1
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
2
|
Uras I, Karayel-Basar M, Sahin B, Baykal AT. Detection of early proteomic alterations in 5xFAD Alzheimer's disease neonatal mouse model via MALDI-MSI. Alzheimers Dement 2023; 19:4572-4589. [PMID: 36934297 DOI: 10.1002/alz.13008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 03/20/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder, characterized by memory deficit and dementia. AD is considered a multifactorial disorder where multiple processes like amyloid-beta and tau accumulation, axonal degeneration, synaptic plasticity, and autophagic processes plays an important role. In this study, the spatial proteomic differences in the neonatal 5xFAD brain tissue were investigated using MALDI-MSI coupled to LC-MS/MS, and the statistically significantly altered proteins were associated with AD. Thirty-five differentially expressed proteins (DEPs) between the brain tissues of neonatal 5xFAD and their littermate mice were detected via MALDI-MSI technique. Among the 35 proteins identified, 26 of them were directly associated with AD. Our results indicated a remarkable resemblance in the protein expression profiles of neonatal 5xFAD brain when compared to AD patient specimens or AD mouse models. These findings showed that the molecular alterations in the AD brain existed even at birth and that some proteins are neurodegenerative presages in neonatal AD brain. HIGHLIGHTS: Spatial proteomic alterations in the 5xFAD mouse brain compared to the littermate. 26 out of 35 differentially expressed proteins associated with Alzheimer's disease (AD). Molecular alterations and neurodegenerative presages in neonatal AD brain. Alterations in the synaptic function an early and common neurobiological thread.
Collapse
Affiliation(s)
- Irep Uras
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Karayel-Basar
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
3
|
Menetrey A, Legouffe R, Haouala A, Bonnel D, Rouits E, Bosq J, Stauber J. Tumor Distribution by Quantitative Mass Spectrometry Imaging of the Inhibitor of Apoptosis Protein Antagonist Xevinapant in Patients with Resectable Squamous Cell Carcinoma of the Head and Neck (EudraCT Number: 2014-004655-31). Anal Chem 2022; 94:12333-12341. [PMID: 36040476 DOI: 10.1021/acs.analchem.2c00943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As tumors are very heterogeneous, investigating the penetration and concentration of an anticancer drug in different histological regions of a tumor is key to evaluate the efficacy, to improve the pharmacokinetics/pharmacodynamics (PK/PD) relationship evaluation, and to confirm the adequacy of the dose regimen. Quantitative mass spectrometry imaging (QMSI) allows for the determination of the tissue distribution of drugs, metabolites, and biomarkers to support quick and precise evaluation of drug efficacy and safety in a single experiment. QMSI was applied in a preoperative window-of-opportunity (WoO) study of the inhibitor of apoptosis protein antagonist xevinapant (Debio 1143) in patients with resectable squamous cell carcinoma of the head and neck (SCCHN). Tumors were isolated, immediately snap-frozen, and sectioned, and then, the molecular distribution of the drug was generated by matrix-assisted laser desorption ionization (MALDI) imaging. Additionally, the different histological regions (tumor, epithelium, salivary glands, muscle, nerve, and blood vessels) were identified on stained sections adjacent to the ones used for QMSI, leading to a specific quantification integrating the biological characterization of the tumor heterogeneity. This innovative approach allowed one to highlight the high affinity of xevinapant for the tumor tissues.
Collapse
Affiliation(s)
- Annick Menetrey
- Debiopharm International SA, Chemin Messidor 5-7, 1002 Lausanne, Switzerland
| | - Raphael Legouffe
- ImaBiotech, Parc Eurasanté, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Amina Haouala
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215 Meyrin, Switzerland
| | - David Bonnel
- ImaBiotech, Parc Eurasanté, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Elisabeth Rouits
- Debiopharm International SA, Chemin Messidor 5-7, 1002 Lausanne, Switzerland
| | - Jacques Bosq
- Sciempath Labo, 7, rue de la Gratiole, 37270 Larcay, France
| | - Jonathan Stauber
- ImaBiotech, Parc Eurasanté, 152 rue du Docteur Yersin, 59120 Loos, France
| |
Collapse
|
4
|
Pytskii IS, Kuznetsova ES, Buryak AK. Mass Spectrometric Imaging of Surfaces: Effect of the Way of Applying a Marker Substance on the Quality of Obtained Data. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Høiem TS, Andersen MK, Martin‐Lorenzo M, Longuespée R, Claes BS, Nordborg A, Dewez F, Balluff B, Giampà M, Sharma A, Hagen L, Heeren RM, Bathen TF, Giskeødegård GF, Krossa S, Tessem M. An optimized MALDI MSI protocol for spatial detection of tryptic peptides in fresh frozen prostate tissue. Proteomics 2022; 22:e2100223. [PMID: 35170848 PMCID: PMC9285595 DOI: 10.1002/pmic.202100223] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
MALDI MS imaging (MSI) is a powerful analytical tool for spatial peptide detection in heterogeneous tissues. Proper sample preparation is crucial to achieve high quality, reproducible measurements. Here we developed an optimized protocol for spatially resolved proteolytic peptide detection with MALDI time-of-flight MSI of fresh frozen prostate tissue sections. The parameters tested included four different tissue washes, four methods of protein denaturation, four methods of trypsin digestion (different trypsin densities, sprayers, and incubation times), and five matrix deposition methods (different sprayers, settings, and matrix concentrations). Evaluation criteria were the number of detected and excluded peaks, percentage of high mass peaks, signal-to-noise ratio, spatial localization, and average intensities of identified peptides, all of which were integrated into a weighted quality evaluation scoring system. Based on these scores, the optimized protocol included an ice-cold EtOH+H2 O wash, a 5 min heating step at 95°C, tryptic digestion incubated for 17h at 37°C and CHCA matrix deposited at a final amount of 1.8 μg/mm2 . Including a heat-induced protein denaturation step after tissue wash is a new methodological approach that could be useful also for other tissue types. This optimized protocol for spatial peptide detection using MALDI MSI facilitates future biomarker discovery in prostate cancer and may be useful in studies of other tissue types.
Collapse
Affiliation(s)
- Therese S. Høiem
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Maria K. Andersen
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Marta Martin‐Lorenzo
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Rémi Longuespée
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany
| | - Britt S.R. Claes
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Anna Nordborg
- Department of Biotechnology and NanomedicineSINTEF IndustryTrondheimNorway
| | - Frédéric Dewez
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Marco Giampà
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Animesh Sharma
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- PROMEC Core Facility for Proteomics and ModomicsNTNU ‐ Norwegian University of Science and Technology and the Central Norway Regional Health Authority NorwayTrondheimNorway
| | - Lars Hagen
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- PROMEC Core Facility for Proteomics and ModomicsNTNU ‐ Norwegian University of Science and Technology and the Central Norway Regional Health Authority NorwayTrondheimNorway
- Clinic of Laboratory MedicineSt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Tone F. Bathen
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- Department of radiology and nuclear medicineSt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | - Guro F. Giskeødegård
- K.G. Jebsen Center for Genetic EpidemiologyDepartment of Public Health and NursingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Sebastian Krossa
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - May‐Britt Tessem
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- Department of SurgerySt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| |
Collapse
|
6
|
Shi Y, Hu H, Hao Q, Wu R, Wang L, Qin L, Gu W, Liu H, Jiang D, Hong L, Zhou Y, Liu X, Feng J, Xue K, Wang X. Michler's ethylketone as a novel negative-ion matrix for the enhancement of lipid MALDI tissue imaging. Chem Commun (Camb) 2022; 58:633-636. [PMID: 34897326 DOI: 10.1039/d1cc05718a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Michler's ethylketone (MEK, 4,4'-bis(diethylamino)benzophenone), commonly-known as an intermediate in the synthesis of dyes and pigments, was successfully screened and optimized as a novel matrix for the enhancement of lipid in situ detection and imaging in tissues by MALDI-MSI. The results show several properties of MEK as a powerful MALDI matrix, including strong UV absorption, µm-sized crystals and uniform matrix-coating, super high vacuum chemical stability, low matrix-related ion interference, super soft ionization, and high lipid ionization efficiency.
Collapse
Affiliation(s)
- Yiyang Shi
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Qichen Hao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Lei Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Wei Gu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Dongxu Jiang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Liya Hong
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Xiangyi Liu
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Kun Xue
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
7
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
8
|
Borisov RS, Matveeva MD, Zaikin VG. Reactive Matrices for Analytical Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. Crit Rev Anal Chem 2021; 53:1027-1043. [PMID: 34969337 DOI: 10.1080/10408347.2021.2001309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In recent years, a special focus is placed on the usage of reactive matrices for analytical matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). Since 2003, when the term "reactive matrices" was suggested and the dignity of compounds, possessing dualistic properties as matrices and derivatization agents was demonstrated, corresponding approach has found application in various fields and, in particular, in bioanalysis (metabolomics, lipidomics, etc.). The main advantage of this methodology is that it reduces sample treatment time, simplifies the procedure of sample handling, improves the sensitivity of analysis, enhances the molecular identification and profiling. Within the framework of this review, the main attention is paid to "true" reactive matrices that interact with analyte molecules through an exchange or addition reactions. A special section discusses practical application of reactive matrices in the determination of the distribution of targeted and non-targeted organic substances on the surface of biological tissue sections by MALDI-MS imaging. In this critical review, a controversial proposal is made to consider protonating and deprotonating matrices as reactive, because they can undergo a chemical reaction such as proton transfer that occurs in both target solution and MALDI plume. In this respect, special attention is paid to "proton sponge" matrices that have found a wide application in the analysis of various acidic compounds by MALDI-MS in the negative mode. Historical data on the formation of ions and the fate of matrices in MALDI are considered at the beginning of this article.
Collapse
Affiliation(s)
- Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mariya D Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
9
|
Gorka M, Thomas A, Bécue A. Development of a printed quality control test strip for the analysis and imaging of fingermark composition. Forensic Sci Int 2021; 329:111063. [PMID: 34736048 DOI: 10.1016/j.forsciint.2021.111063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 01/25/2023]
Abstract
In the last decade, there have been many scientific developments regarding the use of mass spectrometry to analyse the composition of fingermarks. In this context, the development of a dedicated quality control test strip would benefit the forensic community by providing a way to assess the reproducibility of the measures as well as to perform inter-laboratory comparisons. To accomplish this goal, the use of a chemical printer offers the possibility of combining a visual template with artificial fingerprint secretions. The design of the quality control test strip as well as the preliminary assessment of its performance with fingermark detection reagents and matrix-assisted laser desorption-ionisation combined with mass spectrometry imaging (MALDI-MSI) are presented in this paper. The chosen template combines two geometric patterns intended to help assess the chemical analysis (full square) and imaging (lined square) capabilities of the instrument. The artificial secretion is composed of two distinct solutions: artificial sweat and artificial sebum. The printing reproducibility and chemical homogeneity of the quality control test strips were assessed in two ways: (1) using MALDI-MSI, the printed pattern was analysed and the m/z values compared to the reference list based on the artificial secretion composition, and (2) using two common fingermark detection techniques, the printed pattern was processed using an amino acid reagent (ninhydrin) and a lipid stain (Oil Red O). Overall, the results highlight the potential of a printed quality control test strip for the assessment of the quality of fingermark detection techniques as well as the possibility of performing quality monitoring of mass-spectrometry-based techniques over time.
Collapse
Affiliation(s)
- Marie Gorka
- Ecole des Sciences Criminelles/School of Criminal Justice, Faculty of Law, Criminal Justice, and Public Administration; University of Lausanne, 1015 Lausanne-Dorigny Switzerland.
| | - Aurélien Thomas
- Unit of Toxicology, CURML, Vulliette 04, 1000 Lausanne 25 Switzerland.
| | - Andy Bécue
- Ecole des Sciences Criminelles/School of Criminal Justice, Faculty of Law, Criminal Justice, and Public Administration; University of Lausanne, 1015 Lausanne-Dorigny Switzerland.
| |
Collapse
|
10
|
Serain AF, Morosi L, Ceruti T, Matteo C, Meroni M, Minatel E, Zucchetti M, Salvador MJ. Betulinic acid and its spray dried microparticle formulation: In vitro PDT effect against ovarian carcinoma cell line and in vivo plasma and tumor disposition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 224:112328. [PMID: 34628206 DOI: 10.1016/j.jphotobiol.2021.112328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
The race against ovarian cancer continue to motivate the research worldwide. It is known that many antitumor drugs have limited penetration into solid tumor tissues due to its microenvironment, thus contributing to their low efficacy. Therapeutic modalities have been exploited to elicit antitumor effects based on microenvironment of tumor, including Photodynamic therapy (PDT). Prospection of natural small molecules and nanotechnology are important tools in the development of new ways of obtaining photoactive compounds that are biocompatible. The Betulinic acid (BA) has shown potential biological effect as bioactive drug, but it has low water solubility. Thus, in the present study, owing to the poor solubility of the BA, its free form (BAF) was compared to a spray dried microparticle betulinic acid/HP-β-CD formulation (BAC) aiming to assess the BAF and BAC efficacy as a photosensitizer in PDT for application in ovarian cancer. BAF and BAC were submitted to assays in the presence of LED (λ = 420 nm) under different conditions (2.75 J/cm2, 5.5 J/cm2, and 11 J/cm2) and in absence of irradiation, after 5 min or 4 h of contact with ovarian carcinoma cells (A2780) or fibroblast murine cells (3T3). Furthermore, HPLC-MS/MS and MALDI-MSI methods were developed and validated in plasma and tumor of mice proving suitable for in vivo studies. The results found a greater photoinduced cytotoxic effect for the BAC at low concentration for A2780 when irradiated with LED with similar results for fluorescence microscopy. The results motivate us to continue the studies with the BA as a potential antitumor bioactive compound.
Collapse
Affiliation(s)
- Alessandra F Serain
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Vegetal, PPG BTPB, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| | - Lavinia Morosi
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Tommaso Ceruti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Cristina Matteo
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Marina Meroni
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Elaine Minatel
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Massimo Zucchetti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Marcos J Salvador
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Vegetal, PPG BTPB, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| |
Collapse
|
11
|
In Situ Localization of Plant Lipid Metabolites by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI). Methods Mol Biol 2021. [PMID: 34047991 DOI: 10.1007/978-1-0716-1362-7_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has emerged as a major analytical platform for the determination and localization of lipid metabolites directly from tissue sections. Unlike analysis of lipid extracts, where lipid localizations are lost due to homogenization and/ or solvent extraction, MALDI-MSI analysis is capable of revealing spatial localization of metabolites while simultaneously collecting high chemical resolution mass spectra. Important considerations for obtaining high quality MALDI-MS images include tissue preservation, section preparation, MS data collection and data processing. Errors in any of these steps can lead to poor quality metabolite images and increases the chance for metabolite misidentification and/ or incorrect localization. Here, we present detailed methods and recommendations for specimen preparation, MALDI-MS instrument parameters, software analysis platforms for data processing, and practical considerations for each of these steps to ensure acquisition of high-quality chemical and spatial resolution data for reconstructing MALDI-MS images of plant tissues.
Collapse
|
12
|
Detecting early myocardial ischemia in rat heart by MALDI imaging mass spectrometry. Sci Rep 2021; 11:5135. [PMID: 33664384 PMCID: PMC7933419 DOI: 10.1038/s41598-021-84523-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/15/2021] [Indexed: 01/07/2023] Open
Abstract
Diagnostics of myocardial infarction in human post-mortem hearts can be achieved only if ischemia persisted for at least 6–12 h when certain morphological changes appear in myocardium. The initial 4 h of ischemia is difficult to diagnose due to lack of a standardized method. Developing a panel of molecular tissue markers is a promising approach and can be accelerated by characterization of molecular changes. This study is the first untargeted metabolomic profiling of ischemic myocardium during the initial 4 h directly from tissue section. Ischemic hearts from an ex-vivo Langendorff model were analysed using matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) at 15 min, 30 min, 1 h, 2 h, and 4 h. Region-specific molecular changes were identified even in absence of evident histological lesions and were segregated by unsupervised cluster analysis. Significantly differentially expressed features were detected by multivariate analysis starting at 15 min while their number increased with prolonged ischemia. The biggest significant increase at 15 min was observed for m/z 682.1294 (likely corresponding to S-NADHX—a damage product of nicotinamide adenine dinucleotide (NADH)). Based on the previously reported role of NAD+/NADH ratio in regulating localization of the sodium channel (Nav1.5) at the plasma membrane, Nav1.5 was evaluated by immunofluorescence. As expected, a fainter signal was observed at the plasma membrane in the predicted ischemic region starting 30 min of ischemia and the change became the most pronounced by 4 h. Metabolomic changes occur early during ischemia, can assist in identifying markers for post-mortem diagnostics and improve understanding of molecular mechanisms.
Collapse
|
13
|
Zhou Q, Fülöp A, Hopf C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Anal Bioanal Chem 2020; 413:2599-2617. [PMID: 33215311 PMCID: PMC8007514 DOI: 10.1007/s00216-020-03023-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a fast-growing technique for visualization of the spatial distribution of the small molecular and macromolecular biomolecules in tissue sections. Challenges in MALDI-MSI, such as poor sensitivity for some classes of molecules or limited specificity, for instance resulting from the presence of isobaric molecules or limited resolving power of the instrument, have encouraged the MSI scientific community to improve MALDI-MSI sample preparation workflows with innovations in chemistry. Recent developments of novel small organic MALDI matrices play a part in the improvement of image quality and the expansion of the application areas of MALDI-MSI. This includes rationally designed/synthesized as well as commercially available small organic molecules whose superior matrix properties in comparison with common matrices have only recently been discovered. Furthermore, on-tissue chemical derivatization (OTCD) processes get more focused attention, because of their advantages for localization of poorly ionizable metabolites and their‚ in several cases‚ more specific imaging of metabolites in tissue sections. This review will provide an overview about the latest developments of novel small organic matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Graphical abstract ![]()
Collapse
Affiliation(s)
- Qiuqin Zhou
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Annabelle Fülöp
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany.
| |
Collapse
|
14
|
Akerman SC, Hossain S, Shobo A, Zhong Y, Jourdain R, Hancock MA, George K, Breton L, Multhaup G. Neurodegenerative Disease-Related Proteins within the Epidermal Layer of the Human Skin. J Alzheimers Dis 2020; 69:463-478. [PMID: 31006686 DOI: 10.3233/jad-181191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is increasing evidence suggesting that amyloidogenic proteins might form deposits in non-neuronal tissues in neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. However, the detection of these aggregation-prone proteins within the human skin has been controversial. Using immunohistochemistry (IHC) and mass spectrometry tissue imaging (MALDI-MSI), fresh frozen human skin samples were analyzed for the expression and localization of neurodegenerative disease-related proteins. While α-synuclein was detected throughout the epidermal layer of the auricular samples (IHC and MALDI-MSI), tau and Aβ34 were also localized to the epidermal layer (IHC). In addition to Aβ peptides of varying length (e.g., Aβ40, Aβ42, Aβ34), we also were able to detect inflammatory markers within the same sample sets (e.g., thymosin β-4, psoriasin). While previous literature has described α-synuclein in the nucleus of neurons (e.g., Parkinson's disease), our current detection of α-synuclein in the nucleus of skin cells is novel. Imaging of α-synuclein or tau revealed that their presence was similar between the young and old samples in our present study. Future work may reveal differences relevant for diagnosis between these proteins at the molecular level (e.g., age-dependent post-translational modifications). Our novel detection of Aβ34 in human skin suggests that, just like in the brain, it may represent a stable intermediate of the Aβ40 and Aβ42 degradation pathway.
Collapse
Affiliation(s)
- S Can Akerman
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Shireen Hossain
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Adeola Shobo
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Yifei Zhong
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | | | - Mark A Hancock
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Kelly George
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Lionel Breton
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.,L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Molecular composition of fingermarks: Assessment of the intra- and inter-variability in a small group of donors using MALDI-MSI. Forensic Chem 2019. [DOI: 10.1016/j.forc.2018.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Svirkova A, Turyanskaya A, Perneczky L, Streli C, Marchetti-Deschmann M. Multimodal imaging of undecalcified tissue sections by MALDI MS and μXRF. Analyst 2019; 143:2587-2595. [PMID: 29737333 DOI: 10.1039/c8an00313k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometric imaging (MALDI MSI) is a technique that provides localized information on intact molecules in a sample. Micro X-ray fluorescence (μXRF) imaging allows the examination of the spatial distribution of elements in a sample without any morphological changes. These methods have already been applied separately to different tissues, organs, plants and bacterial films, but, to the best of our knowledge, they have yet to be coupled in a multimodal analysis. In this proof-of-principle study, we established and tested sample preparation strategies, allowing the multimodal analysis of lipids (sphingomyelin and phosphatidylcholines) and elements relevant to bone structures as calcium, phosphorous and sulphur in the very same sample section of a chicken phalanx without tissue decalcification. The results of the investigation of such parameters as adhesive tapes supporting tissue sections, and the sequence of the imaging experiments are presented. We show specific lipid distributions in skin, cartilage, muscle, nail, and the intact morphology of bone by calcium and phosphorus imaging. A combination of molecular and elemental imaging was achieved, thus, providing now for the first time the possibility of gathering MALDI MSI and μXRF information from the very same sample without any washing steps omitting therefore the analytical artifacts that inevitably occur in approaches using consecutive tissue sections. The proposed combination can benefit in research studies regarding bone diseases, osteoporosis, osteoarthritis, cartilage failure, bone/tendon distinguishing, where elemental and lipid interaction play an essential role.
Collapse
Affiliation(s)
- Anastasiya Svirkova
- Institute of Chemical Technology and Analytics (CTA), TU Wien, Vienna, Austria.
| | | | | | | | | |
Collapse
|
17
|
Ly A, Longuespée R, Casadonte R, Wandernoth P, Schwamborn K, Bollwein C, Marsching C, Kriegsmann K, Hopf C, Weichert W, Kriegsmann J, Schirmacher P, Kriegsmann M, Deininger S. Site-to-Site Reproducibility and Spatial Resolution in MALDI-MSI of Peptides from Formalin-Fixed Paraffin-Embedded Samples. Proteomics Clin Appl 2019; 13:e1800029. [PMID: 30408343 PMCID: PMC6590241 DOI: 10.1002/prca.201800029] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/23/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To facilitate the transition of MALDI-MS Imaging (MALDI-MSI) from basic science to clinical application, it is necessary to analyze formalin-fixed paraffin-embedded (FFPE) tissues. The aim is to improve in situ tryptic digestion for MALDI-MSI of FFPE samples and determine if similar results would be reproducible if obtained from different sites. EXPERIMENTAL DESIGN FFPE tissues (mouse intestine, human ovarian teratoma, tissue microarray of tumor entities sampled from three different sites) are prepared for MALDI-MSI. Samples are coated with trypsin using an automated sprayer then incubated using deliquescence to maintain a stable humid environment. After digestion, samples are sprayed with CHCA using the same spraying device and analyzed with a rapifleX MALDI Tissuetyper at 50 µm spatial resolution. Data are analyzed using flexImaging, SCiLS, and R. RESULTS Trypsin application and digestion are identified as sources of variation and loss of spatial resolution in the MALDI-MSI of FFPE samples. Using the described workflow, it is possible to discriminate discrete histological features in different tissues and enabled different sites to generate images of similar quality when assessed by spatial segmentation and PCA. CONCLUSIONS AND CLINICAL RELEVANCE Spatial resolution and site-to-site reproducibility can be maintained by adhering to a standardized MALDI-MSI workflow.
Collapse
Affiliation(s)
- Alice Ly
- Bruker Daltonik GmbHBremenGermany
| | - Rémi Longuespée
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | | | | | | | | | - Christian Marsching
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS)Mannheim University of Applied SciencesMannheimGermany
| | - Katharina Kriegsmann
- Department of HematologyOncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS)Mannheim University of Applied SciencesMannheimGermany
| | - Wilko Weichert
- Institute of PathologyTechnical University of MunichMunichGermany
| | | | - Peter Schirmacher
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Mark Kriegsmann
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | | |
Collapse
|
18
|
Qin L, Zhang Y, Liu Y, He H, Han M, Li Y, Zeng M, Wang X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:351-364. [PMID: 29667236 DOI: 10.1002/pca.2759] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Mass spectrometry imaging (MSI) as a label-free and powerful imaging technique enables in situ evaluation of a tissue metabolome and/or proteome, becoming increasingly popular in the detection of plant endogenous molecules. OBJECTIVE The characterisation of structure and spatial information of endogenous molecules in plants are both very important aspects to better understand the physiological mechanism of plant organism. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a commonly-used tissue imaging technique, which requires matrix to assist in situ detection of a variety of molecules on the surface of a tissue section. In previous studies, MALDI-MSI was mostly used for the detection of molecules from animal tissue sections, compared to plant samples due to cell structural limitations, such as plant cuticles, epicuticular waxes, and cell walls. Despite the enormous progress that has been made in tissue imaging, there is still a challenge for MALDI-MSI suitable for the imaging of endogenous compounds in plants. RESULTS This review summarises the recent advances in MALDI-MSI, focusing on the application of in situ detection of endogenous molecules in different plant organs, i.e. root, stem, leaf, flower, fruit, and seed. CONCLUSION Further improvements on instrumentation sensitivity, matrix selection, image processing and sample preparation will expand the application of MALDI-MSI in plant research.
Collapse
Affiliation(s)
- Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yawen Zhang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yaqin Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Huixin He
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yanyan Li
- The Hospital of Minzu University of China, Minzu University of China, Beijing, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| |
Collapse
|
19
|
Aljakna A, Lauer E, Lenglet S, Grabherr S, Fracasso T, Augsburger M, Sabatasso S, Thomas A. Multiplex quantitative imaging of human myocardial infarction by mass spectrometry-immunohistochemistry. Int J Legal Med 2018; 132:1675-1684. [PMID: 29556718 DOI: 10.1007/s00414-018-1813-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/22/2018] [Indexed: 02/01/2023]
Abstract
Simultaneous assessment of a panel of protein markers is becoming essential in order to enhance biomarker research and improve diagnostics. Specifically, postmortem diagnostics of early myocardial ischemia in sudden cardiac death cases could benefit from a multiplex marker assessment in the same tissue section. Current analytical antibody-based techniques (immunohistochemistry and immunofluorescence) limit multiplex analysis usually to not more than three antibodies. In this study, mass spectrometry-immunohistochemistry (MS-IHC) was performed by combining laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with rare-metal-isotope-tagged antibodies as a technique for multiplex analysis of human postmortem myocardial tissue samples. Tissue sections with myocardial infarction were simultaneously analyzed for seven primary, rare-metal-isotope-tagged antibodies (troponin T, myoglobin, fibronectin, C5b-9, unphosphorylated connexin 43, VEGF-B, and JunB). Comparison between the MS-IHC approach and chromogenic IHC showed similar patterns in ionic and optical images. In addition, absolute quantification was performed by MS-IHC, providing a proportional relationship between the signal intensity and the local marker concentration in tissue sections. These data demonstrated that LA-ICP-MS combined with rare-metal-isotope-tagged antibodies is an efficient strategy for simultaneous testing of multiple markers and allows not only visualization of molecules within the tissue but also quantification of the signal. Such imaging approach has a great potential in both diagnostics and pathology-related research.
Collapse
Affiliation(s)
- Aleksandra Aljakna
- University Center of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet, 11211, Geneva, Switzerland
| | - Estelle Lauer
- University Center of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet, 11211, Geneva, Switzerland
| | - Sébastien Lenglet
- University Center of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet, 11211, Geneva, Switzerland
| | - Silke Grabherr
- University Center of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet, 11211, Geneva, Switzerland
| | - Tony Fracasso
- University Center of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet, 11211, Geneva, Switzerland
| | - Marc Augsburger
- University Center of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet, 11211, Geneva, Switzerland
| | - Sara Sabatasso
- University Center of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet, 11211, Geneva, Switzerland
| | - Aurélien Thomas
- University Center of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet, 11211, Geneva, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Vulliette 04, 1000, Lausanne 25, Switzerland.
| |
Collapse
|
20
|
Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging in the Study of Gastric Cancer: A Mini Review. Int J Mol Sci 2017; 18:ijms18122588. [PMID: 29194417 PMCID: PMC5751191 DOI: 10.3390/ijms18122588] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide and the disease outcome commonly depends upon the tumour stage at the time of diagnosis. However, this cancer can often be asymptomatic during the early stages and remain undetected until the later stages of tumour development, having a significant impact on patient prognosis. However, our comprehension of the mechanisms underlying the development of gastric malignancies is still lacking. For these reasons, the search for new diagnostic and prognostic markers for gastric cancer is an ongoing pursuit. Modern mass spectrometry imaging (MSI) techniques, in particular matrix-assisted laser desorption/ionisation (MALDI), have emerged as a plausible tool in clinical pathology as a whole. More specifically, MALDI-MSI is being increasingly employed in the study of gastric cancer and has already elucidated some important disease checkpoints that may help us to better understand the molecular mechanisms underpinning this aggressive cancer. Here we report the state of the art of MALDI-MSI approaches, ranging from sample preparation to statistical analysis, and provide a complete review of the key findings that have been reported in the literature thus far.
Collapse
|
21
|
Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Quanico J, Franck J, Wisztorski M, Salzet M, Fournier I. Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery. Methods Mol Biol 2017; 1598:21-43. [PMID: 28508356 DOI: 10.1007/978-1-4939-6952-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mapping provides a direct means to assess the impact of protein biomarkers and puts into context their relevance in the type of cancer being examined. To this end, mass spectrometry imaging (MSI) was developed to provide the needed spatial information which is missing in traditional liquid-based mass spectrometric proteomics approaches. Aptly described as a "molecular histology" technique, MSI gives an additional dimension in characterizing tumor biopsies, allowing for mapping of hundreds of molecules in a single analysis. A decade of developments focused on improving and standardizing MSI so that the technique can be translated into the clinical setting. This review describes the progress made in addressing the technological development that allows to bridge local protein detection by MSI to its identification and to illustrate its potential in studying various aspects of cancer biomarker discovery.
Collapse
Affiliation(s)
- Jusal Quanico
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Julien Franck
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Maxence Wisztorski
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Michel Salzet
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Isabelle Fournier
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France.
| |
Collapse
|
23
|
Dufresne M, Patterson NH, Lauzon N, Chaurand P. Assessing the Potential of Metal-Assisted Imaging Mass Spectrometry in Cancer Research. Adv Cancer Res 2016; 134:67-84. [PMID: 28110656 DOI: 10.1016/bs.acr.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the last decade, imaging mass spectrometry (IMS) has been the primary tool for biomolecular imaging. While it is possible to map a wide range of biomolecules using matrix-assisted laser desorption/ionization IMS ranging from high-molecular-weight proteins to small metabolites, more often than not only the most abundant easily ionisable species are detected. To better understand complex diseases such as cancer more specific and sensitive methods need to be developed to enable the detection of lower abundance molecules but also molecules that have yet to be imaged by IMS. In recent years, a big shift has occurred in the imaging community from developing wide reaching methods to developing targeted ones which increases sensitivity through the use of more specific sample preparations. This has been primarily marked by the advent of solvent-free matrix deposition methods for polar lipids, chemical derivatization for hormones and metabolites, and the use of alternative ionization agents for neutral lipids. In this chapter, we discuss two of the latest sample preparations which exploit the use of alternative ionization agents to enable the detection of certain classes of neutral lipids along with free fatty acids by high-sensitivity IMS as demonstrated within our lab.
Collapse
Affiliation(s)
- M Dufresne
- Université de Montréal, Montreal, QC, Canada
| | - N H Patterson
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - N Lauzon
- Université de Montréal, Montreal, QC, Canada
| | - P Chaurand
- Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
24
|
Rzagalinski I, Volmer DA. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry - A tutorial review. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:726-739. [PMID: 28012871 DOI: 10.1016/j.bbapap.2016.12.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/01/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) permits label-free in situ analysis of chemical compounds directly from the surface of two-dimensional biological tissue slices. It links qualitative molecular information of compounds to their spatial coordinates and distribution within the investigated tissue. MALDI-MSI can also provide the quantitative amounts of target compounds in the tissue, if proper calibration techniques are performed. Obviously, as the target molecules are embedded within the biological tissue environment and analysis must be performed at their precise locations, there is no possibility for extensive sample clean-up routines or chromatographic separations as usually performed with homogenized biological materials; ion suppression phenomena therefore become a critical side effect of MALDI-MSI. Absolute quantification by MALDI-MSI should provide an accurate value of the concentration/amount of the compound of interest in relatively small, well-defined region of interest of the examined tissue, ideally in a single pixel. This goal is extremely challenging and will not only depend on the technical possibilities and limitations of the MSI instrument hardware, but equally on the chosen calibration/standardization strategy. These strategies are the main focus of this article and are discussed and contrasted in detail in this tutorial review. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
25
|
An experimental guideline for the analysis of histologically heterogeneous tumors by MALDI-TOF mass spectrometry imaging. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:957-966. [PMID: 27725306 DOI: 10.1016/j.bbapap.2016.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Mass spectrometry imaging (MSI) has been widely used for the direct molecular assessment of tissue samples and has demonstrated great potential to complement current histopathological methods in cancer research. It is now well established that tissue preparation is key to a successful MSI experiment; for histologically heterogeneous tumor tissues, other parts of the workflow are equally important to the experiment's success. To demonstrate these facets here we describe a matrix-assisted laser desorption/ionization MSI biomarker discovery investigation of high-grade, complex karyotype sarcomas, which often have histological overlap and moderate response to chemo-/radio-therapy. Multiple aspects of the workflow had to be optimized, ranging from the tissue preparation and data acquisition protocols, to the post-MSI histological staining method, data quality control, histology-defined data selection, data processing and statistical analysis. Only as a result of developing every step of the biomarker discovery workflow was it possible to identify a panel of protein signatures that could distinguish between different subtypes of sarcomas or could predict patient survival outcome. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
|
26
|
Abstract
Drug analysis represents a large field in different disciplines. Plasma is commonly considered to be the biosample of choice for that purpose. However, concentrations often do not represent the levels present within deeper compartments and therefore cannot sufficiently explain efficacy or toxicology of drugs. MALDI-MS in drug analysis is of great interest for high-throughput quantification and particularly spatially resolved tissue imaging. The current perspective article will deal with challenges and opportunities of MALDI-MS drug analysis in different biological samples. A particular focus will be on hair samples. Recent applications were included, reviewed for their instrumental setup and sample preparation and pros and cons as well as future perspectives are critically discussed.
Collapse
|
27
|
Lauer E, Villa M, Jotterand M, Vilarino R, Bollmann M, Michaud K, Grabherr S, Augsburger M, Thomas A. Imaging mass spectrometry of elements in forensic cases by LA-ICP-MS. Int J Legal Med 2016; 131:497-500. [PMID: 27507011 DOI: 10.1007/s00414-016-1414-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022]
Abstract
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was performed to map elements in thin formalin-fixed paraffin-embedded tissue sections of two forensic cases with firearm and electrocution injuries, respectively. In both cases, histological examination of the wounded tissue regions revealed the presence of exogenous aggregates that may be interpreted as metallic depositions. The use of imaging LA-ICP-MS allowed us to unambiguously determine the elemental composition of the observed aggregates assisting the pathologist in case assessments. To the best of our knowledge, we demonstrate for the first time the use of imaging LA-ICP-MS as a complementary tool for forensic pathologists and toxicologists in order to map the presence of metals and other elements in thin tissue sections of post-mortem cases.
Collapse
Affiliation(s)
- Estelle Lauer
- University Centre of Legal Medicine, Lausanne-Geneva, Switzerland
| | - Max Villa
- University Centre of Legal Medicine, Lausanne-Geneva, Switzerland
| | | | - Raquel Vilarino
- University Centre of Legal Medicine, Lausanne-Geneva, Switzerland
| | - Marc Bollmann
- University Centre of Legal Medicine, Lausanne-Geneva, Switzerland
| | | | - Silke Grabherr
- University Centre of Legal Medicine, Lausanne-Geneva, Switzerland
| | - Marc Augsburger
- University Centre of Legal Medicine, Lausanne-Geneva, Switzerland
| | - Aurélien Thomas
- University Centre of Legal Medicine, Lausanne-Geneva, Switzerland.
- Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
28
|
Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJK, van de Velde CJH, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 2016; 11:1428-43. [PMID: 27414759 DOI: 10.1038/nprot.2016.081] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice.
Collapse
Affiliation(s)
- Alice Ly
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karin Gorzolka
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gregor Weirich
- Institute of Pathology, Technische Universität München, Munich, Germany
| | | | - Rupert Langer
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Liam McDonnell
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, the Netherlands.,Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
29
|
Trim PJ, Snel MF. Small molecule MALDI MS imaging: Current technologies and future challenges. Methods 2016; 104:127-41. [DOI: 10.1016/j.ymeth.2016.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
|
30
|
Dong X, Wang R, Zhou X, Li P, Yang H. Current mass spectrometry approaches and challenges for the bioanalysis of traditional Chinese medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:15-26. [DOI: 10.1016/j.jchromb.2015.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022]
|
31
|
Miyawaki S, Imai H, Hayasaka T, Masaki N, Ono H, Ochi T, Ito A, Nakatomi H, Setou M, Saito N. Imaging mass spectrometry detects dynamic changes of phosphatidylcholine in rat hippocampal CA1 after transient global ischemia. Neuroscience 2016; 322:66-77. [DOI: 10.1016/j.neuroscience.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/16/2022]
|
32
|
Škrášková K, Claude E, Jones EA, Towers M, Ellis SR, Heeren RMA. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods 2016; 104:69-78. [PMID: 26922843 DOI: 10.1016/j.ymeth.2016.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
The increased interest in lipidomics calls for improved yet simplified methods of lipid analysis. Over the past two decades, mass spectrometry imaging (MSI) has been established as a powerful technique for the analysis of molecular distribution of a variety of compounds across tissue surfaces. Matrix-assisted laser desorption/ionization (MALDI) MSI is widely used to study the spatial distribution of common lipids. However, a thorough sample preparation and necessity of vacuum for efficient ionization might hamper its use for high-throughput lipid analysis. Desorption electrospray ionization (DESI) is a relatively young MS technique. In DESI, ionization of molecules occurs under ambient conditions, which alleviates sample preparation. Moreover, DESI does not require the application of an external matrix, making the detection of low mass species more feasible due to the lack of chemical matrix background. However, irrespective of the ionization method, the final information obtained during an MSI experiment is very complex and its analysis becomes challenging. It was shown that coupling MSI to ion mobility separation (IMS) simplifies imaging data interpretation. Here we employed DESI and MALDI MSI for a lipidomic analysis of the murine brain using the same IMS-enabled instrument. We report for the first time on the DESI IMS-MSI of multiply sialylated ganglioside species, as well as their acetylated versions, which we detected directly from the murine brain tissue. We show that poly-sialylated gangliosides can be imaged as multiply charged ions using DESI, while they are clearly separated from the rest of the lipid classes based on their charge state using ion mobility. This represents a major improvement in MSI of intact fragile lipid species. We additionally show that complementary lipid information is reached under particular conditions when DESI is compared to MALDI MSI.
Collapse
Affiliation(s)
- Karolina Škrášková
- M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands; FOM-Institute AMOLF, Amsterdam, The Netherlands; TI-COAST, Amsterdam, The Netherlands
| | | | - Emrys A Jones
- Waters Corporation, Wilmslow, UK; Imperial College London, London, UK
| | | | - Shane R Ellis
- M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands; FOM-Institute AMOLF, Amsterdam, The Netherlands
| | - Ron M A Heeren
- M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands; FOM-Institute AMOLF, Amsterdam, The Netherlands; TI-COAST, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Phan NTN, Mohammadi AS, Dowlatshahi Pour M, Ewing AG. Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using Matrix Sublimation versus Modification with Nanoparticles. Anal Chem 2016; 88:1734-41. [DOI: 10.1021/acs.analchem.5b03942] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nhu T. N. Phan
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen
10, SE-412 96 Gothenburg, Sweden
- National Center
Imaging Mass Spectrometry, Kemivägen
10, SE-412 96 Gothenburg, Sweden
| | - Amir Saeid Mohammadi
- National Center
Imaging Mass Spectrometry, Kemivägen
10, SE-412 96 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Masoumeh Dowlatshahi Pour
- National Center
Imaging Mass Spectrometry, Kemivägen
10, SE-412 96 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen
10, SE-412 96 Gothenburg, Sweden
- National Center
Imaging Mass Spectrometry, Kemivägen
10, SE-412 96 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
34
|
Donnarumma F, Cao F, Murray KK. Laser Ablation with Vacuum Capture for MALDI Mass Spectrometry of Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:108-116. [PMID: 26374229 DOI: 10.1007/s13361-015-1249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 06/05/2023]
Abstract
We have developed a laser ablation sampling technique for matrix-assisted laser desorption ionization (MALDI) mass spectrometry and tandem mass spectrometry (MS/MS) analyses of in-situ digested tissue proteins. Infrared laser ablation was used to remove biomolecules from tissue sections for collection by vacuum capture and analysis by MALDI. Ablation and transfer of compounds from tissue removes biomolecules from the tissue and allows further analysis of the collected material to facilitate their identification. Laser ablated material was captured in a vacuum aspirated pipette-tip packed with C18 stationary phase and the captured material was dissolved, eluted, and analyzed by MALDI. Rat brain and lung tissue sections 10 μm thick were processed by in-situ trypsin digestion after lipid and salt removal. The tryptic peptides were ablated with a focused mid-infrared laser, vacuum captured, and eluted with an acetonitrile/water mixture. Eluted components were deposited on a MALDI target and mixed with matrix for mass spectrometry analysis. Initial experiments were conducted with peptide and protein standards for evaluation of transfer efficiency: a transfer efficiency of 16% was obtained using seven different standards. Laser ablation vacuum capture was applied to freshly digested tissue sections and compared with sections processed with conventional MALDI imaging. A greater signal intensity and lower background was observed in comparison with the conventional MALDI analysis. Tandem time-of-flight MALDI mass spectrometry was used for compound identification in the tissue.
Collapse
Affiliation(s)
- Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Fan Cao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
35
|
Martin-Lorenzo M, Alvarez-Llamas G, McDonnell LA, Vivanco F. Molecular histology of arteries: mass spectrometry imaging as a novelex vivotool to investigate atherosclerosis. Expert Rev Proteomics 2015; 13:69-81. [DOI: 10.1586/14789450.2016.1116944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotechnol 2015; 37:53-60. [PMID: 26613199 DOI: 10.1016/j.copbio.2015.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 01/13/2023]
Abstract
Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. It is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.
Collapse
|
37
|
Anderson DMG, Spraggins JM, Rose KL, Schey KL. High spatial resolution imaging mass spectrometry of human optic nerve lipids and proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:940-7. [PMID: 25893273 PMCID: PMC5650057 DOI: 10.1007/s13361-015-1143-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 05/11/2023]
Abstract
The human optic nerve carries signals from the retina to the visual cortex of the brain. Each optic nerve is comprised of approximately one million nerve fibers that are organized into bundles of 800-1200 fibers surrounded by connective tissue and supportive glial cells. Damage to the optic nerve contributes to a number of blinding diseases including: glaucoma, neuromyelitis optica, optic neuritis, and neurofibromatosis; however, the molecular mechanisms of optic nerve damage and death are incompletely understood. Herein we present high spatial resolution MALDI imaging mass spectrometry (IMS) analysis of lipids and proteins to define the molecular anatomy of the human optic nerve. The localization of a number of lipids was observed in discrete anatomical regions corresponding to myelinated and unmyelinated nerve regions as well as to supporting connective tissue, glial cells, and blood vessels. A protein fragment from vimentin, a known intermediate filament marker for astrocytes, was observed surrounding nerved fiber bundles in the lamina cribrosa region. S100B was also found in supporting glial cell regions in the prelaminar region, and the hemoglobin alpha subunit was observed in blood vessel areas. The molecular anatomy of the optic nerve defined by MALDI IMS provides a firm foundation to study biochemical changes in blinding human diseases.
Collapse
Affiliation(s)
- David M G Anderson
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | | | | | | |
Collapse
|
38
|
Škrášková K, Khmelinskii A, Abdelmoula WM, De Munter S, Baes M, McDonnell L, Dijkstra J, Heeren RMA. Precise Anatomic Localization of Accumulated Lipids in Mfp2 Deficient Murine Brains Through Automated Registration of SIMS Images to the Allen Brain Atlas. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:948-57. [PMID: 25916600 PMCID: PMC4422856 DOI: 10.1007/s13361-015-1146-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for the molecular characterization of specific tissue regions. Histochemical staining provides anatomic information complementary to MSI data. The combination of both modalities has been proven to be beneficial. However, direct comparison of histology based and mass spectrometry-based molecular images can become problematic because of potential tissue damages or changes caused by different sample preparation. Curated atlases such as the Allen Brain Atlas (ABA) offer a collection of highly detailed and standardized anatomic information. Direct comparison of MSI brain data to the ABA allows for conclusions to be drawn on precise anatomic localization of the molecular signal. Here we applied secondary ion mass spectrometry imaging at high spatial resolution to study brains of knock-out mouse models with impaired peroxisomal β-oxidation. Murine models were lacking D-multifunctional protein (MFP2), which is involved in degradation of very long chain fatty acids. SIMS imaging revealed deposits of fatty acids within distinct brain regions. Manual comparison of the MSI data with the histologic stains did not allow for an unequivocal anatomic identification of the fatty acids rich regions. We further employed an automated pipeline for co-registration of the SIMS data to the ABA. The registration enabled precise anatomic annotation of the brain structures with the revealed lipid deposits. The precise anatomic localization allowed for a deeper insight into the pathology of Mfp2 deficient mouse models.
Collapse
Affiliation(s)
- Karolina Škrášková
- />FOM-Institute AMOLF, Amsterdam, The Netherlands
- />TI-COAST, Amsterdam, The Netherlands
| | - Artem Khmelinskii
- />FOM-Institute AMOLF, Amsterdam, The Netherlands
- />Percuros B.V., Enschede, The Netherlands
- />Division of Image Processing, Department of Radiology, LUMC, Leiden, The Netherlands
| | - Walid M. Abdelmoula
- />Division of Image Processing, Department of Radiology, LUMC, Leiden, The Netherlands
| | | | - Myriam Baes
- />Laboratory of Cellular Metabolism, KU Leuven, Leuven, Belgium
| | - Liam McDonnell
- />Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- />Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Jouke Dijkstra
- />Division of Image Processing, Department of Radiology, LUMC, Leiden, The Netherlands
| | - Ron M. A. Heeren
- />FOM-Institute AMOLF, Amsterdam, The Netherlands
- />TI-COAST, Amsterdam, The Netherlands
- />M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
39
|
Anderson DMG, Floyd KA, Barnes S, Clark JM, Clark JI, Mchaourab H, Schey KL. A method to prevent protein delocalization in imaging mass spectrometry of non-adherent tissues: application to small vertebrate lens imaging. Anal Bioanal Chem 2015; 407:2311-20. [PMID: 25665708 DOI: 10.1007/s00216-015-8489-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 11/29/2022]
Abstract
MALDI imaging requires careful sample preparation to obtain reliable, high-quality images of small molecules, peptides, lipids, and proteins across tissue sections. Poor crystal formation, delocalization of analytes, and inadequate tissue adherence can affect the quality, reliability, and spatial resolution of MALDI images. We report a comparison of tissue mounting and washing methods that resulted in an optimized method using conductive carbon substrates that avoids thaw mounting or washing steps, minimizes protein delocalization, and prevents tissue detachment from the target surface. Application of this method to image ocular lens proteins of small vertebrate eyes demonstrates the improved methodology for imaging abundant crystallin protein products. This method was demonstrated for tissue sections from rat, mouse, and zebrafish lenses resulting in good-quality MALDI images with little to no delocalization. The images indicate, for the first time in mouse and zebrafish, discrete localization of crystallin protein degradation products resulting in concentric rings of distinct protein contents that may be responsible for the refractive index gradient of vertebrate lenses.
Collapse
Affiliation(s)
- David M G Anderson
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, 37205-0146, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Wolfender JL, Marti G, Thomas A, Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 2015; 1382:136-64. [DOI: 10.1016/j.chroma.2014.10.091] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 12/11/2022]
|
41
|
McInnes SJP, Lowe RD. Biomedical Uses of Porous Silicon. ELECTROCHEMICALLY ENGINEERED NANOPOROUS MATERIALS 2015. [DOI: 10.1007/978-3-319-20346-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Crecelius AC, Schubert US, von Eggeling F. MALDI mass spectrometric imaging meets “omics”: recent advances in the fruitful marriage. Analyst 2015; 140:5806-20. [DOI: 10.1039/c5an00990a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a method that allows the investigation of the molecular content of surfaces, in particular, tissues, within its morphological context.
Collapse
Affiliation(s)
- A. C. Crecelius
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - U. S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - F. von Eggeling
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Physical Chemistry
| |
Collapse
|
43
|
Fournaise E, Chaurand P. Increasing specificity in imaging mass spectrometry: high spatial fidelity transfer of proteins from tissue sections to functionalized surfaces. Anal Bioanal Chem 2014; 407:2159-66. [DOI: 10.1007/s00216-014-8300-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/05/2023]
|