1
|
Chen W, Zhuang X, Chen Y, Shen L, Yang H, Wang M, Pan G, Tan J, Pan X, Feng S, Yuan K, Zhang XY, Yang P. Discovery of potent and selective CDK2 inhibitors with high safety and favorable bioavailability for the treatment of cancer. Eur J Med Chem 2025; 290:117503. [PMID: 40107208 DOI: 10.1016/j.ejmech.2025.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Targeting cyclin-dependent kinases (CDKs) to inhibit the cell proliferation is considered as a promising strategy for the treatment of cancer, and the success of selective CDK4/6 inhibitors proves this concept. CDK2 plays an important role in the cell cycle and proliferation for the CCNE1-amplifed cancers and CDK4/6 inhibitors resistant breast cancers. Therefore, selective inhibition of CDK2 become research hotspots. In our work, we achieved a potent and selective CDK2 inhibitor 46 through virtual screening and systematic structural modification. Compound 46 could arrest cell cycle, promote apoptosis, and induce senescence-related phenotypes for CCNE1-amplifed ovarian cancer OVCAR3 cell line, and also displayed potent antitumor activity against OVCAR3 xenografts. Furthermore, 46 hold promise in overcoming resistance to CDK4/6 inhibitor. More significantly, 46 exhibited great safety properties and favorable pharmacokinetic profiles in vivo. All these results demonstrated that 46 was a potential candidate of novel anticancer drugs.
Collapse
Affiliation(s)
- Weijiao Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Xujie Zhuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Linhu Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanaoyu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Minjie Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Guoyong Pan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jinke Tan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xu Pan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Sikai Feng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiao-Yu Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Papadopoulos D, Magliozzi R, Bandiera S, Cimignolo I, Barusolo E, Probert L, Gorgoulis V, Reynolds R, Nicholas R. Accelerated Cellular Senescence in Progressive Multiple Sclerosis: A Histopathological Study. Ann Neurol 2025; 97:1074-1087. [PMID: 39891488 PMCID: PMC12081997 DOI: 10.1002/ana.27195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
OBJECTIVE The neurodegenerative processes driving the build-up of disability in progressive multiple sclerosis (P-MS) have not been fully elucidated. Recent data link cellular senescence (CS) to neurodegeneration. We investigated for evidence of CS in P-MS and sought to determine its pattern. METHODS We used 53BP1, p16, and lipofuscin as markers of CS in white matter lesions (WMLs), normal appearing white matter (NAWM), normal appearing cortical gray matter (NAGM), control white matter (CWM), and control gray matter (CGM) on autopsy material from patient with P-MS and healthy controls. Senescence-associated secretory phenotype (SASP) factors were quantified in cerebrospinal fluid (CSF). RESULTS P16+ cell counts were significantly increased in WMLs and GMLs, compared with NAWM, CWM, NAGM, and CGM and lipofuscin+ cells were significantly increased in WMLs, compared with NAWM and CWM, indicating more abundant CS in demyelinated lesions. The 53BP1+ cells in WMLs were significantly increased compared with NAWM and CWM. The 53BP1+ and p16+ cells were found significantly more abundant in acute active WMLs and GMLs, compared with chronic inactive lesions. Co-localization studies showed evidence of CS in neurons, astrocytes, oligodendrocytes, microglia, and macrophages. Among the quantified CSF SASP factors, IL-6, MIF, and MIP1a levels correlated with 53BP1+ cell counts in NAGM, whereas IL-10 levels correlated with p16+ cell counts in NAWM. P16+ cell counts in WMLs exhibited an inverse correlation with time to requiring a wheelchair and with age at death. INTERPRETATION Our data indicates that CS primarily affects actively demyelinating gray and WMLs. A higher senescent cell load in P-MS is associated with faster disability progression and death. ANN NEUROL 2025;97:1074-1087.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- School of MedicineEuropean UniversityNicosiaCyprus
- Laboratory of Molecular GeneticsHellenic Pasteur InstituteAthensGreece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and MovementThe Multiple Sclerosis Center of University Hospital of VeronaVeronaItaly
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| | - Sara Bandiera
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| | - Ilaria Cimignolo
- Department of Neurosciences and Biomedicine and MovementThe Multiple Sclerosis Center of University Hospital of VeronaVeronaItaly
| | - Elena Barusolo
- Department of Neurosciences and Biomedicine and MovementThe Multiple Sclerosis Center of University Hospital of VeronaVeronaItaly
| | - Lesley Probert
- Laboratory of Molecular GeneticsHellenic Pasteur InstituteAthensGreece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of MedicineNational and Kapodistrian University of AthensAthensGreece
- Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of BiologyMedicine and Health, University of ManchesterManchesterUK
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
3
|
Dehkordi SK, Sajedi S, Heshmat A, Orr ME, Zare H. Identification of markers for neurescence through transcriptomic profiling of postmortem human brains. RESEARCH SQUARE 2025:rs.3.rs-5903682. [PMID: 40297699 PMCID: PMC12036471 DOI: 10.21203/rs.3.rs-5903682/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Neuronal senescence (i.e., neurescent) is an important hallmark of aging and neurodegeneration, but it remains poorly characterized in the human brain due to the lack of reliable markers. This study aimed to identify neurescent markers based on single-nucleus transcriptome data from postmortem human prefrontal cortex. Using an eigengene approach, we integrated three gene panels: a) SenMayo, b) Canonical Senescence Pathway (CSP), and c) Senescence Initiating Pathway (SIP), to identify neurescent signatures. We found that paired markers outperform single markers; for instance, by combining CDKN2D and ETS2 in a decision tree, a high accuracy of 99% and perfect specificity (100%) were achieved in distinguishing neurescent. Differential expression analyses identified 324 genes that are overexpressed in neurescent. These genes showed significant associations with important neurodegeneration-related pathways including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Interestingly, several of these overexpressed genes are linked to mitochondrial dysfunction and cytoskeletal dysregulation. These findings provide valuable insights into the complexities of neurescent, emphasizing the need for further exploration of histologically viable markers and validation in broader datasets.
Collapse
Affiliation(s)
| | | | | | | | - Habil Zare
- The University of Texas Health Science Center at San Antonio
| |
Collapse
|
4
|
Molteni R, Fiumara M, Campochiaro C, Alfieri R, Pacini G, Licari E, Tomelleri A, Diral E, Varesi A, Weber A, Quaranta P, Albano L, Gaddoni C, Basso-Ricci L, Stefanoni D, Alessandrini L, Degl'Innocenti S, Sanvito F, Bergonzi GM, Annoni A, Panigada M, Cantoni E, Canarutto D, Xie SZ, D'Alessandro A, Di Micco R, Aiuti A, Ciceri F, De Luca G, Dagna L, Matucci-Cerinic M, Merelli I, Cenci S, Scala S, Cavalli G, Naldini L, Ferrari S. Mechanisms of hematopoietic clonal dominance in VEXAS syndrome. Nat Med 2025:10.1038/s41591-025-03623-9. [PMID: 40195449 DOI: 10.1038/s41591-025-03623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025]
Abstract
Clonal dominance characterizes hematopoiesis during aging and increases susceptibility to blood cancers and common nonmalignant disorders. VEXAS syndrome is a recently discovered, adult-onset, autoinflammatory disease burdened by a high mortality rate and caused by dominant hematopoietic clones bearing somatic mutations in the UBA1 gene. However, pathogenic mechanisms driving clonal dominance are unknown. Moreover, the lack of disease models hampers the development of disease-modifying therapies. In the present study, we performed immunophenotype characterization of hematopoiesis and single-cell transcriptomics in a cohort of nine male patients with VEXAS syndrome, revealing pervasive inflammation across all lineages. Hematopoietic stem and progenitor cells (HSPCs) in patients are skewed toward myelopoiesis and acquire senescence-like programs. Humanized models of VEXAS syndrome, generated by inserting the causative mutation in healthy HSPCs through base editing, recapitulated proteostatic defects, cytological alterations and senescence signatures of patients' cells, as well as hematological and inflammatory disease hallmarks. Competitive transplantations of human UBA1-mutant and wild-type HSPCs showed that, although mutant cells are more resilient to the inflammatory milieu, probably through the acquisition of the senescence-like state, wild-type ones are progressively exhausted and overwhelmed by VEXAS clones, overall impairing functional hematopoiesis and leading to bone marrow failure. Our study unveils the mechanism of clonal dominance and provides models for preclinical studies and preliminary insights that could inform therapeutic strategies.
Collapse
Affiliation(s)
- Raffaella Molteni
- Vita-Salute San Raffaele University, Milan, Italy.
- Inflammation Fibrosis and Ageing Initiative (INFLAGE), Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Martina Fiumara
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Corrado Campochiaro
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Alfieri
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Guido Pacini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenia Licari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Tomelleri
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Diral
- Unit of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alessandra Weber
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Stefanoni
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Alessandrini
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Degl'Innocenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sanvito
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gregorio Maria Bergonzi
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Panigada
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Cantoni
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Canarutto
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, CO, USA
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University School of Advanced Studies IUSS, Pavia, Italy
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo De Luca
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Matucci-Cerinic
- Vita-Salute San Raffaele University, Milan, Italy
- Inflammation Fibrosis and Ageing Initiative (INFLAGE), Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Simone Cenci
- Vita-Salute San Raffaele University, Milan, Italy
- Inflammation Fibrosis and Ageing Initiative (INFLAGE), Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Translational Medicine, Novartis Pharma, Basel, Switzerland
| | - Luigi Naldini
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- Vita-Salute San Raffaele University, Milan, Italy.
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Koh YW, Han JH, Haam S, Lee HW. Senescence cell signature associated with poor prognosis, epithelial-mesenchymal transition, solid histology, and spread through air spaces in lung adenocarcinoma. GeroScience 2025; 47:2423-2438. [PMID: 39546155 PMCID: PMC11979020 DOI: 10.1007/s11357-024-01442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Cellular senescence is involved in critical processes in tumor progression. Despite this potential relationship, the relationship between tumor cell senescence, prognostic significance, spread through air spaces (STAS), and tumor histology has not been investigated in lung adenocarcinoma (LUAD). We used the LUAD PanCancer Atlas dataset to assess senescence cell signature (SCS) based on the SenMayo gene set. We examined the relationship between SCS, prognostic significance, STAS, and tumor histology. This relationship was confirmed in independent LUAD datasets by validation using immunohistochemical senescence markers. In the LUAD PanCancer Atlas dataset, patients with high SCS expression had a higher prevalence of solid histology and STAS patterns than those with low SCS expression. In the independent LUAD datasets, high p21 expression and low HMGB1 expression were correlated with solid histology or STAS patterns. SCS level was also independent prognostic factor in four different LUAD datasets. The HMGB1 expression was an independent prognostic factor in the independent LUAD dataset in multivariate analysis. The expression of p21 and the presence of solid histology were linked to the epithelial-mesenchymal transition (EMT) phenotype. In LUAD cell lines, inducing senescence with a DNA-damaging agent led to an increase in EMT marker expression. Our findings suggest a strong link between senescence, EMT, and solid histology, offering valuable insight into how cancer cell senescence may promote tumor progression through particular pathways.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, Suwon-Si, South Korea.
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon-Si, South Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon-Si, South Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon-Si, South Korea
| |
Collapse
|
6
|
Khasawneh AI, Al Shboul S, Himsawi N, Al Rousan A, Shahin NA, El-Sadoni M, Alhesa A, Abu Ghalioun A, Khawaldeh S, Shawish B, Mahfouz SA, Al-Shayeb M, Dawoud SA, Tlilan R, Nuseir M, Alotaibi MR, Abu Al Karsaneh O, Asali F, Mayordomo MY, Barham R, Khasawneh R, Saleh T. Resolution of oncogene-induced senescence markers in HPV-infected cervical cancer tissue. BMC Cancer 2025; 25:111. [PMID: 39838347 PMCID: PMC11752938 DOI: 10.1186/s12885-025-13499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Oncogene-Induced Senescence (OIS) is a form of senescence that occurs as a consequence of oncogenic overstimulation and possibly infection by oncogenic viruses. Whether senescence plays a role in the pathogenesis of cervical cancer (CC) is not well understood. Moreover, whether cervical epithelial cells that are part of the premalignant cervical intraepithelial neoplasia (CIN), exhibit markers of OIS in Human Papillomavirus (HPV)-infected tissue, has not been investigated. METHODS We utilized a set of patient-derived premalignant and malignant tissue samples to investigate the protein (Ki67 and Lamin B1) and gene (TP53, IL1A, CCL2, and MMP9) expression of several OIS-associated biomarkers using immunohistochemistry (IHC) and qRT-PCR, respectively. Furthermore, we characterized the HPV status of all tissue samples. RESULTS Most of the CC samples (34/37) were positive for HPV, mainly HPV-16 which was observed in 62.2% of the CC samples. Among CINs, HPV infection was found in 60.2% of the 32 samples with HPV-16 as the dominant genotype in 58.5% of the CINs. IHC analysis revealed a significant increase in the expression levels of both Ki67 and Lamin B1 proteins in CC tissue compared to CIN. On average, 93% of tumor cells were positive for Ki67 in comparison to only 25% of premalignant cells in CIN samples. Similarly, Lamin B1 expression was observed in 89% of tumor cells in malignant tissue on average, compared to 60% in CIN samples. Importantly, Lamin B1 expression was elevated in nonmalignant cervical tissue suggesting that its downregulation is more predominant in the premalignant state. Furthermore, RT-PCR revealed a significant decrease in the expression of TP53, IL1a, CCL2, and MMP9 markers in CC samples compared to CINs. Specifically, 84% of CC samples showed reduced TP53 expression, 90% showed reduced IL1a expression, 74% showed reduced CCL2 expression, and 76% showed reduced MMP9 expression when compared with their premalignant baseline. Infection of HPV was confirmed in 61% of the tumor tissues while only 25% of the CINs were positive for HPV. CONCLUSION This work shall provide an opportunity to further examine the role of OIS in the process of HPV-driven CC development.
Collapse
Affiliation(s)
- Ashraf I Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Amani Al Rousan
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammed El-Sadoni
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Ala' Abu Ghalioun
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Suzan Khawaldeh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Bayan Shawish
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Salem Abu Mahfouz
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mais Al-Shayeb
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Shatha Abo Dawoud
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Raghad Tlilan
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mohammad Nuseir
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Fida Asali
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | | | - Raghda Barham
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Rame Khasawneh
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13115, Jordan.
| |
Collapse
|
7
|
Liu L, Huang H, Cheng B, Xie H, Peng W, Cui H, Liang J, Cao M, Yang Y, Chen W, Wang R, Zhao Y. Revealing the role of cancer-associated fibroblast senescence in prognosis and immune landscape in pancreatic cancer. iScience 2025; 28:111612. [PMID: 39834857 PMCID: PMC11742819 DOI: 10.1016/j.isci.2024.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/04/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) represent a major contributor to tumor growth. Cellular senescence is a state of cell-cycle arrest characterized by a pro-inflammatory phenotype. The potential impact of CAF senescence on tumor progression and the tumor microenvironment (TME) remains to be elucidated. Here, we systematically investigated the relationship between CAF senescence and the TME of pancreatic ductal adenocarcinoma (PDAC) based on multi-omics analysis and functional experiments. CAF senescence promotes tumor progression in vitro and in vivo and contributes to the formation of immunosuppressive TME. A CAF-senescence-related risk score was developed to predict overall survival, immune landscape, and treatment sensitivity in patients with PDAC. Further experiments revealed that plasminogen activator urokinase (PLAU) derived from senescent CAFs (SCAFs) promoted PDAC progression and was involved in immunosuppression. Together, these findings suggested that CAF senescence was correlated with tumor progression, and the CAF-senescence-based machine learning model could potentially predict prognosis in patients with PDAC.
Collapse
Affiliation(s)
- Luyao Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hai Huang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaping Xie
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haochen Cui
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingwen Liang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengdie Cao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ronghua Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, Rajotiya S, Barwal A, Siva Prasad GV, Pramanik A, Khan A, Hing Goh B, Dureja H, Kumar Singh S, Dua K, Gupta G. Proteostasis disruption and senescence in Alzheimer's disease pathways to neurodegeneration. Brain Res 2024; 1845:149202. [PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali - 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
9
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
10
|
Scanlan RL, Pease L, O'Keefe H, Martinez-Guimera A, Rasmussen L, Wordsworth J, Shanley D. Systematic transcriptomic analysis and temporal modelling of human fibroblast senescence. FRONTIERS IN AGING 2024; 5:1448543. [PMID: 39267611 PMCID: PMC11390594 DOI: 10.3389/fragi.2024.1448543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cellular senescence is a diverse phenotype characterised by permanent cell cycle arrest and an associated secretory phenotype (SASP) which includes inflammatory cytokines. Typically, senescent cells are removed by the immune system, but this process becomes dysregulated with age causing senescent cells to accumulate and induce chronic inflammatory signalling. Identifying senescent cells is challenging due to senescence phenotype heterogeneity, and senotherapy often requires a combinatorial approach. Here we systematically collected 119 transcriptomic datasets related to human fibroblasts, forming an online database describing the relevant variables for each study allowing users to filter for variables and genes of interest. Our own analysis of the database identified 28 genes significantly up- or downregulated across four senescence types (DNA damage induced senescence (DDIS), oncogene induced senescence (OIS), replicative senescence, and bystander induced senescence) compared to proliferating controls. We also found gene expression patterns of conventional senescence markers were highly specific and reliable for different senescence inducers, cell lines, and timepoints. Our comprehensive data supported several observations made in existing studies using single datasets, including stronger p53 signalling in DDIS compared to OIS. However, contrary to some early observations, both p16 and p21 mRNA levels rise quickly, depending on senescence type, and persist for at least 8-11 days. Additionally, little evidence was found to support an initial TGFβ-centric SASP. To support our transcriptomic analysis, we computationally modelled temporal protein changes of select core senescence proteins during DDIS and OIS, as well as perform knockdown interventions. We conclude that while universal biomarkers of senescence are difficult to identify, conventional senescence markers follow predictable profiles and construction of a framework for studying senescence could lead to more reproducible data and understanding of senescence heterogeneity.
Collapse
Affiliation(s)
- R-L Scanlan
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Pease
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - H O'Keefe
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - A Martinez-Guimera
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Wordsworth
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - D Shanley
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
11
|
Loaiza-Moss J, Braun U, Leitges M. Transcriptome Profiling of Mouse Embryonic Fibroblast Spontaneous Immortalization: A Comparative Analysis. Int J Mol Sci 2024; 25:8116. [PMID: 39125691 PMCID: PMC11311763 DOI: 10.3390/ijms25158116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Cell immortalization, a hallmark of cancer development, is a process that cells can undergo on their path to carcinogenesis. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) have been used for decades; however, changes in the global transcriptome during this process have been poorly described. In our research, we characterized the poly-A RNA transcriptome changes after spontaneous immortalization. To this end, differentially expressed genes (DEGs) were screened using DESeq2 and characterized by gene ontology enrichment analysis and protein-protein interaction (PPI) network analysis to identify the potential hub genes. In our study, we identified changes in the expression of genes involved in proliferation regulation, cell adhesion, immune response and transcriptional regulation in immortalized MEFs. In addition, we performed a comparative analysis with previously reported MEF immortalization data, where we propose a predicted gene regulatory network model in immortalized MEFs based on the altered expression of Mapk11, Cdh1, Chl1, Zic1, Hoxd10 and the novel hub genes Il6 and Itgb2.
Collapse
Affiliation(s)
| | | | - Michael Leitges
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. Johns, NL A1B 3V6, Canada; (J.L.-M.); (U.B.)
| |
Collapse
|
12
|
Lawrence M, Goyal A, Pathak S, Ganguly P. Cellular Senescence and Inflammaging in the Bone: Pathways, Genetics, Anti-Aging Strategies and Interventions. Int J Mol Sci 2024; 25:7411. [PMID: 39000517 PMCID: PMC11242738 DOI: 10.3390/ijms25137411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM).
Collapse
Affiliation(s)
- Merin Lawrence
- School of Biological and Chemical Sciences, University of Galway, H91W2TY Galway, Ireland
| | - Abhishek Goyal
- RAS Life Science Solutions, Stresemannallee 61, 60596 Frankfurt, Germany
| | - Shelly Pathak
- Observational and Pragmatic Research Institute, 5 Coles Lane, Oakington, Cambridge CB24 3BA, UK
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| |
Collapse
|
13
|
Witkop EM, Diggins K, Wiedeman A, Serti E, Nepom G, Gersuk VH, Fuchs B, Long SA, Linsley PS. Interconnected lineage trajectories link conventional and natural killer (NK)-like exhausted CD8 + T cells beneficial in type 1 diabetes. Commun Biol 2024; 7:773. [PMID: 38937521 PMCID: PMC11211332 DOI: 10.1038/s42003-024-06456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Distinct Natural Killer (NK)-like CD57+ and PD-1+ CD8+ exhausted-like T cell populations (Tex) have both been linked to beneficial immunotherapy response in autoimmune type 1 diabetes (T1D) patients. The origins and relationships between these cell types are poorly understood. Here we show that while PD-1+ and CD57+ Tex populations are epigenetically similar, CD57+ Tex cells display unique increased chromatin accessibility of inhibitory Killer Cell Immunoglobulin-like Receptor (iKIR) and other NK cell genes. PD-1+ and CD57+ Tex also show reciprocal expression of Inhibitory Receptors (IRs) and iKIRs accompanied by chromatin accessibility of Tcf1 and Tbet transcription factor target sites, respectively. CD57+ Tex show unappreciated gene expression heterogeneity and share clonal relationships with PD-1+ Tex, with these cells differentiating along four interconnected lineage trajectories: Tex-PD-1+, Tex-CD57+, Tex-Branching, and Tex-Fluid. Our findings demonstrate new relationships between Tex-like populations in human autoimmune disease and suggest that modulating common precursor populations may enhance response to autoimmune disease treatment.
Collapse
Affiliation(s)
- Erin M Witkop
- Benaroya Research Institute, Systems Immunology, Seattle, WA, USA
| | - Kirsten Diggins
- Benaroya Research Institute, Systems Immunology, Seattle, WA, USA
| | - Alice Wiedeman
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
| | | | - Gerald Nepom
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
- Immune Tolerance Network (ITN), Bethesda, MD, USA
| | - Vivian H Gersuk
- Benaroya Research Institute, Genomics Core, Seattle, WA, USA
| | - Bryce Fuchs
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
| | - S Alice Long
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
| | - Peter S Linsley
- Benaroya Research Institute, Systems Immunology, Seattle, WA, USA.
| |
Collapse
|
14
|
Geng H, Huang C, Xu L, Zhou Y, Dong Z, Zhong Y, Li Q, Yang C, Huang S, Liao W, Lin Y, Liu Z, Li Q, Zhang Z, Zhu C. Targeting cellular senescence as a therapeutic vulnerability in gastric cancer. Life Sci 2024; 346:122631. [PMID: 38621585 DOI: 10.1016/j.lfs.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
AIMS Cellular senescence (CS) represents an intracellular defense mechanism responding to stress signals and can be leveraged as a "vulnerability" in cancer treatment. This study aims to construct a CS atlas for gastric cancer (GC) and uncover potential therapeutics for GC patients. MATERIALS AND METHODS 38 senescence-associated regulators with prognostic significance in GC were obtained from the CellAge database to construct Gastric cancer-specific Senescence Score (GSS). Using eXtreme Sum algorism, GSS-based drug repositioning was conducted to identify drugs that could antagonize GSS in CMap database. In vitro experiments were conducted to test the effect of combination of palbociclib and exisulind in eliminating GC cells. KEY FINDINGS Patients with high GSS exhibited CS-related features, such as CS markers upregulation, adverse clinical outcomes and hypomethylation status. scRNA-seq data showed malignant cells with high GSS exhibited enhanced senescence state and more immunosuppressive signals such as PVR-CD96 compared with malignant cells with low GSS. In addition, the GSS-High cancer associated fibroblasts might secrete cytokines and chemokines such as IL-6, CXCL1, CXCL12, and CCL2 to from an immunosuppressive microenvironment, and GSS could serve as an indicator for immunotherapy resistance. Exisulind exhibited the greatest potential to reverse GSS. In vitro experiments demonstrated that exisulind could induce apoptosis and suppress the proliferation of palbociclib-induced senescent GC cells. SIGNIFICANCE Overall, GSS offers a framework for better understanding of correlation between senescence and GC, which might provide new insights into the development of novel therapeutics in GC.
Collapse
Affiliation(s)
- Haigang Geng
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Yangyang Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhongyi Dong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqing Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Shaozhuo Huang
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Weixin Liao
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Yuxuan Lin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Qing Li
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Tao W, Yu Z, Han JDJ. Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators. Cell Metab 2024; 36:1126-1143.e5. [PMID: 38604170 DOI: 10.1016/j.cmet.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Cellular senescence underlies many aging-related pathologies, but its heterogeneity poses challenges for studying and targeting senescent cells. We present here a machine learning program senescent cell identification (SenCID), which accurately identifies senescent cells in both bulk and single-cell transcriptome. Trained on 602 samples from 52 senescence transcriptome datasets spanning 30 cell types, SenCID identifies six major senescence identities (SIDs). Different SIDs exhibit different senescence baselines, stemness, gene functions, and responses to senolytics. SenCID enables the reconstruction of senescent trajectories under normal aging, chronic diseases, and COVID-19. Additionally, when applied to single-cell Perturb-seq data, SenCID helps reveal a hierarchy of senescence modulators. Overall, SenCID is an essential tool for precise single-cell analysis of cellular senescence, enabling targeted interventions against senescent cells.
Collapse
Affiliation(s)
- Wanyu Tao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Zhengqing Yu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
16
|
Sucularli C, Şimay Demir YD, Özdemir A, Ark M. Temporal regulation of gene expression and pathways in chemotherapy-induced senescence in HeLa cervical cancer cell line. Biosystems 2024; 237:105140. [PMID: 38336224 DOI: 10.1016/j.biosystems.2024.105140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Cellular senescence is the state of permanent growth arrest. Chemotherapeutic drugs induce senescence, known as therapy-induced senescence. Although there are studies deciphering processes in senescence, more studies providing detailed information on therapy-induced senescence at the transcriptome level are needed. In order to understand temporal molecular changes of doxorubicin treatment in the course of senescence formation, two data sets from HeLa cells at 16 h and 72 h doxorubicin treatment were analyzed. GO BP enrichment, KEGG pathways and hub genes specific to or shared between 16 h and 72 h doxorubicin treated HeLa cells were identified. Genes functioning in p53 signaling were upregulated only in 16 h, while genes functioning in extracellular matrix organization were upregulated only in 72 h doxorubicin treated HeLa cells. Wound healing genes were gradually upregulated from 16 h to 72 h doxorubicin treatment and metabolic pathways were downregulated at both. ncRNA processing and ribosome biogenesis GO BP terms were enriched in upregulated genes at 16 h, while these terms were enriched in downregulated genes at 72 h senescent HeLa cells. According to our results, genes functioning in p53 signaling may be involved in the induction of senescence, but may not be required to maintain senescence in HeLa cells.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100, Ankara, Turkey.
| | | | - Aysun Özdemir
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | - Mustafa Ark
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| |
Collapse
|
17
|
Hattangady NG, Carter K, Maroni-Rana B, Wang T, Ayers JL, Yu M, Grady WM. Mapping the core senescence phenotype of primary human colon fibroblasts. Aging (Albany NY) 2024; 16:3068-3087. [PMID: 38385965 PMCID: PMC10929841 DOI: 10.18632/aging.205577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Advanced age is the largest risk factor for many diseases and several types of cancer, including colorectal cancer (CRC). Senescent cells are known to accumulate with age in various tissues, where they can modulate the surrounding tissue microenvironment through their senescence associated secretory phenotype (SASP). Recently, we showed that there is an increased number of senescent cells in the colons of CRC patients and demonstrated that senescent fibroblasts and their SASP create microniches in the colon that are conducive to CRC onset and progression. However, the composition of the SASP is heterogenous and cell-specific, and the precise senescence profile of colon fibroblasts has not been well-defined. To generate a SASP atlas of human colon fibroblasts, we induced senescence in primary human colon fibroblasts using various in vitro methods and assessed the resulting transcriptome. Using RNASequencing and further validation by quantitative RT-PCR and Luminex assays, we define and validate a 'core senescent profile' that might play a significant role in shaping the colon microenvironment. We also performed KEGG analysis and GO analyses to identify key pathways and biological processes that are differentially regulated in colon fibroblast senescence. These studies provide insights into potential driver proteins involved in senescence-associated diseases, like CRC, which may lead to therapies to improve overall health in the elderly and to prevent CRC.
Collapse
Affiliation(s)
- Namita Ganesh Hattangady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kelly Carter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Brett Maroni-Rana
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ting Wang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jessica Lee Ayers
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ming Yu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - William M. Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Ijima S, Saito Y, Yamamoto S, Nagaoka K, Iwamoto T, Kita A, Miyajima M, Sato T, Miyazaki A, Chikenji TS. Senescence-associated secretory phenotypes in mesenchymal cells contribute to cytotoxic immune response in oral lichen planus. Immun Ageing 2023; 20:72. [PMID: 38053160 DOI: 10.1186/s12979-023-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Oral lichen planus is a chronic inflammatory condition that adversely affects the oral mucosa; however, its etiology remains elusive. Consequently, therapeutic interventions for oral lichen planus are limited to symptomatic management. This study provides evidence of the accumulation of senescent mesenchymal cells, CD8 + T cells, and natural killer cells in patients with oral lichen planus. We profiled the patients' tissues using the National Center for Biotechnology Information Gene Expression Omnibus database and found that senescence-related genes were upregulated in these tissues by gene set enrichment analysis. Immunohistochemical analysis showed increased senescent mesenchymal cells in the subepithelial layer of patients with oral lichen planus. Single-cell RNA-seq data retrieved from the Gene Expression Omnibus database of patients with oral lichen planus revealed that mesenchymal cells were marked by the upregulation of senescence-related genes. Cell-cell communication analysis using CellChat showed that senescent mesenchymal cells significantly influenced CD8 + T cells and natural killer cells via CXCL12-CXCR4 signaling, which is known to activate and recruit CD8 + T cells and NK cells. Finally, in vitro assays demonstrated that the secretion of senescence-associated factors from mesenchymal cells stimulated the activation of T cells and natural killer cells and promoted epithelial cell senescence and cytotoxicity. These findings suggest that the accumulation of mesenchymal cells with senescence-associated secretory phenotype may be a key driver of oral lichen planus pathogenesis.
Collapse
Affiliation(s)
- Shogo Ijima
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kentaro Nagaoka
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Taiki Iwamoto
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Arisa Kita
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takako S Chikenji
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
19
|
Callari M, Sola M, Magrin C, Rinaldi A, Bolis M, Paganetti P, Colnaghi L, Papin S. Cancer-specific association between Tau (MAPT) and cellular pathways, clinical outcome, and drug response. Sci Data 2023; 10:637. [PMID: 37730697 PMCID: PMC10511431 DOI: 10.1038/s41597-023-02543-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Tau (MAPT) is a microtubule-associated protein causing common neurodegenerative diseases or rare inherited frontotemporal lobar degenerations. Emerging evidence for non-canonical functions of Tau in DNA repair and P53 regulation suggests its involvement in cancer. To bring new evidence for a relevant role of Tau in cancer, we carried out an in-silico pan-cancer analysis of MAPT transcriptomic profile in over 10000 clinical samples from 32 cancer types and over 1300 pre-clinical samples from 28 cancer types provided by the TCGA and the DEPMAP datasets respectively. MAPT expression associated with key cancer hallmarks including inflammation, proliferation, and epithelial to mesenchymal transition, showing cancer-specific patterns. In some cancer types, MAPT functional networks were affected by P53 mutational status. We identified new associations of MAPT with clinical outcomes and drug response in a context-specific manner. Overall, our findings indicate that the MAPT gene is a potential major player in multiple types of cancer. Importantly, the impact of Tau on cancer seems to be heavily influenced by the specific cellular environment.
Collapse
Affiliation(s)
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
- Computational Oncology Unit, Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milano, Italy
- Swiss Institute of Bioinformatics, Bioinformatics Core Unit, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
| | - Luca Colnaghi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| |
Collapse
|
20
|
Miller D, Kerkhofs K, Abbas-Aghababazadeh F, Madahar SS, Minden MD, Hébert J, Haibe-Kains B, Bayfield MA, Benchimol S. Heterogeneity in leukemia cells that escape drug-induced senescence-like state. Cell Death Dis 2023; 14:503. [PMID: 37543610 PMCID: PMC10404232 DOI: 10.1038/s41419-023-06015-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Erythropoietin (EPO) suppresses drug-induced apoptosis in EPO-receptor-positive leukemia cells and allows cells to persist after drug treatment by promoting cellular senescence. Importantly a small proportion of senescent cells can re-enter the cell cycle and resume proliferation after drug treatment, resulting in disease recurrence/persistence. Using a single-cell assay to track individual cells that exit a drug-induced senescence-like state, we show that cells exhibit asynchronous exit from a senescent-like state, and display different rates of proliferation. Escaped cells retain sensitivity to drug treatment, but display inter-clonal variability. We also find heterogeneity in gene expression with some of the escaped clones retaining senescence-associated gene expression. Senescent leukemia cells exhibit changes in gene expression that affect metabolism and senescence-associated secretory phenotype (SASP)-related genes. Herein, we generate a senescence gene signature and show that this signature is a prognostic marker of worse overall survival in AML and multiple other cancers. A portion of senescent leukemia cells depend on lysosome activity; chloroquine, an inhibitor of lysosome activity, promotes senolysis of some senescent leukemia cells. Our study indicates that the serious risks associated with the use of erythropoietin-stimulating agents (ESAs) in anemic cancer patients may be attributed to their ability to promote drug-tolerant cancer cells through the senescence program.
Collapse
Affiliation(s)
- David Miller
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Kyra Kerkhofs
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | | | | | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Canada
| | - Josée Hébert
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital and Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Canada
- Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- Department of Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
| | - Mark A Bayfield
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Samuel Benchimol
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
21
|
Kang T, Moore EC, Kopania EEK, King CD, Schilling B, Campisi J, Good JM, Brem RB. A natural variation-based screen in mouse cells reveals USF2 as a regulator of the DNA damage response and cellular senescence. G3 (BETHESDA, MD.) 2023; 13:jkad091. [PMID: 37097016 PMCID: PMC10320765 DOI: 10.1093/g3journal/jkad091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Cellular senescence is a program of cell cycle arrest, apoptosis resistance, and cytokine release induced by stress exposure in metazoan cells. Landmark studies in laboratory mice have characterized a number of master senescence regulators, including p16INK4a, p21, NF-κB, p53, and C/EBPβ. To discover other molecular players in senescence, we developed a screening approach to harness the evolutionary divergence between mouse species. We found that primary cells from the Mediterranean mouse Mus spretus, when treated with DNA damage to induce senescence, produced less cytokine and had less-active lysosomes than cells from laboratory Mus musculus. We used allele-specific expression profiling to catalog senescence-dependent cis-regulatory variation between the species at thousands of genes. We then tested for correlation between these expression changes and interspecies sequence variants in the binding sites of transcription factors. Among the emergent candidate senescence regulators, we chose a little-studied cell cycle factor, upstream stimulatory factor 2 (USF2), for molecular validation. In acute irradiation experiments, cells lacking USF2 had compromised DNA damage repair and response. Longer-term senescent cultures without USF2 mounted an exaggerated senescence regulatory program-shutting down cell cycle and DNA repair pathways, and turning up cytokine expression, more avidly than wild-type. We interpret these findings under a model of pro-repair, anti-senescence regulatory function by USF2. Our study affords new insights into the mechanisms by which cells commit to senescence, and serves as a validated proof of concept for natural variation-based regulator screens.
Collapse
Affiliation(s)
- Taekyu Kang
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Emily C Moore
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Zimmermann EJ, Candeias J, Gawlitta N, Bisig C, Binder S, Pantzke J, Offer S, Rastak N, Bauer S, Huber A, Kuhn E, Buters J, Groeger T, Delaval MN, Oeder S, Di Bucchianico S, Zimmermann R. Biological impact of sequential exposures to allergens and ultrafine particle-rich combustion aerosol on human bronchial epithelial BEAS-2B cells at the air liquid interface. J Appl Toxicol 2023. [PMID: 36869434 DOI: 10.1002/jat.4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The prevalence of allergic diseases is constantly increasing since few decades. Anthropogenic ultrafine particles (UFPs) and allergenic aerosols is highly involved in this increase; however, the underlying cellular mechanisms are not yet understood. Studies observing these effects focused mainly on singular in vivo or in vitro exposures of single particle sources, while there is only limited evidence on their subsequent or combined effects. Our study aimed at evaluating the effect of subsequent exposures to allergy-related anthropogenic and biogenic aerosols on cellular mechanism exposed at air-liquid interface (ALI) conditions. Bronchial epithelial BEAS-2B cells were exposed to UFP-rich combustion aerosols for 2 h with or without allergen pre-exposure to birch pollen extract (BPE) or house dust mite extract (HDME). The physicochemical properties of the generated particles were characterized by state-of-the-art analytical instrumentation. We evaluated the cellular response in terms of cytotoxicity, oxidative stress, genotoxicity, and in-depth gene expression profiling. We observed that single exposures with UFP, BPE, and HDME cause genotoxicity. Exposure to UFP induced pro-inflammatory canonical pathways, shifting to a more xenobiotic-related response with longer preincubation time. With additional allergen exposure, the modulation of pro-inflammatory and xenobiotic signaling was more pronounced and appeared faster. Moreover, aryl hydrocarbon receptor (AhR) signaling activation showed to be an important feature of UFP toxicity, which was especially pronounced upon pre-exposure. In summary, we were able to demonstrate the importance of subsequent exposure studies to understand realistic exposure situations and to identify possible adjuvant allergic effects and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Elias Josef Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Joana Candeias
- Center for Allergy and Environment (ZAUM), Technical University Munich, Munich, 80802, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Svenja Offer
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Jeroen Buters
- Center for Allergy and Environment (ZAUM), Technical University Munich, Munich, 80802, Germany
| | - Thomas Groeger
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mathilde N Delaval
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
23
|
Wang L, Zhang X, Sheng J, Chen L, Zhi L, Zheng Q, Qi Y, Wang L, Zhang J, Zhao J, Wang Y, Liu SX, Sun MZ, Zhang W. RBM4 regulates cellular senescence via miR1244/SERPINE1 axis. Cell Death Dis 2023; 14:27. [PMID: 36639375 PMCID: PMC9839707 DOI: 10.1038/s41419-023-05563-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Cellular senescence serves as a powerful tumor suppressing mechanism that inhibits the proliferation of cancer cells bearing oncogenic mutations at the initial stage of cancer development. RNA-binding proteins (RBPs) play important roles in cancer progression and treatment through distinct functions. However, functions and mechanisms of RNA binding proteins in regulating senescence remain elusive. Here we reported that the RNA binding protein RBM4 contributed to cellular senescence. Depletion of RBM4 induced senescence in different types of cells, including multiple cancer cells. Meanwhile, RBM4 ablation inhibited cancer cell progression both in vitro and in vivo. Specifically, knockdown of RBM4 significantly increased the level of SERPINE1, a known promoter of senescence, thereby inducing the senescence of lung cancer cells. Mechanistically, miR-1244 bound to the 3'-UTR of SERPINE1 to suppress its expression, whereas depletion of RBM4 reduced the level of miR-1244 by promoting the degradation of primary miR-1244 transcripts (pri-miR1244), thus increasing the expression of SERPINE1 and inducing subsequent senescence. Moreover, either SERPINE1 inhibitor or miR-1244 mimics attenuated the RBM4 depletion-induced senescence. Altogether, our study revealed a novel mechanism of RBM4 in the regulation of cancer progression through controlling senescence, providing a new avenue for targeting RBM4 in cancer therapeutics.
Collapse
Affiliation(s)
- Luning Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Xiaohong Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Junxiu Sheng
- Department of Radiation Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, 116044, China
| | - Lei Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Lili Zhi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Qianqian Zheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Linlin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Shu-Xin Liu
- Department of Nephrology, Dalian Municipal Central Hospital, Dalian Medical University, Dalian, 116033, China.
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
24
|
Pogacar Z, Johnson JL, Krenning L, De Conti G, Jochems F, Lieftink C, Velds A, Wardak L, Groot K, Schepers A, Wang L, Song JY, van de Ven M, van Tellingen O, Medema RH, Beijersbergen RL, Bernards R, Leite de Oliveira R. Indisulam synergizes with palbociclib to induce senescence through inhibition of CDK2 kinase activity. PLoS One 2022; 17:e0273182. [PMID: 36067171 PMCID: PMC9447877 DOI: 10.1371/journal.pone.0273182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Inducing senescence in cancer cells is emerging as a new therapeutic strategy. In order to find ways to enhance senescence induction by palbociclib, a CDK4/6 inhibitor approved for treatment of metastatic breast cancer, we performed functional genetic screens in palbociclib-resistant cells. Using this approach, we found that loss of CDK2 results in strong senescence induction in palbociclib-treated cells. Treatment with the CDK2 inhibitor indisulam, which phenocopies genetic CDK2 inactivation, led to sustained senescence induction when combined with palbociclib in various cell lines and lung cancer xenografts. Treating cells with indisulam led to downregulation of cyclin H, which prevented CDK2 activation. Combined treatment with palbociclib and indisulam induced a senescence program and sensitized cells to senolytic therapy. Our data indicate that inhibition of CDK2 through indisulam treatment can enhance senescence induction by CDK4/6 inhibition.
Collapse
Affiliation(s)
- Ziva Pogacar
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jackie L. Johnson
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lenno Krenning
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Giulia De Conti
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arno Velds
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leyma Wardak
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kelvin Groot
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arnout Schepers
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rene H. Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail: (RB); (RLO)
| | - Rodrigo Leite de Oliveira
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail: (RB); (RLO)
| |
Collapse
|
25
|
Ceccarelli S, Gerini G, Megiorni F, Pontecorvi P, Messina E, Camero S, Anastasiadou E, Romano E, Onesti MG, Napoli C, Marchese C. Inhibiting DNA methylation as a strategy to enhance adipose-derived stem cells differentiation: Focus on the role of Akt/mTOR and Wnt/β-catenin pathways on adipogenesis. Front Cell Dev Biol 2022; 10:926180. [PMID: 36120582 PMCID: PMC9478209 DOI: 10.3389/fcell.2022.926180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) represent a valid therapeutic option for clinical application in several diseases, due to their ability to repair damaged tissues and to mitigate the inflammatory/immune response. A better understanding of the underlying mechanisms regulating ASC biology might represent the chance to modulate their in vitro characteristics and differentiation potential for regenerative medicine purposes. Herein, we investigated the effects of the demethylating agent 5-azacytidine (5-aza) on proliferation, clonogenicity, migration, adipogenic differentiation and senescence of ASCs, to identify the molecular pathways involved. Through functional assays, we observed a detrimental effect of 5-aza on ASC self-renewal capacity and migration, accompanied by actin cytoskeleton reorganization, with decreased stress fibers. Conversely, 5-aza treatment enhanced ASC adipogenic differentiation, as assessed by lipid accumulation and expression of lineage-specific markers. We analyzed the involvement of the Akt/mTOR, MAPK and Wnt/β-catenin pathways in these processes. Our results indicated impairment of Akt and ERK phosphorylation, potentially explaining the reduced cell proliferation and migration. We observed a 5-aza-mediated inhibition of the Wnt signaling pathway, this potentially explaining the pro-adipogenic effect of the drug. Finally, 5-aza treatment significantly induced ASC senescence, through upregulation of the p53/p21 axis. Our data may have important translational implications, by helping in clarifying the potential risks and advantages of using epigenetic treatment to improve ASC characteristics for cell-based clinical approaches.
Collapse
Affiliation(s)
- S. Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: S. Ceccarelli ,
| | - G. Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - F. Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - P. Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E. Messina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - S. Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - E. Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E. Romano
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - M. G. Onesti
- Department of Surgery “P. Valdoni”, Unit of Plastic Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | - C. Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - C. Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Taylor MF, Black MA, Hampton MB, Ledgerwood EC. Insights into H 2O 2-induced signaling in Jurkat cells from analysis of gene expression. Free Radic Res 2022; 56:666-676. [PMID: 36630571 DOI: 10.1080/10715762.2023.2165073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrogen peroxide (H2O2) is a ubiquitous oxidant produced in a regulated manner by various enzymes in mammalian cells. H2O2 reversibly oxidizes thiol groups of cysteine residues to mediate intracellular signaling. While examples of H2O2-dependent signaling have been reported, the exact molecular mechanism(s) of signaling and the pathways affected are not well understood. Here, the transcriptomic response of Jurkat T cells to H2O2 was investigated to determine global effects on gene expression. With a low H2O2 concentration (10 µM) that did not induce an oxidative stress response or cell death, extensive changes in gene expression occurred after 4 h (6803 differentially expressed genes). Of the genes with a greater then 2-fold change in expression, 85% were upregulated suggesting that in a physiological setting H2O2 predominantly activates gene expression. Pathway analysis identified gene expression signatures associated with FOXO and NTRK signaling. These signatures were associated with an overlapping set of transcriptional regulators. Overall, our results provide a snapshot of gene expression changes in response to H2O2, which, along with further studies, will lead to new insights into the specific pathways that are activated in response to endogenous production of H2O2, and the molecular mechanisms of H2O2 signaling.
Collapse
Affiliation(s)
- Megan F Taylor
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, New Zealand
| | - Elizabeth C Ledgerwood
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang X, LeBrasseur NK, Pignolo RJ, Robbins PD, Niedernhofer LJ, Ikeno Y, Jurk D, Passos JF, Hickson LJ, Xue A, Monroe DG, Tchkonia T, Kirkland JL, Farr JN, Khosla S. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun 2022; 13:4827. [PMID: 35974106 PMCID: PMC9381717 DOI: 10.1038/s41467-022-32552-1] [Citation(s) in RCA: 399] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/05/2022] [Indexed: 02/01/2023] Open
Abstract
Although cellular senescence drives multiple age-related co-morbidities through the senescence-associated secretory phenotype, in vivo senescent cell identification remains challenging. Here, we generate a gene set (SenMayo) and validate its enrichment in bone biopsies from two aged human cohorts. We further demonstrate reductions in SenMayo in bone following genetic clearance of senescent cells in mice and in adipose tissue from humans following pharmacological senescent cell clearance. We next use SenMayo to identify senescent hematopoietic or mesenchymal cells at the single cell level from human and murine bone marrow/bone scRNA-seq data. Thus, SenMayo identifies senescent cells across tissues and species with high fidelity. Using this senescence panel, we are able to characterize senescent cells at the single cell level and identify key intercellular signaling pathways. SenMayo also represents a potentially clinically applicable panel for monitoring senescent cell burden with aging and other conditions as well as in studies of senolytic drugs.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany.
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Madison L Doolittle
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Robert J Pignolo
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yuji Ikeno
- Department of Pathology, University of Texas Health, San Antonio, TX, USA
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - João F Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - David G Monroe
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
28
|
Cellular senescence in neuroinflammatory disease: new therapies for old cells? Trends Mol Med 2022; 28:850-863. [DOI: 10.1016/j.molmed.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
29
|
Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer. Nat Commun 2022; 13:2177. [PMID: 35449130 PMCID: PMC9023465 DOI: 10.1038/s41467-022-29824-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/24/2022] [Indexed: 01/10/2023] Open
Abstract
Cells subjected to treatment with anti-cancer therapies can evade apoptosis through cellular senescence. Persistent senescent tumor cells remain metabolically active, possess a secretory phenotype, and can promote tumor proliferation and metastatic dissemination. Removal of senescent tumor cells (senolytic therapy) has therefore emerged as a promising therapeutic strategy. Here, using single-cell RNA-sequencing, we find that senescent tumor cells rely on the anti-apoptotic gene Mcl-1 for their survival. Mcl-1 is upregulated in senescent tumor cells, including cells expressing low levels of Bcl-2, an established target for senolytic therapy. While treatment with the Bcl-2 inhibitor Navitoclax results in the reduction of metastases in tumor bearing mice, treatment with the Mcl-1 inhibitor S63845 leads to complete elimination of senescent tumor cells and metastases. These findings provide insights on the mechanism by which senescent tumor cells survive and reveal a vulnerability that can be exploited for cancer therapy. Cell senescence remains a barrier to tumor elimination in many cancers. Here, the authors use single cell RNA-seq to identify a role for Mcl-1 in senescent cell survival, and show that Mcl-1 inhibition may be an effective therapeutic strategy.
Collapse
|
30
|
Manouchehri N, Salinas VH, Rabi Yeganeh N, Pitt D, Hussain RZ, Stuve O. Efficacy of Disease Modifying Therapies in Progressive MS and How Immune Senescence May Explain Their Failure. Front Neurol 2022; 13:854390. [PMID: 35432156 PMCID: PMC9009145 DOI: 10.3389/fneur.2022.854390] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
The advent of disease modifying therapies (DMT) in the past two decades has been the cornerstone of successful clinical management of multiple sclerosis (MS). Despite the great strides made in reducing the relapse frequency and occurrence of new signal changes on neuroimaging in patients with relapsing remitting MS (RRMS) by approved DMT, it has been challenging to demonstrate their effectiveness in non-active secondary progressive MS (SPMS) and primary progressive MS (PPMS) disease phenotypes. The dichotomy of DMT effectiveness between RRMS and progressive MS informs on distinct pathogeneses of the different MS phenotypes. Conversely, factors that render patients with progressive MS resistant to therapy are not understood. Thus far, age has emerged as the main correlate of the transition from RRMS to SPMS. Whether it is aging and age-related factors or the underlying immune senescence that qualitatively alter immune responses as the disease transitions to SPMS, that diminish DMT effectiveness, or both, is currently not known. Here, we will discuss the role of immune senescence on different arms of the immune system, and how it may explain relative DMT resistance.
Collapse
Affiliation(s)
- Navid Manouchehri
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Victor H. Salinas
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Negar Rabi Yeganeh
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - David Pitt
- Department of Neurology, Yale University, New Haven, CT, United States
| | - Rehana Z. Hussain
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Medical Service Dallas, Veterans Affairs Medical Center, Dallas, TX, United States
- *Correspondence: Olaf Stuve
| |
Collapse
|
31
|
Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis. Protein Cell 2022; 13:742-759. [PMID: 35023014 PMCID: PMC9233726 DOI: 10.1007/s13238-021-00894-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/26/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence, a stable state of growth arrest, affects many physiological and pathophysiological processes, especially aging. Previous work has indicated that transcription factors (TFs) play a role in regulating senescence. However, a systematic study of regulatory TFs during replicative senescence (RS) using multi-omics analysis is still lacking. Here, we generated time-resolved RNA-seq, reduced representation bisulfite sequencing (RRBS) and ATAC-seq datasets during RS of mouse skin fibroblasts, which demonstrated that an enhanced inflammatory response and reduced proliferative capacity were the main characteristics of RS in both the transcriptome and epigenome. Through integrative analysis and genetic manipulations, we found that transcription factors E2F4, TEAD1 and AP-1 are key regulators of RS. Overexpression of E2f4 improved cellular proliferative capacity, attenuated SA-β-Gal activity and changed RS-associated differentially methylated sites (DMSs). Moreover, knockdown of Tead1 attenuated SA-β-Gal activity and partially altered the RS-associated transcriptome. In addition, knockdown of Atf3, one member of AP-1 superfamily TFs, reduced Cdkn2a (p16) expression in pre-senescent fibroblasts. Taken together, the results of this study identified transcription factors regulating the senescence program through multi-omics analysis, providing potential therapeutic targets for anti-aging.
Collapse
|
32
|
Ohori M, Nakayama Y, Ogasawara-Shimizu M, Toyoshiba H, Nakanishi A, Aparicio S, Araki S. Gene regulatory network analysis defines transcriptome landscape with alternative splicing of human umbilical vein endothelial cells during replicative senescence. BMC Genomics 2021; 22:869. [PMID: 34856941 PMCID: PMC8641155 DOI: 10.1186/s12864-021-08185-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
Background Endothelial cell senescence is the state of permanent cell cycle arrest and plays a critical role in the pathogenesis of age-related diseases. However, a comprehensive understanding of the gene regulatory network, including genome-wide alternative splicing machinery, involved in endothelial cell senescence is lacking. Results We thoroughly described the transcriptome landscape of replicative senescent human umbilical vein endothelial cells. Genes with high connectivity showing a monotonic expression increase or decrease with the culture period were defined as hub genes in the co-expression network. Computational network analysis of these genes led to the identification of canonical and non-canonical senescence pathways, such as E2F and SIRT2 signaling, which were down-regulated in lipid metabolism, and chromosome organization processes pathways. Additionally, we showed that endothelial cell senescence involves alternative splicing. Importantly, the first and last exon types of splicing, as observed in FLT1 and ACACA, were preferentially altered among the alternatively spliced genes during endothelial senescence. We further identified novel microexons in PRUNE2 and PSAP, each containing 9 nt, which were altered within the specific domain during endothelial senescence. Conclusions These findings unveil the comprehensive transcriptome pathway and novel signaling regulated by RNA processing, including gene expression and splicing, in replicative endothelial senescence. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08185-x.
Collapse
Affiliation(s)
- Momoko Ohori
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Yusuke Nakayama
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.,Present address: Discovery Technology Research Laboratories, Tsukuba Research Institute, Ono Pharmaceutical Co., Ltd, 17-2 Wadai, 300-4247, Tsukuba, Ibaraki, Japan
| | - Mari Ogasawara-Shimizu
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Hiroyoshi Toyoshiba
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.,Present address: Life Science AI, FRONTEO Healthcare Inc., 2-12-23 Konan, Minato-ku, 108-0075, Tokyo, Japan
| | - Atsushi Nakanishi
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Samuel Aparicio
- Molecular Oncology, BC Cancer Agency, 675 W10th Avenue, V5Z 1L3, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, V6T 2B5, Vancouver, BC, Canada
| | - Shinsuke Araki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| |
Collapse
|
33
|
Single-Cell Transcriptomics Reveals the Expression of Aging- and Senescence-Associated Genes in Distinct Cancer Cell Populations. Cells 2021; 10:cells10113126. [PMID: 34831349 PMCID: PMC8623328 DOI: 10.3390/cells10113126] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.
Collapse
|
34
|
Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev 2021; 71:101458. [PMID: 34500043 DOI: 10.1016/j.arr.2021.101458] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is a stress response, which can be evoked in all type of somatic cells by different stimuli. Senescent cells accumulate in the body and participate in aging and aging-related diseases mainly by their secretory activity, commonly known as senescence-associated secretory phenotype-SASP. Senescence is typically described as cell cycle arrest. This definition stems from the original observation concerning limited cell division potential of human fibroblasts in vitro. At present, the process of cell senescence is attributed also to cancer cells and to non-proliferating post-mitotic cells. Many cellular signaling pathways and specific and unspecific markers contribute to the complex, dynamic and heterogeneous phenotype of senescent cells. Considering the diversity of cells that can undergo senescence upon different inducers and variety of mechanisms involved in the execution of this process, we ask if there is a common signature of cell senescence. It seems that cell cycle arrest in G0, G1 or G2 is indispensable for cell senescence; however, to ensure irreversibility of divisions, the exit from the cell cycle to the state, which we call a GS (Gero Stage), is necessary. The DNA damage, changes in nuclear architecture and chromatin rearrangement are involved in signaling pathways leading to altered gene transcription and secretion of SASP components. Thus, nuclear changes and SASP are vital features of cell senescence that, together with temporal arrest in the cell cycle (G1 or/and G2), which may be followed by polyploidisation/depolyploidisation or exit from the cell cycle leading to permanent proliferation arrest (GS), define the signature of cellular senescence.
Collapse
|
35
|
Jochems F, Thijssen B, De Conti G, Jansen R, Pogacar Z, Groot K, Wang L, Schepers A, Wang C, Jin H, Beijersbergen RL, Leite de Oliveira R, Wessels LFA, Bernards R. The Cancer SENESCopedia: A delineation of cancer cell senescence. Cell Rep 2021; 36:109441. [PMID: 34320349 PMCID: PMC8333195 DOI: 10.1016/j.celrep.2021.109441] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cellular senescence is characterized as a stable proliferation arrest that can be triggered by multiple stresses. Most knowledge about senescent cells is obtained from studies in primary cells. However, senescence features may be different in cancer cells, since the pathways that are involved in senescence induction are often deregulated in cancer. We report here a comprehensive analysis of the transcriptome and senolytic responses in a panel of 13 cancer cell lines rendered senescent by two distinct compounds. We show that in cancer cells, the response to senolytic agents and the composition of the senescence-associated secretory phenotype are more influenced by the cell of origin than by the senescence trigger. Using machine learning, we establish the SENCAN gene expression classifier for the detection of senescence in cancer cell samples. The expression profiles and senescence classifier are available as an interactive online Cancer SENESCopedia.
Collapse
Affiliation(s)
- Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Bram Thijssen
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Giulia De Conti
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Robin Jansen
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Ziva Pogacar
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Kelvin Groot
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Arnout Schepers
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Cun Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Haojie Jin
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Rodrigo Leite de Oliveira
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands; Faculty of EEMCS, Delft University of Technology, Delft, the Netherlands.
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Zhang P, Lu B, Zhu R, Yang D, Liu W, Wang Q, Ji N, Chen Q, Ding Y, Liang X, Wang Q. Hyperglycemia accelerates inflammaging in the gingival epithelium through inflammasomes activation. J Periodontal Res 2021; 56:667-678. [PMID: 33650689 DOI: 10.1111/jre.12863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Diabetes accelerates inflammaging in various tissue with an increase in senescent cell burden and senescence-associated secretory phenotype (SASP) secretion, which is a significant cause of tissue dysfunction and contributes to the diabetic complications. Recently, inflammasomes are thought to contribute to inflammaging. Here, utilizing diabetic models in vivo and in vitro, we investigated the potential association between hyperglycemia-induced inflammaging and gingival tissue dysfunction and the mechanism underlying inflammasome-associated inflammaging. MATERIALS AND METHODS Gingival epithelium and serum were collected from control and diabetic patients and mice. The expression of p16, p21, and inflammasomes in the gingival epithelium, SASP factors in serum, and the molecular factors associated with gingival epithelial barrier function were assessed. Human oral keratinocyte (HOK) was stimulated with normal and high glucose, and pre-treated with Z-YVAD-FMK (Caspase-1 inhibitor) prior to evaluating cellular senescence, SASP secretion, and inflammasome activation. RESULTS In vivo, hyperglycemia significantly elevated the local burden of senescent cells in the gingival epithelium and SASP factors in the serum and simultaneously reduced the expression levels of Claudin-1, E-cadherin, and Connexin 43 in the gingival epithelium. Interestingly, the inflammasomes were activated in the gingival epithelium. In vitro, high glucose-induced the inflammaging in HOK, and blocking inflammasome activation through inhibiting Caspase-1 and glucose-induced inflammaging. CONCLUSIONS Hyperglycemia accelerated inflammaging in the gingival epithelium through inflammasomes activation, which is potentially affiliated with a decline in the gingival epithelial barrier function in diabetes. Inflammasomes-related inflammaging may be the crucial mechanism underlying diabetic periodontitis and represents significant opportunities for advancing prevention and treatment options.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dawei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Si Z, Sun L, Wang X. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed Pharmacother 2021; 137:111327. [PMID: 33545662 DOI: 10.1016/j.biopha.2021.111327] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancies have significantly increased the number of individuals suffering from geriatric neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The financial cost for current and future patients with these diseases is overwhelming, resulting in substantial economic and societal costs. Unfortunately, most recent high-profile clinical trials for neurodegenerative diseases have failed to obtain efficacious results, indicating that novel approaches are desperately needed to treat these pathologies. Cell senescence, characterized by permanent cell cycle arrest, resistance to apoptosis, mitochondrial alterations, and secretion of senescence-associated secretory phenotype (SASP) components, has been extensively studied in mitotic cells such as fibroblasts, which is considered a hallmark of aging. Furthermore, multiple cell types in the senescent state in the brain, including neurons, microglia, astrocytes, and neural stem cells, have recently been observed in the context of neurodegenerative diseases, suggesting that these senescent cells may play an essential role in the pathological processes of neurodegenerative diseases. Therefore, this review begins by outlining key aspects of cell senescence constitution followed by examining the evidence implicating senescent cells in neurodegenerative diseases. In the final section, we review how cell senescence may be targeted as novel therapeutics to treat pathologies associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, PR China
| | - Linlin Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
38
|
Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer. Nat Commun 2021; 12:734. [PMID: 33531470 PMCID: PMC7854732 DOI: 10.1038/s41467-020-20820-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Driver genes with a mutually exclusive mutation pattern across tumor genomes are thought to have overlapping roles in tumorigenesis. In contrast, we show here that mutually exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are synthetic sick. At the molecular level, the incompatible cancer pathways are driven by opposing functions in SPOP. ERG upregulates wild type SPOP to dampen androgen receptor (AR) signaling and sustain ERG activity through degradation of the bromodomain histone reader ZMYND11. Conversely, SPOP-mutant tumors stabilize ZMYND11 to repress ERG-function and enable oncogenic androgen receptor signaling. This dichotomy regulates the response to therapeutic interventions in the AR pathway. While mutant SPOP renders tumor cells susceptible to androgen deprivation therapies, ERG promotes sensitivity to high-dose androgen therapy and pharmacological inhibition of wild type SPOP. More generally, these results define a distinct class of antagonistic cancer drivers and a blueprint toward their therapeutic exploitation. Gene fusions involving the ERG transcription factor and point mutations in the ubiquitin ligase adaptor SPOP are two truncal mutations that are mutually exclusively present in prostate cancer. Here, the authors show that mutations in SPOP render prostate tumor cells sensitive to antiandrogen therapy and that the presence of ERG promotes sensitivity to high dose of androgen and SPOP inhibition.
Collapse
|
39
|
Verma M, Khan MIK, Kadumuri RV, Chakrapani B, Awasthi S, Mahesh A, Govindaraju G, Chavali PL, Rajavelu A, Chavali S, Dhayalan A. PRMT3 interacts with ALDH1A1 and regulates gene-expression by inhibiting retinoic acid signaling. Commun Biol 2021; 4:109. [PMID: 33495566 PMCID: PMC7835222 DOI: 10.1038/s42003-020-01644-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Protein arginine methyltransferase 3 (PRMT3) regulates protein functions by introducing asymmetric dimethylation marks at the arginine residues in proteins. However, very little is known about the interaction partners of PRMT3 and their functional outcomes. Using yeast-two hybrid screening, we identified Retinal dehydrogenase 1 (ALDH1A1) as a potential interaction partner of PRMT3 and confirmed this interaction using different methods. ALDH1A1 regulates variety of cellular processes by catalyzing the conversion of retinaldehyde to retinoic acid. By molecular docking and site-directed mutagenesis, we identified the specific residues in the catalytic domain of PRMT3 that facilitate interaction with the C-terminal region of ALDH1A1. PRMT3 inhibits the enzymatic activity of ALDH1A1 and negatively regulates the expression of retinoic acid responsive genes in a methyltransferase activity independent manner. Our findings show that in addition to regulating protein functions by introducing methylation modifications, PRMT3 could also regulate global gene expression through protein-protein interactions. Here, the authors demonstrate that protein arginine methyltransferase 3 (PRMT3) interacts with and inhibits the retinal dehydrogenase ALDH1A1, negatively regulating the expression of retinoic acid responsive genes. This study shows that PRMT3 affects diverse biological processes not only by globally regulating protein function through methylation but also by regulating gene expression.
Collapse
Affiliation(s)
- Mamta Verma
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Baskar Chakrapani
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Gayathri Govindaraju
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695014, India
| | - Pavithra L Chavali
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Arumugam Rajavelu
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695014, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
40
|
KarakÜlah G, Yandim C. Signature changes in the expressions of protein-coding genes, lncRNAs, and repeat elements in early and late cellular senescence. ACTA ACUST UNITED AC 2021; 44:356-370. [PMID: 33402863 PMCID: PMC7759191 DOI: 10.3906/biy-2005-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Replicative cellular senescence is the main cause of aging. It is important to note that early senescence is linked to tissue regeneration, whereas late senescence is known to trigger a chronically inflammatory phenotype. Despite the presence of various genome-wide studies, there is a lack of information on distinguishing early and late senescent phenotypes at the transcriptome level. Particularly, the changes in the noncoding RNA portion of the aging cell have not been fully elucidated. By utilising RNA sequencing data of fibroblasts, hereby, we are not only reporting changes in gene expression profiles and relevant biological processes in the early and late senescent phenotypes but also presenting significant differences in the expressions of many unravelled long noncoding RNAs (lncRNAs) and transcripts arisen from repetitive DNA. Our results indicate that, in addition to previously reported L1 elements, various LTR and DNA transposons, as well as members of the classical satellites including HSAT5 and α-satellites (ALR/Alpha), are expressed at higher levels in late senescence. Moreover, we revealed finer links between the expression levels of repeats with the genes located near them and known to be involved in cell cycle and senescence. Noncoding elements reported here provide a new perspective to be explored in further experimental studies.
Collapse
Affiliation(s)
- Gökhan KarakÜlah
- İzmir Biomedicine and Genome Center, İzmir Turkey.,İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir Turkey
| | - Cihangir Yandim
- İzmir Biomedicine and Genome Center, İzmir Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, İzmir Turkey
| |
Collapse
|
41
|
Zhang C, Gu X, Pan M, Yuan Q, Cheng H. Senescent thyroid tumor cells promote their migration by inducing the polarization of M2-like macrophages. Clin Transl Oncol 2021; 23:1253-1261. [PMID: 33389662 DOI: 10.1007/s12094-020-02516-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE An in-depth understanding of the mechanism of thyroid cancer progression will help identify patients with thyroid cancer with a high risk of recurrence and metastasis. Although studies have pointed out that the senescence of thyroid tumor cells may stimulate TAMs and cause a series of changes. However, the role of TAMs in aging thyroid cancer cells is still unknown. The aim of this study was to investigate the function of TAMs in aging thyroid cancer cells. METHODS We conducted in vitro model studies based on the K1 cell line to induce tumor cell senescence and study its effect on the differentiation of macrophages, flow cytometry was used to confirm polarization of macrophages, transwell assay was used to confirm changes of invasion and migration of tumor cells. RESULT Our data indicate that aging thyroid tumor cell lines trigger the polarization of M2-like macrophages, accompanied by increased expression of CCL17, CCL18, IL-18, and TGFβ1. This event is caused by the activation of the NFκB pathway upregulation of CXCL2 and CXCL3 is related. Further studies have shown that differentiated M2-like macrophages promote tumor cell migration (but have no effect on cell proliferation). CONCLUSION Our study indicating that the interaction between tumor and TAMs also occurs in the advanced stages of thyroid tumors and will lead to faster tumors progress.
Collapse
Affiliation(s)
- C Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - X Gu
- Xi'an Hospital of Civil Aviation, Xi'an, 710082, China
| | - M Pan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Q Yuan
- Department of Ultrasonography, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, 710061, China
| | - H Cheng
- Department of Ultrasonography, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
42
|
Fernández Muñoz B, Lopez-Navas L, Gonzalez Bermejo M, Lomas Romero IM, Montiel Aguilera MÁ, Campos Cuerva R, Arribas Arribas B, Nogueras S, Carmona Sánchez G, Santos González M. A PROPRIETARY GMP HUMAN PLATELET LYSATE FOR THE EXPANSION OF DERMAL FIBROBLASTS FOR CLINICAL APPLICATIONS. Platelets 2021; 33:98-109. [PMID: 33393414 DOI: 10.1080/09537104.2020.1856356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent years have witnessed the introduction of ex vivo expanded dermal fibroblasts for several cell therapy and tissue-engineering applications, including the treatment of facial scars and burns, representing a promising cell type for regenerative medicine. We tested different in-house produced human platelet lysate (HPL) solutions against fetal bovine serum as supplements for in vitro fibroblast expansion by comparing cell yield, molecular marker expression, extracellular matrix (ECM) generation, genomic stability and global gene expression. Our in-house produced HPL supported fibroblast growth at levels similar to those for FBS and commercial HPL products and was superior to AB human serum. Cells grown in HPL maintained a fibroblast phenotype (VIM+, CD44+, CD13+, CD90+), ECM generation capacity (FN+, COL1+) and a normal karyotype, although gene expression profiling revealed changes related to cell metabolism, adhesion and cellular senescence. The HPL manufacturing process was validated within a GMP compliant system and the solution was stable at -80ºC and -20ºC for 2 years. Dermal fibroblasts expanded in vitro with HPL maintain a normal karyotype and expression of fibroblast markers, with only minor changes in their global gene expression profile. Our in-house produced GMP-HPL is an efficient, safe and economical cell culture supplement that can help increase the healthcare activity of blood transfusion centers through the re-use of transfusional plasma and platelets approaching their expiration date. Currently, our HPL solution is approved by the Spanish Agency of Medicines and Medical Devices and is being used in the manufacture of cell therapy products.
Collapse
Affiliation(s)
- Beatriz Fernández Muñoz
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Departamento de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), Seville, Spain
| | - Luis Lopez-Navas
- Unidad de Coordinación, Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Gonzalez Bermejo
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Biología Molecular, Biomedicina e Investigación Clínica, University of Seville, Seville, Spain
| | - Isabel María Lomas Romero
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Miguel Ángel Montiel Aguilera
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Rafael Campos Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Biología Molecular, Biomedicina e Investigación Clínica, University of Seville, Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Blanca Arribas Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Pharmaceutical Technology and Medicine Sciences (Pharmacy), University of Seville, Seville, Spain
| | - Sonia Nogueras
- Departamento de Terapia Celular, Instituto Maimónides de Investigación Biomédica of Córdoba (IMIBIC), Córdoba, Spain.,Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Gloria Carmona Sánchez
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Unidad de Coordinación, Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Biomedicine, University of Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| |
Collapse
|
43
|
Reamon-Buettner SM, Hackbarth A, Leonhardt A, Braun A, Ziemann C. Cellular senescence as a response to multiwalled carbon nanotube (MWCNT) exposure in human mesothelial cells. Mech Ageing Dev 2021; 193:111412. [PMID: 33279583 DOI: 10.1016/j.mad.2020.111412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a stable cell cycle arrest induced by diverse triggers, including replicative exhaustion, DNA damaging agents, oncogene activation, oxidative stress, and chromatin disruption. With important roles in aging and tumor suppression, cellular senescence has been implicated also in tumor promotion. Here we show that certain multiwalled carbon nanotubes (MWCNTs), as fiber-like nanomaterials, can trigger cellular senescence in primary human mesothelial cells. Using in vitro approaches, we found manifestation of several markers of cellular senescence, especially after exposure to a long and straight MWCNT. These included inhibition of cell division, senescence-associated heterochromatin foci, senescence-associated distension of satellites, LMNB1 depletion, γH2A.X nuclear panstaining, and enlarged cells exhibiting senescence-associated β-galactosidase activity. Furthermore, genome-wide transcriptome analysis revealed many differentially expressed genes, among which were genes encoding for a senescence-associated secretory phenotype. Our results clearly demonstrate the potential of long and straight MWCNTs to induce premature cellular senescence. This finding may find relevance in risk assessment of workplace safety, and in evaluating MWCNT's use in medicine such as drug carrier, due to exposure effects that might prompt onset of age-related diseases, or even carcinogenesis.
Collapse
Affiliation(s)
- Stella Marie Reamon-Buettner
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Anja Hackbarth
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Albrecht Leonhardt
- Nanoscale Chemistry, Leibniz Institute for Solid State and Materials Research IFW, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Armin Braun
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Christina Ziemann
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
44
|
Yasuda T, Funayama T, Nagata K, Li D, Endo T, Jia Q, Suzuki M, Ishikawa Y, Mitani H, Oda S. Collimated Microbeam Reveals that the Proportion of Non-Damaged Cells in Irradiated Blastoderm Determines the Success of Development in Medaka ( Oryzias latipes) Embryos. BIOLOGY 2020; 9:E447. [PMID: 33291358 PMCID: PMC7762064 DOI: 10.3390/biology9120447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
It has been widely accepted that prenatal exposure to ionizing radiation (IR) can affect embryonic and fetal development in mammals, depending on dose and gestational age of the exposure, however, the precise machinery underlying the IR-induced disturbance of embryonic development is still remained elusive. In this study, we examined the effects of gamma-ray irradiation on blastula embryos of medaka and found transient delay of brain development even when they hatched normally with low dose irradiation (2 and 5 Gy). In contrast, irradiation of higher dose of gamma-rays (10 Gy) killed the embryos with malformations before hatching. We then conducted targeted irradiation of blastoderm with a collimated carbon-ion microbeam. When a part (about 4, 10 and 25%) of blastoderm cells were injured by lethal dose (50 Gy) of carbon-ion microbeam irradiation, loss of about 10% or less of blastoderm cells induced only the transient delay of brain development and the embryos hatched normally, whereas embryos with about 25% of their blastoderm cells were irradiated stopped development at neurula stage and died. These findings strongly suggest that the developmental disturbance in the IR irradiated embryos is determined by the proportion of severely injured cells in the blastoderm.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Gunma 370-1292, Japan; (T.F.); (M.S.)
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Duolin Li
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Takuya Endo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Qihui Jia
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Gunma 370-1292, Japan; (T.F.); (M.S.)
| | - Yuji Ishikawa
- National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan;
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| |
Collapse
|
45
|
Cellular senescence and failure of myelin repair in multiple sclerosis. Mech Ageing Dev 2020; 192:111366. [DOI: 10.1016/j.mad.2020.111366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
46
|
Frisch SM, MacFawn IP. Type I interferons and related pathways in cell senescence. Aging Cell 2020; 19:e13234. [PMID: 32918364 PMCID: PMC7576263 DOI: 10.1111/acel.13234] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/18/2020] [Accepted: 08/07/2020] [Indexed: 01/10/2023] Open
Abstract
This review article addresses the largely unanticipated convergence of two landmark discoveries. The first is the discovery of interferons, critical signaling molecules for all aspects of both innate and adaptive immunity, discovered originally by Isaacs and Lindenmann at the National Institute for Medical Research, London, in 1957 (Proceedings of the Royal Society of London. Series B: Biological Sciences, 1957, 147, 258). The second, formerly unrelated discovery, by Leonard Hayflick and Paul Moorhead (Wistar Institute, Philadelphia) is that cultured cells undergo an irreversible but viable growth arrest, termed senescence, after a finite and predictable number of cell divisions (Experimental Cell Research, 1961, 25, 585). This phenomenon was suspected to relate to organismal aging, which was confirmed subsequently (Nature, 2011, 479, 232). Cell senescence has broad‐ranging implications for normal homeostasis, including immunity, and for diverse disease states, including cancer progression and response to therapy (Nature Medicine, 2015, 21, 1424; Cell, 2019, 179, 813; Cell, 2017, 169, 1000; Trends in Cell Biology, 2018, 28, 436; Journal of Cell Biology, 2018, 217, 65). Here, we critically address the bidirectional interplay between interferons (focusing on type I) and cell senescence, with important implications for health and healthspan.
Collapse
Affiliation(s)
- Steven M. Frisch
- Department of Biochemistry and WVU Cancer Institute West Virginia University Morgantown West Virginia USA
| | - Ian P. MacFawn
- Department of Biochemistry and WVU Cancer Institute West Virginia University Morgantown West Virginia USA
| |
Collapse
|
47
|
Fujimaki K, Yao G. Cell dormancy plasticity: quiescence deepens into senescence through a dimmer switch. Physiol Genomics 2020; 52:558-562. [PMID: 32986540 DOI: 10.1152/physiolgenomics.00068.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Both being dormant cellular states, quiescence and senescence are traditionally considered distinct. Quiescence is reversible to proliferation upon growth signals, whereas senescence is irreversible in physiological conditions. Recent findings, however, suggest that quiescence deepening with a decreased proliferative tendency, but not capability, is a common transition path toward senescence in many cell and tissue types. This transition is associated with the continuously increased activation threshold of an RB-E2F-CDK gene network switch.
Collapse
Affiliation(s)
- Kotaro Fujimaki
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
48
|
Ganguly P, Burska AN, Davis CL, El-Jawhari JJ, Giannoudis PV, Jones EA. Intrinsic Type 1 Interferon (IFN1) Profile of Uncultured Human Bone Marrow CD45 lowCD271 + Multipotential Stromal Cells (BM-MSCs): The Impact of Donor Age, Culture Expansion and IFNα and IFNβ Stimulation. Biomedicines 2020; 8:biomedicines8070214. [PMID: 32679782 PMCID: PMC7399891 DOI: 10.3390/biomedicines8070214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Skeletal aging is associated with reduced proliferative potential of bone marrow (BM) multipotential stromal cells (MSCs). Recent data suggest the involvement of type 1 interferon (IFN1) signalling in hematopoietic stem cell (HSC) senescence. Considering that BM-HSCs and BM-MSCs share the same BM niche, we investigated IFN1 expression profile in human BM-MSCs in relation to donor age, culture-expansion and IFN1 (α and β) stimulation. Fluorescence-activated cell sorting was used to purify uncultured BM-MSCs from younger (19-41, n = 6) and older (59-89, n = 6) donors based on the CD45lowCD271+ phenotype, and hematopoietic-lineage cells (BM-HLCs, CD45+CD271-) were used as controls. Gene expression was analysed using integrated circuits arrays in sorted fractions as well as cultured/stimulated BM-MSCs and Y201/Y202 immortalised cell lines. IFN1 stimulation led to BM-MSC growth arrest and upregulation of many IFN1-stimulated genes (ISGs), with IFNβ demonstrating stronger effects. Uncultured MSCs were characterised by a moderate-level ISG expression similar to Y201 cells. Age-related changes in ISG expression were negligible in BM-MSCs compared to BM-HLCs, and intracellular reactive oxygen species (ROS) levels in BM-MSCs did not significantly correlate with donor age. Antiaging genes Klotho and SIRT6 correlated with more ISGs in BM-MSCs than in BM-HLCs. In patients with osteoarthritis (OA), BM-MSCs expressed considerably lower levels of several ISGs, indicating that their IFN1 signature is affected in a pathological condition. In summary, BM-MSCs possess homeostatic IFN1 gene expression signature in health, which is sensitive to in vitro culture and external IFN1 stimulation. IFN signalling may facilitate in vivo BM-MSC responses to DNA damage and combating senescence and aberrant immune activation.
Collapse
Affiliation(s)
- Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (P.G.); (A.N.B.); (C.L.M.D.); (P.V.G.)
| | - Agata N. Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (P.G.); (A.N.B.); (C.L.M.D.); (P.V.G.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Charlotte L.M. Davis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (P.G.); (A.N.B.); (C.L.M.D.); (P.V.G.)
| | - Jehan J. El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NF, UK;
- Department of Clinical Pathology, Mansoura University, Mansoura 35516, Egypt
| | - Peter V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (P.G.); (A.N.B.); (C.L.M.D.); (P.V.G.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Elena A. Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (P.G.); (A.N.B.); (C.L.M.D.); (P.V.G.)
- Correspondence:
| |
Collapse
|
49
|
Papadopoulos D, Magliozzi R, Mitsikostas DD, Gorgoulis VG, Nicholas RS. Aging, Cellular Senescence, and Progressive Multiple Sclerosis. Front Cell Neurosci 2020; 14:178. [PMID: 32694983 PMCID: PMC7338849 DOI: 10.3389/fncel.2020.00178] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is one of the most important risk factors for the development of several neurodegenerative diseases including progressive multiple sclerosis (MS). Cellular senescence (CS) is a key biological process underlying aging. Several stressors associated with aging and MS pathology, such as oxidative stress, mitochondrial dysfunction, cytokines and replicative exhaustion are known triggers of cellular senescence. Senescent cells exhibit stereotypical metabolic and functional changes, which include cell-cycle arrest and acquiring a pro-inflammatory phenotype secreting cytokines, growth factors, metalloproteinases and reactive oxygen species. They accumulate with aging and can convert neighboring cells to senescence in a paracrine manner. In MS, accelerated cellular senescence may drive disease progression by promoting chronic non-remitting inflammation, loss or altered immune, glial and neuronal function, failure of remyelination, impaired blood-brain barrier integrity and ultimately neurodegeneration. Here we discuss the evidence linking cellular senescence to the pathogenesis of MS and the putative role of senolytic and senomorphic agents as neuroprotective therapies in tackling disease progression.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Molecular Carcinogenesis Group, Laboratory of Histology and Embryology, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberta Magliozzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Dimos D Mitsikostas
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Laboratory of Histology and Embryology, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Richard S Nicholas
- Department of Neuroinflammation and Neurodegeneration, Faculty of Medicine, Imperial College London, London, United Kingdom.,Department of Visual Neuroscience, Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
50
|
Martínez-Cué C, Rueda N. Cellular Senescence in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:16. [PMID: 32116562 PMCID: PMC7026683 DOI: 10.3389/fncel.2020.00016] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a homeostatic biological process characterized by a permanent state of cell cycle arrest that can contribute to the decline of the regenerative potential and function of tissues. The increased presence of senescent cells in different neurodegenerative diseases suggests the contribution of senescence in the pathophysiology of these disorders. Although several factors can induce senescence, DNA damage, oxidative stress, neuroinflammation, and altered proteostasis have been shown to play a role in its onset. Oxidative stress contributes to accelerated aging and cognitive dysfunction stages affecting neurogenesis, neuronal differentiation, connectivity, and survival. During later life stages, it is implicated in the progression of cognitive decline, synapse loss, and neuronal degeneration. Also, neuroinflammation exacerbates oxidative stress, synaptic dysfunction, and neuronal death through the harmful effects of pro-inflammatory cytokines on cell proliferation and maturation. Both oxidative stress and neuroinflammation can induce DNA damage and alterations in DNA repair that, in turn, can exacerbate them. Another important feature associated with senescence is altered proteostasis. Because of the disruption in the function and balance of the proteome, senescence can modify the proper synthesis, folding, quality control, and degradation rate of proteins producing, in some diseases, misfolded proteins or aggregation of abnormal proteins. There is an extensive body of literature that associates cellular senescence with several neurodegenerative disorders including Alzheimer’s disease (AD), Down syndrome (DS), and Parkinson’s disease (PD). This review summarizes the evidence of the shared neuropathological events in these neurodegenerative diseases and the implication of cellular senescence in their onset or aggravation. Understanding the role that cellular senescence plays in them could help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|