1
|
Liu G, Yang J, Li R, Li W, Liu D, Zhang N, Zhao Y, He Z, Gu S. Roles of N 6-methyladenosine in LncRNA changes and oxidative damage in cadmium-induced pancreatic β-cells. Toxicology 2025; 511:154053. [PMID: 39798863 DOI: 10.1016/j.tox.2025.154053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
N6-methyladenosine (m6A) modification and LncRNAs play crucial regulatory roles in various pathophysiological processes, yet roles of m6A modification and the relationship between m6A modification and LncRNAs in cadmium-induced oxidative damage of pancreatic β-cells have not been fully elucidated. In this study, m6A agonist entacapone and inhibitor 3-deazadenosine were used to identify the effects of m6A on cadmium-induced oxidative damage as well as LncRNA changes. Our results indicate that elevated levels of m6A modification by entacapone can rescue the cell viability and attenuate the cell apoptosis, while the inhibition levels of m6A modification can exacerbate the cell death. Furthermore, the elevation of m6A modification can recover cadmium-induced oxidative damage to pancreatic β-cells, which characterized as inhibition the ROS accumulation, MDA contents, protein expressions of Nrf2 and Ho-1, while elevation the expressions of Sod1 and Gclc. On the contrary, the reduction levels of m6A modification can exacerbate the cadmium-induced oxidative damage. More importantly, six significantly differentially expressed LncRNAs were selected according to our preliminary sequencing data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE253072) and there is a clear correlation between the levels of these LncRNAs and m6A modification after cadmium treatment. Interestingly, the intervention of m6A modification levels can significantly affect the levels of these LncRNAs. In detail, the stimulation of m6A modification reversed the changes of cadmium-induced LncRNAs, while the m6A modification inhibition can significantly exacerbate the changes of cadmium-induced LncRNAs. In conclusion, our data revealed critical roles of m6A modification in cadmium-induced LncRNAs and oxidative damage. Our findings point to a new direction for future studies on the molecular mechanisms of pancreatic β-cell damage induced by cadmium.
Collapse
Affiliation(s)
- Guofen Liu
- School of Public Health, Dali University, Dali, Yunnan, China; Yiyang Vocational and Technical College, Yiyang, Hunan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Jie Yang
- College of Engineering, Dali University, Dali, Yunnan, China
| | - Rongxian Li
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Wenhong Li
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - De Liu
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Nan Zhang
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Yuan Zhao
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Zuoshun He
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Shiyan Gu
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China.
| |
Collapse
|
2
|
de Almeida Chuffa LG, Seiva FRF, Silveira HS, Cesário RC, da Silva Tonon K, Simão VA, Zuccari DAPC, Reiter RJ. Melatonin regulates endoplasmic reticulum stress in diverse pathophysiological contexts: A comprehensive mechanistic review. J Cell Physiol 2024; 239:e31383. [PMID: 39039752 DOI: 10.1002/jcp.31383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The endoplasmic reticulum (ER) is crucial for protein quality control, and disruptions in its function can lead to various diseases. ER stress triggers an adaptive response called the unfolded protein response (UPR), which can either restore cellular homeostasis or induce cell death. Melatonin, a safe and multifunctional compound, shows promise in controlling ER stress and could be a valuable therapeutic agent for managing the UPR. By regulating ER and mitochondrial functions, melatonin helps maintain cellular homeostasis via reduction of oxidative stress, inflammation, and apoptosis. Melatonin can directly or indirectly interfere with ER-associated sensors and downstream targets of the UPR, impacting cell death, autophagy, inflammation, molecular repair, among others. Crucially, this review explores the mechanistic role of melatonin on ER stress in various diseases including liver damage, neurodegeneration, reproductive disorders, pulmonary disease, cardiomyopathy, insulin resistance, renal dysfunction, and cancer. Interestingly, while it alleviates the burden of ER stress in most pathological contexts, it can paradoxically stimulate ER stress in cancer cells, highlighting its intricate involvement in cellular homeostasis. With numerous successful studies using in vivo and in vitro models, the continuation of clinical trials is imperative to fully explore melatonin's therapeutic potential in these conditions.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Henrique S Silveira
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Roberta Carvalho Cesário
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Karolina da Silva Tonon
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vinicius Augusto Simão
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Debora Aparecida P C Zuccari
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, Texas, USA
| |
Collapse
|
3
|
Sadeghi A, Niknam M, Momeni-Moghaddam MA, Shabani M, Aria H, Bastin A, Teimouri M, Meshkani R, Akbari H. Crosstalk between autophagy and insulin resistance: evidence from different tissues. Eur J Med Res 2023; 28:456. [PMID: 37876013 PMCID: PMC10599071 DOI: 10.1186/s40001-023-01424-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Insulin is a critical hormone that promotes energy storage in various tissues, as well as anabolic functions. Insulin resistance significantly reduces these responses, resulting in pathological conditions, such as obesity and type 2 diabetes mellitus (T2DM). The management of insulin resistance requires better knowledge of its pathophysiological mechanisms to prevent secondary complications, such as cardiovascular diseases (CVDs). Recent evidence regarding the etiological mechanisms behind insulin resistance emphasizes the role of energy imbalance and neurohormonal dysregulation, both of which are closely regulated by autophagy. Autophagy is a conserved process that maintains homeostasis in cells. Accordingly, autophagy abnormalities have been linked to a variety of metabolic disorders, including insulin resistance, T2DM, obesity, and CVDs. Thus, there may be a link between autophagy and insulin resistance. Therefore, the interaction between autophagy and insulin function will be examined in this review, particularly in insulin-responsive tissues, such as adipose tissue, liver, and skeletal muscle.
Collapse
Affiliation(s)
- Asie Sadeghi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Bastin
- Clinical Research Development Center "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Li X, Wan T, Li Y. Role of FoxO1 in regulating autophagy in type 2 diabetes mellitus (Review). Exp Ther Med 2021; 22:707. [PMID: 34007316 PMCID: PMC8120662 DOI: 10.3892/etm.2021.10139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major chronic disease that is characterized by pancreatic β-cell dysfunction and insulin resistance. Autophagy is a highly conserved intracellular recycling pathway and is involved in regulating intracellular homeostasis. Transcription factor Forkhead box O1 (FoxO1) also regulates fundamental cellular processes, including cell differentiation, metabolism and apoptosis, and proliferation to cellular stress. Increasing evidence suggest that autophagy and FoxO1 are involved in the pathogenesis of T2DM, including β-cell viability, apoptosis, insulin secretion and peripheral insulin resistance. Recent studies have demonstrated that FoxO1 improves insulin resistance by regulating target tissue autophagy. The present review summarizes current literature on the role of autophagy and FoxO1 in T2DM. The participation of FoxO1 in the development and occurrence of T2DM via autophagy is also discussed.
Collapse
Affiliation(s)
- Xiudan Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tingting Wan
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanbo Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
5
|
Šrámek J, Němcová-Fürstová V, Kovář J. Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells. Int J Mol Sci 2021; 22:4285. [PMID: 33924206 PMCID: PMC8074590 DOI: 10.3390/ijms22084285] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell failure and death contribute significantly to the pathogenesis of type 2 diabetes. One of the main factors responsible for β-cell dysfunction and subsequent cell death is chronic exposure to increased concentrations of FAs (fatty acids). The effect of FAs seems to depend particularly on the degree of their saturation. Saturated FAs induce apoptosis in pancreatic β-cells, whereas unsaturated FAs are well tolerated and are even capable of inhibiting the pro-apoptotic effect of saturated FAs. Molecular mechanisms of apoptosis induction by saturated FAs in β-cells are not completely elucidated. Saturated FAs induce ER stress, which in turn leads to activation of all ER stress pathways. When ER stress is severe or prolonged, apoptosis is induced. The main mediator seems to be the CHOP transcription factor. Via regulation of expression/activity of pro- and anti-apoptotic Bcl-2 family members, and potentially also through the increase in ROS production, CHOP switches on the mitochondrial pathway of apoptosis induction. ER stress signalling also possibly leads to autophagy signalling, which may activate caspase-8. Saturated FAs activate or inhibit various signalling pathways, i.e., p38 MAPK signalling, ERK signalling, ceramide signalling, Akt signalling and PKCδ signalling. This may lead to the activation of the mitochondrial pathway of apoptosis, as well. Particularly, the inhibition of the pro-survival Akt signalling seems to play an important role. This inhibition may be mediated by multiple pathways (e.g., ER stress signalling, PKCδ and ceramide) and could also consequence in autophagy signalling. Experimental evidence indicates the involvement of certain miRNAs in mechanisms of FA-induced β-cell apoptosis, as well. In the rather rare situations when unsaturated FAs are also shown to be pro-apoptotic, the mechanisms mediating this effect in β-cells seem to be the same as for saturated FAs. To conclude, FA-induced apoptosis rather appears to be preceded by complex cross talks of multiple signalling pathways. Some of these pathways may be regulated by decreased membrane fluidity due to saturated FA incorporation. Few data are available concerning molecular mechanisms mediating the protective effect of unsaturated FAs on the effect of saturated FAs. It seems that the main possible mechanism represents a rather inhibitory intervention into saturated FA-induced pro-apoptotic signalling than activation of some pro-survival signalling pathway(s) or metabolic interference in β-cells. This inhibitory intervention may be due to an increase of membrane fluidity.
Collapse
Affiliation(s)
- Jan Šrámek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | - Vlasta Němcová-Fürstová
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | | |
Collapse
|
6
|
Behl T, Sehgal A, Bala R, Chadha S. Understanding the molecular mechanisms and role of autophagy in obesity. Mol Biol Rep 2021; 48:2881-2895. [PMID: 33797660 DOI: 10.1007/s11033-021-06298-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Vital for growth, proliferation, subsistence, and thermogenesis, autophagy is the biological cascade, which confers defence against aging and various pathologies. Current research has demonstrated de novo activity of autophagy in stimulation of biological events. There exists a significant association between autophagy activation and obesity, encompassing expansion of adipocytes which facilitates β cell activity. The main objective of the manuscript is to enumerate intrinsic role of autophagy in obesity and associated complications. The peer review articles published till date were searched using medical databases like PubMed and MEDLINE for research, primarily in English language. Obesity is characterized by adipocytic hypertrophy and hyperplasia, which leads to imbalance of lipid absorption, free fatty acid release, and mitochondrial activity. Detailed evaluation of obesity progression is necessary for its treatment and related comorbidities. Data collected in regard to etiological sustaining of obesity, has revealed hypothesized energy misbalance and neuro-humoral dysfunction, which is stimulated by autophagy. Autophagy regulates chief salvaging events for protein clustering, excessive triglycerides, and impaired mitochondria which is accompanied by oxidative and genotoxic stress in mammals. Autophagy is a homeostatic event, which regulates biological process by eliminating lethal cells and reprocessing physiological constituents, comprising of proteins and fat. Unquestionably, autophagy impairment is involved in metabolic syndromes, like obesity. According to an individual's metabolic outline, autophagy activation is essential for metabolism and activity of the adipose tissue and to retard metabolic syndrome i.e. obesity. The manuscript summarizes the perception of current knowledge on autophagy stimulation and its effect on the obesity.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
7
|
Yu Q, Yang S, Li Z, Zhu Y, Li Z, Zhang J, Li C, Feng F, Wang W, Zhang Q. The relationship between endoplasmic reticulum stress and autophagy in apoptosis of BEAS-2B cells induced by cigarette smoke condensate. Toxicol Res (Camb) 2021; 10:18-28. [PMID: 33613969 DOI: 10.1093/toxres/tfaa095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Cigarette smoke (CS) is one of the severe risk factors for the development of the pulmonary disease. However, the underlying mechanisms, especially the CS-induced the human bronchial epithelial cells (BEAS-2B) apoptosis related to endoplasmic reticulum stress (ERS) and autophagy, remains to be studied. This study aims to investigate the relationship between ERS and autophagy in apoptosis induced by CS condensate (CSC). BEAS-2B cells were stimulated with 0.02, 0.04 and 0.08 mg/ml CSC for 24 h to detect the ERS, autophagy and apoptosis. Then, ERS and autophagy of BEAS-2B cells were inhibited, respectively, by using 4-PBA and 3-MA, and followed by CSC treatment. The results showed that CSC decreased cell viability, increased cell apoptosis, elevated cleaved-caspase 3/pro-caspase 3 ratio and Bax expressions, but decreased Bcl-2 expressions. The GRP78 and CHOP expressions and LC3-II/LC3-I ratio were dose-dependently increased. The structure of the endoplasmic reticulum was abnormal and the number of autolysosomes was increased in BEAS-2B cells after CSC stimulation. The LC3-II/LC3-I ratio was decreased after ERS inhibition with 4-PBA, but GRP78 and CHOP expressions were enhanced after autophagy inhibition with 3-MA. CSC-induced apoptosis was further increased, Bax expressions and cleaved-caspase 3/pro-caspase 3 ratio were improved, but Bcl-2 expressions were decreased after 3-MA or 4-PBA treatment. In conclusion, the study indicates that ERS may repress apoptosis of BEAS-2B cells induced by CSC via activating autophagy, but autophagy relieves ERS in a negative feedback. This study provides better understanding and experimental support on the underlying mechanisms of pulmonary disease stimulated by CS.
Collapse
Affiliation(s)
- Qi Yu
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Sa Yang
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Zhongqiu Li
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Yonghang Zhu
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Zhenkai Li
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Jiatong Zhang
- Department of Disease Control and Prevention, Hospital of Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Chunyang Li
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| |
Collapse
|
8
|
De Marañon AM, Iannantuoni F, Abad-Jiménez Z, Canet F, Díaz-Pozo P, López-Domènech S, Jover A, Morillas C, Mariño G, Apostolova N, Rocha M, Victor VM. Relationship between PMN-endothelium interactions, ROS production and Beclin-1 in type 2 diabetes. Redox Biol 2020; 34:101563. [PMID: 32416353 PMCID: PMC7226867 DOI: 10.1016/j.redox.2020.101563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes is closely related to oxidative stress and cardiovascular diseases. In this study, we hypothesized that polymorphonuclear leukocytes (PMN)-endothelium interactions and autophagy are associated. We evaluated PMN-endothelial interactions, ROS production and autophagy parameters in 47 type 2 diabetic patients and 57 control subjects. PMNs from type 2 diabetic patients exhibited slower rolling velocity (p < 0.001), higher rolling flux (p < 0.001) and adhesion (p < 0.001) in parallel to higher levels of total (p < 0.05) and mitochondrial ROS (p < 0.05). When the protein expression of autophagy markers was analysed, an increase of Beclin-1 (p < 0.05), LC3I (p < 0.05), LC3II (p < 0.01) and LC3II/LC3I ratio (p < 0.05) was observed. Several correlations between ROS and leukocyte-endothelium parameters were found. Interestingly, in control subjects, an increase of Beclin-1 levels was accompanied by a decrease in the number of rolling (r = 0.561) and adhering PMNs (r = 0.560) and a rise in the velocity of the rolling PMNs (r = 0.593). In contrast, in the type 2 diabetic population, a rise in Beclin-1 levels was related to an increase in the number of rolling (r = 0.437), and adhering PMNs (r = 0.467). These results support the hypothesis that PMN-endothelium interactions, ROS levels and formation of autophagosomes, especially Beclin-1 levels, are enhanced in type 2 diabetes.
Collapse
Affiliation(s)
- Aranzazu M De Marañon
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Francesca Iannantuoni
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pedro Díaz-Pozo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Sandra López-Domènech
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Ana Jover
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011, Oviedo, Spain
| | - Nadezda Apostolova
- CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain.
| | - Victor M Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
9
|
The Mitochondrial Antioxidant SS-31 Modulates Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy in Type 2 Diabetes. J Clin Med 2019; 8:jcm8091322. [PMID: 31466264 PMCID: PMC6780723 DOI: 10.3390/jcm8091322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction has been shown to play a central role in the pathophysiology of type 2 diabetes (T2D), and mitochondria-targeted agents such as SS-31 are emerging as a promising strategy for its treatment. We aimed to study the effects of SS-31 on leukocytes from T2D patients by evaluating oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Sixty-one T2D patients and 53 controls were included. Anthropometric and analytical measurements were performed. We also assessed reactive oxygen species (ROS) production, calcium content, the expression of ER stress markers GRP78, CHOP, P-eIF2α, and autophagy-related proteins Beclin1, LC3 II/I, and p62 in leukocytes from T2D and control subjects treated or not with SS-31. Furthermore, we have evaluated the action of SS-31 on leukocyte-endothelium interactions. T2D patients exhibited elevated ROS concentration, calcium levels and presence of ER markers (GRP78 and CHOP gene expression, and GRP78 and P-eIF2α protein expression), all of which were reduced by SS-31 treatment. SS-31 also led to a drop in BECN1 gene expression, and Beclin1 and LC3 II/I protein expression in T2D patients. In contrast, the T2D group displayed reduced p62 protein levels that were restored by SS-31. SS-20 (with non-antioxidant activity) did not change any analyzed parameter. In addition, SS-31 decreased rolling flux and leukocyte adhesion, and increased rolling velocity in T2D patients. Our findings suggest that SS-31 exerts potentially beneficial effects on leukocytes of T2D patients modulating oxidative stress and autophagy, and ameliorating ER stress.
Collapse
|
10
|
Munder A, Moskovitz Y, Meir A, Kahremany S, Levy L, Kolitz-Domb M, Cohen G, Shtriker E, Viskind O, Lellouche JP, Senderowitz H, Chessler SD, Korshin EE, Ruthstein S, Gruzman A. Neuroligin-2-derived peptide-covered polyamidoamine-based (PAMAM) dendrimers enhance pancreatic β-cells' proliferation and functions. MEDCHEMCOMM 2019; 10:280-293. [PMID: 30881615 PMCID: PMC6390468 DOI: 10.1039/c8md00419f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
Abstract
Pancreatic β-cell membranes and presynaptic areas of neurons contain analogous protein complexes that control the secretion of bioactive molecules. These complexes include the neuroligins (NLs) and their binding partners, the neurexins (NXs). It has been recently reported that both insulin secretion and the proliferation rates of β-cells increase when cells are co-cultured with full-length NL-2 clusters. The pharmacological use of full-length protein is always problematic due to its unfavorable pharmacokinetic properties. Thus, NL-2-derived short peptide was conjugated to the surface of polyamidoamine-based (PAMAM) dendrimers. This nanoscale composite improved β-cell functions in terms of the rate of proliferation, glucose-stimulated insulin secretion (GSIS), and functional maturation. This functionalized dendrimer also protected β-cells under cellular stress conditions. In addition, various novel peptidomimetic scaffolds of NL-2-derived peptide were designed, synthesized, and conjugated to the surface of PAMAM in order to increase the biostability of the conjugates. However, after being covered by peptidomimetics, PAMAM dendrimers were inactive. Thus, the original peptide-based PAMAM dendrimer is a leading compound for continued research that might provide a unique starting point for designing an innovative class of antidiabetic therapeutics that possess a unique mode of action.
Collapse
Affiliation(s)
- Anna Munder
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Yoni Moskovitz
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Aviv Meir
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Shirin Kahremany
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
- Department of Pharmacology , Cleveland Center for Membrane and Structural Biology , School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - Laura Levy
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Michal Kolitz-Domb
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Guy Cohen
- Skin Research Institute , Dead Sea and Arava Research Center , Masada , Israel
| | - Efrat Shtriker
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Olga Viskind
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Jean-Paul Lellouche
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
- Nanomaterials Research Center , Institute of Nanotechnology & Advanced Materials (BINA) , Bar-Ilan University , Ramat-Gan , Israel
| | - Hanoch Senderowitz
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Steven D Chessler
- Division of Endocrinology, Diabetes & Metabolism , Department of Medicine , University of California , Irvine , CA , USA
| | - Edward E Korshin
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Sharon Ruthstein
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Arie Gruzman
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| |
Collapse
|
11
|
Feng Q, Wang H, Pang J, Ji L, Han J, Wang Y, Qi X, Liu Z, Lu L. Prevention of Wogonin on Colorectal Cancer Tumorigenesis by Regulating p53 Nuclear Translocation. Front Pharmacol 2018; 9:1356. [PMID: 30532707 PMCID: PMC6265339 DOI: 10.3389/fphar.2018.01356] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor protein p53 plays an important role in the development and progression of colon cancer, and the subcellular organelle localization directly affects its function. Wogonin (5,7-dihydroxy-8-methoxyflavone), a mono-flavonoid extracted from root of Scutellaria baicalensis Georgi, possesses acceptable toxicity and has been used in colorectal cancer (CRC) chemoprevention in pre-clinical trials by oncologist. However, the underlying anti-colon cancer mechanisms of wogonin are not yet fully understood. In the present study, the effect of wogonin on the initiation and development of colitis-associated cancer through p53 nuclear translocation was explored. AOM-DSS CRC animal model and human CRC HCT-116 cell model were used to evaluate the in vivo and in vitro anti-colon cancer action of wogonin. We observed that wogonin showed a dramaticlly preventive effect on colon cancer. Our results showed that wogonin caused apoptotic cell death in human CRC HCT-116 cell through increased endoplasmic reticulum (ER) stress. Meanwhile, excessive ER stress facilitated the cytoplasmic localization of p53 through increasing phosphor-p53 at S315 and S376 sites, induced caspase-dependent apoptosis and inhibited autophagy. Furthermore, we verified the chemoprevention effect and toxicity of wogonin in vivo by utilizing an AOM-DSS colon cancer animal model. We found that wogonin not only reduced tumor multiplicity, preserved colon length to normal (6.79 ± 0.34 to 7.41 ± 0.56, P < 0.05) but also didn’t induce side effects on various organs. In conclusion, these results explain the anti-tumor effect of wogonin in CRC and suggest wogonin as a potential therapeutic candidate for the therapeutic strategy in CRC treatment.
Collapse
Affiliation(s)
- Qian Feng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haojia Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaying Pang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyan Ji
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiada Han
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Du Z, Xu S, Hu S, Yang H, Zhou Z, Sidhu K, Miao Y, Liu Z, Shen W, Reiter RJ, Hua J, Peng S. Melatonin attenuates detrimental effects of diabetes on the niche of mouse spermatogonial stem cells by maintaining Leydig cells. Cell Death Dis 2018; 9:968. [PMID: 30237484 PMCID: PMC6148071 DOI: 10.1038/s41419-018-0956-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus affects a large number of men of reproductive age and it usually leads to serious reproductive disorders. However, the underlying mechanisms and specific therapies still remain largely unknown. We observed Leydig cell loss in the testes of diabetic mice. Continuous high glycemic status of testes stimulated expression of Caspase12, Grp78, and Chop, the three ERS response factors; this might induce cell cycle arrest and apoptosis of Leydig cells in response to ERS. In these diabetic mouse models, melatonin alleviated apoptosis of testicular stromal cell induced by ERS, and promoted SSCs self-renewal by recovering Leydig cells secretion of CSF1 after 8 weeks of treatment. To explore the relationship between CSF-1 and ERS in Leydig cells, we treated Leydig tumor cell line with an activator Tuniamycin and an inhibitor 4-Phenylbutyrate of ERS. Our data showed that the CSF-1 expression in mouse Leydig cell lines decreased six-fold while reversely increasing five-fold in the 4-Phenylbutyrate-treated group. Thus, melatonin likely alleviates the loss of Leydig cells in diabetic testes and provides a healthier niche for SSCs to self-renew and continually provide healthy sperm for male fertility.
Collapse
Affiliation(s)
- Zhaoyu Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuanshuan Xu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuxian Hu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing, UNSW Medicine, Randwick, NSW, 2031, Australia
| | - Yiliang Miao
- College of Animal Science & Technology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, 150036, Harbin, China
| | - Wei Shen
- College of life sciences, Institute of Reproductive Sciences, Qingdao Agriculture University, 266109, Qingdao, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX78229-3900, USA
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Autophagy impairment in pancreatic acinar cells causes zymogen granule accumulation and pancreatitis. Biochem Biophys Res Commun 2018; 503:2576-2582. [DOI: 10.1016/j.bbrc.2018.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
|
14
|
Curcumin improves age-related and surgically induced osteoarthritis by promoting autophagy in mice. Biosci Rep 2018; 38:BSR20171691. [PMID: 29802156 PMCID: PMC6028754 DOI: 10.1042/bsr20171691] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
Reduced autophagy has been implied in chondrocyte death and osteoarthritis. Curcumin (Cur) owns therapeutic effect against osteoarthritis (OA) and enhances autophagy in various tumor cells. Whether the cartilage protection of curcumin is associated with autophagy promotion and the potential signaling pathway involved remains unclear. The present study aimed to investigate the role of autophagy in the anti-OA activity of curcumin using spontaneous and surgically induced OA mice model. Spontaneous and surgically induced OA mice model was established and treated with Cur. Articular cartilage destruction and proteoglycan loss were scored through Safranin O/Fast green staining. Apoptotic cell death was detected with TUNEL (terminal deoxynucleotidyl transferase-mediated dTUP-biotin nick end labeling assay) staining and Western blot for caspase-3, Bcl-2 associated X protein (Bax), and Bcl-2 (B-cell lymphoma-2). Light chain 3 (LC3) immunohistochemistry was used to evaluate autophagy. In vitro, primary chondrocytes were treated with interleukin 1 beta (IL-1β) and Cur. Autophagy was inhibited using 3-methyladenine. Apoptosis and autophagy were detected using flow cytometry and Western blotting assay. Curcumin treatment enhanced autophagy, reduced apoptosis, and cartilage loss in both OA models. In vitro, curcumin treatment improved IL-1β induced autophagy inhibition, cell viability decrease, and apoptosis. Mechanistically, in vivo studies suggested curcumin promoted autophagy through regulating Akt/mTOR pathway. In conclusion, our results demonstrate that curcumin-induced autophagy via Akt/mTOR signaling pathway contributes to the anti-OA effect of curcumin.
Collapse
|
15
|
Jung TW, Kyung EJ, Kim HC, Shin YK, Lee SH, Park ES, Hacımüftüoğlu A, Abd El-Aty AM, Jeong JH. Protectin DX Ameliorates Hepatic Steatosis by Suppression of Endoplasmic Reticulum Stress via AMPK-Induced ORP150 Expression. J Pharmacol Exp Ther 2018; 365:485-493. [PMID: 29572342 DOI: 10.1124/jpet.117.246686] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/20/2018] [Indexed: 09/02/2023] Open
Abstract
Docosahexaenoic acid (DHA) and its bioactive compounds may have suppressive effects on inflammation, endoplasmic reticulum (ER) stress, and insulin resistance. Protectin DX (PDX), a double lipoxygenase product from DHA has shown a suppressive effect on inflammation and insulin resistance. However, the effects of PDX on ER stress and hepatic steatosis have not been elucidated yet. Herein we report that PDX could stimulate the AMP-activated protein kinase (AMPK) phosphorylation, thereby upregulating oxygen-regulated protein 150 (ORP150) expression in a dose-dependent manner. Treatment of HepG2 cells with PDX attenuated the palmitate-induced triglyceride accumulation through regulation of the sterol regulatory element-binding protein 1 (SREBP1)-mediated pathway. To deal with the pharmacological significance in the protective effects of PDX on hepatic steatosis, we performed in vivo experiments. In a mouse model, the PDX administration would alleviate the high-fat diet-induced hepatic steatosis and trigger the hepatic AMPK phosphorylation and ORP150 expression. PDX improved palmitate-induced and HFD-induced impairment of hepatic lipid metabolism and steatosis through suppression of ER stress via an AMPK-ORP150-dependent pathway.
Collapse
Affiliation(s)
- Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Eun Jung Kyung
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Hyoung-Chun Kim
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Yong Kyu Shin
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Sung Hoon Lee
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Eon Sub Park
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Ahmet Hacımüftüoğlu
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - A M Abd El-Aty
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Ji Hoon Jeong
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| |
Collapse
|
16
|
Yoo YM, Park YC. Streptozotocin-Induced Autophagy Reduces Intracellular Insulin in Insulinoma INS-1E Cells. DNA Cell Biol 2018; 37:160-167. [PMID: 29485914 DOI: 10.1089/dna.2017.3874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Streptozotocin (STZ), a glucose analog, induces diabetes in experimental animals by inducing preferential cytotoxicity in pancreatic beta cells. We investigated whether STZ reduced the production of intracellular insulin through autophagy in insulinoma INS-1E cells. Typically, 2 mM STZ treatment for 24 h significantly decreased cell survival. STZ treatment led to significant decrease in phospho-AMP-activated protein kinase (p-AMPK) level; reduction in levels of phospho-protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α); significant reduction in levels of p85α, p110, phospho-serine and threonine kinase/protein kinase B (p-Akt/PKB) (Ser473), phospho-extracellular-regulated kinase (p-ERK), and phospho-mammalian target of rapamycin (p-mTOR); increase in levels of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase; decrease in B-cell lymphoma 2 (Bcl-2) expression; increase in Bcl-2-associated X protein (Bax) expression; increase in levels of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1; and reduction in production of intracellular insulin. These results suggest that insulin synthesis during STZ treatment involves autophagy in INS-1E cells and, subsequently, results in a decrease in intracellular production of insulin.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- 1 Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine , Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yung Chul Park
- 2 Division of Forest Science, Institute of Forest Science, College of Forest and Environmental Sciences , Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
17
|
Miao X, Gu Z, Liu Y, Jin M, Lu Y, Gong Y, Li L, Li C. The glucagon-like peptide-1 analogue liraglutide promotes autophagy through the modulation of 5'-AMP-activated protein kinase in INS-1 β-cells under high glucose conditions. Peptides 2018; 100:127-139. [PMID: 28712893 DOI: 10.1016/j.peptides.2017.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is a potent therapeutic agent for the treatment of diabetes and has been proven to protect pancreatic β-cells from glucotoxicity; however, its mechanisms of action are not entirely understood. Autophagy is a dynamic lysosomal degradation process that can protect organisms against metabolic stress. Studies have shown that autophagy plays a protective role in the survival of pancreatic β-cells under high glucose conditions. In the present study, we explored the role of autophagy in GLP-1-induced protection of pancreatic β-cells exposed to high glucose. We demonstrated that the GLP-1 analogue liraglutide increased autophagy in rat INS-1 β-cells, and inhibition of autophagy abated the anti-apoptosis effect of liraglutide under high glucose conditions. Our results also showed that activation of 5'-AMP-activated protein kinase (AMPK) reduced liraglutide-induced autophagy enhancement and inhibited liraglutide-induced protection of INS-1 β-cells from high glucose. These data suggest that GLP-1 may protect β-cells from glucotoxicity through promoting autophagy by the modulation of AMPK. Deeper insight into the molecular mechanisms linking autophagy and GLP-1-induced β-cell protection may reveal novel therapeutic targets to preserve β-cell mass.
Collapse
Affiliation(s)
- Xinyu Miao
- Department of Geriatric Endocrinology, General Hospital of PLA, Beijing, China
| | - Zhaoyan Gu
- Department of Geriatric Endocrinology, General Hospital of PLA, Beijing, China
| | - Yu Liu
- Department of Geriatric Endocrinology, General Hospital of PLA, Beijing, China
| | - Mengmeng Jin
- Department of Geriatric Endocrinology, General Hospital of PLA, Beijing, China
| | - Yanhui Lu
- Department of Geriatric Endocrinology, General Hospital of PLA, Beijing, China
| | - Yanping Gong
- Department of Geriatric Endocrinology, General Hospital of PLA, Beijing, China
| | - Lin Li
- Department of Endocrinology, General Hospital of The PLA Rocket Force, Beijing, China
| | - Chunlin Li
- Department of Geriatric Endocrinology, General Hospital of PLA, Beijing, China.
| |
Collapse
|
18
|
Lambelet M, Terra LF, Fukaya M, Meyerovich K, Labriola L, Cardozo AK, Allagnat F. Dysfunctional autophagy following exposure to pro-inflammatory cytokines contributes to pancreatic β-cell apoptosis. Cell Death Dis 2018; 9:96. [PMID: 29367588 PMCID: PMC5833699 DOI: 10.1038/s41419-017-0121-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes (T1D) results from β-cell destruction due to concerted action of both innate and adaptive immune responses. Pro-inflammatory cytokines, such as interleukin-1β and interferon-γ, secreted by the immune cells invading islets of Langerhans, contribute to pancreatic β-cell death in T1D. Cytokine-induced endoplasmic reticulum (ER) stress plays a central role in β-cell demise. ER stress can modulate autophagic response; however, no study addressed the regulation of autophagy during the pathophysiology of T1D. In this study, we document that cytokines activate the AMPK-ULK-1 pathway while inhibiting mTORC1, which stimulates autophagy activity in an ER stress-dependent manner. On the other hand, time-course analysis of LC3-II accumulation in autophagosomes revealed that cytokines block the autophagy flux in an ER stress independent manner, leading to the formation of large dysfunctional autophagosomes and worsening of ER stress. Cytokines rapidly impair lysosome function, leading to lysosome membrane permeabilization, Cathepsin B leakage and lysosomal cell death. Blocking cathepsin activity partially protects against cytokine-induced or torin1-induced apoptosis, whereas blocking autophagy aggravates cytokine-induced CHOP overexpression and β-cell apoptosis. In conclusion, cytokines stimulate the early steps of autophagy while blocking the autophagic flux, which aggravate ER stress and trigger lysosomal cell death. Restoration of autophagy/lysosomal function may represent a novel strategy to improve β-cell resistance in the context of T1D.
Collapse
Affiliation(s)
- Martine Lambelet
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Leticia F Terra
- Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Makiko Fukaya
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Kira Meyerovich
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Leticia Labriola
- Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Alessandra K Cardozo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Florent Allagnat
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
19
|
Ribeiro AC, Ferreira R, Freitas R. Plant Lectins: Bioactivities and Bioapplications. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64056-7.00001-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Demirtas L, Guclu A, Erdur FM, Akbas EM, Ozcicek A, Onk D, Turkmen K. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus. Indian J Med Res 2017; 144:515-524. [PMID: 28256459 PMCID: PMC5345297 DOI: 10.4103/0971-5916.200887] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The prevalence of diabetes mellitus (DM) is increasing secondary to increased consumption of food and decreased physical activity worldwide. Hyperglycaemia, insulin resistance and hypertrophy of pancreatic beta cells occur in the early phase of diabetes. However, with the progression of diabetes, dysfunction and loss of beta cells occur in both types 1 and 2 DM. Programmed cell death also named apoptosis is found to be associated with diabetes, and apoptosis of beta cells might be the main mechanism of relative insulin deficiency in DM. Autophagic cell death and apoptosis are not entirely distinct programmed cell death mechanisms and share many of the regulator proteins. These processes can occur in both physiologic and pathologic conditions including DM. Besides these two important pathways, endoplasmic reticulum (ER) also acts as a cell sensor to monitor and maintain cellular homeostasis. ER stress has been found to be associated with autophagy and apoptosis. This review was aimed to describe the interactions between apoptosis, autophagy and ER stress pathways in DM.
Collapse
Affiliation(s)
- Levent Demirtas
- Department of Internal Medicine, Erzincan University, Erzincan, Turkey
| | - Aydin Guclu
- Division of Nephrology, Kırsehir Training and Research Hospital, Kırsehir, Turkey
| | - Fatih Mehmet Erdur
- Department of Internal Medicine, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - Emin Murat Akbas
- Department of Internal Medicine, Erzincan University, Erzincan, Turkey
| | - Adalet Ozcicek
- Department of Internal Medicine, Erzincan University, Erzincan, Turkey
| | - Didem Onk
- Department of Reanimation & Anesthesiology, Erzincan University, Erzincan, Turkey
| | - Kultigin Turkmen
- Department of Internal Medicine, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| |
Collapse
|
21
|
VMP1-related autophagy induced by a fructose-rich diet in β-cells: its prevention by incretins. Clin Sci (Lond) 2017; 131:673-687. [PMID: 28188238 DOI: 10.1042/cs20170010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to demonstrate the role of autophagy and incretins in the fructose-induced alteration of β-cell mass and function. Normal Wistar rats were fed (3 weeks) with a commercial diet without (C) or with 10% fructose in drinking water (F) alone or plus sitagliptin (CS and FS) or exendin-4 (CE and FE). Serum levels of metabolic/endocrine parameters, β-cell mass, morphology/ultrastructure and apoptosis, vacuole membrane protein 1 (VMP1) expression and glucose-stimulated insulin secretion (GSIS) were studied. Complementary to this, islets isolated from normal rats were cultured (3 days) without (C) or with F and F + exendin-4 or chloroquine. Expression of autophagy-related proteins [VMP1 and microtubule-associated protein light chain 3 (LC3)], apoptotic/antiapoptotic markers (caspase-3 and Bcl-2), GSIS and insulin mRNA levels were measured. F rats developed impaired glucose tolerance (IGT) and a significant increase in plasma triacylglycerols, thiobarbituric acid-reactive substances, insulin levels, homoeostasis model assessment (HOMA) for insulin resistance (HOMA-IR) and β-cell function (HOMA-β) indices. A significant reduction in β-cell mass was associated with an increased apoptotic rate and morphological/ultrastructural changes indicative of autophagic activity. All these changes were prevented by either sitagliptin or exendin-4. In cultured islets, F significantly enhanced insulin mRNA and GSIS, decreased Bcl-2 mRNA levels and increased caspase-3 expression. Chloroquine reduced these changes, suggesting the participation of autophagy in this process. Indeed, F induced the increase of both VMP1 expression and LC3-II, suggesting that VMP1-related autophagy is activated in injured β-cells. Exendin-4 prevented islet-cell damage and autophagy development. VMP1-related autophagy is a reactive process against F-induced islet dysfunction, being prevented by exendin-4 treatment. This knowledge could help in the use of autophagy as a potential target for preventing progression from IGT to type 2 diabetes mellitus.
Collapse
|
22
|
Sinha RA, Singh BK, Yen PM. Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocr Rev 2017; 38:69-102. [PMID: 27901588 DOI: 10.1210/er.2016-1103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular quality control and energy-providing process that is under strict control by intra- and extracellular stimuli. Recently, there has been an exponential increase in autophagy research and its implications for mammalian physiology. Autophagy deregulation is now being implicated in many human diseases, and its modulation has shown promising results in several preclinical studies. However, despite the initial discovery of autophagy as a hormone-regulated process by De Duve in the early 1960s, endocrine regulation of autophagy still remains poorly understood. In this review, we provide a critical summary of our present understanding of the basic mechanism of autophagy, its regulation by endocrine hormones, and its contribution to endocrine and metabolic homeostasis under physiological and pathological settings. Understanding the cross-regulation of hormones and autophagy on endocrine cell signaling and function will provide new insight into mammalian physiology as well as promote the development of new therapeutic strategies involving modulation of autophagy in endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Brijesh K Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| |
Collapse
|
23
|
Adipocyte Fatty Acid Binding Protein Potentiates Toxic Lipids-Induced Endoplasmic Reticulum Stress in Macrophages via Inhibition of Janus Kinase 2-dependent Autophagy. Sci Rep 2017; 7:40657. [PMID: 28094778 PMCID: PMC5240568 DOI: 10.1038/srep40657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022] Open
Abstract
Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases.
Collapse
|
24
|
Melatonin-Mediated Intracellular Insulin during 2-Deoxy-d-glucose Treatment Is Reduced through Autophagy and EDC3 Protein in Insulinoma INS-1E Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2594703. [PMID: 27493704 PMCID: PMC4967467 DOI: 10.1155/2016/2594703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
2-DG triggers glucose deprivation without altering other nutrients or metabolic pathways and then activates autophagy via activation of AMPK and endoplasmic reticulum (ER) stress. We investigated whether 2-DG reduced intracellular insulin increased by melatonin via autophagy/EDC3 in insulinoma INS-1E cells. p-AMPK and GRP78/BiP level were significantly increased by 2-DG in the presence/absence of melatonin, but IRE1α level was reduced in 2-DG treatment. Levels of p85α, p110, p-Akt (Ser473, Thr308), and p-mTOR (Ser2481) were also significantly reduced by 2-DG in the presence/absence of melatonin. Mn-SOD increased with 2-DG plus melatonin compared to groups treated with/without melatonin alone. Bcl-2 was decreased and Bax increased with 2-DG plus melatonin. LC3II level increased with 2-DG treatment in the presence/absence of melatonin. Intracellular insulin production increased in melatonin plus 2-DG but reduced in treatment with 2-DG with/without melatonin. EDC3 was increased by 2-DG in the presence/absence of melatonin. Rapamycin, an mTOR inhibitor, increased GRP78/BiP and EDC3 levels in a dose-dependent manner and subsequently resulted in a decrease in intracellular production of insulin. These results suggest that melatonin-mediated insulin synthesis during 2-DG treatment involves autophagy and EDC3 protein in rat insulinoma INS-1E cells and subsequently results in a decrease in intracellular production of insulin.
Collapse
|
25
|
Abderrazak A, El Hadri K, Bosc E, Blondeau B, Slimane MN, Büchele B, Simmet T, Couchie D, Rouis M. Inhibition of the Inflammasome NLRP3 by Arglabin Attenuates Inflammation, Protects Pancreatic β-Cells from Apoptosis, and Prevents Type 2 Diabetes Mellitus Development in ApoE2Ki Mice on a Chronic High-Fat Diet. J Pharmacol Exp Ther 2016; 357:487-94. [PMID: 27044804 DOI: 10.1124/jpet.116.232934] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/31/2016] [Indexed: 03/08/2025] Open
Abstract
Intraperitoneal injection of arglabin (2.5 ng/g of body weight, twice daily, 13 weeks) into female human apolipoprotein E2 gene knock-in (ApoE2Ki) mice fed a high-fat Western-type diet (HFD) reduced plasma levels of glucose and insulin by ∼20.0% ± 3.5% and by 50.0% ± 2.0%, respectively, in comparison with vehicle-treated mice. Immunohistochemical analysis revealed the absence of active caspase-3 in islet sections from ApoE2Ki mice fed a HFD and treated with arglabin. In addition, arglabin reduced interleukin-1β (IL-1β) production in a concentration-dependent manner in Langerhans islets isolated from ApoE2Ki mice treated with lipopolysaccharide (LPS) and with cholesterol crystals. This inhibitory effect is specific for the inflammasome NOD-like receptor family, pyrin domain-containing 3 (NLRP3) because IL-1β production was abolished in Langerhans islets isolated from Nlrp3(-/-) mice. In the insulin-secreting INS-1 cells, arglabin inhibited, in a concentration-dependent manner, the maturation of pro-IL-1β into biologically active IL-1β probably through the inhibition of the maturation of procaspase-1 into active capsase-1. Moreover, arglabin reduced the susceptibility of INS-1 cells to apoptosis by increasing Bcl-2 levels. Similarly, autophagy activation by rapamycin decreased apoptosis susceptibility while autophagy inhibition by 3-methyladenin treatment promoted apoptosis. Arglabin further increased the expression of the autophagic markers Bcl2-interacting protein (Beclin-1) and microtubule-associated protein 1 light chain 3 II (LC3-II) in a concentration-dependent manner. Thus, arglabin reduces NLRP3-dependent inflammation as well as apoptosis in pancreatic β-cells in vivo and in the INS-1 cell line in vitro, whereas it increases autophagy in cultured INS-1 cells, indicating survival-promoting properties of the compound in these cells. Hence, arglabin may represent a new promising compound to treat inflammation and type 2 diabetes mellitus development.
Collapse
Affiliation(s)
- Amna Abderrazak
- Biological Adaptation and Ageing, Institute of Biology Paris-Seine, UMR-8256/INSERM ERL-U1164 (A.A., K.E.H., E.B., D.C., M.R.), and Cordeliers Research Center, INSERM, UMR 872 (N.B.), University Pierre & Marie Curie, Paris, France; Biochemistry Laboratory, Faculty of Medicine, Monastir, Tunisia (M.-N.S.); Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany (B.B., T.S.)
| | - Khadija El Hadri
- Biological Adaptation and Ageing, Institute of Biology Paris-Seine, UMR-8256/INSERM ERL-U1164 (A.A., K.E.H., E.B., D.C., M.R.), and Cordeliers Research Center, INSERM, UMR 872 (N.B.), University Pierre & Marie Curie, Paris, France; Biochemistry Laboratory, Faculty of Medicine, Monastir, Tunisia (M.-N.S.); Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany (B.B., T.S.)
| | - Elodie Bosc
- Biological Adaptation and Ageing, Institute of Biology Paris-Seine, UMR-8256/INSERM ERL-U1164 (A.A., K.E.H., E.B., D.C., M.R.), and Cordeliers Research Center, INSERM, UMR 872 (N.B.), University Pierre & Marie Curie, Paris, France; Biochemistry Laboratory, Faculty of Medicine, Monastir, Tunisia (M.-N.S.); Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany (B.B., T.S.)
| | - Bertrand Blondeau
- Biological Adaptation and Ageing, Institute of Biology Paris-Seine, UMR-8256/INSERM ERL-U1164 (A.A., K.E.H., E.B., D.C., M.R.), and Cordeliers Research Center, INSERM, UMR 872 (N.B.), University Pierre & Marie Curie, Paris, France; Biochemistry Laboratory, Faculty of Medicine, Monastir, Tunisia (M.-N.S.); Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany (B.B., T.S.)
| | - Mohamed-Naceur Slimane
- Biological Adaptation and Ageing, Institute of Biology Paris-Seine, UMR-8256/INSERM ERL-U1164 (A.A., K.E.H., E.B., D.C., M.R.), and Cordeliers Research Center, INSERM, UMR 872 (N.B.), University Pierre & Marie Curie, Paris, France; Biochemistry Laboratory, Faculty of Medicine, Monastir, Tunisia (M.-N.S.); Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany (B.B., T.S.)
| | - Berthold Büchele
- Biological Adaptation and Ageing, Institute of Biology Paris-Seine, UMR-8256/INSERM ERL-U1164 (A.A., K.E.H., E.B., D.C., M.R.), and Cordeliers Research Center, INSERM, UMR 872 (N.B.), University Pierre & Marie Curie, Paris, France; Biochemistry Laboratory, Faculty of Medicine, Monastir, Tunisia (M.-N.S.); Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany (B.B., T.S.)
| | - Thomas Simmet
- Biological Adaptation and Ageing, Institute of Biology Paris-Seine, UMR-8256/INSERM ERL-U1164 (A.A., K.E.H., E.B., D.C., M.R.), and Cordeliers Research Center, INSERM, UMR 872 (N.B.), University Pierre & Marie Curie, Paris, France; Biochemistry Laboratory, Faculty of Medicine, Monastir, Tunisia (M.-N.S.); Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany (B.B., T.S.)
| | - Dominique Couchie
- Biological Adaptation and Ageing, Institute of Biology Paris-Seine, UMR-8256/INSERM ERL-U1164 (A.A., K.E.H., E.B., D.C., M.R.), and Cordeliers Research Center, INSERM, UMR 872 (N.B.), University Pierre & Marie Curie, Paris, France; Biochemistry Laboratory, Faculty of Medicine, Monastir, Tunisia (M.-N.S.); Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany (B.B., T.S.)
| | - Mustapha Rouis
- Biological Adaptation and Ageing, Institute of Biology Paris-Seine, UMR-8256/INSERM ERL-U1164 (A.A., K.E.H., E.B., D.C., M.R.), and Cordeliers Research Center, INSERM, UMR 872 (N.B.), University Pierre & Marie Curie, Paris, France; Biochemistry Laboratory, Faculty of Medicine, Monastir, Tunisia (M.-N.S.); Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany (B.B., T.S.)
| |
Collapse
|
26
|
Wang Q, Duan LX, Xu ZS, Wang JG, Xi SM. The protective effect of the earthworm active ingredients on hepatocellular injury induced by endoplasmic reticulum stress. Biomed Pharmacother 2016; 82:304-11. [PMID: 27470367 DOI: 10.1016/j.biopha.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 02/01/2023] Open
Abstract
The earthworm is a widely used Chinese herbal medicine. There are more than 40 prescriptions including earthworms in the "Compendium of Materia Medica". TCM theory holds that earthworms exert antispasmodic and antipyretic effects through the liver meridian to calm the liver. However, the clinical effect of earthworms on liver injury has not been clearly demonstrated. We have previously established a method to extract the active ingredients from earthworms (hereinafter referred to as EWAs) [1]. In the present study, we observed protective effect of the EWAs on tunicamycin-induced ERS (endoplasmic reticulum stress) model in human hepatic L02 cells. The results showed that the EWAs promote proliferation and reduced apoptosis of ERS model in L02 cells (P<0.01). The up-regulation of ERS-related proteins, including PERK (protein kinase RNA-like endoplasmic reticulum kinase), eIF2a (eukaryotic translation initiation factor 2a), ATF4 (activating transcription factor 4) and CHOP (CCAAT/enhancer binding protein homologous protein), in L02 cell under ERS was inhibited by treatment of the EWAs (P<0.01). In summary, our data suggest the EWAs can significant attenuate ERS-induced hepatocyte injury via PERK-eIF2a-ATF4 pathway.
Collapse
Affiliation(s)
- Qi Wang
- Medical School, Henan University of Science and Technology, Luoyang 471003, China
| | - Leng-Xin Duan
- Medical School, Henan University of Science and Technology, Luoyang 471003, China.
| | - Zheng-Shun Xu
- Medical School, Henan University of Science and Technology, Luoyang 471003, China
| | - Jian-Gang Wang
- Medical School, Henan University of Science and Technology, Luoyang 471003, China
| | - Shou-Min Xi
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
27
|
A novel copper(I) complex induces ER-stress-mediated apoptosis and sensitizes B-acute lymphoblastic leukemia cells to chemotherapeutic agents. Oncotarget 2015; 5:5978-91. [PMID: 24980813 PMCID: PMC4171606 DOI: 10.18632/oncotarget.2027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A phosphine copper(I) complex [Cu(thp)4][PF6] (CP) was recently identified as an efficient in vitro antitumor agent. In this study, we evaluated the antiproliferative activity of CP in leukemia cell lines finding a significant efficacy, especially against SEM and RS4;11 cells. Immunoblot analysis showed the activation of caspase-12 and caspase-9 and of the two effector caspase-3 and -7, suggesting that cell death occurred in a caspase-dependent manner. Interestingly we did not observe mitochondrial involvement in the process of cell death. Measures on semipurified proteasome from RS4;11 and SEM cell extracts demonstrated that chymotrypsin-, trypsin- and caspase-like activity decreased in the presence of CP. Moreover, we found an accumulation of ubiquitinated proteins and a remarkable increase of ER stress markers: GRP78, CHOP, and the spliced form of XBP1. Accordingly, the protein synthesis inhibitor cycloheximide significantly protected cancer cells from CP-induced cell death, suggesting that protein synthesis machinery was involved. In well agreement with results obtained on stabilized cell lines, CP induced ER-stress and apoptosis also in primary cells from B-acute lymphoblastic leukemia patients. Importantly, we showed that the combination of CP with some chemotherapeutic drugs displayed a good synergy that strongly affected the survival of both RS4;11 and SEM cells.
Collapse
|
28
|
Evaluation of cytotoxic activity of titanocene difluorides and determination of their mechanism of action in ovarian cancer cells. Invest New Drugs 2015. [DOI: 10.1007/s10637-015-0274-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Shi L, Zhang T, Liang X, Hu Q, Huang J, Zhou Y, Chen M, Zhang Q, Zhu J, Mi M. Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway. Mol Cell Endocrinol 2015; 409:92-102. [PMID: 25797177 DOI: 10.1016/j.mce.2015.03.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 01/10/2023]
Abstract
Skeletal muscle insulin resistance (SMIR) plays an important role in the pathogenesis of type 2 diabetes. Dihydromyricetin (DHM), a natural flavonoid, exerts various bioactivities including anti-oxidative and hepatoprotective effects. Herein, we intended to determine the effect of DHM on SMIR and the underlying mechanisms. We found that DHM increased the expression of phosphorylated insulin receptor substrate-1, phosphorylated Akt and glucose uptake capacity in palmitate-treated L6 myotubes under insulin-stimulated conditions. The expression of light chain 3, Beclin 1, autophagy-related gene 5 (Atg5), the degradation of sequestosome 1 and the formation of autophagosomes were also upregulated by DHM. Suppression of autophagy by 3-methyladenine and bafilomycin A1 or Atg5 and Beclin1 siRNA abolished the favorable effects of DHM on SMIR. Furthermore, DHM increased the levels of phosphorylated AMP-activated protein kinase (AMPK) and Ulk1, and decreased phosphorylated mTOR levels. AMPK inhibitor compound C (CC) and AMPK siRNA abrogated DHM-induced autophagy, subsequently suppressed DHM-induced SMIR improvement. Additionally, DHM inhibited the activity of F1F0-ATPase thereby activating AMPK. Finally, the results of in vivo study conducted in high fat diet-fed rats were consistent with the findings of in vitro study. In conclusion, DHM improved SMIR by inducing autophagy via the activation of AMPK signaling pathway.
Collapse
Affiliation(s)
- Linying Shi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing 400038, China
| | - Ting Zhang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing 400038, China
| | - Xinyu Liang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing 400038, China
| | - Qin Hu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing 400038, China
| | - Juan Huang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing 400038, China
| | - Yong Zhou
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing 400038, China
| | - Mingliang Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing 400038, China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing 400038, China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing 400038, China.
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing 400038, China.
| |
Collapse
|
30
|
Narabayashi K, Ito Y, Eid N, Maemura K, Inoue T, Takeuchi T, Otsuki Y, Higuchi K. Indomethacin suppresses LAMP-2 expression and induces lipophagy and lipoapoptosis in rat enterocytes via the ER stress pathway. J Gastroenterol 2015; 50:541-554. [PMID: 25212253 DOI: 10.1007/s00535-014-0995-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/20/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Indomethacin enhances small intestinal epithelial cell apoptosis, which may account for mucosal ulceration. However, the involvement of autophagy in indomethacin-induced enterocyte damage is unreported. METHODS Using light microscopy and electron microscopy techniques, Western blot analysis, and pharmacological inhibition of autophagy, we investigated the autophagic response of cultured rat enterocytes to indomethacin treatment (200 µM) at various time points. Furthermore, autophagy was examined in enterocytes of rats given indomethacin by gavage (10 mg/kg). RESULTS Our data indicate that indomethacin induced accumulation of cytoplasmic lipid droplets (LDs) in cultured enterocytes, which was associated with time-dependent autophagic responses. Initially (0-6 h), mediated by endoplasmic reticulum stress and suppression of mammalian target of rapamycin, a predominant cytoprotective lipophagy was activated in indomethacin-treated enterocytes, as evidenced by induction and colocalization of LC3-II with LDs, excessive formation of autophagosomes sequestering LDs (autolipophagosomes; ALPs), and decreased viability of enterocytes on blocking autophagy with 3-methyladenine. On prolonged exposure to indomethacin (6-24 h), there was a decrease of LAMP-2 expression in enterocytes coupled with accumulation of ALPs and LDs with fewer autolysosomes in addition to an elevation of lipoapoptosis. These time-dependent autophagic and apoptotic responses to indomethacin treatment were detected in enterocytes of indomethacin-treated rats, confirming in vitro results. CONCLUSIONS The findings of this study describe a novel mechanism of enterocyte damage by indomethacin mediated by endoplasmic reticulum stress, accumulation of LDs, and subsequent activation of the early phase of cytoprotective lipophagy. This is followed by a late phase characterized by reduced expression of lysosomal autophagic proteins, accumulation of ALPs, and enhanced lipoapoptosis.
Collapse
Affiliation(s)
- Ken Narabayashi
- Second Department of Internal Medicine, Osaka Medical College, Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yin J, Wang Y, Gu L, Fan N, Ma Y, Peng Y. Palmitate induces endoplasmic reticulum stress and autophagy in mature adipocytes: implications for apoptosis and inflammation. Int J Mol Med 2015; 35:932-40. [PMID: 25647410 PMCID: PMC4356450 DOI: 10.3892/ijmm.2015.2085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/19/2015] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and inflammation induced by obesity lead to adipocyte dysfunction, with the impairment of the insulin pathway. Recent studies have indicated that understanding the physiological role of autophagy is of great significance. In the present study, an in vitro model was used in which 3T3-L1 adipocytes were pre-loaded with palmitate (PA) to generate artificially hypertrophied mature adipocytes. PA induced an autophagic flux, determined by an increased microtubule-associated protein 1 light chain 3 (LC3)-II formation, as shown by western blot analysis and fluorescence microscopy, and was confirmed using transmission electron microscopy (TEM). Using TEM and western blot analysis, we observed increased ER stress in response to PA, as indicated by the increased levels of the ER stress markers, BiP, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and the phosphoralytion of eukaryotic translation initiation factor 2α and c-Jun N-terminal kinase (JNK). Of note, we observed that the PA-induced ER stress occurred prior to the activation of autophagy. We confirmed that autophagy was induced in response to JNK-dependent ER stress, as autophagy was suppressed by treatment with the ER stress inhibitor, 4-phenyl butyrate (4-PBA), and the JNK inhibitor, SP600125. Upon the inhibition of autophagy using chloroquine (CQ), we observed exacerbated ER stress and an increased level of cell death. Importantly, to determine whether autophagy is linked to inflammation, the autophagy inhibitor, 3-methyladenine (3-MA) was used. The inhibition of autophagy led to a further increase in the PA-induced expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6). Consistently, such an increase was also observed following treatment with SP600125. In conclusion, our data indicate that PA elicits a ER stress-JNK-autophagy axis, and that this confers a pro-survival effect against PA-induced cell death and stress in hypertrophied adipocytes. The JNK-dependent activation of autophagy diminishes PA-induced inflammation. Therefore, the stimulation of autophagy may become a method with which to attenuate adipocyte dysfunction and inflammation.
Collapse
Affiliation(s)
- Jiajing Yin
- Department of Endocrinology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yufan Wang
- Department of Endocrinology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Liping Gu
- Department of Endocrinology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Nengguang Fan
- Department of Endocrinology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yuhang Ma
- Department of Endocrinology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yongde Peng
- Department of Endocrinology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
32
|
Rapamycin improves palmitate-induced ER stress/NF κ B pathways associated with stimulating autophagy in adipocytes. Mediators Inflamm 2015; 2015:272313. [PMID: 25653476 PMCID: PMC4310475 DOI: 10.1155/2015/272313] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/15/2022] Open
Abstract
Obesity-induced endoplasmic reticulum (ER) stress and inflammation lead to adipocytes dysfunction. Autophagy helps to adapt to cellular stress and involves in regulating innate inflammatory response. In present study, we examined the activity of rapamycin, a mTOR kinase inhibitor, against endoplasmic reticulum stress and inflammation in adipocytes. An in vitro model was used in which 3T3-L1 adipocytes were preloaded with palmitate (PA) to generate artificial hypertrophy mature adipocytes. Elevated autophagy flux and increased number of autophagosomes were observed in response to PA and rapamycin treatment. Rapamycin attenuated PA-induced PERK and IRE1-associated UPR pathways, evidenced by decreased protein levels of eIF2α phosphorylation, ATF4, CHOP, and JNK phosphorylation. Inhibiting autophagy with chloroquine (CQ) exacerbated these ER stress markers, indicating the role of autophagy in ameliorating ER stress. In addition, cotreatment of CQ abolished the anti-ER stress effects of rapamycin, which confirms the effect of rapamycin on ERs is autophagy-dependent. Furthermore, rapamycin decreased PA-induced nuclear translocation of NFκB P65 subunit, thereby NFκB-dependent inflammatory cytokines MCP-1 and IL-6 expression and secretion. In conclusion, rapamycin attenuated PA-induced ER stress/NFκB pathways to counterbalance adipocytes stress and inflammation. The beneficial of rapamycin in this context partly depends on autophagy. Stimulating autophagy may become a way to attenuate adipocytes dysfunction.
Collapse
|
33
|
Zhang Y, Ye M, Chen LJ, Li M, Tang Z, Wang C. Role of the ubiquitin-proteasome system and autophagy in regulation of insulin sensitivity in serum-starved 3T3-L1 adipocytes. Endocr J 2015; 62:673-86. [PMID: 25959705 DOI: 10.1507/endocrj.ej15-0030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) and autophagy are two conserved intracellular proteolytic pathways, responsible for degradation of most cellular proteins in living cells. Currently, both the UPS and autophagy have been suggested to be associated with pathogenesis of insulin resistance and diabetes. However, underlying mechanism remains largely unknown. The purpose of the present study is to investigate the impact of the UPS and autophagy on insulin sensitivity in serum-starved 3T3-L1 adipocytes. Our results show that serum depletion resulted in activation of the UPS and autophagy, accompanied with increased insulin sensitivity. Inhibition of the UPS with bortezomib (BZM), a highly selective, reversible 26S proteasome inhibitor induced compensatory activation of autophagy but did not affect significantly insulin action. Genetic and pharmacological inhibition of autophagy dramatically mitigated serum starvation-elevated insulin sensitivity. In addition, autophagy inhibition compromised UPS function and led to endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Inability of the UPS by BMZ exacerbated autophagy inhibition-induced ER stress and UPR. These results suggest that protein quality control maintained by the UPS and autophagy is required for preserving insulin sensitivity. Importantly, adaptive activation of autophagy plays a critical role in serum starvation-induced insulin sensitization in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yemin Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
34
|
Lee MS. Role of islet β cell autophagy in the pathogenesis of diabetes. Trends Endocrinol Metab 2014; 25:620-7. [PMID: 25242548 DOI: 10.1016/j.tem.2014.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/17/2014] [Accepted: 08/24/2014] [Indexed: 01/03/2023]
Abstract
While the role of autophagy in the physiology of endocrine organs and the development of metabolic disorders or diabetes has been investigated, the relationship between the pancreatic islet and autophagy has not been explored extensively. In this review, studies on the possible involvement of dysregulated autophagy in the pathogenesis of metabolic syndrome and diabetes will be summarized with an emphasis on the autophagic process in pancreatic islet β cells. Novel findings regarding the role of autophagy in human β cell pathology and the development of type 2 diabetes (T2D) characterized by islet amyloid deposition will be discussed. Careful design of agents enhancing autophagic activity in β cells might serve as a novel approach towards therapeutics for the treatment of diabetes.
Collapse
Affiliation(s)
- Myung-Shik Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea.
| |
Collapse
|
35
|
Inflammation and ER stress downregulate BDH2 expression and dysregulate intracellular iron in macrophages. J Immunol Res 2014; 2014:140728. [PMID: 25762501 PMCID: PMC4267003 DOI: 10.1155/2014/140728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022] Open
Abstract
Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2) protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1) leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.
Collapse
|
36
|
Yang L, Zhao D, Ren J, Yang J. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:209-18. [PMID: 24846717 DOI: 10.1016/j.bbadis.2014.05.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/03/2014] [Accepted: 05/06/2014] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress, together with the unfolded protein response (UPR), is initially considered an adaptive response aiming at maintenance of ER homeostasis. Nonetheless, ER stress, when in excess, can eventually trigger cell apoptosis and loss of function. UPR is mediated by three major transmembrane proteins, including inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor (ATF) 6. A unique role has been speculated for ER stress in the pathogenesis of diabetes mellitus (DM) and its complications. Recent studies have shown that ER stress is an early event associated with diabetic cardiomyopathy, and may be triggered by hyperglycemia, free fatty acids (FFAs) and inflammation. In this mini-review, we attempted to discuss the activation machinery for ER stress in response to these triggers en route to disrupted ER function and cellular autophagy or apoptosis, ultimately insulin resistance and development of diabetic cardiomyopathy. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Lifang Yang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Dajun Zhao
- Department of Cardiac Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA.
| | - Jian Yang
- Department of Cardiac Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
37
|
Zhang X, Xu W, Su J, Chu M, Jin H, Li G, Tan C, Wang X, Wang C. The prosurvival role of autophagy in resveratrol-induced cytotoxicity in GH3 cells. Int J Mol Med 2014; 33:987-93. [PMID: 24534837 DOI: 10.3892/ijmm.2014.1660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/05/2014] [Indexed: 11/06/2022] Open
Abstract
In a previous study, we reported that resveratrol exerts antitumor effects through the estrogen receptor in prolactinoma. The autophagy/lysosomal degradation pathway plays an important role in damage control and energy efficiency. In this study, we investigated the involvement of autophagy and the related signaling pathways in resveratrol-induced apoptosis of GH3 cells. We demonstrate that resveratrol inhibits cell proliferation and induces apoptosis in a dose-dependent manner in GH3 cells. The cleavage of PARP was also observed, and the activation of caspase-3 and caspase-8 was detected. Consistent with this finding, the inhibition of caspase activation effectively attenuated resveratrol-induced cell apoptosis. In addition, the decreased level of Bcl-2 was also observed. The induction of autophagy was confirmed by the detection of the formation of autophagic vacuoles, and the increase in microtubule-associated protein 1 light chain 3 (LC3)-II and beclin-1 levels, two hallmarks of autophagy. Pre-treatment with bafilomycin A1 or 3-methyladenine, inhibitors of autophagy, enhanced the resveratrol-mediated caspase activation and cell death. Moreover, resveratrol induced the activation of ERK1/2, as well as the downregulation of Akt and mTOR phosphorylation. Taken together, these findings indicate that resveratrol induces caspase-dependent apoptosis and decreases Bcl-2 levels. In addition, resveratrol-induced autophagy is regulated by the PI3K/Akt/mTOR and ERK1/2 pathways. Furthermore, the inhibition of autophagy increases the cytotoxicity of resveratrol to GH3 cells.
Collapse
Affiliation(s)
- Xuexin Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wanhai Xu
- Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jun Su
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ming Chu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hua Jin
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guofu Li
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chunlei Tan
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chao Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
38
|
Calcineurin suppresses AMPK-dependent cytoprotective autophagy in cardiomyocytes under oxidative stress. Cell Death Dis 2014; 5:e997. [PMID: 24434520 PMCID: PMC4040710 DOI: 10.1038/cddis.2013.533] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
Calcineurin signalling plays a critical role in the pathogenesis of many cardiovascular diseases. Calcineurin has been proven to affect a series of signalling pathways and to exert a proapoptotic effect in cardiomyocytes. However, whether it is able to regulate autophagy remains largely unknown. Here, we report that prolonged oxidative stress-induced activation of calcineurin contributes to the attenuation of adaptive AMP-activated protein kinase (AMPK) signalling and inhibits autophagy in cardiomyocytes. Primary cardiomyocytes exhibited rapid formation of autophagosomes, microtubule-associated protein 1 light chain 3 (LC3) expression and phosphorylation of AMPK in response to hydrogen peroxide (H2O2) treatment. However, prolonged (12 h) H2O2 treatment attenuated these effects and was accompanied by a significant increase in calcineurin activity and apoptosis. Inhibition of calcineurin by FK506 restored AMPK function and LC3 expression, and decreased the extent of apoptosis caused by prolonged oxidative stress. In contrast, overexpression of the constitutively active form of calcineurin markedly attenuated the increase in LC3 induced by short-term (3 h) H2O2 treatment and sensitised cells to apoptosis. In addition, FK506 failed to induce autophagy and alleviate apoptosis in cardiomyocytes expressing a kinase-dead K45R AMPK mutant. Furthermore, inhibition of autophagy by 3-methylanine (3-MA) or by knockdown of the essential autophagy-related gene ATG7 abrogated the protective effect of FK506. These findings suggest a novel role of calcineurin in suppressing adaptive autophagy during oxidative stress by downregulating the AMPK signalling pathway. The results also provide insight into how altered calcineurin and autophagic signalling is integrated to control cell survival during oxidative stress and may guide strategies to prevent cardiac oxidative damage.
Collapse
|
39
|
Li S, Li J, Shen C, Zhang X, Sun S, Cho M, Sun C, Song Z. tert-Butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via inducing autophagy independently of Nrf2 activation. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1841:22-33. [PMID: 24055888 PMCID: PMC3884638 DOI: 10.1016/j.bbalip.2013.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/23/2013] [Accepted: 09/10/2013] [Indexed: 12/30/2022]
Abstract
Saturated fatty acids (SFAs) induce hepatocyte cell death, wherein oxidative stress is mechanistically involved. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master transcriptional regulator of cellular antioxidant defense enzymes. Therefore, Nrf2 activation is regarded as an effective strategy against oxidative stress-triggered cellular damage. In this study, tert-butylhydroquinone (tBHQ), a widely used Nrf2 activator, was initially employed to investigate the potential protective role of Nrf2 activation in SFA-induced hepatoxicity. As expected, SFA-induced hepatocyte cell death was prevented by tBHQ in both AML-12 mouse hepatocytes and HepG2 human hepatoma cells. However, the protective effect of tBHQ is Nrf2-independent, because the siRNA-mediated Nrf2 silencing did not abrogate tBHQ-conferred protection. Alternatively, our results revealed that autophagy activation was critically involved in the protective effect of tBHQ on lipotoxicity. tBHQ induced autophagy activation and autophagy inhibitors abolished tBHQ's protection. The induction of autophagy by tBHQ exposure was demonstrated by the increased accumulation of LC3 puncta, LC3-II conversion, and autophagic flux (LC3-II conversion in the presence of proteolysis inhibitors). Subsequent mechanistic investigation discovered that tBHQ exposure activated AMP-activated protein kinase (AMPK) and siRNA-mediated AMPK gene silencing abolished tBHQ-induced autophagy activation, indicating that AMPK is critically involved in tBHQ-triggered autophagy induction. Furthermore, our study provided evidence that tBHQ-induced autophagy activation is required for its Nrf2-activating property. Collectively, our data uncover a novel mechanism for tBHQ in protecting hepatocytes against SFA-induced lipotoxicity. tBHQ-triggered autophagy induction contributes not only to its hepatoprotective effect, but also to its Nrf2-activating property.
Collapse
Affiliation(s)
- Songtao Li
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, P. R. China
| | - Jiaxin Li
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Chen Shen
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Ximei Zhang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Shan Sun
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, IL60607
| | - Michael Cho
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, IL60607
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, P. R. China
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
- Department of Pathology, University of Illinois Medical Center, Chicago, IL 60612
| |
Collapse
|
40
|
Abe H, Uchida T, Hara A, Mizukami H, Komiya K, Koike M, Shigihara N, Toyofuku Y, Ogihara T, Uchiyama Y, Yagihashi S, Fujitani Y, Watada H. Exendin-4 improves β-cell function in autophagy-deficient β-cells. Endocrinology 2013; 154:4512-24. [PMID: 24105478 DOI: 10.1210/en.2013-1578] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is cellular machinery for maintenance of β-cell function and mass. The implication of autophagy failure in β-cells on the pathophysiology of type 2 diabetes and its relation to the effect of treatment of diabetes remains elusive. Here, we found increased expression of p62 in islets of db/db mice and patients with type 2 diabetes mellitus. Treatment with exendin-4, a glucagon like peptide-1 receptor agonist, improved glucose tolerance in db/db mice without significant changes in p62 expression in β-cells. Also in β-cell-specific Atg7-deficient mice, exendin-4 efficiently improved blood glucose level and glucose tolerance mainly by enhanced insulin secretion. In addition, we found that exendin-4 reduced apoptotic cell death and increased proliferating cells in the Atg7-deficient islets, and that exendin-4 counteracted thapsigargin-induced cell death of isolated islets augmented by autophagy deficiency. Our results suggest the potential involvement of reduced autophagy in β-cell dysfunction in type 2 diabetes. Without altering the autophagic state in β-cells, exendin-4 improves glucose tolerance associated with autophagy deficiency in β-cells. This is mainly achieved through augmentation of insulin secretion. In addition, exendin-4 prevents apoptosis and increases the proliferation of β-cells associated with autophagy deficiency, also without altering the autophagic machinery in β-cells.
Collapse
Affiliation(s)
- Hiroko Abe
- or Toyoyoshi Uchida, M.D., Ph.D., Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. or
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yoo YM. Melatonin-mediated insulin synthesis during endoplasmic reticulum stress involves HuD expression in rat insulinoma INS-1E cells. J Pineal Res 2013; 55:207-20. [PMID: 23711134 DOI: 10.1111/jpi.12064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/26/2013] [Indexed: 01/12/2023]
Abstract
In this study, we investigated how melatonin mediates insulin synthesis through endoplasmic reticulum (ER) via HuD expression in rat insulinoma INS-1E cells. Under ER stress condition (thapsigargin with/without melatonin, tunicamycin with/without melatonin), phosphorylation of AMP-activated protein kinase (p-AMPK) was significantly increased when compared with only with/without melatonin (control/melatonin). Insulin receptor substrate (IRS) two protein was significantly reduced under conditions of ER stress when compared with control/melatonin, but no expression of IRS1 protein was observed. In thapsigargin treatment, melatonin (10, 50 μm) increased IRS2 protein expression in a dose-dependent manner. p-Akt (Ser473) expression significantly decreased under ER stress condition prior to control/melatonin. Melatonin (10, 50 μm) significantly reduced nuclear and cellular p85α expressions in a dose-dependent manner when compared with only thapsigargin or tunicamycin. These results indicate the activation of the aforementioned expressions under regulation of the pathway, AMPK → IRS2 → Akt/PKB → PI3K (p85α). However, mammalian target of rapamycin and raptor protein, mTORC1, was found to be independent of the ER stress response. In thapsigargin treatment, melatonin increased nuclear mammalian RNA-binding protein (HuD) expression and reduced cellular HuD expression and subsequently resulted in a decrease in cellular insulin level and rise in insulin secretion in a dose-dependent manner. In tunicamycin treatment, HuD and insulin proteins showed similar expression tendencies. These results indicate that ER stress/melatonin, especially thapsigargin/melatonin, increased nuclear HuD expression and subsequently resulted in a decrease in intracellular biosynthesis; it is hypothesized that extracellular secretion of insulin may be regulated by melatonin.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon-do 220-710, Korea.
| |
Collapse
|
42
|
Song YM, Song SO, You YH, Yoon KH, Kang ES, Cha BS, Lee HC, Kim JW, Lee BW. Glycated albumin causes pancreatic β-cells dysfunction through autophagy dysfunction. Endocrinology 2013; 154:2626-39. [PMID: 23698718 DOI: 10.1210/en.2013-1031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Growing evidence suggests that advanced glycation end-products (AGEs) are cytotoxic to pancreatic β-cells. The aims of this study were to investigate whether glycated albumin (GA), an early precursor of AGEs, would induce dysfunction in pancreatic β-cells and to determine which kinds of cellular mechanisms are activated in GA-induced β-cell apoptosis. Decreased viability and increased apoptosis were induced in INS-1 cells treated with 2.5 mg/mL GA under 16.7mM high-glucose conditions. Insulin content and glucose-stimulated secretion from isolated rat islets were reduced in 2.5 mg/mL GA-treated cells. In response to 2.5 mg/mL GA in INS-1 cells, autophagy induction and flux decreased as assessed by green fluorescent protein-microtubule-associated protein 1 light chain 3 dots, microtubule-associated protein 1 light chain 3-II conversion, and SQSTM1/p62 in the presence and absence of bafilomycin A1. Accumulated SQSTM1/p62 through deficient autophagy activated the nuclear factor-κB (p65)-inducible nitric oxide synthase-caspase-3 cascade, which was restored by treatment with small interfering RNA against p62. Small interfering RNA treatment against autophagy-related protein 5 significantly inhibited the autophagy machinery resulting in a significant increase in iNOS-cleaved caspase-3 expression. Treatment with 500μM 4-phenyl butyric acid significantly alleviated the expression of endoplasmic reticulum stress markers and iNOS in parallel with upregulated autophagy induction. However, in the presence of bafilomycin A1, the decreased viability of INS-1 cells was not recovered. Glycated albumin, an early precursor of AGE, caused pancreatic β-cell death by inhibiting autophagy induction and flux, resulting in nuclear factor-κB (p65)-iNOS-caspase-3 cascade activation as well as by increasing susceptibility to endoplasmic reticulum stress and oxidative stress.
Collapse
Affiliation(s)
- Young Mi Song
- Brain Korea 21 Project for Medical Science, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Deegan S, Saveljeva S, Gorman AM, Samali A. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci 2013; 70:2425-41. [PMID: 23052213 PMCID: PMC11113399 DOI: 10.1007/s00018-012-1173-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 12/26/2022]
Abstract
Macroautophagy (autophagy) is a cellular catabolic process which can be described as a self-cannibalism. It serves as an essential protective response during conditions of endoplasmic reticulum (ER) stress through the bulk removal and degradation of unfolded proteins and damaged organelles; in particular, mitochondria (mitophagy) and ER (reticulophagy). Autophagy is genetically regulated and the autophagic machinery facilitates removal of damaged cell components and proteins; however, if the cell stress is acute or irreversible, cell death ensues. Despite these advances in the field, very little is known about how autophagy is initiated and how the autophagy machinery is transcriptionally regulated in response to ER stress. Some three dozen autophagy genes have been shown to be required for the correct assembly and function of the autophagic machinery; however; very little is known about how these genes are regulated by cellular stress. Here, we will review current knowledge regarding how ER stress and the unfolded protein response (UPR) induce autophagy, including description of the different autophagy-related genes which are regulated by the UPR.
Collapse
Affiliation(s)
- Shane Deegan
- Apoptosis Research Centre, NUI Galway, Galway, Ireland
- School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Svetlana Saveljeva
- Apoptosis Research Centre, NUI Galway, Galway, Ireland
- School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Adrienne M. Gorman
- Apoptosis Research Centre, NUI Galway, Galway, Ireland
- School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, NUI Galway, Galway, Ireland
- School of Natural Sciences, NUI Galway, Galway, Ireland
| |
Collapse
|
44
|
Yang YP, Hu LF, Zheng HF, Mao CJ, Hu WD, Xiong KP, Wang F, Liu CF. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol Sin 2013; 34:625-35. [PMID: 23524572 DOI: 10.1038/aps.2013.5] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is the major intracellular degradation system, by which cytoplasmic materials are delivered to and degraded in the lysosome. As a quality control mechanism for cytoplasmic proteins and organelles, autophagy plays important roles in a variety of human diseases, including neurodegenerative diseases, cancer, cardiovascular disease, diabetes and infectious and inflammatory diseases. The discovery of ATG genes and the dissection of the signaling pathways involved in regulating autophagy have greatly enriched our knowledge on the occurrence and development of this lysosomal degradation pathway. In addition to its role in degradation, autophagy may also promote a type of programmed cell death that is different from apoptosis, termed type II programmed cell death. Owing to the dual roles of autophagy in cell death and the specificity of diseases, the exact mechanisms of autophagy in various diseases require more investigation. The application of autophagy inhibitors and activators will help us understand the regulation of autophagy in human diseases, and provide insight into the use of autophagy-targeted drugs. In this review, we summarize the latest research on autophagy inhibitors and activators and discuss the possibility of their application in human disease therapy.
Collapse
|
45
|
Schönthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. Biochem Pharmacol 2013; 85:653-666. [DOI: 10.1016/j.bcp.2012.09.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 02/08/2023]
|
46
|
Su J, Zhou L, Kong X, Yang X, Xiang X, Zhang Y, Li X, Sun L. Endoplasmic reticulum is at the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in the pathogenesis of diabetes mellitus. J Diabetes Res 2013; 2013:193461. [PMID: 23762873 PMCID: PMC3673337 DOI: 10.1155/2013/193461] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/08/2013] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease, and its incidence is growing worldwide. The endoplasmic reticulum (ER) is a central component of cellular functions and is involved in protein folding and trafficking, lipid synthesis, and maintenance of calcium homeostasis. The ER is also a sensor of both intra- and extracellular stress and thus participates in monitoring and maintaining cellular homeostasis. Therefore, the ER is one site of interaction between environmental signals and a cell's biological function. The ER is tightly linked to autophagy, inflammation, and apoptosis, and recent evidence suggests that these processes are related to the pathogenesis of DM and its complications. Thus, the ER has been considered an intersection integrating multiple stress responses and playing an important role in metabolism-related diseases including DM. Here, we review the relationship between the ER and autophagy, inflammation, and apoptosis in DM to better understand the molecular mechanisms of this disease.
Collapse
Affiliation(s)
- Jing Su
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiaoxia Kong
- Institute of Hypoxia Research, School of Basic Medical Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Xiaochun Yang
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Xiyan Xiang
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Yu Zhang
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Xiaoning Li
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Liankun Sun
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
- *Liankun Sun:
| |
Collapse
|
47
|
jing Yin J, bo Li Y, ming Cao M, Wang Y. Liraglutide Improves the Survival of INS-1 Cells by Promoting Macroautophagy. Int J Endocrinol Metab 2013; 11:184-90. [PMID: 24348591 PMCID: PMC3860108 DOI: 10.5812/ijem.8088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 02/07/2013] [Accepted: 02/16/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) is a metabolic disease characterized by dysfunction of pancreatic beta cell and insulin resistance. Liraglutide, which has many special anti-diabetes biological effects, is found to inhibit beta cell death and ameliorate endoplasmic reticulum stress (ERs) induced by free fatty acid (FFA). Macroautophagy (hereafter referred to as autophagy) altered by FFA is also associated with the dysfunction or death of pancreatic beta cells. OBJECTIVES We aim at proving that Liraglutide improves the survival of INS-1 cells by promoting autophagy. MATERIALS AND METHODS Cell survival was assessed by CCK8 assay. The percentage of apoptotic cells was determined by flow cytometric assay after Annexin V-FITC/PI staining. Expression of LC3 was detected by western blotting. MDC staining and transmission electron microscopy (TEM) were used in the measurement of autophagy. RESULTS Apoptosis induced by PA in INS-1 cells was significantly resolved after Liraglutide treatment. Simultaneously, autophagy was enhanced with the treatment of PA and Liraglutide. CONCLUSIONS Liraglutide appears to protect INS-1 cells from apoptosis FFA-induced by promoting autophagy. CONCLUSIONS These findings provide a novel role for GLP-1 analogue in preventing or treating with T2D.
Collapse
Affiliation(s)
- Jia jing Yin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan bo Li
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Corresponding author: Yan bo Li, Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street NanGang District, Harbin, 150001, China. Tel: +86-45185555637, E-mail:
| | - Ming ming Cao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Wang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. SCIENTIFICA 2012; 2012:857516. [PMID: 24278747 PMCID: PMC3820435 DOI: 10.6064/2012/857516] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/12/2012] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle required for lipid biosynthesis, calcium storage, and protein folding and processing. A number of physiological and pathological conditions, as well as a variety of pharmacological agents, are able to disturb proper ER function and thereby cause ER stress, which severely impairs protein folding and therefore poses the risk of proteotoxicity. Specific triggers for ER stress include, for example, particular intracellular alterations (e.g., calcium or redox imbalances), certain microenvironmental conditions (e.g., hypoglycemia, hypoxia, and acidosis), high-fat and high-sugar diet, a variety of natural compounds (e.g., thapsigargin, tunicamycin, and geldanamycin), and several prescription drugs (e.g., bortezomib/Velcade, celecoxib/Celebrex, and nelfinavir/Viracept). The cell reacts to ER stress by initiating a defensive process, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed at adaptation and safeguarding cellular survival or, in cases of excessively severe stress, at initiation of apoptosis and elimination of the faulty cell. In recent years, this dichotomic stress response system has been linked to several human diseases, and efforts are underway to develop approaches to exploit ER stress mechanisms for therapy. For example, obesity and type 2 diabetes have been linked to ER stress-induced failure of insulin-producing pancreatic beta cells, and current research efforts are aimed at developing drugs that ameliorate cellular stress and thereby protect beta cell function. Other studies seek to pharmacologically aggravate chronic ER stress in cancer cells in order to enhance apoptosis and achieve tumor cell death. In the following, these principles will be presented and discussed.
Collapse
Affiliation(s)
- Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR-405, Los Angeles, CA 90033, USA
| |
Collapse
|
49
|
Hasty AH, Harrison DG. Endoplasmic reticulum stress and hypertension - a new paradigm? J Clin Invest 2012; 122:3859-61. [PMID: 23064369 DOI: 10.1172/jci65173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypertension occurs in approximately 30% of individuals in Western populations and is known to be a major cause of stroke, heart failure, and myocardial infarction. Despite this, the molecular etiology of hypertension remains poorly understood. In this issue of the JCI, Young et al. show that endoplasmic reticulum (ER) stress is an essential signaling event for angiotensin II-induced hypertension in cells of the central nervous system. This provides new insight into the molecular mechanisms that drive hypertension and suggests a potential target for future therapy.
Collapse
Affiliation(s)
- Alyssa H Hasty
- Department of Molecular Physiology and Biophysics and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA
| | | |
Collapse
|
50
|
Lavallard VJ, Meijer AJ, Codogno P, Gual P. Autophagy, signaling and obesity. Pharmacol Res 2012; 66:513-25. [PMID: 22982482 DOI: 10.1016/j.phrs.2012.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 12/28/2022]
Abstract
Autophagy is a cellular pathway crucial for development, differentiation, survival and homeostasis. Autophagy can provide protection against aging and a number of pathologies such as cancer, neurodegeneration, cardiac disease and infection. Recent studies have reported new functions of autophagy in the regulation of cellular processes such as lipid metabolism and insulin sensitivity. Important links between the regulation of autophagy and obesity including food intake, adipose tissue development, β cell function, insulin sensitivity and hepatic steatosis exist. This review will provide insight into the current understanding of autophagy, its regulation, and its role in the complications associated with obesity.
Collapse
Affiliation(s)
- Vanessa J Lavallard
- INSERM, U1065, Equipe 8 «Complications hépatiques de l'obésité», Nice, France
| | | | | | | |
Collapse
|