1
|
Singh A, Bhutani C, Khanna P, Talwar S, Singh SK, Khanna L. Recent report on indoles as a privileged anti-viral scaffold in drug discovery. Eur J Med Chem 2025; 281:117017. [PMID: 39509946 DOI: 10.1016/j.ejmech.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
In recent years, viral infections such as COVID-19, Zika virus, Nipah virus, Ebola, Influenza, Monkeypox, and Dengue have substantially impacted global health. These outbreaks have led to heightened global health initiatives and collaborative efforts to address and mitigate these significant threats effectively. Thus, developing antiviral treatments and research in this field has become highly important. Heterocycles, particularly indole motifs, have been a valuable resource in drug discovery, as they can be used as treatments or inspire the synthesis of new potent candidates. Indole-containing drugs, such as enfuvirtide (T-20), arbidol, and delavirdine, have demonstrated significant efficacy in treating viral diseases. This review aims to comprehensively assess the latest research and developments in novel indoles as potential scaffolds for antiviral activity. We have compiled detailed information about indoles as potential antivirals by conducting a thorough literature survey from the past ten years. The review includes discussions on synthetic protocols, inhibitory concentrations, SAR study, and computational study. This review shall identify new antiviral indoles that may help to combat new viral threats in the future.
Collapse
Affiliation(s)
- Asmita Singh
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India
| | - Charu Bhutani
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India; Synthesis & In-Silico Drug Design Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110 019, India
| | - Pankaj Khanna
- Synthesis & In-Silico Drug Design Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110 019, India
| | - Sangeeta Talwar
- Department of Chemistry, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Sandeep Kumar Singh
- Jindal Global Business School, O.P. Jindal Global University, Sonipat 131001, India
| | - Leena Khanna
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
2
|
Kumar D, Salahuddin, Mazumder A, Kumar R, Ahsan MJ, Yar MS, Abbussalam, Tyagi PK, Chaitanya MVNL. Pharmacological Evaluation of Bioisosterically Replaced and Triazole- Tethered Derivatives for Anticancer Therapy. Med Chem 2025; 21:264-293. [PMID: 40351067 DOI: 10.2174/0115734064320533240903062533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 05/14/2025]
Abstract
Cancer has been the cause of the highest number of deaths in the human population despite the development and advancement in treatment therapies. The toxicity, drug resistance, and side effects of the current medicaments and therapies have left the void for more research and development. One of the possibilities to fill this void is by incorporating Triazole moieties within existing anticancer pharmacophores to develop new hybrid drugs with less toxicity and more potency. The placement of nitrogen in the triazole ring has endowed its characterization of being integrated with anticancer pharmacophores via bioisosteric replacement, click chemistry and organocatalyzed approaches. This review paper emphasizes the discussions from articles published from the early 2000s to the current 2020s about the triazole-based derivatives used in anticancer therapy, elaborating more on their chemical structures, target receptors or enzymes, mechanism of action, structure-activity relationships, different triazole-derived hybrid drugs under clinical and nonclinical trials, and recent advancements toward developing more potent and less toxic anticancer agents.
Collapse
Affiliation(s)
- Dipesh Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jahangirabad Institute of Technology, Jahangirabad Fort, Jahangirabad, Barabanki Uttar Pradesh, 225203, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Abbussalam
- Department of Physiology, Era's Lucknow Medical College and Hospital, Lucknow, 226003, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering and Technology, Plot No.19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
3
|
Torkashvand Z, Sepehrmansourie H, Zolfigol MA, Gu Y. Ti-based MOFs with acetic acid pendings as an efficient catalyst in the preparation of new spiropyrans with biological moieties. Sci Rep 2024; 14:14101. [PMID: 38890358 PMCID: PMC11189590 DOI: 10.1038/s41598-024-62757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The strategy of designing heterogeneous porous catalysts by a post-modification method is a smart strategy to increase the catalytic power of desired catalysts. Accordingly, in this report, metal-organic frameworks based on titanium with acetic acid pending were designed and synthesized via post-modification method. The structure of the target catalyst has been investigated using different techniques such as FT-IR, XRD, SEM, EDX, Mapping, and N2 adsorption/desorption (BET/the BJH) the correctness of its formation has been proven. The catalytic application of Ti-based MOFs functionalized with acetic acid was evaluated in the preparation of new spiropyrans, and the obtained results show that the catalytic performance is improved by this modification. The strategy of designing heterogeneous porous catalysts through post-modification methods presents a sophisticated approach to enhancing the catalytic efficacy of desired catalysts. In this context, our study focuses on the synthesis and characterization of metal-organic frameworks (MOFs) based on titanium, functionalized with acetic acid pendants, using a post-modification method. Various characterization techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping, and N2 adsorption/desorption (BET/BJH), were employed to investigate the structure and composition of the synthesized catalyst. These techniques collectively confirmed the successful formation and structural integrity of the target catalyst. The structure of the synthesized products was confirmed by melting point, 1H-NMR and 13C-NMR and FT-IR techniques. Examining the general process of catalyst synthesis and its catalytic application shows that the mentioned modification is very useful for catalytic purposes. The presented catalyst was used in synthesis of a wide range of biologically active spiropyrans with good yields. The simultaneous presence of several biologically active cores in the synthesized products will highlight the biological properties of these compounds. The present study offers a promising insight into the rational design, synthesis, and application of task-specific porous catalysts, particularly in the context of synthesizing biologically active candidate molecules.
Collapse
Affiliation(s)
- Zahra Torkashvand
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| |
Collapse
|
4
|
Sakla AP, Bazaz MR, Mahale A, Sharma P, Valapil DG, Kulkarni OP, Dandekar MP, Shankaraiah N. Development of Benzimidazole-Substituted Spirocyclopropyl Oxindole Derivatives as Cytotoxic Agents: Tubulin Polymerization Inhibition and Apoptosis Inducing Studies. ChemMedChem 2024; 19:e202400052. [PMID: 38517377 DOI: 10.1002/cmdc.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
A series of spirocyclopropyl oxindoles with benzimidazole substitutions was synthesized and tested for their cytotoxicity against selected human cancer cells. Most of the molecules exhibited significant antiproliferative activity with compound 12 p being the most potent. It exhibited significant cytotoxicity against MCF-7 breast cancer cells (IC50 value 3.14±0.50 μM), evidenced by the decrease in viable cells and increased apoptotic features during phase contrast microscopy, such as AO/EB, DAPI and DCFDA staining studies. Compound 12 p also inhibited cell migration in wound healing assay. Anticancer potential of 12 p was proved by the inhibition of tubulin polymerization with IC50 of 5.64±0.15 μM. These results imply the potential of benzimidazole substituted spirocyclopropyl oxindoles, notably 12 p, as cytotoxic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| |
Collapse
|
5
|
Chang MY, Ho CH, Chen HY. K 2CO 3-mediated annulation of 1,3-acetonedicarboxylates with 2-fluoro-1-nitroarenes: synthesis of indoles. Org Biomol Chem 2024; 22:4108-4122. [PMID: 38695833 DOI: 10.1039/d4ob00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The K2CO3-mediated one-pot reaction of 1,3-acetonedicarboxylates with 2 equiv. of substituted 2-fluoro-1-nitrobenzenes has been developed to synthesize various 2,3-dicarboxylate indoles via a tandem annulation pathway. In the effective reaction, one carbon-carbon double bond, one carbon-carbon single bond and one carbon-nitrogen single bond are formed under open-vessel conditions. DFT calculations are used to rationalize the plausible mechanisms.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chin-Huey Ho
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
6
|
Yao CH, Wu MH, Chang PW, Wu SH, Song JS, Huang HH, Chen YC, Lee JC. Design, synthesis, and anticancer evaluation of 1-benzo[1,3]dioxol-5-yl-3-N-fused heteroaryl indoles. Mol Divers 2024; 28:595-608. [PMID: 36735167 DOI: 10.1007/s11030-023-10605-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
A series of 1-benzo[1,3]dioxol-5-yl-indoles bearing 3-N-fused heteroaryl moieties have been designed based on literature reports of the activity of indoles against various cancer cell lines, synthesized via a Pd-catalyzed C-N cross-coupling, and evaluated for their anticancer activity against prostate (LNCaP), pancreatic (MIA PaCa-2), and acute lymphoblastic leukemia (CCRF-CEM) cancer cell lines. A detailed structure-activity relationship study culminated in the identification of 3-N-benzo[1,2,5]oxadiazole 17 and 3-N-2-methylquinoline 20, whose IC50 values ranged from 328 to 644 nM against CCRF-CEM and MIA PaCa-2. Further mechanistic studies revealed that 20 caused cell cycle arrest at the S phase and induced apoptosis in CCRF-CEM cancer cells. These 1-benzo[1,3]dioxol-5-yl-3-N-fused heteroaryl indoles may serve as a template for further optimization to afford more active analogs and develop a comprehensive understanding of the structure-activity relationships of indole anticancer molecules.
Collapse
Affiliation(s)
- Chun-Hsu Yao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Wei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsing-Hao Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jinq-Chyi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
7
|
Ragheb MA, Abdelrashid HE, Elzayat EM, Abdelhamid IA, Soliman MH. Novel cyanochalcones as potential anticancer agents: apoptosis, cell cycle arrest, DNA binding, and molecular docking studies. J Biomol Struct Dyn 2024:1-19. [PMID: 38373066 DOI: 10.1080/07391102.2024.2316764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
In the light of anticancer drug discovery and development, a new series of cyanochalcones incorporating indole moiety (5a-g) were efficiently synthesized and characterized by different spectral analysis. MTT assay was used to evaluate the antiproliferative activity of the synthesized compounds towards different cancer cells (Hela, MDA-MB-231, A375, and A549) in parallel with normal cells (HSF). Trimethoxy and diethoxy-containing derivatives (5d and 5e) displayed the most selective cytotoxic activities against cervical Hela cells with IC50 values of 8.29 and 11.82 µM, respectively, with great safety pattern toward normal HSF cells (Selectivity index: 21.3 and 13.9, respectively). Therefore, 5d and 5e were chosen to study their effects on apoptosis, cell cycle arrest, and migration of Hela cells using flow cytometric analysis and wound healing assay. They induced apoptosis and cell cycle arrest at the S phase and impaired migration of HeLa cells. Regarding their effects on the expression profile of crucial genes related to the potential anticancer activities, 5d and 5e remarkably upregulated caspase 3 and Beclin1 and downregulated cyclin A1, CDK2, CDH2, MMP9, and HIF1A using qRT-PCR and ELISA techniques. UV-Vis spectral measurement demonstrated the ability of 5d and 5e to bind CT-DNA efficiently with Kb values of 3.7 × 105 and 1 × 105 M-1, respectively. Moreover, in silico molecular docking was performed to assess the binding affinities of the compounds toward the active sites of Bcl2, CDK2, and DNA. Therefore, cyanochalcones 5d and 5e might be promising anticancer agents and could offer a scientific basis for intensive research into cancer chemotherapy.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Hanan E Abdelrashid
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Emad M Elzayat
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Lee C, Lee S, Kim A, Kwon Y. Nitro-Enabled Atroposelective Dynamic Kinetic Resolution of 2-Arylindoles by Phase-Transfer Catalysis. Org Lett 2024; 26:681-686. [PMID: 38232328 DOI: 10.1021/acs.orglett.3c03933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study presents the atroposelective alkylation of 2-arylindoles catalyzed by a substituted cinchonium salt as a phase-transfer catalyst. Under the optimized reaction conditions, various substrates are employed to yield products with high enantioselectivity. The presence of an ortho-nitro group at the aromatic ring is essential for high atroposelectivity, because it facilitates favorable interactions between the catalyst and substrate. The origin of the enantioselectivity reveals favorable π-π interactions for both enantiomers and unfavorable steric strains for undesired enantiomers.
Collapse
Affiliation(s)
- Chanhee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sujin Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Koley M, Han J, Soloshonok VA, Mojumder S, Javahershenas R, Makarem A. Latest developments in coumarin-based anticancer agents: mechanism of action and structure-activity relationship studies. RSC Med Chem 2024; 15:10-54. [PMID: 38283214 PMCID: PMC10809357 DOI: 10.1039/d3md00511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Many researchers around the world are working on the development of novel anticancer drugs with different mechanisms of action. In this case, coumarin is a highly promising pharmacophore for the development of novel anticancer drugs. Besides, the hybridization of this moiety with other anticancer pharmacophores has emerged as a potent breakthrough in the treatment of cancer to decrease its side effects and increase its efficiency. This review aims to provide a comprehensive overview of the recent development of coumarin derivatives and their application as novel anticancer drugs. Herein, we highlight and describe the largest number of research works reported in this field from 2015 to August 2023, along with their mechanisms of action and structure-activity relationship studies, making this review different from the other review articles published on this topic to date.
Collapse
Affiliation(s)
- Manankar Koley
- CSIR-Central Glass & Ceramic Research Institute Kolkata India
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University Nanjing China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | | | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg Hamburg Germany
| |
Collapse
|
10
|
Girgis AS, Panda SS, Kariuki BM, Bekheit MS, Barghash RF, Aboshouk DR. Indole-Based Compounds as Potential Drug Candidates for SARS-CoV-2. Molecules 2023; 28:6603. [PMID: 37764378 PMCID: PMC10537473 DOI: 10.3390/molecules28186603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has posed a significant threat to society in recent times, endangering human health, life, and economic well-being. The disease quickly spreads due to the highly infectious SARS-CoV-2 virus, which has undergone numerous mutations. Despite intense research efforts by the scientific community since its emergence in 2019, no effective therapeutics have been discovered yet. While some repurposed drugs have been used to control the global outbreak and save lives, none have proven universally effective, particularly for severely infected patients. Although the spread of the disease is generally under control, anti-SARS-CoV-2 agents are still needed to combat current and future infections. This study reviews some of the most promising repurposed drugs containing indolyl heterocycle, which is an essential scaffold of many alkaloids with diverse bio-properties in various biological fields. The study also discusses natural and synthetic indole-containing compounds with anti-SARS-CoV-2 properties and computer-aided drug design (in silico studies) for optimizing anti-SARS-CoV-2 hits/leads.
Collapse
Affiliation(s)
- Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK; (B.M.K.)
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| |
Collapse
|
11
|
Kim A, Lee C, Song J, Lee SK, Kwon Y. All-round catalytic and atroposelective strategy via dynamic kinetic resolution for N-/2-/3-arylindoles. Nat Commun 2023; 14:5502. [PMID: 37679348 PMCID: PMC10485016 DOI: 10.1038/s41467-023-41299-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
As the complexity of organic molecules utilized by mankind increases, the phenomenon of atropisomerism is more frequently encountered. While a variety of well-established methods enable the control of a stereogenic center, a catalytic method for controlling a stereogenic axis in one substrate is typically unavailable for controlling axial chirality in other substrates with a similar structure. Herein, we report o-amidobiaryl as a flexible platform for chiral phosphoric acid-catalyzed atroposelective dynamic kinetic resolution. To demonstrate our strategy, three distinct types of arylindoles were utilized and reacted intermolecularly with ketomalonate in the presence of chiral phosphoric acid. An investigation of 46 substrates having an aromatic ring in different positions yields the desired products with excellent enantioselectivities. Computational investigation into the origin of enantioselectivity highlights the importance of the NH group. Given the biological significance of indoles, antiproliferative effects have been investigated; our scaffold exhibits good efficacy in this regard.
Collapse
Affiliation(s)
- Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chanhee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jayoung Song
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
12
|
Dadi V, Malla RR, Siragam S. Natural and Synthetic Chalcones: Potential Impact on Breast Cancer. Crit Rev Oncog 2023; 28:27-40. [PMID: 38050979 DOI: 10.1615/critrevoncog.2023049659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chalcones are small molecules, naturally found in fruits and vegetables, and exhibit diverse pharmacological activities. They also possess anticancer activity against different tumors. They can be converted into numerous derivatives by modifying hydrogen moieties, enabling the exploration of their diverse anticancer potentials. The main aims are to provide valuable insights into the recent progress made in utilizing chalcones and their derivatives as agents against breast cancer while delivering their underlying molecular mechanisms of action. This review presents anticancer molecular mechanisms and signaling pathways modulated by chalcones. Furthermore, it helps in the understating of the precise mechanisms of action and specific molecular targets of chalcones and their synthetic derivatives for breast cancer treatment.
Collapse
Affiliation(s)
- Vasudha Dadi
- Department of Pharmaceutical Chemistry, Vignan Institute of Pharmaceutical Technology, Visakhapatnam 530049, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Satyalakshmi Siragam
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Visakhapatnam 530049, India
| |
Collapse
|
13
|
Sunitha Boda, Nukala SK, Manchal R. Synthesis of Some New Indole-1,3,4-Oxadiazole Hybrids as Tubulin Polymerization Inhibitors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Veeranna D, Ramdas L, Ravi G, Bujji S, Thumma V, Ramchander J. Synthesis of 1,2,3‐Triazole Tethered Indole Derivatives: Evaluation of Anticancer Activity and Molecular Docking Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202201758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dharmasothu Veeranna
- Dharmasothu Veeranna, Department of Chemistry University College of Science, Osmania University Hyderabad, Telangana 500007 India
| | - Lakavath Ramdas
- Dharmasothu Veeranna, Department of Chemistry University College of Science, Osmania University Hyderabad, Telangana 500007 India
| | - Guguloth Ravi
- Dharmasothu Veeranna, Department of Chemistry University College of Science, Osmania University Hyderabad, Telangana 500007 India
| | - Sushmitha Bujji
- Department of Pharmacy University College of Technology Osmania University Hyderabad, Telangana 500007 India
| | - Vishnu Thumma
- Department of Sciences and Humanities Matrusri Engineering College, Saidabad Hyderabad 500059 India
| | - Jadav Ramchander
- Dharmasothu Veeranna, Department of Chemistry University College of Science, Osmania University Hyderabad, Telangana 500007 India
| |
Collapse
|
15
|
Laxmikeshav K, Himaja A, Shankaraiah N. Exploration of benzimidazoles as potential microtubule modulators: An insight in the synthetic and therapeutic evolution. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Sinha AK, Equbal D, Rastogi SK, Kumar S, Kumar R. An overview on Indole aryl sulfide/sulfone (IAS) as anti‐HIV non‐nucleoside reverse transcriptase inhibitors (NNRTIs). ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arun Kumar Sinha
- CSIR-CDRI (Central Drug Research Institute) Medicinal and Process Chemistry Sitapur Road 226031 Lucknow INDIA
| | | | - Sumit K. Rastogi
- CSIR-CDRI: Central Drug Research Institute Medicinal and Process Chemistry INDIA
| | - Santosh Kumar
- CSIR-CDRI: Central Drug Research Institute Medicinal and process chemistry INDIA
| | - Ravindra Kumar
- CSIR-CDRI: Central Drug Research Institute Medicinal and process chemistry INDIA
| |
Collapse
|
17
|
Singh I, Luxami V, Choudhury D, Paul K. Synthesis and photobiological applications of naphthalimide-benzothiazole conjugates: cytotoxicity and topoisomerase IIα inhibition. RSC Adv 2021; 12:483-497. [PMID: 35424470 PMCID: PMC8694140 DOI: 10.1039/d1ra04148g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Conjugates of naphthalimide, benzothiazole, and indole moieties are synthesized that show excellent cytotoxicity against A549 (lung), MCF7 (breast), and HeLa (cervix) cancer cell lines with IC50 values in the range of 0.14–8.59 μM. Compounds 12 and 13 substituted with ethanolamine and propargyl groups reveal potent cytotoxicity towards A549 cancer cells with IC50 values of 140 and 310 nM, respectively. These compounds are further evaluated as potent inhibitors of human type IIα topoisomerase. These conjugates also reveal strong interaction towards human serum albumin (HSA) with binding constant values of 1.75 × 105 M−1 and 1.88 × 105 M−1, respectively, and formation of the stable complex at ground state with static quenching. Docking studies also confirm the effective interactions between conjugates and topoisomerase. Conjugates of naphthalimide, benzothiazole, and indole moieties are synthesized that show excellent cytotoxicity against A549 (lung), MCF7 (breast), and HeLa (cervix) cancer cell lines with IC50 values in the range of 0.14–8.59 μM.![]()
Collapse
Affiliation(s)
- Iqubal Singh
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| |
Collapse
|
18
|
Hawash M, Kahraman DC, Ergun SG, Cetin-Atalay R, Baytas SN. Synthesis of novel indole-isoxazole hybrids and evaluation of their cytotoxic activities on hepatocellular carcinoma cell lines. BMC Chem 2021; 15:66. [PMID: 34930409 PMCID: PMC8691034 DOI: 10.1186/s13065-021-00793-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Liver cancer is predicted to be the sixth most diagnosed cancer globally and fourth leading cause of cancer deaths. In this study, a series of indole-3-isoxazole-5-carboxamide derivatives were designed, synthesized, and evaluated for their anticancer activities. The chemical structures of these of final compounds and intermediates were characterized by using IR, HRMS, 1H-NMR and 13C-NMR spectroscopy and element analysis. RESULTS The cytotoxic activity was performed against Huh7, MCF7 and HCT116 cancer cell lines using sulforhodamine B assay. Some compounds showed potent anticancer activities and three of them were chosen for further evaluation on liver cancer cell lines based on SRB assay and real-time cell growth tracking analysis. Compounds were shown to cause arrest in the G0/G1 phase in Huh7 cells and caused a significant decrease in CDK4 levels. A good correlation was obtained between the theoretical predictions of bioavailability using Molinspiration calculation, Lipinski's rule of five, and experimental verification. These investigations reveal that indole-isoxazole hybrid system have the potential for the development of novel anticancer agents. CONCLUSIONS This study has provided data that will form the basis of further studies that aim to optimize both the design and synthesis of novel compounds that have higher anticancer activities.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Deniz Cansen Kahraman
- Cancer Systems Biology Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Sezen Guntekin Ergun
- Cancer Systems Biology Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
- Department of Medical Biology, Hacettepe University, 06100, Ankara, Turkey
| | - Rengul Cetin-Atalay
- Cancer Systems Biology Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| |
Collapse
|
19
|
Construction of poly-N-heterocyclic scaffolds via the controlled reactivity of Cu-allenylidene intermediates. Commun Chem 2021; 4:158. [PMID: 36697740 PMCID: PMC9814594 DOI: 10.1038/s42004-021-00596-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 01/28/2023] Open
Abstract
Controlling the sequence of the three consecutive reactive carbon centres of Cu-allenylidene remains a challenge. One of the impressive achievements in this area is the Cu-catalyzed annulation of 4-ethynyl benzoxazinanones, which are transformed into zwitterionic Cu-stabilized allenylidenes that are trapped by interceptors to provide the annulation products. In principle, the reaction proceeds via a preferential γ-attack, while annulation reactions via an α- or β-attack are infrequent. Herein, we describe a method for controlling the annulation mode, by the manipulation of a CF3 or CH3 substituent, to make it proceed via either a γ-attack or an α- or β-attack. The annulation of CF3-substituted substrates with sulfamate-imines furnished densely functionalized N-heterocycles with excellent enantioselectivity via a cascade of an internal β-attack and an external α-attack. CH3-variants were transformed into different heterocycles that possess a spiral skeleton, via a cascade of an internal β-attack and a hydride α-migration followed by a Diels-Alder reaction.
Collapse
|
20
|
Yang XP, Lv HP, Yang HD, Wang BL, Wang XW. Box-copper catalyzed cascade asymmetric amidation for chiral exo-methylene aminoindoline derivatives. Org Biomol Chem 2021; 19:9373-9378. [PMID: 34673876 DOI: 10.1039/d1ob01242h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantioselective copper-catalyzed cascade inter- and intramolecular amidation was achieved between ethynyl benzoxazinanones and α-halohydroxamates in the presence of an indapybox ligand. The one-pot cascade transformation was triggered by the attack of hydroxamates to dipolar copper-allenylidene intermediates, followed by a nucleophilic annulation reaction. Thus, a series of exo-methylene 3-aminoindoline derivatives were obtained in good yields with high enantioselectivities under mild reaction conditions.
Collapse
Affiliation(s)
- Xiao-Peng Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hao-Peng Lv
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hao-Di Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Bai-Lin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
21
|
Heravi MM, Amiri Z, Kafshdarzadeh K, Zadsirjan V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Adv 2021; 11:33540-33612. [PMID: 35497516 PMCID: PMC9042329 DOI: 10.1039/d1ra05972f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 02/02/2023] Open
Abstract
Indoles are a significant heterocyclic system in natural products and drugs. They are important types of molecules and natural products and play a main role in cell biology. The application of indole derivatives as biologically active compounds for the treatment of cancer cells, microbes, and different types of disorders in the human body has attracted increasing attention in recent years. Indoles, both natural and synthetic, show various biologically vital properties. Owing to the importance of this significant ring system, the investigation of novel methods of synthesis have attracted the attention of the chemical community. In this review, we aim to highlight the construction of indoles as a moiety in selected alkaloids.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Zahra Amiri
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Kosar Kafshdarzadeh
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
22
|
Fang F, Hu S, Li C, Wang Q, Wang R, Han X, Zhou Y, Liu H. Catalytic System‐Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Feifei Fang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Shulei Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Chunpu Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Qian Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Run Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Xu Han
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
23
|
Fang F, Hu S, Li C, Wang Q, Wang R, Han X, Zhou Y, Liu H. Catalytic System-Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angew Chem Int Ed Engl 2021; 60:21327-21333. [PMID: 34180572 DOI: 10.1002/anie.202105857] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Indexed: 12/13/2022]
Abstract
A catalytic system-controlled divergent reaction strategy was here reported to construct four types of intriguing spiroheterocyclic skeletons from simple and readily available starting materials via a precise chemical bond activation/[n+1] annulation cascade. The tetraazaspiroheterocyclic and trizazspiroheterocyclic scaffolds could be independently constructed by a selective N-N bond activation/[n+1] annulation cascade, a C(sp2 )-H activation/[4+1] annulation and a novel tandem C(sp2 )-H/C(sp3 )-H bond activation/[4+1] annulation strategy, along with a broad scope of substrates, moderate to excellent yields and valuable transformations. More importantly, in these transformations, we are the first time to capture a N-N bond activation and a C(sp3 )-H bond activation of pyrazolidinones under different catalytic system.
Collapse
Affiliation(s)
- Feifei Fang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shulei Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qian Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Run Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xu Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
24
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
25
|
Balachandra C, Padhi D, Govindaraju T. Cyclic Dipeptide: A Privileged Molecular Scaffold to Derive Structural Diversity and Functional Utility. ChemMedChem 2021; 16:2558-2587. [PMID: 33938157 DOI: 10.1002/cmdc.202100149] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Cyclic dipeptides (CDPs) are the simplest form of cyclic peptides with a wide range of applications from therapeutics to biomaterials. CDP is a versatile molecular platform endowed with unique properties such as conformational rigidity, intermolecular interactions, structural diversification through chemical synthesis, bioavailability and biocompatibility. A variety of natural products with the CDP core exhibit anticancer, antifungal, antibacterial, and antiviral activities. The inherent bioactivities have inspired the development of synthetic analogues as drug candidates and drug delivery systems. CDP plays a crucial role as conformation and molecular assembly directing core in the design of molecular receptors, peptidomimetics and fabrication of functional material architectures. In recent years, CDP has rapidly become a privileged scaffold for the design of advanced drug candidates, drug delivery agents, bioimaging, and biomaterials to mitigate numerous disease conditions. This review describes the structural diversification and multifarious biomedical applications of the CDP scaffold, discusses challenges, and provides future directions for the emerging field.
Collapse
Affiliation(s)
- Chenikkayala Balachandra
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| |
Collapse
|
26
|
Teli G, Chawla PA. Hybridization of Imidazole with Various Heterocycles in Targeting Cancer: A Decade's Work. ChemistrySelect 2021; 6:4803-4836. [DOI: 10.1002/slct.202101038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2025]
Abstract
AbstractCancer is the world‘s biggest global health concern. The prevalence and mortality rates of cancer remain high despite significant progress in cancer therapy. The search for more effective, as well as less toxic treatment methods for cancer, is at the focus of current studies. Approximately 24.6 million people are suffering from cancer across the world as per the world health organization (WHO). In the year 2020, approximately 10 million deaths were reported due to cancer which has emerged as the second leading cause of mortality across the globe. Anticancer medicines have played a pivotal role in the medication of different types of cancers; however, they are associated with several side effects and relevance of drug resistance which evoke an immediate need for designing of new anticancer agents with multitargeted effect. Imidazole is a heterocyclic compound privileged with considerable anticancer activities and some imidazole derivatives have already got approval to treat cancer. Many hybrid molecules are available that play an important role in the treatment of cancer like chalcone, pyrazole, purine, triazine etc., and their pharmacophore provide the anticancer drug with low drug resistance and high efficacy, with low chances of toxicity and side effects. This review provides various approaches for the drug development of new safe and efficient antitumor agents imidazole hybrids with other heterocyclic moieties. An attempt has been made to advancement of the anticancer potential of the derivatives and hybrids of imidazole having intact or condensed imidazole moiety in the last decade along with the structure‐activity relationship studies, and mechanism of action.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan G.T Road Punjab 142001 India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan G.T Road Punjab 142001 India
| |
Collapse
|
27
|
Patel VK, Rajak H. Structural Investigations of Aroylindole Derivatives through 3D-QSAR and Multiple Pharmacophore Modeling for the Search of Novel Colchicines Inhibitor. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200905092444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background :
The ligand and structure based integrated strategies are being repeatedly
and effectively employed for the precise search and design of novel ligands against various disease
targets. Aroylindole derivative has a similar structural analogy as Combretastatin A-4, and exhibited
potent anticancer activity on several cancer cell lines.
Objective:
To identify structural features of aroylindole derivatives through 3D-QSAR and multiple
pharmacophore modelling for the search of novel colchicines inhibitor via virtual screening.
Method:
The present study utilizes ligand and structure based methodology for the establishment
of structure activity correlation among trimethoxyaroylindole derivatives and the search of novel
colchicines inhibitor via virtual screening. The 3D-QSAR studies were performed using Phase module
and provided details of relationship between structure and biological activity. A single ligand
based pharmacophore model was generated from Phase on compound 3 and compound 29 and three
energetically optimized structure based pharmacophore models were generated from epharmacophore
for co-crystallized ligand, compound 3 and compound 29 with protein PBD ID
1SA0, 5EYP and 5LYJ. These pharmacophoric features containing hit-like compounds were collected
from commercially available ZINC database and screened using virtual screening workflow.
Results and Discussion:
The 3D-QSAR model studies with good PLSs statistics for factor four was
characterized by the best prediction coefficient Q2 (0.8122), regression R2 (0.9405), SD (0.2581), F
(102.7), P (1.56e-015), RMSE (0.402), Stability (0.5411) and Pearson-r (0.9397). The generated epharmacophores
have GH scores over 0.5 and AUAC ≥ 0.7 indicated that all the pharmacophores
were suitable for pharmacophore-based virtual screening. The virtual screened compounds
ZINC12323179, ZINC01642724, and ZINC14238006 have showed similar structural alignment as
co-crystallized ligand and showed the hydrogen bonding of ligand with ASN101, SER178,
THR179, VAL238, CYS241 amino acid of protein.
Conclusion:
The study illustrates that the ligand and structure based pharmacophoric approach is
beneficial for identification of structurally diverse hits, having better binding affinity on colchicines
binding site as novel anticancer agents.
Collapse
Affiliation(s)
- Vijay Kumar Patel
- Medicinal Chemistry Research Laboratory, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
| | - Harish Rajak
- Medicinal Chemistry Research Laboratory, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
| |
Collapse
|
28
|
Recent advances in research of colchicine binding site inhibitors and their interaction modes with tubulin. Future Med Chem 2021; 13:839-858. [PMID: 33821673 DOI: 10.4155/fmc-2020-0376] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microtubules have been a concerning target of cancer chemotherapeutics for decades, and several tubulin-targeted agents, such as paclitaxel, vincristine and vinorelbine, have been approved. The colchicine binding site is one of the primary targets on microtubules and possesses advantages compared with other tubulin-targeted agents, such as inhibitors of tumor vessels and overcoming P-glycoprotein overexpression-mediated multidrug resistance. This study reviews and summarizes colchicine binding site inhibitors reported in recent years with structural studies via the crystal structures of complexes or computer simulations to discover new lead compounds. We are attempting to resolve the challenge of colchicine site agent research.
Collapse
|
29
|
Tantak MP, Malik M, Klingler L, Olson Z, Kumar A, Sadana R, Kumar D. Indolyl-α-keto-1,3,4-oxadiazoles: Synthesis, anti-cell proliferation activity, and inhibition of tubulin polymerization. Bioorg Med Chem Lett 2021; 37:127842. [PMID: 33556575 DOI: 10.1016/j.bmcl.2021.127842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 01/29/2023]
Abstract
A series of novel indolyl-α-keto-1,3,4-oxadiazole derivatives have been synthesized by employing molecular iodine-mediated oxidative cyclization of acylhydrazones. In vitro anti cell proliferation activity of these derivatives against various cancer cells lines such as human lymphoblast (U937), leukemia (Jurkat & SB) and human breast (BT474) was investigated. Among the synthesized indolyl-α-keto-1,3,4-oxadiazoles 19a-p, only one compound (19e) exhibited significant antiproliferative activity against a panel of cell lines. The compound 19e with 3,4,5-trimethoxyphenyl motif, endowed strong cytotoxicity against U937, Jurkat, BT474 and SB cancer cells with IC50 values of 7.1, 3.1, 4.1, and 0.8 µM, respectively. Molecular docking studies suggested a potential binding mode for 19e in the colchicine binding site of tubulin. When tested for in vitro tubulin polymerizaton, 19e inhibited tubulin polymezations (IC50 = 10.66 µM) and induced apoptosis through caspase 3/7 activation. Further, the derivative 19e did not cause necrosis when measured using lactate dehydrogenase assay.
Collapse
Affiliation(s)
- Mukund P Tantak
- Department: Department of Chemistry Birla Institute of Technology and Science, Pilani 333 031, India
| | - Monika Malik
- Department: Department of Chemistry Birla Institute of Technology and Science, Pilani 333 031, India
| | - Linus Klingler
- Department: Department of Natural Sciences, University of Houston - Downtown, Houston, TX 77002, USA
| | - Zachary Olson
- Department: Department of Natural Sciences, University of Houston - Downtown, Houston, TX 77002, USA
| | - Anil Kumar
- Department: Department of Chemistry Birla Institute of Technology and Science, Pilani 333 031, India
| | - Rachna Sadana
- Department: Department of Natural Sciences, University of Houston - Downtown, Houston, TX 77002, USA.
| | - Dalip Kumar
- Department: Department of Chemistry Birla Institute of Technology and Science, Pilani 333 031, India.
| |
Collapse
|
30
|
Zhu H, Li W, Shuai W, Liu Y, Yang L, Tan Y, Zheng T, Yao H, Xu J, Zhu Z, Yang DH, Chen ZS, Xu S. Discovery of novel N-benzylbenzamide derivatives as tubulin polymerization inhibitors with potent antitumor activities. Eur J Med Chem 2021; 216:113316. [PMID: 33676300 DOI: 10.1016/j.ejmech.2021.113316] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023]
Abstract
A series of novel N-benzylbenzamide derivatives were designed and synthesized as tubulin polymerization inhibitors. Among fifty-one target compounds, compound 20b exhibited significant antiproliferative activities with IC50 values ranging from 12 to 27 nM against several cancer cell lines, and possessed good plasma stability and satisfactory physicochemical properties. Mechanism studies demonstrated that 20b bound to the colchicine binding site and displayed potent anti-vascular activity. Notably, the corresponding disodium phosphate 20b-P exhibited an excellent safety profile with the LD50 value of 599.7 mg/kg (i.v. injection), meanwhile, it significantly inhibited tumor growth and decreased microvessel density in liver cancer cell H22 allograft mouse model without obvious toxicity. Collectively, 20b and 20b-P are novel promising anti-tubulin agents with more druggable properties and deserve to be further investigated for cancer therapy.
Collapse
Affiliation(s)
- Huajian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Wenlong Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Wen Shuai
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Yang Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Limei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Yuchen Tan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Tiandong Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, United States
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China.
| |
Collapse
|
31
|
|
32
|
Kaur BP, Kaur J, Chimni SS. Arenesulfonyl indole: new precursor for diversification of C-3 functionalized indoles. RSC Adv 2021; 11:2126-2140. [PMID: 35424187 PMCID: PMC8693840 DOI: 10.1039/d0ra09133b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Arenesulfonyl indoles, bearing a good leaving group, are effective precursors for vinylogous imine intermediates which are generated in situ under basic conditions. This intermediate can readily react with other nucleophilic reagents to obtain C-3 substituted indole derivatives. In the last few years, a plethora of exciting synthetic applications of this substrate have been exploited. The stability of arylsulfonyl-containing substrates, mild reaction conditions, and the large variety of nucleophiles involved in these procedures are the key to their success in organic synthesis.
Collapse
Affiliation(s)
- Banni Preet Kaur
- Department of Chemistry, U.G.C. Centre of Advance Study-II, Guru Nanak Dev University Amritsar Punjab India
| | - Jasneet Kaur
- Post-Graduate Department of Chemistry, Khalsa College Amritsar Punjab India
| | - Swapandeep Singh Chimni
- Department of Chemistry, U.G.C. Centre of Advance Study-II, Guru Nanak Dev University Amritsar Punjab India
| |
Collapse
|
33
|
Nathaniel CR, Neetha M, Anilkumar G. Silver‐catalyzed pyrrole synthesis: An overview. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre Mahatma Gandhi University Kottayam India
- Institute for Integrated Programmes and Research in Basic Sciences Mahatma Gandhi University Kottayam India
| |
Collapse
|
34
|
Caliskan ZZ, Soydan E, Kurt Gur G, Ordu E. Synthesis of New 4-Oxo-Tetrahydroindol Derivatives by Using Chemical and Microbial Biotransformation Methods. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2018.1553194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Eda Soydan
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Gunseli Kurt Gur
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Emel Ordu
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
35
|
Yan X, Wen J, Zhou L, Fan L, Wang X, Xu Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr Top Med Chem 2020; 20:1916-1937. [PMID: 32579505 DOI: 10.2174/1568026620666200624161151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer, which has been cursed for human beings for long time is considered as one of the
leading causes of morbidity and mortality across the world. In spite of different types of treatments
available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently
accessible anticancer agents have developed multidrug resistance along with fatal adverse effects.
Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy
and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer
agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile
heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including
anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer
cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development
of novel anticancer agents. This review will provide a comprehensive overview of the recent
advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus
on the chemical structures, anticancer activity, and mechanisms of action.
Collapse
Affiliation(s)
- Xinjia Yan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Jing Wen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Lin Zhou
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Lei Fan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
36
|
Matiadis D, Sagnou M. Pyrazoline Hybrids as Promising Anticancer Agents: An Up-to-Date Overview. Int J Mol Sci 2020; 21:E5507. [PMID: 32752126 PMCID: PMC7432644 DOI: 10.3390/ijms21155507] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Pyrazolines are five-membered heterocycles possessing two adjacent nitrogens. They have attracted significant attention from organic and medicinal chemists due to their potent biological activities and the numerous possibilities for structural diversification. In the last decade, they have been intensively studied as targets for potential anticancer therapeutics, producing a steady yearly rise in the number of published research articles. Many pyrazoline derivatives have shown remarkable cytotoxic activities in the form of heterocyclic or non-heterocyclic based hybrids, such as with coumarins, triazoles, and steroids. The enormous amount of related literature in the last 5 years prompted us to collect all these published data from screening against cancer cell lines, or protein targets like EGFR and structure activity relationship studies. Therefore, in the present review, a comprehensive account of the compounds containing the pyrazoline nucleus will be provided. The chemical groups and the structural modifications responsible for the activity will be highlighted. Moreover, emphasis will be given on recent examples from the literature and on the work of research groups that have played a key role in the development of this field.
Collapse
Affiliation(s)
- Dimitris Matiadis
- National Center for Scientific Research “Demokritos”, Institute of Biosciences & Applications, 153 10 Athens, Greece;
| | | |
Collapse
|
37
|
Wen X, Zhou Y, Zeng J, Liu X. Recent Development of 1,2,4-triazole-containing Compounds as Anticancer Agents. Curr Top Med Chem 2020; 20:1441-1460. [DOI: 10.2174/1568026620666200128143230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/15/2019] [Accepted: 12/25/2019] [Indexed: 12/16/2022]
Abstract
1,2,4-Triazole derivatives possess promising in vitro and in vivo anticancer activity, and many
anticancer agents such as fluconazole, tebuconazole, triadimefon, and ribavirin bear a 1,2,4-triazole
moiety, revealing their potential in the development of novel anticancer agents. This review emphasizes
the recent advances in 1,2,4-triazole-containing compounds with anticancer potential, and the structureactivity
relationships as well as mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Xiaoyue Wen
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Yongqin Zhou
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Junhao Zeng
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Xinyue Liu
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| |
Collapse
|
38
|
Kryshchyshyn-Dylevych A, Garazd M, Karkhut A, Polovkovych S, Lesyk R. Synthesis and anticancer activity evaluation of 3-(4-oxo-2-thioxothiazolidin-5-yl)-1H-indole-carboxylic acids derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1786124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Andrew Karkhut
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| | - Sviatoslav Polovkovych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
39
|
Gao F, Huang G, Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med Res Rev 2020; 40:2049-2084. [PMID: 32525247 DOI: 10.1002/med.21698] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents have been the major challenges in the control and treatment of cancer, making an urgent need to develop novel anticancer agents with high efficacy. Chalcones, precursors of flavonoids and isoflavonoids, exhibit structural heterogeneity and can act on various drug targets. Chalcones which demonstrated potential in vitro and in vivo activity against both drug-susceptible and drug-resistant cancers, are useful templates for the development of novel anticancer agents. Hybridization of chalcone moiety with other anticancer pharmacophores could provide the hybrids which have the potential to overcome drug resistance and improve the specificity, so it represents a promising strategy to develop novel anticancer agents. This review emphasizes the development, the mechanisms of action as well as structure-activity relationships of chalcone hybrids with potential therapeutic application for many cancers in recent 10 years.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
40
|
Chauhan J, Ravva MK, Gremaud L, Sen S. Blue LED Mediated Intramolecular C-H Functionalization and Cyclopropanation of Tryptamines: Synthesis of Azepino[4, 5-b]indoles and Natural Product Inspired Polycyclic Indoles. Org Lett 2020; 22:4537-4541. [PMID: 32453580 DOI: 10.1021/acs.orglett.0c01559] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a novel blue LED mediated intramolecular C-H functionalization of tryptamine derivatives to generate azepino[4, 5-b]indoles (4) in moderate to good yields. By altering the substitution at the tryptamine nitrogen, intramolecular cyclopropanation is achieved in high yields under the same reactions condition to provide natural product inspired polycyclic indoles (6), which are further transformed to spiropiperidino (5 and 8) indoles in decent yields. The mechanism of formation of the compounds was investigated through DFT studies.
Collapse
Affiliation(s)
- Jyoti Chauhan
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar, Uttar Pradesh 201314, India
| | - Mahesh K Ravva
- Department of Chemistry, SRM University AP, Neerukonda, Andhra Pradesh 522502, India
| | - Ludovic Gremaud
- School of Engineering and Architecture, Institute of Chemical Technology at University of Applied Sciences and Arts of Western Switzerland, CH-1700 Fribourg, Switzerland
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
41
|
Synthesis and Evaluation of Antimicrobial Activities of Novel N-Substituted Indole Derivatives. J CHEM-NY 2020. [DOI: 10.1155/2020/4358453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Indole motifs are one of the most significant scaffolds in the discovery of new drugs. We have described a synthesis of new N-substituted indole derivatives (1-3), and their in vitro antimicrobial activities were investigated. The synthesis of titled compounds has been demonstrated by utilizing commercially available starting materials. The antibacterial and antifungal activities were performed using new strains of bacteria Staphylococcus aureus, Escherichia coli, and Candida albicans using the disc diffusion method. Notably, the compound 4-(1-(2-(1H-indol-1-yl) ethoxy) pentyl)-N,N-dimethyl aniline (1) was found to be most potent than the other analogues (2 and 3), which has shown higher inhibition than the standard drug chloramphenicol.
Collapse
|
42
|
Zhang ZB, Yang Y, Yu ZX, Xia JB. Lewis Base-Catalyzed Amino-Acylation of Arylallenes via C–N Bond Cleavage: Reaction Development and Mechanistic Studies. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zheng-Bing Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals (Basel) 2020; 13:ph13010008. [PMID: 31947889 PMCID: PMC7168938 DOI: 10.3390/ph13010008] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
It is over 50 years since the discovery of microtubules, and they have become one of the most important drug targets for anti-cancer therapies. Microtubules are predominantly composed of the protein tubulin, which contains a number of different binding sites for small-molecule drugs. There is continued interest in drug development for compounds targeting the colchicine-binding site of tubulin, termed colchicine-binding site inhibitors (CBSIs). This review highlights CBSIs discovered through diverse sources: from natural compounds, rational design, serendipitously and via high-throughput screening. We provide an update on CBSIs reported in the past three years and discuss the clinical status of CBSIs. It is likely that efforts will continue to develop CBSIs for a diverse set of cancers, and this review provides a timely update on recent developments.
Collapse
|
44
|
Li H, Lu Y, Jin X, Sun S, Duan L, Liu J. Rhodium( iii)-catalyzed C–H annulation of 2-acetyl-1-arylhydrazines with sulfoxonium ylides: synthesis of 2-arylindoles. RSC Adv 2020; 10:39708-39711. [PMID: 35515363 PMCID: PMC9057399 DOI: 10.1039/d0ra07701a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
An efficient Rh(iii)-catalyzed synthesis of 2-arylindole derivatives via intermolecular C–H annulation of arylhydrazines with sulfoxonium ylides was accomplished. A variety of 2-acetyl-1-arylhydrazines with sulfoxonium ylides were converted into 2-arylindoles in satisfactory yields. Excellent selectivity and good functional group tolerance of this transformation were also observed. Rh(iii)-catalyzed intermolecular C–H annulation of arylhydrazines with sulfoxonium ylides for synthesis of 2-arylindole derivatives was well established.![]()
Collapse
Affiliation(s)
- He Li
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| | - Ye Lu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| | - Xinxin Jin
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| | - Shuang Sun
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| | - Limei Duan
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| |
Collapse
|
45
|
Chen X, Cui X, Bai L, Wang Y, Xie Y, Wang S, Zhai R, Zhao K, Kong D, Li Y. Ruthenium(II)‐Catalyzed C−H Bond [3+2] Annulation of
N
‐Nitrosoanilines with Alkynes in Water. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xun Chen
- Hainan Key Laboratory for Research and Development of Tropical Herbs School of PharmacyHainan Medical University Haikou 571199 China
| | - Xue Cui
- Hainan Key Laboratory for Research and Development of Tropical Herbs School of PharmacyHainan Medical University Haikou 571199 China
| | - Lili Bai
- Hainan Key Laboratory for Research and Development of Tropical Herbs School of PharmacyHainan Medical University Haikou 571199 China
| | - Ying Wang
- Hainan Key Laboratory for Research and Development of Tropical Herbs School of PharmacyHainan Medical University Haikou 571199 China
| | - Ying Xie
- School of Chemistry and Environmental EngineeringSichuan University of Science & Engineering Zigong 643000 China
| | - Shuojin Wang
- Hainan Key Laboratory for Research and Development of Tropical Herbs School of PharmacyHainan Medical University Haikou 571199 China
| | - Ruirui Zhai
- Hainan Key Laboratory for Research and Development of Tropical Herbs School of PharmacyHainan Medical University Haikou 571199 China
| | - Ke Zhao
- Hainan Key Laboratory for Research and Development of Tropical Herbs School of PharmacyHainan Medical University Haikou 571199 China
| | - Dulin Kong
- Hainan Key Laboratory for Research and Development of Tropical Herbs School of PharmacyHainan Medical University Haikou 571199 China
| | - Youbin Li
- Hainan Key Laboratory for Research and Development of Tropical Herbs School of PharmacyHainan Medical University Haikou 571199 China
| |
Collapse
|
46
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
47
|
Duan Y, Liu W, Tian L, Mao Y, Song C. Targeting Tubulin-colchicine Site for Cancer Therapy: Inhibitors, Antibody- Drug Conjugates and Degradation Agents. Curr Top Med Chem 2019; 19:1289-1304. [PMID: 31210108 DOI: 10.2174/1568026619666190618130008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Microtubules are essential for the mitotic division of cells and have been an attractive target
for antitumour drugs due to the increased incidence of cancer and significant mitosis rate of tumour cells.
In the past few years, tubulin-colchicine binding site, as one of the three binding pockets including taxol-,
vinblastine- and colchicine-binding sites, has been focused on to design tubulin-destabilizing agents including
inhibitors, antibody-drug conjugates and degradation agents. The present review is the first to
cover a systemic and recent synopsis of tubulin-colchicine binding site agents. We believe that it would
provide an increase in our understanding of receptor-ligand interaction pattern and consciousness of a
series of challenges about tubulin target druggability.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Liang Tian
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yanna Mao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
48
|
Li Y, Yang J, Niu L, Hu D, Li H, Chen L, Yu Y, Chen Q. Structural insights into the design of indole derivatives as tubulin polymerization inhibitors. FEBS Lett 2019; 594:199-204. [PMID: 31369682 DOI: 10.1002/1873-3468.13566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/05/2023]
Abstract
Microtubules are composed of αβ-tubulin heterodimers, and drugs that interfere with microtubule dynamics are used widely in cancer chemotherapy. Small synthetic molecules with an indole nucleus as a core structure have been identified as microtubule inhibitors and recognized as anticancer agents. However, structural information for the interactions between indole derivatives and tubulin is sparse. Here, we present the 2.55 Å crystal structure of tubulin in complex with the indole derivative D64131. We compare the binding modes of D64131, colchicine, and five other indole derivatives to tubulin. These results reveal the interactions between the indole derivatives and tubulin, explain previous results of structure-activity-relationship (SAR) studies and, thus, provide insights into the development of new indole derivatives targeting the colchicine binding site.
Collapse
Affiliation(s)
- Yuanyuan Li
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jiazhen Yang
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lu Niu
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Daojun Hu
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Huijuan Li
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lijuan Chen
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yamei Yu
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qiang Chen
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
49
|
Coumarin-containing hybrids and their anticancer activities. Eur J Med Chem 2019; 181:111587. [PMID: 31404864 DOI: 10.1016/j.ejmech.2019.111587] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide, and it results in around 9 million deaths annually. The anticancer agents play an intriguing role in the treatment of cancers, while the severe anticancer scenario and the emergence of drug-resistant especially multidrug-resistant cancers create a huge demand for novel anticancer drugs with different mechanisms of action. The coumarin scaffold is ubiquitous in nature and is a highly privileged motif for the development of novel drugs due to its biodiversity and versatility. Coumarin derivatives can exert diverse antiproliferative mechanisms, and some of them such as Irosustat are under clinical trials for the treatment of various cancers, revealing their potential as putative anticancer drugs. Hybridization of coumarin moiety with other anticancer pharmacophores is a promising strategy to reduce side effects, overcome the drug resistance, and may provide valuable therapeutic intervention for the treatment of cancers. Thus, coumarin-containing hybrids occupy an important position in the development of novel anticancer agents. This review aims to summarize the recent advances made towards the development of coumarin-containing hybrids as potential anticancer agents, covering articles published between 2015 and 2019, and the structure-activity relationship together with mechanisms of action are also discussed.
Collapse
|
50
|
Mao J, Wang Z, Xu X, Liu G, Jiang R, Guan H, Zheng Z, Walsh PJ. Synthesis of Indoles through Domino Reactions of 2‐Fluorotoluenes and Nitriles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jianyou Mao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Zhiting Wang
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xinyu Xu
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Guoqing Liu
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Runsheng Jiang
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Haixing Guan
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Zhipeng Zheng
- Roy and Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Patrick J. Walsh
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
- Roy and Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|