorescein isothiocanate) gradient in the fabricated μCGG. To demonstrate the use of this device for drug testing, we created various concentrations of an anticancer drug-curcumin-using the device and determined its inhibitory concentration on cervical cancer cell-line HeLa. We found that the IC50 of curcumin for HeLa matched well with the conventional multi-well drug testing method. This method of μCGG fabrication has multiple advantages over conventional photolithography such as: (i) the channel layout and inlet-outlet arrangements can be changed by simply wiping the ceramic fluid before it solidifies, (ii) it is cost effective, (iii) large area patterning is easily achievable, and (iv) the method is scalable. This technique can be utilized to achieve a broad range of concentration gradient to be used for various biological and non-biological applications.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pratik Tawade
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ketaki Bachal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Makrand A. Rakshe
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Yash Pundlik
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prasanna S. Gandhi
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
15
|
Ramamurthy RM, Atala A, Porada CD, Almeida-Porada G. Organoids and microphysiological systems: Promising models for accelerating AAV gene therapy studies. Front Immunol 2022; 13:1011143. [PMID: 36225917 PMCID: PMC9549755 DOI: 10.3389/fimmu.2022.1011143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
The FDA has predicted that at least 10-20 gene therapy products will be approved by 2025. The surge in the development of such therapies can be attributed to the advent of safe and effective gene delivery vectors such as adeno-associated virus (AAV). The enormous potential of AAV has been demonstrated by its use in over 100 clinical trials and the FDA’s approval of two AAV-based gene therapy products. Despite its demonstrated success in some clinical settings, AAV-based gene therapy is still plagued by issues related to host immunity, and recent studies have suggested that AAV vectors may actually integrate into the host cell genome, raising concerns over the potential for genotoxicity. To better understand these issues and develop means to overcome them, preclinical model systems that accurately recapitulate human physiology are needed. The objective of this review is to provide a brief overview of AAV gene therapy and its current hurdles, to discuss how 3D organoids, microphysiological systems, and body-on-a-chip platforms could serve as powerful models that could be adopted in the preclinical stage, and to provide some examples of the successful application of these models to answer critical questions regarding AAV biology and toxicity that could not have been answered using current animal models. Finally, technical considerations while adopting these models to study AAV gene therapy are also discussed.
Collapse
|
16
|
John BA, Sloan DJ, Jensen TC, Ramaiahgari SC, End P, Resh GE, McClelland RE. A Unidirectional 96-Well Fluidic Culture Platform for Upstream Cell Dosing with Subsequent Downstream Nonlinear and Ascending Exposure Gradients for Real-Time and Cell-Based Toxicity Screening Environments. APPLIED IN VITRO TOXICOLOGY 2021; 7:175-191. [PMID: 35028338 PMCID: PMC8743950 DOI: 10.1089/aivt.2021.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Introduction: Because of the importance to create in vitro screening tools that better mimic in vivo models, for exposure responses to drugs or toxicants, reproducible and adaptable culture platforms must evolve as approaches to replicate functions that are native to human organ systems. The Stairstep Waterfall (SsWaterfall) Fluidic Culture System is a unidirectional, multiwell, gravity-driven, cell culture system with micro-channels connecting 12 wells in each row (8-row replicates). Materials and Methods: The construct allows for the one-way flow of medium, parent and metabolite compounds, and the cellular signaling between connected culture wells while simultaneously operating as a cascading flow and discretized nonlinear dosing device. Initial cell seeding in SsWaterfall mimics traditional static plate protocols but thereafter functions with controlled flow and ramping concentration versus time exposure environments. Results: To investigate the utility of a microfluidic system for predicting drug efficacy and toxicity, we first delineate device design, fabrication, and characterization of a disposable dosing and gradient-exposure platform. We start with detailed characterizations by demarcating various features of the device, including low nonspecific binding, wettability, biocompatibility with multiple cell types, intra-well and inter-well flow, and efficient auto-mixing properties of dose compounds added into the platform. Discussion: We demonstrate the device utility using an example in sequential testing-screening drug toxicity and efficacy across wide-ranging inducible exposures, 0 → IC100, featuring real-time assessments. Conclusion: The integrated auto-gradient technology, gravity flow with stairstep pathways, offers end-users an easy and quick alternative to evaluate broad-ranging toxicity of new compound entities (e.g., pharmaceutical, environmental, agricultural, cosmetic) as opposed to traditional/arduous manual drug dilutions and/or expensive robotic technology.
Collapse
Affiliation(s)
- Bincy A. John
- SciKon Innovation, Inc., Chapel Hill, North Carolina, USA
| | - David J. Sloan
- SciKon Innovation, Inc., Chapel Hill, North Carolina, USA
| | | | - Sreenivasa C. Ramaiahgari
- National Toxicology Program Division, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | | | - Randall E. McClelland
- SciKon Innovation, Inc., Chapel Hill, North Carolina, USA
- Azture, Inc., La Jolla, California, USA
- Address correspondence to: Dr. Randall E. McClelland, Azture, Inc., PO Box 1759, La Jolla, CA 92038, USA
| |
Collapse
|
17
|
A modular, reversible sealing, and reusable microfluidic device for drug screening. Anal Chim Acta 2021; 1185:339068. [PMID: 34711311 DOI: 10.1016/j.aca.2021.339068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Preclinical tests for evaluating potential drug candidates using conventional protocols can be exhaustive and high-cost processes. Microfluidic technologies that can speed up this process and allow fast screening of drugs are promising alternatives. This work presents the design, concept, and operational conditions of a simple, modular, and reversible sealing microdevice useful for drug screening. This microdevice allows for the operation of 4 parallel simultaneous conditions and can also generate a diffusive concentration gradient in sextuplicates. We used laminated polydimethylsiloxane (PDMSLAM) and glass as building materials as proof of concept. The PDMSLAM parts can be reused since they can be easily sterilized. We cultured MCF-7 (Michigan Cancer Foundation-7) breast cancer cells. Cells were exposed to a doxorubicin diffusive concentration gradient for 3 h. They were monitored by automated microscopy, and after data processing, it was possible to determine cell viability as a function of doxorubicin concentration. The reversible sealing enabled the recovery of the tested cells and image acquisition. Therefore, this microdevice is a promising tool for drug screening that allows assessing the cellular behavior in dynamic conditions and the recovery of cells for afterward processing and imaging.
Collapse
|
18
|
Gravity-Based Flow Efficient Perfusion Culture System for Spheroids Mimicking Liver Inflammation. Biomedicines 2021; 9:biomedicines9101369. [PMID: 34680487 PMCID: PMC8533112 DOI: 10.3390/biomedicines9101369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
The spheroid culture system provides an efficient method to emulate organ-specific pathophysiology, overcoming the traditional two-dimensional (2D) cell culture limitations. The intervention of microfluidics in the spheroid culture platform has the potential to enhance the capacity of in vitro microphysiological tissues for disease modeling. Conventionally, spheroid culture is carried out in static conditions, making the media nutrient-deficient around the spheroid periphery. The current approach tries to enhance the capacity of the spheroid culture platform by integrating the perfusion channel for dynamic culture conditions. A pro-inflammatory hepatic model was emulated using a coculture of HepG2 cell line, fibroblasts, and endothelial cells for validating the spheroid culture plate with a perfusable channel across the spheroid well. Enhanced proliferation and metabolic capacity of the microphysiological model were observed and further validated by metabolic assays. A comparative analysis of static and dynamic conditions validated the advantage of spheroid culture with dynamic media flow. Hepatic spheroids were found to have improved proliferation in dynamic flow conditions as compared to the static culture platform. The perfusable culture system for spheroids is more physiologically relevant as compared to the static spheroid culture system for disease and drug analysis.
Collapse
|
19
|
Azizgolshani H, Coppeta JR, Vedula EM, Marr EE, Cain BP, Luu RJ, Lech MP, Kann SH, Mulhern TJ, Tandon V, Tan K, Haroutunian NJ, Keegan P, Rogers M, Gard AL, Baldwin KB, de Souza JC, Hoefler BC, Bale SS, Kratchman LB, Zorn A, Patterson A, Kim ES, Petrie TA, Wiellette EL, Williams C, Isenberg BC, Charest JL. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. LAB ON A CHIP 2021; 21:1454-1474. [PMID: 33881130 DOI: 10.1039/d1lc00067e] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro, therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening.
Collapse
Affiliation(s)
- H Azizgolshani
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J R Coppeta
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E M Vedula
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E E Marr
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B P Cain
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - R J Luu
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - M P Lech
- Pfizer, Inc., 1 Portland Street, Cambridge, MA 02139, USA
| | - S H Kann
- Draper, 555 Technology Square, Cambridge, MA 02139, USA. and Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - T J Mulhern
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - V Tandon
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - K Tan
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | | | - P Keegan
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - M Rogers
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A L Gard
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - K B Baldwin
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J C de Souza
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B C Hoefler
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - S S Bale
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - L B Kratchman
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A Zorn
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A Patterson
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E S Kim
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - T A Petrie
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E L Wiellette
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - C Williams
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B C Isenberg
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J L Charest
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Shi Y, Cai Y, Cao Y, Hong Z, Chai Y. Recent advances in microfluidic technology and applications for anti-cancer drug screening. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Lee SJ, Lee HA. Trends in the development of human stem cell-based non-animal drug testing models. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:441-452. [PMID: 33093266 PMCID: PMC7585597 DOI: 10.4196/kjpp.2020.24.6.441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
In vivo animal models are limited in their ability to mimic the extremely complex systems of the human body, and there is increasing disquiet about the ethics of animal research. Many authorities in different geographical areas are considering implementing a ban on animal testing, including testing for cosmetics and pharmaceuticals. Therefore, there is a need for research into systems that can replicate the responses of laboratory animals and simulate environments similar to the human body in a laboratory. An in vitro two-dimensional cell culture model is widely used, because such a system is relatively inexpensive, easy to implement, and can gather considerable amounts of reference data. However, these models lack a real physiological extracellular environment. Recent advances in stem cell biology, tissue engineering, and microfabrication techniques have facilitated the development of various 3D cell culture models. These include multicellular spheroids, organoids, and organs-on-chips, each of which has its own advantages and limitations. Organoids are organ-specific cell clusters created by aggregating cells derived from pluripotent, adult, and cancer stem cells. Patient-derived organoids can be used as models of human disease in a culture dish. Biomimetic organ chips are models that replicate the physiological and mechanical functions of human organs. Many organoids and organ-on-a-chips have been developed for drug screening and testing, so competition for patents between countries is also intensifying. We analyzed the scientific and technological trends underlying these cutting-edge models, which are developed for use as non-animal models for testing safety and efficacy at the nonclinical stages of drug development.
Collapse
Affiliation(s)
- Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| |
Collapse
|
22
|
Soucy JR, Bindas AJ, Brady R, Torregrosa T, Denoncourt CM, Hosic S, Dai G, Koppes AN, Koppes RA. Reconfigurable Microphysiological Systems for Modeling Innervation and Multitissue Interactions. ADVANCED BIOSYSTEMS 2020; 4:e2000133. [PMID: 32755004 PMCID: PMC8136149 DOI: 10.1002/adbi.202000133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/05/2020] [Indexed: 12/11/2022]
Abstract
Tissue-engineered models continue to experience challenges in delivering structural specificity, nutrient delivery, and heterogenous cellular components, especially for organ-systems that require functional inputs/outputs and have high metabolic requirements, such as the heart. While soft lithography has provided a means to recapitulate complex architectures in the dish, it is plagued with a number of prohibitive shortcomings. Here, concepts from microfluidics, tissue engineering, and layer-by-layer fabrication are applied to develop reconfigurable, inexpensive microphysiological systems that facilitate discrete, 3D cell compartmentalization, and improved nutrient transport. This fabrication technique includes the use of the meniscus pinning effect, photocrosslinkable hydrogels, and a commercially available laser engraver to cut flow paths. The approach is low cost and robust in capabilities to design complex, multilayered systems with the inclusion of instrumentation for real-time manipulation or measures of cell function. In a demonstration of the technology, the hierarchal 3D microenvironment of the cardiac sympathetic nervous system is replicated. Beat rate and neurite ingrowth are assessed on-chip and quantification demonstrates that sympathetic-cardiac coculture increases spontaneous beat rate, while drug-induced increases in beating lead to greater sympathetic innervation. Importantly, these methods may be applied to other organ-systems and have promise for future applications in drug screening, discovery, and personal medicine.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Adam J Bindas
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Ryan Brady
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Tess Torregrosa
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Cailey M Denoncourt
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
23
|
Gruteser N, Kohlhas V, Balfanz S, Franzen A, Günther A, Offenhäusser A, Müller F, Nikolaev V, Lohse MJ, Baumann A. Establishing a sensitive fluorescence-based quantification method for cyclic nucleotides. BMC Biotechnol 2020; 20:47. [PMID: 32854679 PMCID: PMC7450941 DOI: 10.1186/s12896-020-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Approximately 40% of prescribed drugs exert their activity via GTP-binding protein-coupled receptors (GPCRs). Once activated, these receptors cause transient changes in the concentration of second messengers, e.g., cyclic adenosine 3',5'-monophosphate (cAMP). Specific and efficacious genetically encoded biosensors have been developed to monitor cAMP fluctuations with high spatial and temporal resolution in living cells or tissue. A well characterized biosensor for cAMP is the Förster resonance energy transfer (FRET)-based Epac1-camps protein. Pharmacological characterization of newly developed ligands acting at GPCRs often includes numerical quantification of the second messenger amount that was produced. RESULTS To quantify cellular cAMP concentrations, we bacterially over-expressed and purified Epac1-camps and applied the purified protein in a cell-free detection assay for cAMP in a multi-well format. We found that the biosensor can detect as little as 0.15 pmol of cAMP, and that the sensitivity is not impaired by non-physiological salt concentrations or pH values. Notably, the assay tolerated desiccation and storage of the protein without affecting Epac1-camps cyclic nucleotide sensitivity. CONCLUSIONS We found that determination cAMP in lysates obtained from cell assays or tissue samples by purified Epac1-camps is a robust, fast, and sensitive assay suitable for routine and high throughput analyses.
Collapse
Affiliation(s)
- Nadine Gruteser
- Institute of Biological Information Processing (Molecular and Cellular Physiology, IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Viktoria Kohlhas
- Institute of Biological Information Processing (Molecular and Cellular Physiology, IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany.,Present address: CECAD Research Center, 50931, Cologne, Germany
| | - Sabine Balfanz
- Institute of Biological Information Processing (Molecular and Cellular Physiology, IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Arne Franzen
- Institute of Biological Information Processing (Molecular and Cellular Physiology, IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Anne Günther
- Institute of Biological Information Processing (Molecular and Cellular Physiology, IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany.,Present address: RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (Bioelectronics, IBI-3), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Frank Müller
- Institute of Biological Information Processing (Molecular and Cellular Physiology, IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Viacheslav Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany.,Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Arnd Baumann
- Institute of Biological Information Processing (Molecular and Cellular Physiology, IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany.
| |
Collapse
|
24
|
Damle VG, Sharmin R, Morita A, Nie L, Schirhagl R. Micro Versus Macro - The Effect of Environmental Confinement on Cellular Nanoparticle Uptake. Front Bioeng Biotechnol 2020; 8:869. [PMID: 32793585 PMCID: PMC7393206 DOI: 10.3389/fbioe.2020.00869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
While the microenvironment is known to alter the cellular behavior in terms of metabolism, growth and the degree of endoplasmic reticulum stress, its influence on the nanoparticle uptake is not yet investigated. Specifically, it is not clear if the cells cultured in a microenvironment ingest different amounts of nanoparticles than cells cultured in a macroenvironment (for example a petri dish). To answer this question, here we used J774 murine macrophages and fluorescent nanodiamonds (FND) as a model system to systematically compare the uptake efficiency of cells cultured in a petri dish and in a microfluidic channel. Specifically, equal numbers of cells were cultured in two devices followed by the FND incubation. Then cells were fixed, stained and imaged to quantify the FND uptake. We show that the FND uptake in the cells cultured in petri dishes is significantly higher than the uptake in a microfluidic chip where the alteration in CO2 environment, the cell culture medium pH and the surface area to volume ratio seem to be the underlying causes leading to this observed difference.
Collapse
Affiliation(s)
- Viraj G. Damle
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Linyan Nie
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
25
|
da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020; 9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Liver diseases contribute markedly to the global burden of mortality and disease. The limited organ disposal for orthotopic liver transplantation results in a continuing need for alternative strategies. Over the past years, important progress has been made in the field of tissue engineering (TE). Many of the early trials to improve the development of an engineered tissue construct are based on seeding cells onto biomaterial scaffolds. Nowadays, several TE approaches have been developed and are applied to one vital organ: the liver. Essential elements must be considered in liver TE-cells and culturing systems, bioactive agents or growth factors (GF), and biomaterials and processing methods. The potential of hepatocytes, mesenchymal stem cells, and others as cell sources is demonstrated. They need engineered biomaterial-based scaffolds with perfect biocompatibility and bioactivity to support cell proliferation and hepatic differentiation as well as allowing extracellular matrix deposition and vascularization. Moreover, they require a microenvironment provided using conventional or advanced processing technologies in order to supply oxygen, nutrients, and GF. Herein the biomaterials and the conventional and advanced processing technologies, including cell-sheets process, 3D bioprinting, and microfluidic systems, as well as the future trends in these major fields are discussed.
Collapse
Affiliation(s)
- Alain da Silva Morais
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Sílvia Vieira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Joaquim M. Oliveira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
26
|
Gurung JP, Gel M, Baker MAB. Microfluidic techniques for separation of bacterial cells via taxis. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:66-79. [PMID: 32161767 PMCID: PMC7052948 DOI: 10.15698/mic2020.03.710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
Abstract
The microbial environment is typically within a fluid and the key processes happen at the microscopic scale where viscosity dominates over inertial forces. Microfluidic tools are thus well suited to study microbial motility because they offer precise control of spatial structures and are ideal for the generation of laminar fluid flows with low Reynolds numbers at microbial lengthscales. These tools have been used in combination with microscopy platforms to visualise and study various microbial taxes. These include establishing concentration and temperature gradients to influence motility via chemotaxis and thermotaxis, or controlling the surrounding microenvironment to influence rheotaxis, magnetotaxis, and phototaxis. Improvements in microfluidic technology have allowed fine separation of cells based on subtle differences in motility traits and have applications in synthetic biology, directed evolution, and applied medical microbiology.
Collapse
Affiliation(s)
- Jyoti P. Gurung
- School of Biotechnology and Biomolecular Science, UNSW Sydney
| | - Murat Gel
- CSIRO Manufacturing, Clayton
- CSIRO Future Science Platform for Synthetic Biology
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney
- CSIRO Future Science Platform for Synthetic Biology
| |
Collapse
|
27
|
Mintz RL, Lao Y, Chi C, He S, Li M, Quek CH, Shao D, Chen B, Han J, Wang S, Leong KW. CRISPR/Cas9-mediated mutagenesis to validate the synergy between PARP1 inhibition and chemotherapy in BRCA1-mutated breast cancer cells. Bioeng Transl Med 2020; 5:e10152. [PMID: 31989039 PMCID: PMC6971465 DOI: 10.1002/btm2.10152] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
For patients carrying BRCA1 mutations, at least one-third develop triple negative breast cancer (TNBC). Not only is TNBC difficult to treat due to the lack of molecular target receptors, but BRCA1 mutations (BRCA1m) also result in chemotherapeutic resistance, making disease recurrence more likely. Although BRCA1m are highly heterogeneous and therefore difficult to target, BRCA1 gene's synthetic lethal pair, PARP1, is conserved in BRCA1m cancer cells. Therefore, we hypothesize that targeting PARP1 might be a fruitful direction to sensitize BRCA1m cancer cells to chemotherapy. We used CRISPR/Cas9 technology to generate PARP1 deficiency in two TNBC cell lines, MDA-MB-231 (BRCA1 wild-type) and MDA-MB-436 (BRCA1m). We explored whether this PARP1 disruption (PARP1m) could significantly lower the chemotherapeutic dose necessary to achieve therapeutic efficacy in both a 2D and 3D tumor-on-a-chip model. With both BRCA1m and PARP1m, the TNBC cells were more sensitive to three representative chemotherapeutic breast cancer drugs, doxorubicin, gemcitabine and docetaxel, compared with the PARP1 wild-type counterpart in the 2D culture environment. However, PARP1m did not result in this synergy in the 3D tumor-on-a-chip model, suggesting that drug dosing in the tumor microenvironment may influence the synergy. Taken together, our results highlight a discrepancy in the efficacy of the combination of PARP1 inhibition and chemotherapy for TNBC treatment, which should be clarified to justify further clinical testing.
Collapse
Affiliation(s)
- Rachel L. Mintz
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew York
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew York
| | - Chun‐Wei Chi
- Department of Biomedical EngineeringCUNY‐City College of New YorkNew YorkNew York
| | - Siyu He
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew York
| | - Mingqiang Li
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew York
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Chai Hoon Quek
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew York
| | - Dan Shao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew York
| | - Boyuan Chen
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew York
| | - Jing Han
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew York
- State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Sihong Wang
- Department of Biomedical EngineeringCUNY‐City College of New YorkNew YorkNew York
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew York
- Department of Systems BiologyColumbia University Medical CenterNew YorkNew York
| |
Collapse
|
28
|
de Mello CPP, Rumsey J, Slaughter V, Hickman JJ. A human-on-a-chip approach to tackling rare diseases. Drug Discov Today 2019; 24:2139-2151. [PMID: 31412288 PMCID: PMC6856435 DOI: 10.1016/j.drudis.2019.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Drug development for rare diseases, classified as diseases with a prevalence of < 200 000 patients, is limited by the high cost of research and low target population. Owing to a lack of representative disease models, research has been challenging for orphan drugs. Human-on-a-chip (HoaC) technology, which models human tissues in interconnected in vitro microfluidic devices, has the potential to lower the cost of preclinical studies and increase the rate of drug approval by introducing human phenotypic models early in the drug discovery process. Advances in HoaC technology can drive a new approach to rare disease research and orphan drug development.
Collapse
Affiliation(s)
| | | | - Victoria Slaughter
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Hesperos, Inc., Orlando, FL 32826, USA.
| |
Collapse
|
29
|
Mattes DS, Jung N, Weber LK, Bräse S, Breitling F. Miniaturized and Automated Synthesis of Biomolecules-Overview and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806656. [PMID: 31033052 DOI: 10.1002/adma.201806656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.g., pinpointing active genes in whole genomes, while chemistry advances different types of automation. Recent progress in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging could match miniaturized chemical synthesis with a powerful analytical tool to validate the outcome of many different synthesis pathways beyond applications in the life sciences. Thereby, due to the radical miniaturization of chemical synthesis, thousands of molecules can be synthesized. This in turn should allow ambitious research, e.g., finding novel synthesis routes or directly screening for photocatalysts. Herein, different technologies are discussed that might be involved in this endeavor. A special emphasis is given to the obstacles that need to be tackled when depositing tiny amounts of materials to many different extremely miniaturized reaction sites.
Collapse
Affiliation(s)
- Daniela S Mattes
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Laura K Weber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Frank Breitling
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
30
|
Shrivas M, Khunt D, Shrivas M, Choudhari M, Rathod R, Misra M. Advances in In Vivo Predictive Dissolution Testing of Solid Oral Formulations: How Closer to In Vivo Performance? J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09392-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Sedláková V, Kloučková M, Garlíková Z, Vašíčková K, Jaroš J, Kandra M, Kotasová H, Hampl A. Options for modeling the respiratory system: inserts, scaffolds and microfluidic chips. Drug Discov Today 2019; 24:971-982. [PMID: 30877077 DOI: 10.1016/j.drudis.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/08/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022]
Abstract
The human respiratory system is continuously exposed to varying levels of hazardous substances ranging from environmental toxins to purposely administered drugs. If the noxious effects exceed the inherent regenerative capacity of the respiratory system, injured tissue undergoes complex remodeling that can significantly affect lung function and lead to various diseases. Advanced near-to-native in vitro lung models are required to understand the mechanisms involved in pulmonary damage and repair and to reliably test the toxicity of compounds to lung tissue. This review is an overview of the development of in vitro respiratory system models used for study of lung diseases. It includes discussion of using these models for environmental toxin assessment and pulmonary toxicity screening.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Division of Cardiac Surgery, Cardiovascular Tissue Engineering Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa K1Y 4W7, Canada.
| | - Michaela Kloučková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Zuzana Garlíková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Kateřina Vašíčková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Josef Jaroš
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Mário Kandra
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| |
Collapse
|
32
|
Kumar V, Varghese S. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment. Adv Healthc Mater 2019; 8:e1801198. [PMID: 30516355 PMCID: PMC6384151 DOI: 10.1002/adhm.201801198] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/25/2018] [Indexed: 01/01/2023]
Abstract
The emergence of immunotherapies and recent FDA approval of several of them makes them a promising therapeutic strategy for cancer. While these advancements underscore the potential of engaging the immune system to target tumors, this approach has so far been efficient only for certain cancers. Extending immunotherapy as a widely acceptable treatment for various cancers requires a deeper understanding of the interactions of tumor cells within the tumor microenvironment (TME). The immune cells are a key component of the TME, which also includes other stromal cells, soluble factors, and extracellular matrix-based cues. While in vivo studies function as a gold standard, tissue-engineered microphysiological tumor models can offer patient-specific insights into cancer-immune interactions. These platforms, which recapitulate cellular and non-cellular components of the TME, enable a systematic understanding of the contribution of each component toward disease progression in isolation and in concert. Microfluidic-based microphysiological platforms recreating these environments, also known as "tumor-on-a-chip," are increasingly being utilized to study the effect of various elements of TME on tumor development. Herein are reviewed advancements in tumor-on-a-chip technology that are developed and used to understand the interaction of tumor cells with other surrounding cells, including immune cells, in the TME.
Collapse
Affiliation(s)
- Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA,
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine Durham, NC 27703, USA
| |
Collapse
|
33
|
Large DE, Soucy JR, Hebert J, Auguste DT. Advances in Receptor-Mediated, Tumor-Targeted Drug Delivery. ADVANCED THERAPEUTICS 2019; 2:1800091. [PMID: 38699509 PMCID: PMC11064891 DOI: 10.1002/adtp.201800091] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Receptor-mediated drug delivery presents an opportunity to enhance therapeutic efficiency by accumulating drug within the tissue of interest and reducing undesired, off-target effects. In cancer, receptor overexpression is a platform for binding and inhibiting pathways that shape biodistribution, toxicity, cell binding and uptake, and therapeutic function. This review will identify tumor-targeted drug delivery vehicles and receptors that show promise for clinical translation based on quantitative in vitro and in vivo data. The authors describe the rationale to engineer a targeted drug delivery vehicle based on the ligand, chemical conjugation method, and type of drug delivery vehicle. Recent advances in multivalent targeting and ligand organization on tumor accumulation are discussed. Revolutionizing receptor-mediated drug delivery may be leveraged in the therapeutic delivery of chemotherapy, gene editing tools, and epigenetic drugs.
Collapse
Affiliation(s)
- Danielle E Large
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Jacob Hebert
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Debra T Auguste
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
34
|
Pomerantz AK, Sari-Sarraf F, Grove KJ, Pedro L, Rudewicz PJ, Fathman JW, Krucker T. Enabling drug discovery and development through single-cell imaging. Expert Opin Drug Discov 2018; 14:115-125. [DOI: 10.1080/17460441.2019.1559147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Andrea K. Pomerantz
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research Inc., Cambridge, MA, USA
| | - Farid Sari-Sarraf
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research Inc., Cambridge, MA, USA
| | - Kerri J. Grove
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| | - Liliana Pedro
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| | - Patrick J. Rudewicz
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| | - John W. Fathman
- Cancer Therapeutics, Genomics Institute of the Novartis Research Foundation, La Jolla, CA, USA
| | - Thomas Krucker
- Alliance Management and Partnering, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| |
Collapse
|
35
|
Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J Pharm Anal 2018; 9:238-247. [PMID: 31452961 PMCID: PMC6704040 DOI: 10.1016/j.jpha.2018.12.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/18/2023] Open
Abstract
The development of pharmaceutical analytical methods represents one of the most significant aspects of drug development. Recent advances in microfabrication and microfluidics could provide new approaches for drug analysis, including drug screening, active testing and the study of metabolism. Microfluidic chip technologies, such as lab-on-a-chip technology, three-dimensional (3D) cell culture, organs-on-chip and droplet techniques, have all been developed rapidly. Microfluidic chips coupled with various kinds of detection techniques are suitable for the high-throughput screening, detection and mechanistic study of drugs. This review highlights the latest (2010–2018) microfluidic technology for drug analysis and discusses the potential future development in this field.
Collapse
Affiliation(s)
- Ping Cui
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, #76, Yanta West Road, Xi'an 710061, China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, #76, Yanta West Road, Xi'an 710061, China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| |
Collapse
|
36
|
Abstract
Microfluidics has played a vital role in developing novel methods to investigate biological phenomena at the molecular and cellular level during the last two decades. Microscale engineering of cellular systems is nevertheless a nascent field marked inherently by frequent disruptive advancements in technology such as PDMS-based soft lithography. Viable culture and manipulation of cells in microfluidic devices requires knowledge across multiple disciplines including molecular and cellular biology, chemistry, physics, and engineering. There has been numerous excellent reviews in the past 15 years on applications of microfluidics for molecular and cellular biology including microfluidic cell culture (Berthier et al., 2012; El-Ali, Sorger, & Jensen, 2006; Halldorsson et al., 2015; Kim et al., 2007; Mehling & Tay, 2014; Sackmann et al., 2014; Whitesides, 2006; Young & Beebe, 2010), cell culture models (Gupta et al., 2016; Inamdar & Borenstein, 2011; Meyvantsson & Beebe, 2008), cell secretion (Schrell et al., 2016), chemotaxis (Kim & Wu, 2012; Wu et al., 2013), neuron culture (Millet & Gillette, 2012a, 2012b), drug screening (Dittrich & Manz, 2006; Eribol, Uguz, & Ulgen, 2016; Wu, Huang, & Lee, 2010), cell sorting (Autebert et al., 2012; Bhagat et al., 2010; Gossett et al., 2010; Wyatt Shields Iv, Reyes, & López, 2015), single cell studies (Lecault et al., 2012; Reece et al., 2016; Yin & Marshall, 2012), stem cell biology (Burdick & Vunjak-Novakovic, 2009; Wu et al., 2011; Zhang & Austin, 2012), cell differentiation (Zhang et al., 2017a), systems biology (Breslauer, Lee, & Lee, 2006), 3D cell culture (Huh et al., 2011; Li et al., 2012; van Duinen et al., 2015), spheroids and organoids (Lee et al., 2016; Montanez-Sauri, Beebe, & Sung, 2015; Morimoto & Takeuchi, 2013; Skardal et al., 2016; Young, 2013), organ-on-chip (Bhatia & Ingber, 2014; Esch, Bahinski, & Huh, 2015; Huh et al., 2011; van der Meer & van den Berg, 2012), and tissue engineering (Andersson & Van Den Berg, 2004; Choi et al., 2007; Hasan et al., 2014). In this chapter, we provide an overview of PDMS-based microdevices for microfluidic cell culture. We discuss the advantages and challenges of using PDMS-based soft lithography for microfluidic cell culture and highlight recent progress and future directions in this area.
Collapse
Affiliation(s)
- Melikhan Tanyeri
- Biomedical Engineering Program, Duquesne University, Pittsburgh, PA, United States
| | - Savaş Tay
- Institute of Molecular Engineering, University of Chicago, Chicago, IL, United States; Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
37
|
Microfluidics: an Untapped Resource in Viral Diagnostics and Viral Cell Biology. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0105-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Luo Y, Zhang X, Li Y, Deng J, Li X, Qu Y, Lu Y, Liu T, Gao Z, Lin B. High-glucose 3D INS-1 cell model combined with a microfluidic circular concentration gradient generator for high throughput screening of drugs against type 2 diabetes. RSC Adv 2018; 8:25409-25416. [PMID: 35539797 PMCID: PMC9082620 DOI: 10.1039/c8ra04040k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/07/2018] [Indexed: 01/22/2023] Open
Abstract
In vitro models for screening of drugs against type 2 diabetes are crucial for the pharmaceutical industry. This paper presents a new approach for integration of a three-dimensionally-cultured insulinoma cell line (INS-1 cell) incubated in a high concentration of glucose as a new model. In this model, INS-1 cells tended to aggregate in the 3D gel (basement membrane extractant, BME), in a similar way to 3D in vivo cell culture models. The proliferation of INS-1 cells in BME was initially promoted and then suppressed by the high concentration of glucose, and the function of insulin secretion also was initially enhanced and then inhibited by the high concentration of glucose. These phenomena were similar to hyperglycemia symptoms, proving the validity of the proposed model. This model can help find the drugs that stimulate insulin secretion. Then, we identified the difference between the new model and the traditional two-dimensional model in terms of cell morphology, inhibition rate of cell proliferation, and insulin secretion. Simultaneously, we developed a circular drug concentration gradient generator based on microfluidic technology. We integrated the high-glucose 3D INS-1 cell model and the circular concentration gradient generator in the same microdevice, tested the utility of this microdevice in the field of drug screening with glipizide as a model drug, and found that the microdevice was more sensitive than the traditional device to screen the anti-diabetic drugs.
Collapse
Affiliation(s)
- Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
- State Key Laboratory of Bioelectronics, Southeast University Nanjing 210096 China
| | - Xiuli Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yujiao Li
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Jiu Deng
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiaorui Li
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Yueyang Qu
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Yao Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Tingjiao Liu
- Section of Oral Pathology, College of Stomatology, Dalian Medical University Dalian 116044 China
| | - Zhigang Gao
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
39
|
|
40
|
Samuel R, Feng H, Jafek A, Despain D, Jenkins T, Gale B. Microfluidic-based sperm sorting & analysis for treatment of male infertility. Transl Androl Urol 2018; 7:S336-S347. [PMID: 30159240 PMCID: PMC6087839 DOI: 10.21037/tau.2018.05.08] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/07/2018] [Indexed: 11/06/2022] Open
Abstract
Microfluidics technology has emerged as an enabling technology for different fields of medicine and life sciences. One such field is male infertility where microfluidic technologies are enabling optimization of sperm sample preparation and analysis. In this chapter we review how microfluidic technology has been used for sperm quantification, sperm quality analysis, and sperm manipulation and isolation with subsequent use of the purified sperm population for treatment of male infertility. As we discuss demonstrations of microfluidic sperm sorting/manipulation/analysis, we highlight systems that have demonstrated feasibility towards clinical adoption or have reached commercialization in the male infertility market. We then review microfluidic-based systems that facilitate non-invasive identification and sorting of viable sperm for in vitro fertilization. Finally, we explore commercialization challenges associated with microfluidic sperm sorting systems and provide suggestions and future directions to best overcome them.
Collapse
Affiliation(s)
- Raheel Samuel
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Haidong Feng
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Alex Jafek
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Dillon Despain
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah, USA
| | - Timothy Jenkins
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Bruce Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
41
|
Valeur E, Jimonet P. New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. J Med Chem 2018; 61:9004-9029. [DOI: 10.1021/acs.jmedchem.8b00378] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Patrick Jimonet
- External Innovation Drug Discovery, Global Business Development & Licensing, Sanofi, 13 quai Jules Guesde, 94400 Vitry-sur-Seine, France
| |
Collapse
|
42
|
Madden LR, Nguyen TV, Garcia-Mojica S, Shah V, Le AV, Peier A, Visconti R, Parker EM, Presnell SC, Nguyen DG, Retting KN. Bioprinted 3D Primary Human Intestinal Tissues Model Aspects of Native Physiology and ADME/Tox Functions. iScience 2018; 2:156-167. [PMID: 30428372 PMCID: PMC6135981 DOI: 10.1016/j.isci.2018.03.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023] Open
Abstract
The human intestinal mucosa is a critical site for absorption, distribution, metabolism, and excretion (ADME)/Tox studies in drug development and is difficult to recapitulate in vitro. Using bioprinting, we generated three-dimensional (3D) intestinal tissue composed of human primary intestinal epithelial cells and myofibroblasts with architecture and function to model the native intestine. The 3D intestinal tissue demonstrates a polarized epithelium with tight junctions and specialized epithelial cell types and expresses functional and inducible CYP450 enzymes. The 3D intestinal tissues develop physiological barrier function, distinguish between high- and low-permeability compounds, and have functional P-gp and BCRP transporters. Biochemical and histological characterization demonstrate that 3D intestinal tissues can generate an injury response to compound-induced toxicity and inflammation. This model is compatible with existing preclinical assays and may be implemented as an additional bridge to clinical trials by enhancing safety and efficacy prediction in drug development. Bioprinted 3D human intestinal tissues enable complex modeling of ADME/Tox in vitro 3D intestinal tissues develop barrier function and polarized transporter expression Key cytochrome P450 enzymes are expressed, metabolically active, and inducible GI toxicants can trigger barrier disruption and cytotoxicity in 3D intestinal tissues
Collapse
Affiliation(s)
| | - Theresa V Nguyen
- Department of Pharmacokinetics, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | | | - Alex V Le
- Organovo, Inc., San Diego, CA 92121, USA
| | - Andrea Peier
- Department of Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Richard Visconti
- Department of Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Eric M Parker
- Department of Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Tumor cell metastasis through blood circulation is a complex process and is one of the great challenges in cancer research as metastatic spread is responsible for ∼90% of cancer-related mortality. Tumor cell intravasation into, arrest and adhesion at, and extravasation from the microvessel walls are critical steps in metastatic spread. Understanding these steps may lead to new therapeutic concepts for tumor metastasis. Vascular endothelium forming the microvessel wall and the glycocalyx layer at its surface are the principal barriers to and regulators of the material exchange between circulating blood and body tissues. The cleft between adjacent endothelial cells is the principal pathway for water and solute transport through the microvessel wall in health. Recently, this cleft has been found to be the location for tumor cell adhesion and extravasation. The blood-flow-induced hydrodynamic factors such as shear rates and stresses, shear rate and stress gradients, as well as vorticities, especially at the branches and turns of microvasculatures, also play important roles in tumor cell arrest and adhesion. This chapter therefore reports the current advances from in vivo animal studies and in vitro culture cell studies to demonstrate how the endothelial integrity or microvascular permeability, hydrodynamic factors, microvascular geometry, cell adhesion molecules, and surrounding extracellular matrix affect critical steps of tumor metastasis in the microcirculation.
Collapse
Affiliation(s)
- Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| |
Collapse
|