1
|
Khamis MM, Moselhy SS, Rihan S. Role of trans-resveratrol in ameliorating biochemical and molecular alterations in obese rats induced by a high fructose/fat diet. Sci Rep 2025; 15:7879. [PMID: 40050385 PMCID: PMC11885455 DOI: 10.1038/s41598-025-91027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
We evaluated the effect of trans-resveratrol (RSV) in ameliorating biochemical and molecular alterations in obese Wister male rats fed on high-fat/high-fructose-fed. Male Wister rats were divided into eight groups and fed with either a standard diet (control), high fructose (HF), high fat (HFAT), or a high- fructose high- fat (HF/HFAT) diet and supplemented with RSV (30 mg/kg/day) for 4 weeks. The food intake, body weight, glycemic parameters, lipid profile, oxidative stress were assessed. SIRT1 gene expression, PGC-1α, cyto-c and GLUT-4 were evaluated by qRT-PCR in adipose tissue of normal and obese rats. The body weight gain, serum fasting glucose, insulin, and HOMA-IR values were significantly higher in the HF and HF/HFAT groups than in the HFAT and control groups. Hyperlipidemia was observed in high calorie diets fed rats compared to control group. The levels of total cholesterol, triglycerides and LDL-c were significantly elevated while HDL- c was significantly decreased in HF & HF/HFAT groups compared to HFAT group. The levels of serum malondialdhyde (MDA) and superoxide dismutase (SOD) activity in adipose tissue were elevated in all groups compared to control group, particularly in the groups that were kept on a high fructose diets (HF, HF/HFAT). SIRT-1, PGC-1α, Cyto-c, and GLUT-4 genes levels were significantly down regulated in HF, HFAT & HF/HFAT groups compared to control group. Supplementation of T-RSV restored the alteration in carbohydrates-lipid metabolism as well as oxidative stress and upregulation of SIRT-1, PGC-1α, Cyto-c, and GLUT-4 genes. RSV is a promising treatment in the management of pathologic consequences of obesity from high-calorie diet consumption via molecular alteration of target genes.
Collapse
Affiliation(s)
- Marwa Maher Khamis
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Said Salama Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Shaimaa Rihan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Sohouli MH, Eslamian G, Rohani P, Zand H, Guimarães NS. The effect of weight loss therapies on sirtuin 1 regulation: a systematic review and meta-analysis of randomized controlled trials. BMC Nutr 2024; 10:111. [PMID: 39138555 PMCID: PMC11320984 DOI: 10.1186/s40795-024-00921-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Recent evidence shows the role of sirtuin 1(SIRT1), a family of evolutionarily conserved proteins, as a potential therapeutic target in the prevention and treatment of obesity and metabolic diseases. Some evidence shows the moderating effects of weight loss interventions on this factor. However, the findings are contradictory. In order to obtain a better viewpoint from them, this study aimed to comprehensively investigate the effects of weight loss interventions on SIRT 1 modulation. METHODS For this study, we searched four electronic databases using predefined keywords from inception until March 2024. We includedrandomized controlled trials that evaluated the effect of weight reduction strategies on SIRT1 levels. The random-effects model analysis was used to obtain the pooled weighted mean difference (WMD) and 95% confidence intervals (95% CI). The meta-analysis was conducted using RevMan version 5.3 software and Stata version 12.0. RESULTS Twelve studies with 627 volunteers were included. The pooled findings showed that weight loss interventions have no significant effect on the modulation of SIRT1 compared to the control group (pooled WMD of 0.58 ng/mL; 95% confidence interval [CI] -0.17 to 1.33; p = 0.130). However, subgroup analysis showed that weight loss interventions significantly modulate SIRT1 at metabolic disease (WMD: 1.2 ng/mL, 95% CI: 0.11 to 2.62, I2 = 82.9%). In addition, subgroup findings indicated health status and body mass index (BMI) as sources of high and potential heterogeneity. CONCLUSIONS Based on the findings, weight loss therapies in individuals having a metabolic disorder appear to generate a considerable increase in SIRT1 levels.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nathalia Sernizon Guimarães
- Department of Nutrition, School of Nursing, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
da Fonseca ACP, Assis ISDS, Salum KCR, Palhinha L, Abreu GDM, Zembrzuski VM, Campos Junior M, Nogueira-Neto JF, Cambraia A, Souza Junior MLF, Maya-Monteiro CM, Cabello PH, Bozza PT, Carneiro JRI. Genetic variants in DBC1, SIRT1, UCP2 and ADRB2 as potential biomarkers for severe obesity and metabolic complications. Front Genet 2024; 15:1363417. [PMID: 38841722 PMCID: PMC11151296 DOI: 10.3389/fgene.2024.1363417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Obesity is a multifactorial disease associated with the development of many comorbidities. This disease is associated with several metabolic alterations; however, it has been shown that some individuals with obesity do not exhibit metabolic syndrome. Adipose tissue neutralizes the detrimental effects of circulating fatty acids, ectopic deposition, and inflammation, among others, through its esterification into neutral lipids that are stored in the adipocyte. However, when the adipocyte is overloaded, i.e., its expansion capacity is exceeded, this protection is lost, resulting in fatty acid toxicity with ectopic fat accumulation in peripheral tissues and inflammation. In this line, this study aimed to investigate whether polymorphisms in genes that control adipose tissue fat storage capacity are potential biomarkers for severe obesity susceptibility and also metabolic complications. Methods This study enrolled 305 individuals with severe obesity (cases, BMI≥35 kg/m2) and 196 individuals with normal weight (controls, 18.5≤BMI≤24.9 kg/m2). Demographic, anthropometric, biochemical, and blood pressure variables were collected from the participants. Plasma levels of leptin, resistin, MCP1, and PAI1 were measured by Bio-Plex 200 Multiplexing Analyzer System. Genomic DNA was extracted and variants in DBC1 (rs17060940), SIRT1 (rs7895833 and rs1467568), UCP2 (rs660339), PPARG (rs1801282) and ADRB2 (rs1042713 and rs1042714) genes were genotyped by PCR allelic discrimination using TaqMan® assays. Results Our findings indicated that SIRT1 rs7895833 polymorphism was a risk factor for severe obesity development in the overdominant model. SIRT1 rs1467568 and UCP2 rs660339 were associated with anthropometric traits. SIRT1 rs1467568 G allele was related to lower medians of body adipose index and hip circumference, while the UCP2 rs660339 AA genotype was associate with increased body mass index. Additionally, DBC1 rs17060940 influenced glycated hemoglobin. Regarding metabolic alterations, 27% of individuals with obesity presented balanced metabolic status in our cohort. Furthermore, SIRT1 rs1467568 AG genotype increased 2.5 times the risk of developing metabolic alterations. No statistically significant results were observed with Peroxisome Proliferator-Activated Receptor Gama and ADRB2 polymorphisms. Discussion/Conclusion This study revealed that SIRT1 rs7895833 and rs1467568 are potential biomarkers for severe obesity susceptibility and the development of unbalanced metabolic status in obesity, respectively. UCP2 rs660339 and DBC1 rs17060940 also showed a significant role in obesity related-traits.
Collapse
Affiliation(s)
- Ana Carolina Proença da Fonseca
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Genetics Laboratory, Grande Rio University/AFYA, Rio de Janeiro, Brazil
- Postgraduate Program in Translational Biomedicine, Grande Rio University/AFYA, Rio de Janeiro, Brazil
| | - Izadora Sthephanie da Silva Assis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Kaio Cezar Rodrigues Salum
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriella de Medeiros Abreu
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mario Campos Junior
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Amanda Cambraia
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Pedro Hernán Cabello
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - João Regis Ivar Carneiro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Ramezani M, Zobeiry M, Abdolahi S, Hatami B, Zali MR, Baghaei K. A crosstalk between epigenetic modulations and non-alcoholic fatty liver disease progression. Pathol Res Pract 2023; 251:154809. [PMID: 37797383 DOI: 10.1016/j.prp.2023.154809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a major public health concern worldwide due to its rapidly rising prevalence and its potential to progress into end-stage liver disease. While the precise pathophysiology underlying NAFLD remains incompletely understood, it is strongly associated with various environmental triggers and other metabolic disorders. Epigenetics examines changes in gene expression that are not caused by alterations in the DNA sequence itself. There is accumulating evidence that epigenetics plays a key role in linking environmental cues to the onset and progression of NAFLD. Our understanding of how epigenetic mechanisms contribute to NAFLD pathophysiology has expanded considerably in recent years as research on the epigenetics of NAFLD has developed. This review summarizes recent insights into major epigenetic processes that have been implicated in NAFLD pathogenesis including DNA methylation, histone acetylation, and microRNAs that have emerged as promising targets for further investigation. Elucidating epigenetic mechanisms in NAFLD may uncover novel diagnostic biomarkers and therapeutic targets for this disease. However, many questions have remained unanswered regarding how epigenetics promotes NAFLD onset and progression. Additional studies are needed to further characterize the epigenetic landscape of NAFLD and validate the potential of epigenetic markers as clinical tools. Nevertheless, an enhanced understanding of the epigenetic underpinnings of NAFLD promises to provide key insights into disease mechanisms and pave the way for novel prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Meysam Ramezani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behzad Hatami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Afshari H, Noori S, Zarghi A. A novel combination of metformin and resveratrol alleviates hepatic steatosis by activating autophagy through the cAMP/AMPK/SIRT1 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3135-3148. [PMID: 37209153 DOI: 10.1007/s00210-023-02520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disorder that is associated with the accumulation of triglycerides (TG) in hepatocytes. Resveratrol (RSV), as a natural product, and metformin have been reported to have potential lipid-lowering effects for the treatment of NAFLD via autophagy, but the combined effects of both have not yet been studied. The current study aimed to investigate the role of autophagy in the lipid-lowering effects of RSV, alone and in combination with metformin, on the hepatic steatosis model of HepG2 cells and elucidate the mechanism of action. Triglyceride measurement and real-time PCR showed that RSV-metformin reduced lipid accumulation and the expression of lipogenic genes in palmitic acid (PA)-induced HepG2 cells. Additionally, the LDH release assay indicated that this combination protected HepG2 cells against PA-induced cell death through autophagy. The western blotting analysis revealed that RSV-metformin induced autophagy by reducing the expression of p62 and increasing LC3-I and LC3-II proteins. This combination also enhanced cAMP, phosphorylated AMP-activated protein kinase (p-AMPK), and Beclin-1 levels in HepG2 cells. Furthermore, SIRT1 inhibitor treatment inhibited autophagy induced by RSV-metformin, which indicated the autophagy induction is SIRT1-dependent. This study demonstrated for the first time that RSV-metformin reduced hepatic steatosis by triggering autophagy via the cAMP/AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Wu YJ, Zhang SS, Yin Q, Lei M, Wang QH, Chen WG, Luo TT, Zhou P, Ji CL. α-Mangostin Inhibited M1 Polarization of Macrophages/Monocytes in Antigen-Induced Arthritis Mice by Up-Regulating Silent Information Regulator 1 and Peroxisome Proliferators-Activated Receptor γ Simultaneously. Drug Des Devel Ther 2023; 17:563-577. [PMID: 36860800 PMCID: PMC9969869 DOI: 10.2147/dddt.s397914] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background α-Mangostin (MG) showed the potentials in alleviating experimental arthritis, inhibiting inflammatory polarization of macrophages/monocytes, and regulating peroxisome proliferators-activated receptor γ (PPAR-γ) and silent information regulator 1 (SIRT1) signals. The aim of this study was to analyze the correlations among the above-mentioned properties. Methods Antigen-induced arthritis (AIA) was established in mouse, which was treated with MG in combination with SIRT1/PPAR-γ inhibitors to clarify the role of the two signals in the anti-arthritic actions. Pathological changes were systematically investigated. Phenotypes of cells were investigated by flow cytometry. Expression and co-localization of SIRT1 and PPAR-γ proteins in joint tissues were observed by the immunofluorescence method. Finally, clinical implications from the synchronous up-regulation of SIRT1 and PPAR-γ were validated by experiments in vitro. Results SIRT1 and PPAR-γ inhibitors (nicotinamide and T0070097) reduced the therapeutic effects of MG on AIA mice, and abrogated MG-induced up-regulation of SIRT1/PPAR-γ and inhibition of M1 polarization in macrophages/monocytes. MG has a good binding affinity to PPAR-γ, and MG promoted the co-expression of SIRT1 and PPAR-γ in joints. Synchronously activating SIRT1 and PPAR-γ was revealed to be necessary by MG to repress inflammatory responses in THP-1 monocytes. Conclusion MG binds PPAR-γ and excites this signaling to initiate ligand-dependent anti-inflammatory activity. Due to certain unspecified signal transduction crosstalk mechanism, it then promoted SIRT1 expression and further limited inflammatory polarization of macrophages/monocytes in AIA mice.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China,Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China,Vascular Diseases Research Center of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Ming Lei
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qi-Hai Wang
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Ting-Ting Luo
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230000, People’s Republic of China,Correspondence: Peng Zhou; Cong-Lan Ji, Email ;
| | - Cong-Lan Ji
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, 241000, People’s Republic of China,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| |
Collapse
|
7
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
8
|
Zuo J, Tao MQ, Wu XY, Jiang TT, Olatunji OJ, Dong J, Han J, Ji CL. Securidaca inappendiculata-Derived Xanthones Protected Joints from Degradation in Male Rats with Collagen-Induced Arthritis by Regulating PPAR-γ Signaling. J Inflamm Res 2021; 14:395-411. [PMID: 33623411 PMCID: PMC7896782 DOI: 10.2147/jir.s295957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background The bark of Securidaca inappendiculata Hassk. is traditionally used for treating inflammatory diseases and bone fractures in China. We have previously validated the xanthone-enriched fraction (XRF) of S. inappendiculata with anti-rheumatic potentials, but mechanism underlying the joints protective effects is still largely unknown. Materials and Methods The male rats with collagen-induced arthritis (CIA) were treated with XRF. The therapeutic efficacy of XRF was evaluated by arthritis score changes, morphological observation of paws, histological examinations and serological analyses. Protein expression in tissues and cells was investigated by either immunohistochemical or immunoblotting methods, while levels of mRNA expression were investigated by RT-qPCR. Metabolites in serum were detected by LC-MS approach. The joints homogenates were used for analyzing possible targeted genes by genome microarray analyses. Results Treatment with XRF and methotrexate (MTX) led to significant decrease in arthritis scores, and alleviated deformation of paws in CIA rats. In addition, XRF and MTX reduced circulating TNF-α, IL-1β and IL-17α in the serum and down-regulated TLR4/NF-κB and JNK pathways in joints of CIA rats. Compared to MTX, XRF-loading microemulsion significantly protected joints, which was accompanied by dramatic decrease in MMP3. Differential genes-based KEGG enrichment and metabolomics analysis suggested that XRF reduced fatty acids biosynthesis by regulating PPAR-γ signaling. S inappendiculata-derived 1,7-dihydroxy-3,4-dimethoxyxanthone (XAN) up-regulated PPAR-γ expression in macrophages, but suppressed it in pre-adipocytes in vitro, which was synchronized with SIRT1 changes. Adiponectin production and SCD-1 expression in pre-adipocytes were also decreased. Aside the direct inhibition on MMP3 expression in synovioblast, the presence of XAN in macrophages-pre-adipocytes co-culture system further reinforced this effect. Conclusion This study revealed the joint protective advantages of the bioactive fraction from S. inappendiculata in CIA rats over MTX, and demonstrated that S. inappendiculata-derived xanthones suppressed the erosive nature of synovioblast acquired under inflammatory circumstances by regulating PPAR-γ signaling-controlled metabolism-immunity feedback.
Collapse
Affiliation(s)
- Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People's Republic of China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, People's Republic of China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People's Republic of China
| | - Meng-Qing Tao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People's Republic of China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People's Republic of China
| | - Xin-Yue Wu
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Tian-Tian Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People's Republic of China
| | - Opeyemi Joshua Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Jiyang Dong
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jun Han
- Drug Research and Development Center, School of Pharmacy, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Cong-Lan Ji
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, 241000, Anhui, People's Republic of China
| |
Collapse
|
9
|
Pasquereau S, Totoson P, Nehme Z, Abbas W, Kumar A, Verhoeven F, Prati C, Wendling D, Demougeot C, Herbein G. Impact of glucocorticoids on systemic sirtuin 1 expression and activity in rats with adjuvant-induced arthritis. Epigenetics 2020; 16:132-143. [PMID: 32615849 DOI: 10.1080/15592294.2020.1790789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The class III histone deacetylase sirtuin 1 (SIRT1) plays a pivotal role in numerous biological and physiological functions, including inflammation. An association between SIRT1 and proinflammatory cytokines might exist. In addition to their important role in inflammation associated with rheumatoid arthritis (RA), proinflammatory cytokines mediate the development of systemic effects. Here, we evaluated systemic SIRT1 expression and enzymatic activity, in peripheral blood mononuclear cells (PBMCs) and in liver isolated from rats with adjuvant-induced arthritis (AIA), treated or not with low or high doses of glucocorticoids (GCs). We also measured the production of tumour necrosis factor alpha (TNF) and interleukin-1 beta (IL-1 beta) in PBMCs and liver. We found that SIRT1 expression and activity increased in PBMCs of AIA rats compared to healthy controls and decreased under GC treatment. Similarly, we observed an increased SIRT1 activity in the liver of AIA rats compared to healthy controls which decreased under high doses of GCs. We also found an increase in IL-1 beta and TNF levels in the liver of AIA rats compared to healthy controls, which decreased under high doses of GC. We did not observe a significant correlation between SIRT1 activity and proinflammatory cytokine production in PBMC or liver. In contrast, a strong positive correlation was found between the liver levels of TNF and IL-1 beta (rho=0.9503, p=7.5x10-21). Our results indicate that increased inflammation in AIA rats compared to healthy control is accompanied by an increased SIRT1 activity in both PBMCs and liver, which could be decreased under GC treatment.
Collapse
Affiliation(s)
- Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Perle Totoson
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Wasim Abbas
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Amit Kumar
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Frank Verhoeven
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Clément Prati
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Daniel Wendling
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Céline Demougeot
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Virology, CHRU Besançon , Besançon, France
| |
Collapse
|
10
|
Huang J, Fu X, Chen X, Xu S, Yu J. Silencing of miR-486 alleviates LPS-stimulated inflammatory response of macrophages through targeting SIRT1. RSC Adv 2019; 9:17057-17064. [PMID: 35519896 PMCID: PMC9064473 DOI: 10.1039/c9ra01374a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
Previous studies identified that microRNAs (miRNAs) have promising diagnostic and prognostic value against sepsis. MiR-486 was demonstrated to be upregulated in sepsis. However, the detailed role and underlying mechanism of miR-486 in the inflammatory response of sepsis are still unclear. In this research, macrophages were stimulated with lipopolysaccharide (LPS) to establish a sepsis model in vitro. qRT-PCR was used to detect miR-486 expression and the mRNA levels of sirtuin (SIRT1), tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β. ELISA assay was performed to measure the levels of TNF-α, IL-6 and IL-1β. SIRT1 protein expression was determined by Western blot analysis. The targeted relationship of miR-486 and SIRT1 was confirmed by dual-luciferase reporter assay. Our data supported that miR-486 was upregulated in the serum of sepsis patients. MiR-486 expression and inflammatory response were elevated by LPS stimulation in macrophages. MiR-486 silencing or SIRT1 overexpression alleviated inflammatory response in LPS-stimulated macrophages. Moreover, SIRT1 was a direct target of miR-486. Anti-miR-486-mediated anti-inflammatory response in LPS-stimulated macrophages was antagonized by SIRT1 inhibition. Our data suggested that miR-486 silencing alleviated inflammatory response in macrophages under LPS stimulation at least partly through targeting SIRT1. Targeting miR-486 may provide a novel way to protect against dysregulated inflammatory response in sepsis patients.
Collapse
Affiliation(s)
- Jie Huang
- Department of Severe Medicine, The Central Hospital of Wuhan Wuhan China
| | - Xinlei Fu
- Department of Severe Medicine, Dongguan Donghua Hospital Dongguan Guangdong China
| | - Xue Chen
- Department of Severe Medicine, The Second Affiliated Hospital of Dalian Medical University No. 467, Zhongshan Rd, Shahekou 116000 Dalian China +86-0411-8467129
| | - Shuang Xu
- Department of Severe Medicine, The Second Affiliated Hospital of Dalian Medical University No. 467, Zhongshan Rd, Shahekou 116000 Dalian China +86-0411-8467129
| | - Jian Yu
- Department of Severe Medicine, The Second Affiliated Hospital of Dalian Medical University No. 467, Zhongshan Rd, Shahekou 116000 Dalian China +86-0411-8467129
| |
Collapse
|
11
|
Pinheiro DML, de Oliveira AHS, Coutinho LG, Fontes FL, de Medeiros Oliveira RK, Oliveira TT, Faustino ALF, Lira da Silva V, de Melo Campos JTA, Lajus TBP, de Souza SJ, Agnez-Lima LF. Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation. Free Radic Biol Med 2019; 130:8-22. [PMID: 30366059 DOI: 10.1016/j.freeradbiomed.2018.10.432] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress generated during inflammation is associated with a wide range of pathologies. Resveratrol (RESV) displays anti-inflammatory and antioxidant activities, being a candidate for the development of adjuvant therapies for several inflammatory diseases. Despite this potential, the cellular responses induced by RESV are not well known. In this work, transcriptomic analysis was performed following lipopolysaccharide (LPS) stimulation of monocyte cultures in the presence of RESV. Induction of an inflammatory response was observed after LPS treatment and the addition of RESV led to decreases in expression of the inflammatory mediators, tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1), without cytotoxicity. RNA sequencing revealed 823 upregulated and 2098 downregulated genes (cutoff ≥2.0 or ≤-2.0) after RESV treatment. Gene ontology analysis showed that the upregulated genes were associated with metabolic processes and the cell cycle, consistent with normal cell growth and differentiation under an inflammatory stimulus. The downregulated genes were associated with inflammatory responses, gene expression, and protein modification. The prediction of master regulators using the iRegulon tool showed nuclear respiratory factor 1 (NRF1) and GA-binding protein alpha subunit (GABPA) as the main regulators of the downregulated genes. Using immunoprecipitation and protein expression assays, we observed that RESV was able to decrease protein acetylation patterns, such as acetylated apurinic/apyrimidinic endonuclease-1/reduction-oxidation factor 1 (APE1/Ref-1), and increase histone methylation. In addition, reductions in p65 (nuclear factor-kappa B (NF-κB) subunit) and lysine-specific histone demethylase-1 (LSD1) expression were observed. In conclusion, our data indicate that treatment with RESV caused significant changes in protein acetylation and methylation patterns, suggesting the induction of deacetylase and reduction of demethylase activities that mainly affect regulatory cascades mediated by NF-кB and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling. NRF1 and GABPA seem to be the main regulators of the transcriptional profile observed after RESV treatment.
Collapse
Affiliation(s)
| | - Ana Helena Sales de Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil; Chemistry Department, New York University, New York, NY, United States
| | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil; Instituto Federal de Educação Tecnológica do Rio Grande do Norte, IFRN, São Paulo do Potengi, Brazil
| | - Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | | | - Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | - André Luís Fonseca Faustino
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), IMD, UFRN, Brazil
| | - Vandeclécio Lira da Silva
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), IMD, UFRN, Brazil
| | | | - Tirzah Braz Petta Lajus
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | - Sandro José de Souza
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), IMD, UFRN, Brazil
| | | |
Collapse
|
12
|
Feng T, Liu P, Wang X, Luo J, Zuo X, Jiang X, Liu C, Li Y, Li N, Chen M, Zhu N, Han X, Liu C, Xu Y, Si S. SIRT1 activator E1231 protects from experimental atherosclerosis and lowers plasma cholesterol and triglycerides by enhancing ABCA1 expression. Atherosclerosis 2018; 274:172-181. [PMID: 29787963 DOI: 10.1016/j.atherosclerosis.2018.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent protein deacetylase. Recent studies have demonstrated that enhancing SIRT1 expression or activity may modulate cholesterol and lipid metabolism. However, pharmacological and molecular regulators for SIRT1 are scarce. Here, we aimed to find novel small molecule modulators of SIRT1 to regulate cholesterol and lipid metabolism. METHODS A high-throughput screening assay was established to identify SIRT1 activators. Surface plasmon resonance and immunoprecipitation were performed to confirm the interaction of E1231 with SIRT1. Cholesterol assay was performed to demonstrate the in vitro effect of E1231. The in vivo effect of E1231 was evaluated in experimental models. RESULTS E1231, a piperazine 1,4-diamide compound, was identified as a SIRT1 activator with EC50 value of 0.83 μM. E1231 interacted with recombinant human SIRT1 protein and deacetylated liver X receptor-alpha (LXRα). E1231 increased ATP-binding cassette transporter A1 (ABCA1) expression in RAW 264.7 cells dependent on SIRT1 and LXRα. E1231 promoted cholesterol efflux and inhibited lipid accumulation in RAW 264.7 cells via SIRT1 and ABCA1. In the golden hamster hyperlipidemia model, E1231 treatment decreased total cholesterol and triglyceride levels in both serum and the liver, while increased cholesterol content in feces. Moreover, E1231 increased ABCA1 and SIRT1 protein expression in the liver. In ApoE-/- mice, E1231 treatment reduced atherosclerotic plaque development compared with untreated ApoE-/- mice. CONCLUSIONS We identified a novel SIRT1 activator E1231 and elucidated its beneficial effects on lipid and cholesterol metabolism. Our study suggests that E1231 might be developed as a novel drug for treating atherosclerosis.
Collapse
Affiliation(s)
- Tingting Feng
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Peng Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Xiao Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Jinque Luo
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Xuan Zuo
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Chang Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Yongzhen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Ni Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS & PUMC, Beijing, 100050, China
| | - Minghua Chen
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Ningyu Zhu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Xiaowan Han
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Chao Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China.
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China.
| |
Collapse
|
13
|
Mariani S, Fiore D, Persichetti A, Basciani S, Lubrano C, Poggiogalle E, Genco A, Donini LM, Gnessi L. Circulating SIRT1 Increases After Intragastric Balloon Fat Loss in Obese Patients. Obes Surg 2017; 26:1215-20. [PMID: 26337692 DOI: 10.1007/s11695-015-1859-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sirtuins (SIRTs), ubiquitous deacetylases, are main regulators of energy homeostasis and metabolism. SIRT1 has a positive impact on obesity, diabetes mellitus, liver steatosis, and other metabolic disorders. Lean subjects have higher expression of SIRT1 in the adipose tissue compared to obese. However, it is not known whether weight loss associates with changes in blood SIRT1. We evaluated the effect of weight loss on circulating SIRT1, metabolic parameters, and body composition. METHODS Thirty-two obese subjects were studied before and 6 months after BioEnterics® Intragastric Balloon (BIB®) [22 patients, BMI 41.82 ± 6.28 kg/m(2)] or hypocaloric diet [10 patients, BMI 38.95 ± 6.90 kg/m(2)]. Plasma SIRT1, body composition, measures of metabolic syndrome (waist circumference, fasting plasma glucose, blood pressure, HDL cholesterol, triglycerides), and inflammation markers (ESR, CRP, fibrinogen) were recorded. RESULTS SIRT1 levels showed a significant increase, together with a significant reduction of BMI, excess body weight, and total fat mass either after BIB or diet intervention. The percent excess body weight loss was 33.73 ± 19.06 and 22.08 ± 11.62 % after BIB and diet, respectively, a trend toward a metabolic and inflammatory amelioration was observed with both treatments. Negative correlation between SIRT1 and % fat mass (BIB, ρ = -0.537, p = 0.017; diet, ρ = -0.638, p = 0.047) was also seen. CONCLUSIONS The reduction of fat mass associates with increased plasma SIRT1 indicating that, besides tissue levels, circulating SIRT1 is stimulated by a negative caloric balance. The rise of plasma SIRT1 may represent a parameter associating with fat loss rather than weight lowering regardless of the weight reduction system method used.
Collapse
Affiliation(s)
- Stefania Mariani
- Department of Experimental Medicine, Section of Medical Physiopathology and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| | - Daniela Fiore
- Department of Experimental Medicine, Section of Medical Physiopathology and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - Agnese Persichetti
- Department of Experimental Medicine, Section of Medical Physiopathology and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Physiopathology and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Physiopathology and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - Eleonora Poggiogalle
- Department of Experimental Medicine, Section of Medical Physiopathology and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - Alfredo Genco
- Department of Surgical Sciences, Surgical Endoscopy Unit, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Maria Donini
- Department of Experimental Medicine, Section of Medical Physiopathology and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Physiopathology and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| |
Collapse
|
14
|
Bellucci PN, González Bagnes MF, Di Girolamo G, González CD. Potential Effects of Nonsteroidal Anti-Inflammatory Drugs in the Prevention and Treatment of Type 2 Diabetes Mellitus. J Pharm Pract 2017; 30:549-556. [PMID: 27194069 DOI: 10.1177/0897190016649551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are a group of heterogeneous drugs largely known for their anti-inflammatory, antipyretic, and analgesic effects, which are met by means of the inhibition of the cyclooxygenase (COX) enzymes. Even when their use in patients with diabetes mellitus is limited due to relevant adverse events, some pharmacological and metabolic effects of NSAIDs have been further studied to be potentially beneficial in the prevention and/or treatment of diabetic subjects. Effects on endogenous glucose production, peripheral insulin resistance, pancreatic islet, and systemic inflammation and the insulin clearance have been reported. In this article, we overview the scientific literature of the last 5 years regarding the potential effects of NSAID treatment on diabetes prevention/treatment. The selected papers showed information in both humans and animal models. Furthermore, we included papers that suggest new areas for further investigation, and we discussed our own suggestions on this matter.
Collapse
Affiliation(s)
- Pamela Natalia Bellucci
- 1 Department of Pharmacology, School of Medicine, Instituto Universitario CEMIC, Buenos Aires, Argentina
| | | | - Guillermo Di Girolamo
- 2 Second Chair of Pharmacology - Department of Pharmacology and Toxicology, School of Medicine, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Daniel González
- 1 Department of Pharmacology, School of Medicine, Instituto Universitario CEMIC, Buenos Aires, Argentina
| |
Collapse
|
15
|
Said MM, Ezz MK, Matloub AA. Protective effect of sulfated polysaccharide isolated fromUlva fasciataagainst galactosamine-induced liver injury in rats. J Food Biochem 2017. [DOI: 10.1111/jfbc.12383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahmoud M. Said
- Biochemistry Department, Faculty of Science; Ain Shams University; Cairo Egypt
| | - Magda K. Ezz
- Biochemistry Department, Faculty of Science; Ain Shams University; Cairo Egypt
| | - Azza A. Matloub
- Pharmacognosy Department, Research of Pharmaceutical and Drug Division; National Research Center; Dokki Giza Egypt
| |
Collapse
|
16
|
Deng Z, Jin J, Wang Z, Wang Y, Gao Q, Zhao J. The metal nanoparticle-induced inflammatory response is regulated by SIRT1 through NF-κB deacetylation in aseptic loosening. Int J Nanomedicine 2017; 12:3617-3636. [PMID: 28553103 PMCID: PMC5439723 DOI: 10.2147/ijn.s124661] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aseptic loosening is the most common cause of total hip arthroplasty (THA) failure, and osteolysis induced by wear particles plays a major role in aseptic loosening. Various pathways in multiple cell types contribute to the pathogenesis of osteolysis, but the role of Sirtuin 1 (SIRT1), which can regulate inflammatory responses through its deacetylation, has never been investigated. We hypothesized that the downregulation of SIRT1 in macrophages induced by metal nanoparticles was one of the reasons for osteolysis in THA failure. In this study, the expression of SIRT1 was examined in macrophages stimulated with metal nanoparticles from materials used in prosthetics and in specimens from patients suffering from aseptic loosening. To address whether SIRT1 downregulation triggers these inflammatory responses, the effects of the SIRT1 activator resveratrol on the expression of inflammatory cytokines in metal nanoparticle-stimulated macrophages were tested. The results demonstrated that SIRT1 expression was significantly downregulated in metal nanoparticle-stimulated macrophages and clinical specimens of prosthesis loosening. Pharmacological activation of SIRT1 dramatically reduced the particle-induced expression of inflammatory cytokines in vitro and osteolysis in vivo. Furthermore, SIRT1 regulated particle-induced inflammatory responses through nuclear factor kappa B (NF-κB) acetylation. Thus, the results of this study suggest that SIRT1 plays a key role in metal nanoparticle-induced inflammatory responses and that targeting the SIRT1 pathway may lead to novel therapeutic approaches for the treatment of aseptic prosthesis loosening.
Collapse
Affiliation(s)
- Zhantao Deng
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
- Center for Translational Medicine, Nanjing University Medical School
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Jiewen Jin
- Center for Translational Medicine, Nanjing University Medical School
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Zhenheng Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
| | - Yong Wang
- Center for Translational Medicine, Nanjing University Medical School
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Qian Gao
- Center for Translational Medicine, Nanjing University Medical School
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
| |
Collapse
|
17
|
Lee JH, Moon JH, Lee YJ, Park SY. SIRT1, a Class III Histone Deacetylase, Regulates LPS-Induced Inflammation in Human Keratinocytes and Mediates the Anti-Inflammatory Effects of Hinokitiol. J Invest Dermatol 2017; 137:1257-1266. [PMID: 28257794 DOI: 10.1016/j.jid.2016.11.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Skin inflammation is a response of the immune system to infection and injury. In this study, we report that hinokitiol, a tropolone-related natural compound that exhibits antioxidant, anti-inflammatory, and anticancer properties in various cell types, can modulate the inflammatory responses of primary human keratinocytes challenged with lipopolysaccharide (LPS). Hinokitiol treatment inhibited LPS-mediated up-regulation of proinflammatory factors including tumor necrosis factor alpha, IL-6, and prostaglandin E2 (PGE2). NF-κB activation and cell migration induced by LPS were blocked in keratinocytes treated with hinokitiol. Sirt1, a class Ⅲ histone deacetylase, was up-regulated by hinokitiol treatment, and the inhibition of Sirt1 activity using a pharmacological inhibitor or genetic silencing blocked hinokitiol-mediated anti-inflammatory effects. Further, hyperactivation of Sirt1 deacetylase using an adenoviral vector also attenuated LPS-induced inflammatory responses. We thus show that hinokitiol can attenuate LPS-mediated proinflammatory signals via Sirt1 histone deacetylase activation in primary human keratinocytes and suggest that hinokitiol may be a potential therapeutic agent in skin inflammatory diseases like psoriasis.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - You-Jin Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea.
| |
Collapse
|
18
|
Sathishkumar C, Prabu P, Balakumar M, Lenin R, Prabhu D, Anjana RM, Mohan V, Balasubramanyam M. Augmentation of histone deacetylase 3 ( HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes. Clin Epigenetics 2016; 8:125. [PMID: 27904654 PMCID: PMC5122206 DOI: 10.1186/s13148-016-0293-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 11/15/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A role of proinflammation has been implicated in the pathogenesis of diabetes, but the up-stream regulatory signals and molecular signatures are poorly understood. While histone modifications such as changes in histone deacetylase (HDAC) are emerging as novel epigenetic biomarkers, there is lack of studies to demonstrate their clinical relevance in diabetes. Therefore, we investigated the extent of HDAC machinery and inflammatory signals in peripheral blood mononuclear cells (PBMCs) from patients with type 2 diabetes mellitus (T2DM) compared to control subjects. RESULTS HDAC3 activity was significantly (p < 0.05) increased in patients with T2DM compared to control subjects. While subtypes of HDACs were differentially expressed at their transcriptional levels in patients with type 2 diabetes, the most prominent observation is the significantly (p < 0.05) elevated messenger RNA (mRNA) levels of HDAC3. Expression levels of Sirt1 which represents the class III HDAC were decreased significantly in T2DM (p < 0.05). Plasma levels of both TNF-α and IL-6 were significantly higher (p < 0.05) in patients with type 2 diabetes compared to control subjects. Among the proinflammatory mediators, the mRNA expression of MCP-1, IL1-β, NFκB, TLR2, and TLR4 were also significantly (p < 0.05) increased in T2DM. Transcriptional levels of DBC1 (deleted in breast cancer 1, which is a negative regulator of HDAC3) were seen significantly reduced in PBMCs from T2DM. Interestingly, HDAC3 activity/HDAC3 mRNA levels positively correlated to proinflammation, poor glycemic control, and insulin resistance. CONCLUSIONS Striking message from this study is that while looking for anti-inflammatory strategies and drugs with novel mode of action for T2DM, discovering and designing specific inhibitors targeted to HDAC3 appears promising.
Collapse
Affiliation(s)
- Chandrakumar Sathishkumar
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Paramasivam Prabu
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Mahalingam Balakumar
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Raji Lenin
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Durai Prabhu
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Ranjith Mohan Anjana
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| |
Collapse
|
19
|
de Luxán-Delgado B, Potes Y, Rubio-González A, Caballero B, Solano JJ, Fernández-Fernández M, Bermúdez M, Rodrigues Moreira Guimarães M, Vega-Naredo I, Boga JA, Coto-Montes A. Melatonin reduces endoplasmic reticulum stress and autophagy in liver of leptin-deficient mice. J Pineal Res 2016; 61:108-23. [PMID: 27090356 DOI: 10.1111/jpi.12333] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022]
Abstract
The sedentary lifestyle of modern society along with the high intake of energetic food has made obesity a current worldwide health problem. Despite great efforts to study the obesity and its related diseases, the mechanisms underlying the development of these diseases are not well understood. Therefore, identifying novel strategies to slow the progression of these diseases is urgently needed. Experimental observations indicate that melatonin has an important role in energy metabolism and cell signalling; thus, the use of this molecule may counteract the pathologies of obesity. In this study, wild-type and obese (ob/ob) mice received daily intraperitoneal injections of melatonin at a dose of 500 μg/kg body weight for 4 weeks, and the livers of these mice were used to evaluate the oxidative stress status, proteolytic (autophagy and proteasome) activity, unfolded protein response, inflammation and insulin signalling. Our results show, for the first time, that melatonin could significantly reduce endoplasmic reticulum stress in leptin-deficient obese animals and ameliorate several symptoms that characterize this disease. Our study supports the potential of melatonin as a therapeutic treatment for the most common type of obesity and its liver-associated disorders.
Collapse
Affiliation(s)
- Beatriz de Luxán-Delgado
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Yaiza Potes
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Adrian Rubio-González
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Beatriz Caballero
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | | | | | | | - Marcela Rodrigues Moreira Guimarães
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Neurology, Laboratory of Nutritional Investigation and Degenerative-Chronic Diseases (LINDCD), Federal University of Rio de Janeiro State - UNIRIO, Rio de Janeiro, Brazil
| | - Ignacio Vega-Naredo
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - José Antonio Boga
- Microbiology Department, Hospital Universitario Central de Asturias, Asturias, Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
20
|
Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG. 'Adipaging': ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol 2016; 594:3187-207. [PMID: 26926488 DOI: 10.1113/jp271691] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/21/2016] [Indexed: 12/15/2022] Open
Abstract
The increasing ageing of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the ageing process, which in turn contributes to metabolic alterations, multi-organ damage and a systemic pro-inflammatory state ('inflammageing'). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal ageing process such as chronic inflammation and multi-system alterations. Accordingly, understanding the interplay between accelerated ageing related to obesity and adipose tissue dysfunction is critical to gain insight into the ageing process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of 'adipaging' to illustrate the common links between ageing and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals.
Collapse
Affiliation(s)
- Laura M Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Helios Pareja-Galeano
- Universidad Europea de Madrid, Spain.,Research Institute Hospital 12 de Octubre ('i+12'), Madrid, Spain
| | | | | | - Alejandro Lucia
- Universidad Europea de Madrid, Spain.,Research Institute Hospital 12 de Octubre ('i+12'), Madrid, Spain
| | - Beatriz G Gálvez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Universidad Europea de Madrid, Spain
| |
Collapse
|
21
|
Zhang MJ, Zhou Y, Chen L, Wang X, Long CY, Pi Y, Gao CY, Li JC, Zhang LL. SIRT1 improves VSMC functions in atherosclerosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:11-5. [PMID: 27080738 DOI: 10.1016/j.pbiomolbio.2016.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
Abstract
Despite advancements in diagnosis and treatment of cardiovascular diseases (CVDs), the morbidity and mortality of CVDs are still rising. Atherosclerosis is a chronic inflammatory disease contributing to multiple CVDs. Considering the complexity and severity of atherosclerosis, it is apparent that exploring the mechanisms of atherosclerotic formation and seeking new therapies for patients with atherosclerosis are required to overcome the heavy burden of CVDs on the quality and length of life of the global population. Vascular smooth muscle cells (VSMCs) play a dominant role in functional and structural changes of the arterial walls in response to atherogenic factors. Therefore, improvement of VSMC functions will slow down the development of atherosclerosis to a large extent. Given its protective performances on regulation of cholesterol metabolism and inflammatory responses, SIRT1 has long been known as an anti-atherosclerosis factor. In this review, we focus on the effects of SIRT1 on VSMC functions and thereby the development of atherosclerosis.
Collapse
Affiliation(s)
- Ming-Jie Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Yi Zhou
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Lei Chen
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Xu Wang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Chun-Yan Long
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Yan Pi
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Chang-Yue Gao
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Jing-Cheng Li
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Li-Li Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China.
| |
Collapse
|
22
|
Chang YM, Chang HH, Kuo WW, Lin HJ, Yeh YL, Padma Viswanadha V, Tsai CC, Chen RJ, Chang HN, Huang CY. Anti-Apoptotic and Pro-Survival Effect of Alpinate Oxyphyllae Fructus (AOF) in a d-Galactose-Induced Aging Heart. Int J Mol Sci 2016; 17:466. [PMID: 27043531 PMCID: PMC4848922 DOI: 10.3390/ijms17040466] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Aging, a natural biological/physiological phenomenon, is accelerated by reactive oxygen species (ROS) accumulation and identified by a progressive decrease in physiological function. Several studies have shown a positive relationship between aging and chronic heart failure (HF). Cardiac apoptosis was found in age-related diseases. We used a traditional Chinese medicine, Alpinate Oxyphyllae Fructus (AOF), to evaluate its effect on cardiac anti-apoptosis and pro-survival. Male eight-week-old Sprague–Dawley (SD) rats were segregated into five groups: normal control group (NC), d-Galactose-Induced aging group (Aging), and AOF of 50 (AL (AOF low)), 100 (AM (AOF medium)), 150 (AH (AOF high)) mg/kg/day. After eight weeks, hearts were measured by an Hematoxylin–Eosin (H&E) stain, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-assays and Western blotting. The experimental results show that the cardiomyocyte apoptotic pathway protein expression increased in the d-Galactose-Induced aging groups, with dose-dependent inhibition in the AOF treatment group (AL, AM, and AH). Moreover, the expression of the pro-survival p-Akt (protein kinase B (Akt)), Bcl-2 (B-cell lymphoma 2), anti-apoptotic protein (Bcl-xL) protein decreased significantly in the d-Galactose-induced aging group, with increased performance in the AOF treatment group with levels of p-IGFIR and p-PI3K (Phosphatidylinositol-3′ kinase (PI3K)) to increase by dosage and compensatory performance. On the other hand, the protein of the Sirtuin 1 (SIRT1) pathway expression decreased in the aging groups and showed improvement in the AOF treatment group. Our results suggest that AOF strongly works against ROS-induced aging heart problems.
Collapse
Affiliation(s)
- Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.
- Chinese Medicine Department, E-DA Hospital, Kaohsiung 82445, Taiwan.
- 1PT Biotechnology Co., Ltd., Taichung 433, Taiwan.
| | - Hen-Hong Chang
- Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan.
- Departments of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40447, Taiwan.
| | - Hung-Jen Lin
- Departments of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Lan Yeh
- Department of pathology, Changhua Christian Hospital, Changhua 50506, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35665, Taiwan.
| | | | - Chin-Chuan Tsai
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.
- Chinese Medicine Department, E-DA Hospital, Kaohsiung 82445, Taiwan.
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
| | - Hsin-Nung Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
23
|
Mariani S, Fiore D, Basciani S, Persichetti A, Contini S, Lubrano C, Salvatori L, Lenzi A, Gnessi L. Plasma levels of SIRT1 associate with non-alcoholic fatty liver disease in obese patients. Endocrine 2015; 49:711-6. [PMID: 25358448 DOI: 10.1007/s12020-014-0465-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/23/2014] [Indexed: 01/14/2023]
Abstract
Sirtuins (SIRTs) are master metabolic regulators with protective roles against obesity and obesity-associated metabolic disorders, including non-alcoholic fatty liver disease (NAFLD) and type-2 diabetes. We aimed to ascertain whether there is a relationship between serum SIRT1 and liver steatosis severity in obese patients. Seventy-two obese patients (BMI ≥ 30 kg/m(2)), 18 males and 54 females, mean age 39.66 ± 12.34 years, with ultrasonographic evidence of NAFLD, were studied. BMI, transaminases, insulin, HOMA-index, HbA1c, body composition (DXA), plasma SIRT1 levels (ELISA) and representative measures of metabolic syndrome (waist circumference, fasting plasma glucose, blood pressure, HDL-cholesterol, triglycerides) and inflammation (ESR, CRP, fibrinogen) were evaluated. Thirty healthy lean patients were included as controls. SIRT1 was significantly lower in severe liver steatosis obese group compared to the mild steatosis group, both had lower SIRT1 plasma values compared to control lean patients (P = 0.0001). SIRT1 showed an inverse correlation with liver steatosis and HbA1c in univariate analysis (ρ = -0.386; P = 0.001; ρ = -0.300; P = 0.01, respectively). Multiple linear regression analysis showed that liver steatosis was the independent correlate of SIRT1 even after adjustment for potentially relevant variables (β = -0.442; P = 0.003). Serum SIRT1 might be a novel clinical/biochemical parameter associated with fat liver infiltration. Further studies in larger cohorts are warranted.
Collapse
Affiliation(s)
- Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hugan Qingzhi Exerts Anti-Inflammatory Effects in a Rat Model of Nonalcoholic Fatty Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:810369. [PMID: 26146507 PMCID: PMC4471380 DOI: 10.1155/2015/810369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022]
Abstract
Ethnopharmacological Relevance. The Hugan Qingzhi tablet (HQT) is a traditional Chinese medicine used for treating NAFLD (nonalcoholic fatty liver disease). The present study evaluated the anti-inflammatory effects of HQT in rats with NAFLD. Materials and Methods. HQT was administered daily to the NAFLD experimental groups. Biochemical markers, histopathological data, and oxidative stress/antioxidant biomarkers were determined. Proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) were detected by enzyme-linked immunoassay. Expressions of silent information regulator 1 (SIRT1) and acetylated-nuclear-factor kappaB-p65 (Ac-NF-κB-p65) were performed by western blotting. Results. At high and moderate doses, HQT was highly effective in decreasing serum alanine aminotransferase (P < 0.01), aspartate aminotransferase (P < 0.01), hepatic total cholesterol (P < 0.01), triglycerides (P < 0.01), and free fatty acid levels (P < 0.01). Moreover, high and moderate doses of HQT reduced hepatic levels of the proinflammatory cytokines TNF-α (P < 0.01), IL-1β (P < 0.01), and IL-6 (P < 0.01), enhanced SIRT1 expression, and depressed Ac-NF-κB-p65 expression at protein level. Conclusions. In our NAFLD rat model, HQT exerted substantial anti-inflammatory and antioxidant activities, possibly involving the regulation of SIRT1 and Ac-NF-κB-p65 expression.
Collapse
|
25
|
Wendling D, Abbas W, Godfrin-Valnet M, Kumar A, Guillot X, Khan KA, Vidon C, Coquard L, Toussirot E, Prati C, Herbein G. Dysregulated serum IL-23 and SIRT1 activity in peripheral blood mononuclear cells of patients with rheumatoid arthritis. PLoS One 2015; 10:e0119981. [PMID: 25799392 PMCID: PMC4370395 DOI: 10.1371/journal.pone.0119981] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/16/2015] [Indexed: 12/24/2022] Open
Abstract
Sirtuin 1 (Sirt1) is a class III histone deacetylase (HDAC) that modulates gene expression and is involved in the regulation of proinflammatory cytokines. Interleukin-23 (IL-23) is produced by activated macrophages and dendritic cells and could fuel the progression of rheumatoid arthritis (RA). The goal of our study was to evaluate serum IL-23 levels and both Sirt1 activity and expression in peripheral blood mononuclear cells (PBMCs) in patients with RA compared to healthy controls (HC) and to determine the relationship between Sirt1 activity/expression and IL-23 levels. We assessed apoptosis in PBMCs of RA patients and its association with Sirt1 expression and serum IL-23. Serum IL-23 levels were increased in RA patients in comparison with controls. We found a positive correlation between the levels of serum IL-23 and serum IL-6 in RA patients. Decreased cytoplasmic Sirt1 activity was observed in RA patients with severe disease compared to HC. The expression of Sirt1 protein was significantly decreased in PBMCs of RA patients compared to HC using western blotting. Serum IL-23 levels correlated positively with the cytoplasmic Sirt1 activity in RA patients. Apoptosis rate of PBMCs isolated from RA patients was increased compared to HC and correlated negatively with the expression of Sirt1 protein and serum IL-23 levels. Levels of serum IL-23 and Sirt1 activity and expression were disturbed in RA parallel to increased PBMC apoptosis. Our findings might provide the rationale for the development of new therapeutic approaches in RA.
Collapse
Affiliation(s)
- Daniel Wendling
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Wasim Abbas
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Marie Godfrin-Valnet
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Amit Kumar
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Xavier Guillot
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Kashif Aziz Khan
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Claire Vidon
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Laurie Coquard
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Eric Toussirot
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
- Clinical Investigation Biotherapy Center506, Centre Hospitalier Régional Universitaire, Besançon, France
- Department of Therapeutics, University of Franche Comté, Besançon, France
| | - Clément Prati
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
- Department of Virology, Centre Hospitalier Régional Universitaire, Besançon, France
- Structure Fédérative de Recherche 4234, University of Franche-Comté, Besançon, France
- * E-mail:
| |
Collapse
|
26
|
Moreno-Navarrete JM, Moreno M, Vidal M, Ortega F, Ricart W, Fernández-Real JM. DBC1 is involved in adipocyte inflammation and is a possible marker of human adipose tissue senescence. Obesity (Silver Spring) 2015; 23:519-22. [PMID: 25682741 DOI: 10.1002/oby.20999] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the possible role of deleted in breast cancer 1 (DBC1) in adipocyte and adipose tissue inflammation. METHODS In vitro knockdown experiments using shRNA-lentiviral particles were performed to investigate the effect of DBC1 on adipocyte inflammation, sirtuin 1 (Sirt1) activity, and the AMPK pathway. The relationship between DBC1 and inflammation in human adipose tissue also was examined in two independent cohorts. RESULTS Dbc1 knockdown (KD) led to a significant reduction in the expression of inflammatory genes (Tnf, Il6, Stamp2, Lbp, and Mcp1) and (pSer536) NF-κB (p65)/NF-κB (p65) ratio in fully differentiated adipocytes. Of note, Dbc1 KD increased Sirt1 and AMPK activity in the early stage of adipocyte differentiation. In morbidly obese participants, DBC1 was positively correlated to TNF and senescence (TP53 and BAX) gene expression markers in both subcutaneous and visceral adipose tissues. Multivariate regression analysis revealed that senescence-related gene markers were the best predictors of adipose tissue DBC1 mRNA levels. CONCLUSIONS DBC1 induced the expression of nuclear factor kappa B (NF-κB)-regulated inflammatory cytokines in fully differentiated 3T3-L1 adipocytes, possibly through the inhibition of Sirt1 activity, being significantly associated with human adipose tissue senescence in morbidly obese subjects.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Cruzat VF, Keane KN, Scheinpflug AL, Cordeiro R, Soares MJ, Newsholme P. Alanyl-glutamine improves pancreatic β-cell function following ex vivo inflammatory challenge. J Endocrinol 2015; 224:261-71. [PMID: 25550445 DOI: 10.1530/joe-14-0677] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity-associated diabetes and concomitant inflammation may compromise pancreatic β-cell integrity and function. l-glutamine and l-alanine are potent insulin secretagogues, with antioxidant and cytoprotective properties. Herein, we studied whether the dipeptide l-alanyl-l-glutamine (Ala-Gln) could exert protective effects via sirtuin 1/HUR (SIRT1/HUR) signalling in β-cells, against detrimental responses following ex vivo stimulation with inflammatory mediators derived from macrophages (IMMs). The macrophages were derived from blood obtained from obese subjects. Macrophages were exposed (or not) to lipopolysaccharide (LPS) to generate a pro-inflammatory cytokine cocktail. The cytokine profile was determined following analysis by flow cytometry. Insulin-secreting BRIN-BD11 β-cells were exposed to IMMs and then cultured with or without Ala-Gln for 24 h. Chronic insulin secretion, the l-glutamine-glutathione (GSH) axis, and the level of insulin receptor β (IR-β), heat shock protein 70 (HSP70), SIRT1/HUR, CCAAT-enhancer-binding protein homologous protein (CHOP) and cytochrome c oxidase IV (COX IV) were evaluated. Concentrations of cytokines, including interleukin 1β (IL1β), IL6, IL10 and tumour necrosis factor alpha (TNFα) in the IMMs, were higher following exposure to LPS. Subsequently, when β-cells were exposed to IMMs, chronic insulin secretion, and IR-β and COX IV levels were decreased, but these effects were partially or fully attenuated by the addition of Ala-Gln. The glutamine-GSH axis and HSP70 levels, which were compromised by IMMs, were also restored by Ala-Gln, possibly due to protection of SIRT1/HUR levels, and a reduction of CHOP expression. Using an ex vivo inflammatory approach, we have demonstrated Ala-Gln-dependent β-cell protection mediated by coordinated effects on the glutamine-GSH axis, and the HSP pathway, maintenance of mitochondrial metabolism and stimulus-secretion coupling essential for insulin release.
Collapse
Affiliation(s)
- Vinicius Fernandes Cruzat
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| | - Kevin Noel Keane
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| | - Anita Lavarda Scheinpflug
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| | - Robson Cordeiro
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| | - Mario J Soares
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| | - Philip Newsholme
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| |
Collapse
|
28
|
Passos E, Pereira CD, Gonçalves IO, Rocha-Rodrigues S, Silva N, Guimarães JT, Neves D, Ascensão A, Magalhães J, Martins MJ. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci 2014; 123:51-60. [PMID: 25534442 DOI: 10.1016/j.lfs.2014.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/21/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023]
Abstract
AIMS Pro-inflammatory mediators, glucocorticoids and transforming growth factor (TGF)-β are implicated in the pathogenesis of non-alcoholic steatohepatitis (NASH)-related insulin resistance. As physical activity is beneficial against NASH, we analyzed the voluntary physical activity (VPA) and endurance training (ET) (preventive and therapeutic strategies) effects on hepatic insulin, pro-inflammatory and glucocorticoid signaling regulators/mediators in high-fat (Lieber-DeCarli) diet (HFD)-induced NASH. MAIN METHODS Adult male Sprague-Dawley rats were divided in standard diet (SD) or HFD, with sedentary, VPA and ET animals in both diet regimens. Plasma glucose and insulin concentrations were analyzed; plasma insulin sensitivity index (ISI) was calculated. Hepatic insulin, pro-inflammatory and glucocorticoid signaling regulators/mediators were evaluated by Western blot or reverse transcriptase-PCR. KEY FINDINGS ET improved ISI in both diet regimens. HFD-feeding increased interleukin-1β and induced a similar pattern on interleukin-6 and TGF-β, which were globally reduced by physical exercise. ET decreased HFD leukemia inhibitory factor level, SD+VPA animals presenting higher values than HFD+VPA animals. HFD increased the ratio of IRS-1(Ser307)/total IRS-1, which was completely mitigated by physical exercise. Physical exercise reduced total ERK and JNK (total and activated) expression in HFD. In SD vs. HFD, VPA presented higher activated JNK and ET presented higher total JNK. Generally, in HFD, the ratio (activated/total) of AKT, and each separately, decreased with exercise and also for activated AKT in SD. Overall, in both diets, exercise reduced 11β-hydroxysteroid dehydrogenase type 1. ET increased glucocorticoid receptor and reduced PTP1B in HFD. SIGNIFICANCE Physical exercise mitigates the expression of pro-inflammatory mediators and positively modulates insulin and glucocorticoid signaling in NASH.
Collapse
Affiliation(s)
- E Passos
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | - C D Pereira
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - I O Gonçalves
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - S Rocha-Rodrigues
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - N Silva
- Department of Clinical Pathology, Hospital of São João Centre EPE, and EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal
| | - J T Guimarães
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; Department of Clinical Pathology, Hospital of São João Centre EPE, and EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal
| | - D Neves
- Department of Experimental Biology, Faculty of Medicine, Instituto de Investigação e Inovação em Saúde, and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - A Ascensão
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Magalhães
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - M J Martins
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Cruzat VF, Krause M, Newsholme P. Amino acid supplementation and impact on immune function in the context of exercise. J Int Soc Sports Nutr 2014; 11:61. [PMID: 25530736 PMCID: PMC4272512 DOI: 10.1186/s12970-014-0061-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/04/2014] [Indexed: 01/16/2023] Open
Abstract
Moderate and chronic bouts of exercise may lead to positive metabolic, molecular, and morphological adaptations, improving health. Although exercise training stimulates the production of reactive oxygen species (ROS), their overall intracellular concentration may not reach damaging levels due to enhancement of antioxidant responses. However, inadequate exercise training (i.e., single bout of high-intensity or excessive exercise) may result in oxidative stress, muscle fatigue and muscle injury. Moreover, during the recovery period, impaired immunity has been reported, for example; excessive-inflammation and compensatory immunosuppression. Nutritional supplements, sometimes referred to as immuno-nutrients, may be required to reduce immunosuppression and excessive inflammation. Herein, we discuss the action and the possible targets of key immuno-nutrients such as L-glutamine, L-arginine, branched chain amino acids (BCAA) and whey protein.
Collapse
Affiliation(s)
- Vinicius Fernandes Cruzat
- CHIRI Biosciences Research Precinct, Faculty of Health Sciences, School of Biomedical Sciences, Curtin University, GPO Box U1987, Perth, Western Australia Australia
| | - Maurício Krause
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Philip Newsholme
- CHIRI Biosciences Research Precinct, Faculty of Health Sciences, School of Biomedical Sciences, Curtin University, GPO Box U1987, Perth, Western Australia Australia
| |
Collapse
|
30
|
McInnis CM, Thoma MV, Gianferante D, Hanlin L, Chen X, Breines JG, Hong S, Rohleder N. Measures of adiposity predict interleukin-6 responses to repeated psychosocial stress. Brain Behav Immun 2014; 42:33-40. [PMID: 25107874 PMCID: PMC4252374 DOI: 10.1016/j.bbi.2014.07.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE Overweight and obese individuals, who comprise approximately two-thirds of the U.S. population, are at increased risk for developing a range of diseases. This increased risk may be due in part to maladaptive stress responses within this group, including heightened low-grade inflammation and HPA axis non-habituation. In this study we tested the relationship between adiposity, plasma interleukin-6 (IL-6) and HPA axis responses to repeated stress. METHODS Sixty-seven healthy participants were exposed to the Trier Social Stress Test (TSST) on two consecutive days. We collected saliva for cortisol measurements at baseline and at 1, 10, 30, 60 and 120min post-TSST, and blood for plasma IL-6 measurements at baseline and 30 and 120min post-TSST. RESULTS Stress exposure induced significant increases of cortisol and IL-6 on both days (cortisol: F=38, p<0.001; IL-6: F=90.8; p<0.001), and repeated exposure was related with cortisol habituation (F=8.2; p<0.001) and IL-6 sensitization (F=5.2; p=0.022). BMI and body fat were related with higher cortisol responses to repeated stress (BMI: beta=0.34; p=0.014; body fat: beta=0.29; p=0.045), and with higher IL-6 responses to repeated stress (BMI: beta=0.27, p=0.044; body fat: beta=0.37; p=0.006). CONCLUSIONS Taken together, individuals with higher measures of adiposity showed less efficient HPA axis habituation as well as sensitization of IL-6 responses to repeated acute stress. These findings point to maladaptive stress response patterns in overweight humans, which, through exposure to higher levels of inflammatory mediators, might partially explain diseases related with overweight and/or obesity.
Collapse
Affiliation(s)
- Christine M. McInnis
- Department of Psychology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Myriam V. Thoma
- Department of Psychology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Danielle Gianferante
- Department of Psychology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Luke Hanlin
- Department of Psychology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Xuejie Chen
- Department of Psychology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Juliana G. Breines
- Department of Psychology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Nicolas Rohleder
- Department of Psychology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States.
| |
Collapse
|
31
|
White AT, Philp A, Fridolfsson HN, Schilling JM, Murphy AN, Hamilton DL, McCurdy CE, Patel HH, Schenk S. High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am J Physiol Endocrinol Metab 2014; 307:E764-72. [PMID: 25159328 PMCID: PMC4216952 DOI: 10.1152/ajpendo.00001.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle sirtuin 1 (SIRT1) expression is reduced under insulin-resistant conditions, such as those resulting from high-fat diet (HFD) feeding and obesity. Herein, we investigated whether constitutive activation of SIRT1 in skeletal muscle prevents HFD-induced muscle insulin resistance. To address this, mice with muscle-specific overexpression of SIRT1 (mOX) and wild-type (WT) littermates were fed a control diet (10% calories from fat) or HFD (60% of calories from fat) for 12 wk. Magnetic resonance imaging and indirect calorimetry were used to measure body composition and energy expenditure, respectively. Whole body glucose metabolism was assessed by oral glucose tolerance test, and insulin-stimulated glucose uptake was measured at a physiological insulin concentration in isolated soleus and extensor digitorum longus muscles. Although SIRT1 was significantly overexpressed in muscle of mOX vs. WT mice, body weight and percent body fat were similarly increased by HFD for both genotypes, and energy expenditure was unaffected by diet or genotype. Importantly, impairments in glucose tolerance and insulin-mediated activation of glucose uptake in skeletal muscle that occurred with HFD feeding were not prevented in mOX mice. In contrast, mOX mice showed enhanced postischemic cardiac functional recovery compared with WT mice, confirming the physiological functionality of the SIRT1 transgene in this mouse model. Together, these results demonstrate that activation of SIRT1 in skeletal muscle alone does not prevent HFD-induced glucose intolerance, weight gain, or insulin resistance.
Collapse
Affiliation(s)
- Amanda T White
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Heidi N Fridolfsson
- Department of Anesthesiology, University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jan M Schilling
- Department of Anesthesiology, University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Anne N Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - D Lee Hamilton
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, United Kingdom; and
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Hemal H Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California;
| |
Collapse
|
32
|
Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 2014; 24:283-307. [PMID: 25345753 DOI: 10.1517/13543784.2015.974804] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION There is a growing body of evidence to suggest that chronic silent inflammation is a key feature in abdominal obesity, metabolic syndrome, type 2 diabetes (T2DM) and cardiovascular disease (CVD). These observations suggest that pharmacological strategies, which reduce inflammation, may be therapeutically useful in treating obesity, type 2 diabetes and associated CVD. AREA COVERED The article covers novel strategies, using either small molecules or monoclonal antibodies. These strategies include: approaches targeting IKK-b-NF-kB (salicylates, salsalate), TNF-α (etanercept, infliximab, adalimumab), IL-1β (anakinra, canakinumab) and IL-6 (tocilizumab), AMP-activated protein kinase activators, sirtuin-1 activators, mammalian target of rapamycin inhibitors and C-C motif chemokine receptor 2 antagonists. EXPERT OPINION The available data supports the concept that targeting inflammation improves insulin sensitivity and β-cell function; it also ameliorates glucose control in insulin-resistant patients with inflammatory rheumatoid diseases as well in patients with metabolic syndrome or T2DM. Although promising, the observed metabolic effects remain rather modest in most clinical trials. The potential use of combined anti-inflammatory agents targeting both insulin resistance and insulin secretion appears appealing but remains unexplored. Large-scale prospective clinical trials are underway to investigate the safety and efficacy of different anti-inflammatory drugs. Further evidence is needed to support the concept that targeting inflammation pathways may represent a valuable option to tackle the cardiometabolic complications of obesity.
Collapse
Affiliation(s)
- Nathalie Esser
- University of Liege and Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, Virology and Immunology Unit, GIGA-ST , CHU Liège, Liège , Belgium
| | | | | |
Collapse
|
33
|
Dhanak D, Jackson P. Development and classes of epigenetic drugs for cancer. Biochem Biophys Res Commun 2014; 455:58-69. [PMID: 25016182 DOI: 10.1016/j.bbrc.2014.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 12/16/2022]
Abstract
Emerging evidence supports an important, etiologic role for epigenetic modifications in cancer. Various post translational modifications of histone proteins together with DNA methylation constitute an 'epigenetic code' regulating the transcriptional status of the cell and aberrant writing and/or interpretation of the code can contribute to a dysregulated, hyperproliferative state. In some cases, epigenetic deregulation has also been reported to result in tumor initiation. The discovery of somatic mutations in some chromatin binding proteins associated with subtypes of lymphomas and the ability to regulate expression of proto oncogenes such as Myc has spurred the development of specific small molecule modulators of histone binding proteins. Several of these compounds have entered clinical development for the treatment of heme malignancies. This review summarizes progress in the discovery and advancement of epigenetic therapeutics for cancer and provides a perspective for future development.
Collapse
Affiliation(s)
- Dashyant Dhanak
- Discovery Sciences, Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Paul Jackson
- Discovery Sciences, Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA 19477, USA
| |
Collapse
|
34
|
Buhrmann C, Busch F, Shayan P, Shakibaei M. Sirtuin-1 (SIRT1) is required for promoting chondrogenic differentiation of mesenchymal stem cells. J Biol Chem 2014; 289:22048-62. [PMID: 24962570 DOI: 10.1074/jbc.m114.568790] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sirtuin-1 (SIRT1), NAD(+)-dependent deacetylase, has been linked to anabolic effects in cartilage, although the mechanisms of SIRT1 signaling during differentiation of mesenchymal stem cells (MSCs) to chondrocytes are poorly understood. Therefore, we investigated the role of SIRT1-mediated signaling during chondrogenic differentiation of MSCs in vitro. High density and alginate cultures of MSCs were treated with chondrogenic induction medium with/without the SIRT1 inhibitor nicotinamide, antisense oligonucleotides against SIRT1 (SIRT1-ASO), IL-1β, and/or resveratrol. Transient transfection of MSCs with SIRT1-antisense oligonucleotides, nicotinamide, and IL-1β inhibited chondrogenesis-induced down-regulation of cartilage-specific proteins, cartilage-specific transcription factor Sox9, and enhanced NF-κB-regulated gene products involved in the inflammatory and degradative processes in cartilage (MMP-9, COX-2, and caspase-3), and NF-κB phosphorylation, acetylation, and activation of IκBα kinase. In contrast, the SIRT1 activator resveratrol or BMS-345541 (inhibitor of IKK) inhibited IL-1β- and NAM-induced suppression of cartilage-specific proteins, Sox9, and up-regulation of NF-κB-regulated gene products. Moreover, SIRT1 was found to interact directly with NF-κB and resveratrol-suppressed IL-1β and NAM but not SIRT1-ASO-induced NF-κB phosphorylation, acetylation, and activation of IκBα kinase. Knockdown of SIRT1 by mRNA abolished the inhibitory effects of resveratrol on inflammatory and apoptotic signaling and Sox9 expression, suggesting the essential role of this enzyme. Finally, the modulatory effects of resveratrol were found to be mediated at least in part by the association between SIRT1 and Sox9. These results indicate for the first time that SIRT1 supports chondrogenic development of MSCs at least in part through inhibition/deacetylation of NF-κB and activation of Sox9.
Collapse
Affiliation(s)
- Constanze Buhrmann
- From the Institute of Anatomy, Musculoskeletal Research Group, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Franziska Busch
- From the Institute of Anatomy, Musculoskeletal Research Group, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Parviz Shayan
- the Investigating Institute of Molecular Biological System Transfer, Tehran 1417863171, Iran, and the Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran 141556453, Iran
| | - Mehdi Shakibaei
- From the Institute of Anatomy, Musculoskeletal Research Group, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany,
| |
Collapse
|
35
|
Venter G, Oerlemans FTJJ, Willemse M, Wijers M, Fransen JAM, Wieringa B. NAMPT-mediated salvage synthesis of NAD+ controls morphofunctional changes of macrophages. PLoS One 2014; 9:e97378. [PMID: 24824795 PMCID: PMC4019579 DOI: 10.1371/journal.pone.0097378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022] Open
Abstract
Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.e. NADP+ and NADPH) play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT), found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+'s cytosolic role in the regulation of morphofunctional characteristics of macrophages.
Collapse
Affiliation(s)
- Gerda Venter
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frank T. J. J. Oerlemans
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marieke Willemse
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jack A. M. Fransen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Fuentes-Antrás J, Ioan AM, Tuñón J, Egido J, Lorenzo Ó. Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy-associated inflammation. Int J Endocrinol 2014; 2014:847827. [PMID: 24744784 PMCID: PMC3972909 DOI: 10.1155/2014/847827] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy is defined as a ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of coronary artery disease and hypertension. Hyperglycemia, hyperlipidemia, and insulin resistance are major inducers of the chronic low-grade inflammatory state that characterizes the diabetic heart. Cardiac Toll-like receptors and inflammasome complexes may be key inducers for inflammation probably through NF-κB activation and ROS overproduction. However, metabolic dysregulated factors such as peroxisome proliferator-activated receptors and sirtuins may serve as therapeutic targets to control this response by mitigating both Toll-like receptors and inflammasome signaling.
Collapse
Affiliation(s)
- J. Fuentes-Antrás
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - A. M. Ioan
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - J. Tuñón
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - J. Egido
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Ó. Lorenzo
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- *Ó. Lorenzo:
| |
Collapse
|
37
|
Wendling D, Abbas W, Godfrin-Valnet M, Guillot X, Khan KA, Cedoz JP, Baud L, Prati C, Herbein G. Resveratrol, a sirtuin 1 activator, increases IL-6 production by peripheral blood mononuclear cells of patients with knee osteoarthritis. Clin Epigenetics 2013; 5:10. [PMID: 23844973 PMCID: PMC3716931 DOI: 10.1186/1868-7083-5-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/03/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sirtuin 1 (Sirt1) is a nuclear enzyme from the class III histone deacetylases that modulates gene expression and is involved in bone and cartilage remodeling. The goal of our study was to evaluate Sirt1 activity in peripheral blood mononuclear cells in patients with osteoarthritis in comparison with control patients, and to determine the relationship between Sirt1 activity and production of TNFα, IL-6 and IL-8 by peripheral blood mononuclear cells after ex vivo treatment with resveratrol, a Sirt1 activator. RESULTS A prospective study was performed to compare the activity of Sirt1 in patients with primary osteoarthritis of the knee (American College of Rheumatology criteria) with its activity in controls. Peripheral blood mononuclear cells were isolated from peripheral blood, and Sirt1 activity evaluated from cytoplasmic and nuclear compartments using a fluorometric assay. Culture supernatant levels of TNFα, IL-6, and IL-8 were quantified before and after resveratrol ex vivo treatment. Nineteen patients with symptomatic knee osteoarthritis (age 64 ±9 years) and 18 controls (age 54 ±13 years) were included. No differences were found in cytoplasmic or nuclear Sirt1 activity between patients and controls. After resveratrol treatment, no changes in TNFα or IL-8 levels were found, but a significant dose-dependent increase in IL-6 levels was demonstrated in patients with osteoarthritis, but not controls. Sirt1 activity did not correlate with clinical activity (Lequesne's index) or inflammation (erythrocyte sedimentation rate, C-reactive protein). CONCLUSION Sirt1 activity (cytoplasmic and nuclear) from peripheral blood mononuclear cells did not differ between patients with osteoarthritis and controls. Ex vivo treatment of peripheral blood mononuclear cells with resveratrol was associated with a dose-dependent increase in IL-6 levels only in patients with osteoarthritis.
Collapse
Affiliation(s)
- Daniel Wendling
- Department of Rheumatology, CHRU de Besançon, Boulevard Fleming, F-25030 Besançon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|