1
|
Díaz-Guerrero MÁ, Castillo-Juárez I, Zurabian R, Valdez A, Kota K, Hoshiko Y, Ramesh E, Martínez-Vazquez M, Ceapă CD, Hernandez-Garnica M, Cadet F, García-Contreras R. Reviving the past for a healthier future: ancient molecules and remedies as a solution to the antibiotic crisis. Future Microbiol 2025; 20:429-441. [PMID: 40099865 PMCID: PMC11980515 DOI: 10.1080/17460913.2025.2476290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Options to combat bacterial infections are becoming scarce. We require innovative approaches to enhance the discovery of effective antimicrobials capable of combating bacteria resistant to multiple or all antibiotics. These methods should either directly eliminate resistant bacteria or indirectly influence their viability by inhibiting their virulence or reducing their resistance to antibiotics. One interesting approach is to analyze ancient remedies used to treat bacterial infections, formulate them, and test them against modern microbes. This field has recently been named "ancientbiotics." This approach allows us to leverage centuries of empirical knowledge accumulated, from traditional medicines across various ancient cultures worldwide. The strategy has already yielded promising formulations to combat the ESKAPE group of nosocomial pathogens. Additionally, molecular de-extinction, which involves genome analysis of extinct species to search for useful antimicrobials, such as peptides, offers another avenue. In this review, we compile the antimicrobial effects of ancient remedies and de-extinct molecules known to modern science and discuss possible new strategies to further harness the potential of past remedies and molecules to fight the rise of superbugs.
Collapse
Affiliation(s)
| | - Israel Castillo-Juárez
- Conahcyt-Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Rimma Zurabian
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Alejandra Valdez
- Laboratorio de Interacciones Microbianas, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI, CONICET, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Kokila Kota
- Department of Biology, Ramapo College of New Jersey, Mahwah, NJ, USA
| | - Yuki Hoshiko
- Department of Health Science, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Ekaprana Ramesh
- Department of Biology, Ramapo College of New Jersey, Mahwah, NJ, USA
| | | | - Corina Diana Ceapă
- Laboratory of Microbiology, Institute of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Frederic Cadet
- PEACCEL, Artificial Intelligence Department, AI for Biologics, Paris, France
| | | |
Collapse
|
2
|
Ahmad TA, Houjeiry SE, Kanj SS, Matar GM, Saba ES. From forgotten cure to modern medicine: The resurgence of bacteriophage therapy. J Glob Antimicrob Resist 2024; 39:231-239. [PMID: 39486687 DOI: 10.1016/j.jgar.2024.10.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVES The unregulated use of antibiotics has led to the rise of antibiotic-resistant bacterial strains. This study explores bacteriophage therapy as an alternative treatment, highlighting its history, significance, and advancements in Europe, the United States, and the Middle East. METHODS A comprehensive literature review on bacteriophage therapy was conducted, focusing on its development, clinical trials, and patient treatment applications. The study also examined challenges, limitations, criteria for ideal phage selection, and manipulation techniques. RESULTS The United States and several European countries have advanced in phage therapy, progressing from clinical trials to patient treatment, whereas Middle Eastern countries are still in the early stages. Bacteriophages offer specificity, abundance, and minimal side effects, but challenges like safety concerns and potential resistance limit their widespread use. CONCLUSION Bacteriophage therapy shows promise as an antibiotic alternative but faces safety and resistance challenges. Continued research and better regulatory frameworks, especially in the Middle East, are needed to realize its potential.
Collapse
Affiliation(s)
- Tasnime Abdo Ahmad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Samar El Houjeiry
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, Department of Internal Medicine, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghassan M Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Esber S Saba
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
3
|
Kim P, Sanchez AM, Penke TJR, Tuson HH, Kime JC, McKee RW, Slone WL, Conley NR, McMillan LJ, Prybol CJ, Garofolo PM. Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1319-1332. [PMID: 39134085 DOI: 10.1016/s1473-3099(24)00424-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND The rate of antibiotic resistance continues to grow, outpacing small-molecule-drug development efforts. Novel therapies are needed to combat this growing threat, particularly for the treatment of urinary tract infections (UTIs), which are one of the largest contributors to antibiotic use and associated antibiotic resistance. LBP-EC01 is a novel, genetically enhanced, six-bacteriophage cocktail developed by Locus Biosciences (Morrisville, NC, USA) to address UTIs caused by Escherichia coli, regardless of antibiotic resistance status. In this first part of the two-part phase 2 ELIMINATE trial, we aimed to define a dosing regimen of LBP-EC01 for the treatment of uncomplicated UTIs that could advance to the second, randomised, controlled, double-blinded portion of the study. METHODS This first part of ELIMINATE is a randomised, uncontrolled, open-label, phase 2 trial that took place in six private clinical sites in the USA. Eligible participants were female by self-identification, aged between 18 years and 70 years, and had an uncomplicated UTI at the time of enrolment, as well as a history of at least one drug-resistant UTI caused by E coli within the 12 months before enrolment. Participants were initially randomised in a 1:1:1 ratio into three treatment groups, but this part of the trial was terminated on the recommendation of the safety review committee after a non-serious tolerability signal was observed based on systemic drug exposure. A protocol update was then implemented, comprised of three new treatment groups. Groups A to C were dosed with intraurethral 2 × 1012 plaque-forming units (PFU) of LBP-EC01 on days 1 and 2 by catheter, plus one of three intravenous doses daily on days 1-3 of LBP-EC01 (1 mL of 1 × 1010 PFU intravenous bolus in group A, 1 mL of 1 × 109 PFU intravenous bolus in group B, and a 2 h 1 × 1011 PFU intravenous infusion in 100 mL of sodium lactate solution in group C). In all groups, oral trimethoprim-sulfamethoxazole (TMP-SMX; 160 mg and 800 mg) was given twice daily on days 1-3. The primary outcome was the level of LBP-EC01 in urine and blood across the treatment period and over 48 h after the last dose and was assessed in patients in the intention-to-treat (ITT) population who received at least one dose of LBP-EC01 and had concentration-time data available throughout the days 1-3 dosing period (pharmacokinetic population). Safety, a secondary endpoint, was assessed in enrolled patients who received at least one dose of study drug (safety population). As exploratory pharmacodynamic endpoints, we assessed E coli levels in urine and clinical symptoms of UTI in patients with at least 1·0 × 105 colony-forming units per mL E coli in urine at baseline who took at least one dose of study drug and completed their day 10 test-of-cure assessment (pharmacodynamic-evaluable population). This trial is registered with ClinicalTrials.gov, NCT05488340, and is ongoing. FINDINGS Between Aug 22, 2022, and Aug 28, 2023, 44 patients were screened for eligibility, and 39 were randomly assigned (ITT population). Initially, eight participants were assigned to the first three groups. After the protocol was updated, 31 participants were allocated into groups A (11 patients), B (ten patients), and C (ten patients). One patient in group C withdrew consent on day 2 for personal reasons, but as she had received the first dose of the study drug was included in the modified ITT population. Maximum urine drug concentrations were consistent across intraurethral dosing, with a maximum mean concentration of 6·3 × 108 PFU per mL (geometric mean 8·8 log10 PFU per mL and geometric SD [gSD] 0·3). Blood plasma level of bacteriophages was intravenous dose-dependent, with maximum mean concentrations of 4·0 × 103 (geometric mean 3·6 log10 PFU per mL [gSD 1·5]) in group A, 2·5 × 103 (3·4 log10 PFU per mL [1·7]) in group B, and 8·0 × 105 (5·9 log10 PFU per mL [1·4]) in group C. No serious adverse events were observed. 44 adverse events were reported across 18 (46%) of the 39 participants in the safety population, with more adverse events seen with higher intravenous doses. Three patients in groups 1 to 3 and one patient in group C, all of whom received 1 × 1011 LBP-EC01 intravenously, had non-serious tachycardia and afebrile chills after the second intravenous dose. A rapid reduction of E coli in urine was observed by 4 h after the first treatment and maintained at day 10 in all 16 evaluable patients; these individuals had complete resolution of UTI symptoms by day 10. INTERPRETATION A regimen consisting of 2 days of intraurethral LBP-EC01 and 3 days of concurrent intravenous LBP-EC01 (1 × 1010 PFU) and oral TMP-SMX twice a day was well tolerated, with consistent pharmacokinetic profiles in urine and blood. LBP-EC01 and TMP-SMX dosing resulted in a rapid and durable reduction of E coli, with corresponding elimination of clinical symptoms in evaluable patients. LBP-EC01 holds promise in providing an alternative therapy for uncomplicated UTIs, with further testing of the group A dosing regimen planned in the controlled, double-blind, second part of ELIMINATE. FUNDING Federal funds from the US Department of Health and Human Services, Administration for Strategic Preparedness and Response, and Biomedical Advanced Research and Development Authority (BARDA).
Collapse
Affiliation(s)
- Paul Kim
- Locus Biosciences, Morrisville, NC, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pattnaik A, Pati S, Samal SK. Bacteriophage as a potential biotherapeutics to combat present-day crisis of multi-drug resistant pathogens. Heliyon 2024; 10:e37489. [PMID: 39309956 PMCID: PMC11416503 DOI: 10.1016/j.heliyon.2024.e37489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The rise of Multi-Drug Resistant (MDR) bacterial pathogens to most, if not all, currently available antibacterial agents has become a global threat. As a consequence of the antibiotic resistance epidemic, phage therapy has emerged as a potential alternative to conventional antibiotics. Despite the high therapeutic advantages of phage therapy, they have not yet been successfully used in the clinic due to various limitations of narrow host specificity compared to antibiotics, poor adhesion on biofilm surface, and susceptibility to both human and bacterial defences. This review focuses on the antibacterial effect of bacteriophage and their recent clinical trials with a special emphasis on the underlying mechanism of lytic phage action with the help of endolysin and holin. Furthermore, recent clinical trials of natural and modified endolysins and some marketed products have also been emphasized with future prospective.
Collapse
Affiliation(s)
- Ananya Pattnaik
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
- KSBT, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
| | | |
Collapse
|
5
|
Meidaninikjeh S, Mohammadi P, Elikaei A. Bacteriophages and bacterial extracellular vesicles, threat or opportunity? Life Sci 2024; 350:122749. [PMID: 38821215 DOI: 10.1016/j.lfs.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Emergence of antimicrobial-resistant bacteria (AMR) is one of the health major problems worldwide. The scientists are looking for a novel method to treat infectious diseases. Phage therapy is considered a suitable approach for treating infectious diseases. However, there are different challenges in this way. Some biological aspects can probably influence on therapeutic results and further investigations are necessary to reach a successful phage therapy. Bacteriophage activity can influence by bacterial defense system. Bacterial extracellular vesicles (BEVs) are one of the bacterial defense mechanisms which can modify the results of bacteriophage activity. BEVs have the significant roles in the gene transferring, invasion, escape, and spreading of bacteriophages. In this review, the defense mechanisms of bacteria against bacteriophages, especially BEVs secretion, the hidden linkage of BEVs and bacteriophages, and its possible consequences on the bacteriophage activity as well phage therapy will be discussed.
Collapse
Affiliation(s)
- Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| |
Collapse
|
6
|
Bozidis P, Markou E, Gouni A, Gartzonika K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024; 13:522. [PMID: 38921819 PMCID: PMC11206709 DOI: 10.3390/pathogens13060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The emergence of multidrug-resistant bacteria is undoubtedly one of the most serious global health threats. One response to this threat that has been gaining momentum over the past decade is 'phage therapy'. According to this, lytic bacteriophages are used for the treatment of bacterial infections, either alone or in combination with antimicrobial agents. However, to ensure the efficacy and broad applicability of phage therapy, several challenges must be overcome. These challenges encompass the development of methods and strategies for the host range manipulation and bypass of the resistance mechanisms developed by pathogenic bacteria, as has been the case since the advent of antibiotics. As our knowledge and understanding of the interactions between phages and their hosts evolves, the key issue is to define the host range for each application. In this article, we discuss the factors that affect host range and how this determines the classification of phages into different categories of action. For each host range group, recent representative examples are provided, together with suggestions on how the different groups can be used to combat certain types of bacterial infections. The available methodologies for host range expansion, either through sequential adaptation to a new pathogen or through genetic engineering techniques, are also reviewed.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| |
Collapse
|
7
|
Tahseen H, Ul Huda N, Nawaz H, Majeed MI, Alwadie N, Rashid N, Aslam MA, Zafar N, Asghar M, Anwar A, Ashraf A, Umer R. Surface-enhanced Raman spectroscopy for comparison of biochemical profile of bacteriophage sensitive and resistant methicillin-resistant Staphylococcus aureus (MRSA) strains. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123968. [PMID: 38330510 DOI: 10.1016/j.saa.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is gram positive bacteria and leading cause of a wide variety of diseases. It is a common cause of hospitalized and community-acquired infections. Development of increasing antibiotic-resistance by methicillin-resistant S. aureus (MRSA) strains demand to develop alternate novel therapies. Bacteriophages are now widely used as antibacterial therapies against antibiotic-resistant gram-positive pathogens. So, there is an urgent need to find fast detection techniques to point out phage susceptible and resistant strains of methicillin-resistant S. aureus (MRSA) bacteria. Samples of two separate strains of bacteria, S. aureus, in form of pellets and supernatant, were used for this purpose. Strain-I was resistant to phage, while the other (strain-II) was sensitive. Surface Enhanced Raman Spectroscopy (SERS) has detected significant biochemical changes in these bacterial strains of pellets and supernatants in the form of SERS spectral features. The protein portion of these two types of strains of methicillin-resistant S. aureus (MRSA) in their relevant pellets and supernatants is major distinguishing biomolecule as shown by their representative SERS spectral features. In addition, multivariate data analysis techniques such as principal component analysis (PCA) and a partial least squares-discriminant analysis (PLS-DA) were found to be helpful in identifying and characterizing various strains of S. aureus which are sensitive and resistant to bacteriophage with 100% specificity, 100% accuracy, and 99.8% sensitivity in case of SERS spectral data sets of bacterial cell pellets. Moreover, in case of supernatant samples, the results of PLS-DA model including 95.5% specificity, 96% sensitivity, and 96.5% accuracy are obtained.
Collapse
Affiliation(s)
- Hira Tahseen
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Noor Ul Huda
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Najah Alwadie
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, Faculty of Veterinary, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Nishat Zafar
- Institute of Microbiology, Faculty of Veterinary, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Maria Asghar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Anwar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Ashraf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rabiea Umer
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
8
|
Hassannia M, Naderifar M, Salamy S, Akbarizadeh MR, Mohebi S, Moghadam MT. Engineered phage enzymes against drug-resistant pathogens: a review on advances and applications. Bioprocess Biosyst Eng 2024; 47:301-312. [PMID: 37962644 DOI: 10.1007/s00449-023-02938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
In recent decades, the expansion of multi and extensively drug-resistant (MDR and XDR) bacteria has reached an alarming rate, causing serious health concerns. Infections caused by drug-resistant bacteria have been associated with morbidity and mortality, making tackling bacterial resistance an urgent and unmet challenge that needs to be addressed properly. Endolysins are phage-encoded enzymes that can specifically degrade the bacterial cell wall and lead to bacterial death. There is remarkable evidence that corroborates the unique ability of endolysins to rapidly digest the peptidoglycan particular bonds externally without the assistance of phage. Thus, their modulation in therapeutic approaches has opened new options for therapeutic applications in the fight against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology areas. The use of genetically engineered phage enzymes (EPE) promises to generate endolysin variants with unique properties for prophylactic and therapeutic applications. These approaches have gained momentum to accelerate basic as well as translational phage research and the potential development of therapeutics in the near future. This review will focus on the novel knowledge into EPE and demonstrate that EPE has far better performance than natural endolysins and phages in dealing with antibiotic-resistant infections. Therefore, it provides essential information for clinical trials involving EPE.
Collapse
Affiliation(s)
- Mohadeseh Hassannia
- Department of Genetic, Faculty of Science, Islamic Azad University, Tehran, Iran
| | - Mahin Naderifar
- School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Shakiba Salamy
- Department of Microbiology, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran
| | | | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
9
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
10
|
Boroujeni MB, Mohebi S, Malekian A, Shahraeini SS, Gharagheizi Z, Shahkolahi S, Sadeghi RV, Naderifar M, Akbarizadeh MR, Soltaninejad S, Moghadam ZT, Moghadam MT, Mirzadeh F. The therapeutic effect of engineered phage, derived protein and enzymes against superbug bacteria. Biotechnol Bioeng 2024; 121:82-99. [PMID: 37881139 DOI: 10.1002/bit.28581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Defending against antibiotic-resistant infections is similar to fighting a war with limited ammunition. As the new century unfolded, antibiotic resistance became a significant concern. In spite of the fact that phage treatment has been used as an effective means of fighting infections for more than a century, researchers have had to overcome many challenges of superbug bacteria by manipulating phages and producing engineered enzymes. New enzymes and phages with enhanced properties have a significant impact on the ability to fight antibiotic-resistant infections, which is considered a window of hope for the future. This review, therefore, illustrates not only the challenges caused by antibiotic resistance and superbug bacteria but also the engineered enzymes and phages that are being developed to solve these issues. Our study found that engineered phages, phage proteins, and enzymes can be effective in treating superbug bacteria and destroying the biofilm caused by them. Combining these engineered compounds with other antimicrobial substances can increase their effectiveness against antibiotic-resistant bacteria. Therefore, engineered phages, proteins, and enzymes can be used as a substitute for antibiotics or in combination with antibiotics to treat patients with superbug infections in the future.
Collapse
Affiliation(s)
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Malekian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Medical Biotechnology, Drug Design and Bioinformatics Unit, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Gharagheizi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Shahkolahi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rezvaneh Vahedian Sadeghi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahin Naderifar
- School of Nursing & Midwifery, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Zahra Taati Moghadam
- School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | | | | |
Collapse
|
11
|
Rathor N, Bahadur T, Thakur CK, Bamola VD, Das BK, Chaudhry R. Bacteriophages as therapeutic & disinfectant agents to tackle multidrug-resistant Acinetobacter baumannii. Indian J Med Res 2023; 157:549-558. [PMID: 37530310 PMCID: PMC10466484 DOI: 10.4103/ijmr.ijmr_355_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 08/03/2023] Open
Abstract
Background & objectives Multidrug-resistant (MDR) Acinetobacter baumannii is a serious threat for human health worldwide. The studies on agents targeting A. baumannii are imperative due to identified A. baumannii co-infections in COVID-19. Bacteriophages are promising antibacterial agents against drug-resistant bacteria. This study intended to isolate bacteriophages against MDR A. baumannii from the water of river Ganga, to be used potentially as therapeutic and disinfectant particles. Methods Acinetobacter phages were isolated from the Ganga water collected from Kanpur and further tested on 50 MDR A. baumannii isolates to determine host range. The phages were morphologically characterized by transmission electron microscopy. The disinfectant property of the isolated phages was tested by spraying of bacteriophage cocktail on MDR A. baumannii contaminated plastic surface, analyzed by colony-forming unit (CFU) and bioluminescence assay (adenosine triphosphate monitoring). Results A total of seven bacteriophages were isolated against MDR A. baumannii. The bacteriophages lysed three MDR A. baumannii isolates out of 50 tested, showing narrow host range. Electron microscopy revealed hexagonal heads and long tails of bacteriophages, belonging to order Caudovirales. The bacteriophage cocktail reduced the MDR A. baumannii load efficiently on plastic surface, evidenced by reduction in CFUs and bioluminescence. Interpretation & conclusions The findings of this study suggest that the isolated bacteriophages are potential lytic agents for MDR A. baumannii clinical isolates, and may be used as potential therapeutic agents as well as disinfectant to combat MDR A. baumannii with due consideration to phage host specificity, with further characterization.
Collapse
Affiliation(s)
- Nisha Rathor
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tej Bahadur
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Chandan Kumar Thakur
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vishwa Deepak Bamola
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Petrovic Fabijan A, Iredell J, Danis-Wlodarczyk K, Kebriaei R, Abedon ST. Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLoS Biol 2023; 21:e3002119. [PMID: 37220114 PMCID: PMC10204993 DOI: 10.1371/journal.pbio.3002119] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Phage therapy is a medical form of biological control of bacterial infections, one that uses naturally occurring viruses, called bacteriophages or phages, as antibacterial agents. Pioneered over 100 years ago, phage therapy nonetheless is currently experiencing a resurgence in interest, with growing numbers of clinical case studies being published. This renewed enthusiasm is due in large part to phage therapy holding promise for providing safe and effective cures for bacterial infections that traditional antibiotics acting alone have been unable to clear. This Essay introduces basic phage biology, provides an outline of the long history of phage therapy, highlights some advantages of using phages as antibacterial agents, and provides an overview of recent phage therapy clinical successes. Although phage therapy has clear clinical potential, it faces biological, regulatory, and economic challenges to its further implementation and more mainstream acceptance.
Collapse
Affiliation(s)
- Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| | - Katarzyna Danis-Wlodarczyk
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Razieh Kebriaei
- P3 Research Laboratory, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, United States of America
| |
Collapse
|
13
|
Li Y, Xiao S, Huang G. Acinetobacter baumannii Bacteriophage: Progress in Isolation, Genome Sequencing, Preclinical Research, and Clinical Application. Curr Microbiol 2023; 80:199. [PMID: 37120784 PMCID: PMC10149043 DOI: 10.1007/s00284-023-03295-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/02/2023] [Indexed: 05/01/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is a common nosocomial pathogen associated with serious clinical challenges owing to its rapidly increasing resistance to antibiotics. Due to their high host specificity and easy access to the natural environment, bacteriophages (phages) may serve as good antibacterial agents. Phage therapy has been successfully used to treat antibiotic-resistant A. baumannii infections. As a fundamental step before phage therapy, the characterization and sequencing of A. baumannii phages have been well studied. Until October 2022, 132 A. baumannii phages have been sequenced and studied, with their genomes ranging from 4 to 234 kb, and we summarize the characterized and sequenced A. baumannii phages. This review is a current and short overview that does not go into detail on the A. baumannii phages. In addition, preclinical studies and clinical applications of A. baumannii phages are also included.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Guangtao Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| |
Collapse
|
14
|
Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT. Phage therapy: From biological mechanisms to future directions. Cell 2023; 186:17-31. [PMID: 36608652 PMCID: PMC9827498 DOI: 10.1016/j.cell.2022.11.017] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 01/07/2023]
Abstract
Increasing antimicrobial resistance rates have revitalized bacteriophage (phage) research, the natural predators of bacteria discovered over 100 years ago. In order to use phages therapeutically, they should (1) preferably be lytic, (2) kill the bacterial host efficiently, and (3) be fully characterized to exclude side effects. Developing therapeutic phages takes a coordinated effort of multiple stakeholders. Herein, we review the state of the art in phage therapy, covering biological mechanisms, clinical applications, remaining challenges, and future directions involving naturally occurring and genetically modified or synthetic phages.
Collapse
Affiliation(s)
- Steffanie A Strathdee
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA 92093-0507, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vivek K Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert T Schooley
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA 92093-0507, USA
| |
Collapse
|
15
|
FUJIMOTO K. Metagenome data-based phage therapy for intestinal bacteria-mediated diseases. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:8-12. [PMID: 36660604 PMCID: PMC9816054 DOI: 10.12938/bmfh.2022-061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
Improvements in genome analysis technology using next-generation sequencing have revealed that abnormalities in the composition of the intestinal microbiota are important in numerous diseases. Furthermore, intestinal commensal pathogens that are directly involved in the onset and exacerbation of disease have been identified. Specific control of them is strongly desired. However, antibiotics are not appropriate for the control of intestinal commensal pathogens because they may kill beneficial bacteria as well. The intestinal tract contains many viruses: most are bacteriophages (phages) that infect intestinal bacteria rather than viruses that infect human cells. Phages have very high specificity for their host bacteria. Therefore, phage therapy is considered potentially useful for controlling intestinal commensal pathogens. However, the intestinal tract is a specialized, anaerobic environment, and it is impossible to isolate phages that infect host intestinal bacteria if the bacteria cannot be cultured. Furthermore, genomic analysis methods for intestinal phages have not been well established, so until recently, a complete picture of the intestinal phage has not been clear. In this review, I summarize the importance of next-generation phage therapy based on metagenomic data and describe a novel therapy against Clostridioides difficile developed using such data.
Collapse
Affiliation(s)
- Kosuke FUJIMOTO
- Department of Immunology and Genomics, Osaka Metropolitan
University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka-shi, Osaka
545-8585, Japan,Division of Metagenome Medicine, Human Genome Center, The
Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku,
Tokyo 108-8639, Japan
| |
Collapse
|
16
|
Fujimoto K, Uematsu S. Phage therapy for Clostridioides difficile infection. Front Immunol 2022; 13:1057892. [PMID: 36389774 PMCID: PMC9650352 DOI: 10.3389/fimmu.2022.1057892] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 08/10/2023] Open
Abstract
Clostridioides difficile is endemic in the intestinal tract of healthy people. However, it is responsible for many healthcare-associated infections, such as nosocomial diarrhea following antibiotic treatment. Importantly, there have been cases of unsuccessful treatment and relapse related to the emergence of highly virulent strains of C. difficile and resistance to antimicrobial agents. Fecal microbiota transplantation (FMT) is considered an effective therapy for recurrent C. difficile infection. However, its safety is of concern because deaths caused by antibiotic-resistant bacterial infections after FMT were reported. Therefore, the development of effective C. difficile-specific treatments is urgently needed. In this review, we summarize the importance of phage therapy against C. difficile, and describe a novel next-generation phage therapy developed using metagenomic data.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Department of Immunology and Genomics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Abedon ST. Pathways to Phage Therapy Enlightenment, or Why I Have Become a Scientific Curmudgeon. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:95-97. [PMID: 36157282 PMCID: PMC9436250 DOI: 10.1089/phage.2022.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade I, with collaborators, have authored a number of publications outlining what in the first of these I described as "Phage therapy best practices"-phage therapy being the use of bacterial viruses (bacteriophages) to treat bacterial infections, such as clinically. More generally, this is phage-mediated biocontrol of bacteria, including of bacteria that can contaminate foods. For the sake of increasing accessibility, here I gather some of these suggestions, along with some frustrations, into a single place, while first providing by way of explanation where they, and I, come from scientifically. Although in my opinion phage therapy and phage-mediated biocontrol are both sound approaches toward combating unwanted bacteria, I feel at the same time that the practice of especially phage therapy research could be improved. I supply also, as supplemental material, a list of ∼100 English language 2000-and-later publications providing primary descriptions of phage application to humans.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
18
|
Rimon A, Gelman D, Yerushalmy O, Coppenhagen-Glazer S, Katvan E, Nir-Paz R, Hazan R. Phage Therapy in Israel, Past, Present, and Future. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:85-94. [PMID: 36157284 PMCID: PMC9436258 DOI: 10.1089/phage.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The fascinating scientific history of phage therapy has been documented in numerous publications. In this study, however, we focus on an angle of the story that hitherto has remained relatively neglected, namely, phage therapy treatments, and the protagonists that conducted these in Mandatory-Palestine and subsequently the state of Israel, as part of a global trend. We complete the story by describing efforts in the new era of phage therapy in present-day Israel.
Collapse
Affiliation(s)
- Amit Rimon
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Military Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Gelman
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Military Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ortal Yerushalmy
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Katvan
- Bar Ilan University, Ramat Gan, Israel
- Peres Academic Center, Rehovot, Israel
| | - Ran Nir-Paz
- Department of Clinical Microbiology and Infectious Diseases, Jerusalem, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronen Hazan
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
19
|
Letarov A. The Overlooked Bacteriophage: Nikolai F. Gamaleya 1899 Paper. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:81-84. [PMID: 36157283 PMCID: PMC9436255 DOI: 10.1089/phage.2022.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Andrey Letarov
- Winogradsky Institute of Microbiology RC Biotechnology RAS, Moscow, Russia
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
20
|
Ahmad M, Siddique AB, Muzammil S, Shafique M, Nawaz Z, Khurshid M, Rasool MH, Jalees MM, Sarwar N, Aslam B. Occurrence of Hypervirulent Klebsiella pneumoniae in Clinical Settings and Lytic Potential of Bacteriophages Against the Isolates. Jundishapur J Microbiol 2022; 15. [DOI: 10.5812/jjm.120027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
Background: Antibiotic resistance is a major health hazard around the globe. Hypervirulent Klebsiella Pneumoniae (hvKp) is associated with hospital-acquired and community-acquired infections. Since there is a lack of new antibiotics against multidrug-resistant (MDR) pathogens, phage therapy might provide an alternative approach to confer antibiotic resistance. Objectives: This study aimed to estimate the occurrence of hvKp and characterize the bacteriophage against the hvKp prevalence in clinical settings, which might be used as an alternative to antibiotics. Methods: Different clinical samples (n = 50) were collected to isolate K. pneumoniae, and the assessment of multidrug resistance was carried out based on the Clinical and Laboratory Standards Institute guidelines (2020). The bacteriophage was isolated from hospital waste, and the double agar overlay method was used for phage purification and propagation. Spot test and one-step curve were performed to determine host-phage interactions. For the evaluation of phage stability in environmental conditions, the phage was incubated at various ranges of temperature, pH, and chloroform. Results: Out of the collected samples, 22 (44%) isolates were confirmed as K. pneumoniae. Among confirmed K. pneumoniae isolates, a total of 11 (50%) isolates were detected as hvKp. Moreover, 14 (64%) isolates were detected as MDR, out of which 5 (35%) isolates were among hvKp phenotypes. Maximum resistance was observed against ampicillin (86%) followed by ceftriaxone (81%) which was the highest among cephalosporins. The isolated bacteriophage showed a broad host range, short latent period, and stability. Overall, 16 isolates (85%) of K. pneumoniae were susceptible to phage infection, among which 12 isolates were MDR (75%); however, all 5 (100%) hvKp isolates were susceptible to phage infection. One-step growth analysis revealed a burst size of 190 phages/host bacterial cells with a short latent period of 24 minutes. Conclusions: Altogether, the significant prevalence of hvKp was estimated in clinical settings, and the isolated bacteriophage showed significant lytic activity as it killed all the hvKp strains. Phage therapy might be exploited and used as a potential alternative therapeutic approach against infections caused by this resistant pathogen.
Collapse
|
21
|
Ahmad M, Siddique AB, Muzammil S, Shafique M, Nawaz Z, Khurshid M, Rasool MH, Jalees MM, Sarwar N, Aslam B. Occurrence of Hypervirulent Klebsiella pneumoniae in Clinical Settings and Lytic Potential of Bacteriophages Against the Isolates. Jundishapur J Microbiol 2022; 15. [DOI: https:/doi.org/10.5812/jjm.120027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Background: Antibiotic resistance is a major health hazard around the globe. Hypervirulent Klebsiella Pneumoniae (hvKp) is associated with hospital-acquired and community-acquired infections. Since there is a lack of new antibiotics against multidrug-resistant (MDR) pathogens, phage therapy might provide an alternative approach to confer antibiotic resistance. Objectives: This study aimed to estimate the occurrence of hvKp and characterize the bacteriophage against the hvKp prevalence in clinical settings, which might be used as an alternative to antibiotics. Methods: Different clinical samples (n = 50) were collected to isolate K. pneumoniae, and the assessment of multidrug resistance was carried out based on the Clinical and Laboratory Standards Institute guidelines (2020). The bacteriophage was isolated from hospital waste, and the double agar overlay method was used for phage purification and propagation. Spot test and one-step curve were performed to determine host-phage interactions. For the evaluation of phage stability in environmental conditions, the phage was incubated at various ranges of temperature, pH, and chloroform. Results: Out of the collected samples, 22 (44%) isolates were confirmed as K. pneumoniae. Among confirmed K. pneumoniae isolates, a total of 11 (50%) isolates were detected as hvKp. Moreover, 14 (64%) isolates were detected as MDR, out of which 5 (35%) isolates were among hvKp phenotypes. Maximum resistance was observed against ampicillin (86%) followed by ceftriaxone (81%) which was the highest among cephalosporins. The isolated bacteriophage showed a broad host range, short latent period, and stability. Overall, 16 isolates (85%) of K. pneumoniae were susceptible to phage infection, among which 12 isolates were MDR (75%); however, all 5 (100%) hvKp isolates were susceptible to phage infection. One-step growth analysis revealed a burst size of 190 phages/host bacterial cells with a short latent period of 24 minutes. Conclusions: Altogether, the significant prevalence of hvKp was estimated in clinical settings, and the isolated bacteriophage showed significant lytic activity as it killed all the hvKp strains. Phage therapy might be exploited and used as a potential alternative therapeutic approach against infections caused by this resistant pathogen.
Collapse
|
22
|
Ahmad M, Siddique AB, Muzammil S, Shafique M, Nawaz Z, Khurshid M, Rasool MH, Jalees MM, Sarwar N, Aslam B. Occurrence of Hypervirulent Klebsiella pneumoniae in Clinical Settings and Lytic Potential of Bacteriophages Against the Isolates. Jundishapur J Microbiol 2022; 15. [DOI: doi.org/10.5812/jjm.120027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Background: Antibiotic resistance is a major health hazard around the globe. Hypervirulent Klebsiella Pneumoniae (hvKp) is associated with hospital-acquired and community-acquired infections. Since there is a lack of new antibiotics against multidrug-resistant (MDR) pathogens, phage therapy might provide an alternative approach to confer antibiotic resistance. Objectives: This study aimed to estimate the occurrence of hvKp and characterize the bacteriophage against the hvKp prevalence in clinical settings, which might be used as an alternative to antibiotics. Methods: Different clinical samples (n = 50) were collected to isolate K. pneumoniae, and the assessment of multidrug resistance was carried out based on the Clinical and Laboratory Standards Institute guidelines (2020). The bacteriophage was isolated from hospital waste, and the double agar overlay method was used for phage purification and propagation. Spot test and one-step curve were performed to determine host-phage interactions. For the evaluation of phage stability in environmental conditions, the phage was incubated at various ranges of temperature, pH, and chloroform. Results: Out of the collected samples, 22 (44%) isolates were confirmed as K. pneumoniae. Among confirmed K. pneumoniae isolates, a total of 11 (50%) isolates were detected as hvKp. Moreover, 14 (64%) isolates were detected as MDR, out of which 5 (35%) isolates were among hvKp phenotypes. Maximum resistance was observed against ampicillin (86%) followed by ceftriaxone (81%) which was the highest among cephalosporins. The isolated bacteriophage showed a broad host range, short latent period, and stability. Overall, 16 isolates (85%) of K. pneumoniae were susceptible to phage infection, among which 12 isolates were MDR (75%); however, all 5 (100%) hvKp isolates were susceptible to phage infection. One-step growth analysis revealed a burst size of 190 phages/host bacterial cells with a short latent period of 24 minutes. Conclusions: Altogether, the significant prevalence of hvKp was estimated in clinical settings, and the isolated bacteriophage showed significant lytic activity as it killed all the hvKp strains. Phage therapy might be exploited and used as a potential alternative therapeutic approach against infections caused by this resistant pathogen.
Collapse
|
23
|
Chaudhary N, Mohan B, Mavuduru RS, Kumar Y, Taneja N. Characterization, genome analysis and in vitro activity of a novel phage vB_EcoA_RDN8.1 active against multi-drug resistant and extensively drug-resistant biofilm-forming uropathogenic Escherichia coli isolates, India. J Appl Microbiol 2022; 132:3387-3404. [PMID: 34989075 DOI: 10.1111/jam.15439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022]
Abstract
AIM We aimed to study host range, stability, genome and antibiofilm activity of a novel phage vB_EcoA_RDN8.1 active against multi-drug resistant (MDR) and extensively drug-resistant (XDR) biofilm-forming uropathogenic Escherichia coli isolates. METHODS AND RESULTS A novel lytic phage vB_EcoA_RDN8.1 active against UPEC strains resistant to third-generation cephalosporins, fluoroquinolones, aminoglycosides, imipenem, beta-lactamase inhibitor combination and polymyxins was isolated from community raw sewage water of Chandigarh. It exhibited a clear plaque morphology and a burst size of 250. In the time-kill assay, the maximum amount of killing was achieved at MOI 1.0. vB_EcoA_RDN8.1 belongs to the family Autographiviridae, has a genome size of 39.5 kb with a GC content of 51.6%. It was stable over a wide range of temperatures and pH. It was able to inhibit biofilm formation which may be related to an endolysin encoded by ORF 19. CONCLUSIONS The vB_EcoA_RDN8.1 is a novel lytic phage that has the potential for inclusion into phage cocktails being developed for the treatment of urinary tract infections (UTIs) caused by highly drug-resistant UPEC. SIGNIFICANCE AND IMPACT OF THE STUDY We provide a detailed characterization of a novel lytic Escherichia phage with antibiofilm activity having a potential application against MDR and XDR UPEC causing UTIs.
Collapse
Affiliation(s)
- Naveen Chaudhary
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravimohan S Mavuduru
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Central Research Institute, National Salmonella and Escherichia Centre, Kasauli, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
24
|
Alomari MMM, Dec M, Urban-Chmiel R. Bacteriophages as an Alternative Method for Control of Zoonotic and Foodborne Pathogens. Viruses 2021; 13:2348. [PMID: 34960617 PMCID: PMC8709489 DOI: 10.3390/v13122348] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
The global increase in multidrug-resistant infections caused by various pathogens has raised concerns in human and veterinary medicine. This has renewed interest in the development of alternative methods to antibiotics, including the use of bacteriophages for controlling bacterial infections. The aim of this review is to present potential uses of bacteriophages as an alternative to antibiotics in the control of bacterial infections caused by multidrug-resistant bacteria posing a risk to humans, with particular emphasis on foodborne and zoonotic pathogens. A varied therapeutic and immunomodulatory (activation or suppression) effect of bacteriophages on humoral and cellular immune response mechanisms has been demonstrated. The antibiotic resistance crisis caused by global antimicrobial resistance among bacteria creates a compelling need for alternative safe and selectively effective antibacterial agents. Bacteriophages have many properties indicating their potential suitability as therapeutic and/or prophylactic agents. In many cases, bacteriophages can also be used in food quality control against microorganisms such as Salmonella, Escherichia coli, Listeria, Campylobacter and others. Future research will provide potential alternative solutions using bacteriophages to treat infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine University of Life Sciences in Lublin, 20-033 Lublin, Poland;
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine University of Life Sciences in Lublin, 20-033 Lublin, Poland;
| |
Collapse
|
25
|
Abedon ST, Danis-Wlodarczyk KM, Alves DR. Phage Therapy in the 21st Century: Is There Modern, Clinical Evidence of Phage-Mediated Efficacy? Pharmaceuticals (Basel) 2021; 14:1157. [PMID: 34832939 PMCID: PMC8625828 DOI: 10.3390/ph14111157] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Many bacteriophages are obligate killers of bacteria. That this property could be medically useful was first recognized over one hundred years ago, with 2021 being the 100-year anniversary of the first clinical phage therapy publication. Here we consider modern use of phages in clinical settings. Our aim is to answer one question: do phages serve as effective anti-bacterial infection agents when used clinically? An important emphasis of our analyses is on whether phage therapy-associated anti-bacterial infection efficacy can be reasonably distinguished from that associated with often coadministered antibiotics. We find that about half of 70 human phage treatment reports-published in English thus far in the 2000s-are suggestive of phage-mediated anti-bacterial infection efficacy. Two of these are randomized, double-blinded, infection-treatment studies while 14 of those studies, in our opinion, provide superior evidence of a phage role in observed treatment successes. Roughly three-quarters of these potentially phage-mediated outcomes are based on microbiological as well as clinical results, with the rest based on clinical success. Since many of these phage treatments are of infections for which antibiotic therapy had not been successful, their collective effectiveness is suggestive of a valid utility in employing phages to treat otherwise difficult-to-cure bacterial infections.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA;
| | | | - Diana R. Alves
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA;
| |
Collapse
|
26
|
Grzybowski A, Żaczek M, Górski A, Weber-Dąbrowska B, Międzybrodzki R. Bronisława Fejgin (1883-1943): Forgotten Important Contributor to International Microbiology and Phage Therapy. Antibiotics (Basel) 2021; 10:1353. [PMID: 34827291 PMCID: PMC8614871 DOI: 10.3390/antibiotics10111353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Bronisława Brandla Fejgin was a Polish-born Jewish female physician. Among Fejgin's numerous articles in the field of microbiology, her later work was almost entirely devoted to phage research. Although not equally famous as the phage pioneers from Western Europe, F.W. Twort and F. d'Herelle, Fejgin's contribution to phage research deserves proper recognition. Her studies on phages resulted in the publication of numerous original scientific reports. These articles, published mostly in French, constitute an important source of information and expertise on early attempts towards therapeutic use of phages in humans. The interwar period marks the most intense years in Bronisława Fejgin's research activity, brutally interrupted by her death in the Warsaw Ghetto in 1943. Her microbiology contributions have not been analyzed so far. Thus, the aim of this article is to fill the existing gap in the history of microbiology and phage therapy.
Collapse
Affiliation(s)
- Andrzej Grzybowski
- Institute for Research in Ophthalmology, 60-836 Poznań, Poland;
- Department of Ophthalmology, University of Warmia and Mazury, 10-561 Olsztyn, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (R.M.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Teaching Hospital, Medical University of Warsaw, 02-005 Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
27
|
Mousavi SM, Babakhani S, Moradi L, Karami S, Shahbandeh M, Mirshekar M, Mohebi S, Moghadam MT. Bacteriophage as a Novel Therapeutic Weapon for Killing Colistin-Resistant Multi-Drug-Resistant and Extensively Drug-Resistant Gram-Negative Bacteria. Curr Microbiol 2021; 78:4023-4036. [PMID: 34633487 PMCID: PMC8503728 DOI: 10.1007/s00284-021-02662-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
Colistin-resistant multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) bacteria are highly lethal and many researchers have tried hard to combat these microorganisms around the world. Infections caused by these bacteria are resistant to the last resort of antibiotic therapy and have posed a major challenge in clinical and public health. Since the production of new antibiotics is very expensive and also very slow compared to the increasing rate of antibiotic resistance, researchers are suggesting the use of natural substances with high antibacterial potential. Bacteriophages are one of the most effective therapeutic measures that are known to exist for use for incurable and highly resistant infections. Phages are highly taken into consideration due to the lack of side effects, potential spread to various body organs, distinct modes of action from antibiotics, and proliferation at the site of infection. Although the effects of phages on MDR and XDR bacteria have been demonstrated in various studies, only a few have investigated the effect of phage therapy on colistin-resistant isolates. Therefore, in this review, we discuss the problems caused by colistin-resistant MDR and XDR bacteria in the clinics, explain the different mechanisms associated with colistin resistance, introduce bacteriophage therapy as a powerful remedy, and finally present new studies that have used bacteriophages against colistin-resistant isolates.
Collapse
Affiliation(s)
| | - Sajad Babakhani
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Leila Moradi
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Saina Karami
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahsa Shahbandeh
- Young Researchers and Elite Club, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Maryam Mirshekar
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Khatami A, Lin RCY, Petrovic‐Fabijan A, Alkalay‐Oren S, Almuzam S, Britton PN, Brownstein MJ, Dao Q, Fackler J, Hazan R, Horne B, Nir‐Paz R, Iredell JR. Bacterial lysis, autophagy and innate immune responses during adjunctive phage therapy in a child. EMBO Mol Med 2021; 13:e13936. [PMID: 34369652 PMCID: PMC8422068 DOI: 10.15252/emmm.202113936] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Adjunctive phage therapy was used in an attempt to avoid catastrophic outcomes from extensive chronic Pseudomonas aeruginosa osteoarticular infection in a 7-year-old child. Monitoring of phage and bacterial kinetics allowed real-time phage dose adjustment, and along with markers of the human host response, indicated a significant therapeutic effect within two weeks of starting adjunctive phage therapy. These findings strongly suggested the release of bacterial cells or cell fragments into the bloodstream from deep bony infection sites early in treatment. This was associated with transient fever and local pain and with evidence of marked upregulation of innate immunity genes in the host transcriptome. Adaptive immune responses appeared to develop after a week of therapy and some immunomodulatory elements were also observed to be upregulated.
Collapse
Affiliation(s)
- Ameneh Khatami
- Department of Infectious Diseases and MicrobiologyThe Children’s Hospital at WestmeadWestmeadNSWAustralia
- Sydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Ruby C Y Lin
- Sydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | | | - Sivan Alkalay‐Oren
- Institute of Dental Sciences and School of Dental MedicineThe Hebrew UniversityJerusalemIsrael
- Department of Clinical Microbiology and Infectious DiseasesHadassah‐Hebrew University Medical Center, and the Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Sulaiman Almuzam
- Department of Infectious Diseases and MicrobiologyThe Children’s Hospital at WestmeadWestmeadNSWAustralia
| | - Philip N Britton
- Department of Infectious Diseases and MicrobiologyThe Children’s Hospital at WestmeadWestmeadNSWAustralia
- Sydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | | | - Quang Dao
- Department of OrthopaedicsThe Children’s Hospital at WestmeadWestmeadNSWAustralia
| | - Joe Fackler
- Adaptive Phage TherapeuticsGaithersburgMDUSA
| | - Ronen Hazan
- Institute of Dental Sciences and School of Dental MedicineThe Hebrew UniversityJerusalemIsrael
| | | | - Ran Nir‐Paz
- Department of Clinical Microbiology and Infectious DiseasesHadassah‐Hebrew University Medical Center, and the Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Jonathan R Iredell
- Sydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
29
|
Aswani VH, Shukla SK. An Early History of Phage Therapy in the United States: Is it Time to Reconsider? Clin Med Res 2021; 19:82-89. [PMID: 34172535 PMCID: PMC8231696 DOI: 10.3121/cmr.2021.1605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/30/2020] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Frederick William Twort and Felix d'Hérelle independently discovered bacteriophages in 1915 and 1917, respectively. This led to the early trials of using bacteriophages to treat infectious diseases worldwide. The earliest reported use of bacteriophages therapeutically in the United States was in 1922. With the subsequent discovery of antibiotics in the 1940s, and because of disappointing results of phage therapy in the next decade, use of bacteriophages as therapeutic agents declined in western countries. This paper addresses two questions in the field: what is the historical record of the successes and failures of phage therapy in the United States and, what led to abandoning phage therapy in the United States? We examined the literature from 1915 to 1965, and we present a numerical analysis of the papers published during that period. We report key historical factors leading to a decline in the use of phage therapy in the United States by the 1950s. Since bacteriophages were first used therapeutically, several changes have occurred: increased antimicrobial drug resistance and a better knowledge of the biology of bacteriophages are important examples. Early assessments leading to the rejection of phage therapy in the United States were perhaps appropriate. However, it is time to reconsider the role of bacteriophages in treatment of bacterial infections.
Collapse
Affiliation(s)
- Vijay H Aswani
- Department of Internal Medicine & Pediatrics, University at Buffalo, Buffalo, New York, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| |
Collapse
|
30
|
Abd-Allah IM, El-Housseiny GS, Yahia IS, Aboshanab KM, Hassouna NA. Rekindling of a Masterful Precedent; Bacteriophage: Reappraisal and Future Pursuits. Front Cell Infect Microbiol 2021; 11:635597. [PMID: 34136415 PMCID: PMC8201069 DOI: 10.3389/fcimb.2021.635597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is exuberantly becoming a deleterious health problem world-wide. Seeking innovative approaches is necessary in order to circumvent such a hazard. An unconventional fill-in to antibiotics is bacteriophage. Bacteriophages are viruses capable of pervading bacterial cells and disrupting their natural activity, ultimately resulting in their defeat. In this article, we will run-through the historical record of bacteriophage and its correlation with bacteria. We will also delineate the potential of bacteriophage as a therapeutic antibacterial agent, its supremacy over antibiotics in multiple aspects and the challenges that could arise on the way to its utilization in reality. Pharmacodynamics, pharmacokinetics and genetic engineering of bacteriophages and its proteins will be briefly discussed as well. In addition, we will highlight some of the in-use applications of bacteriophages, and set an outlook for their future ones. We will also overview some of the miscellaneous abilities of these tiny viruses in several fields other than the clinical one. This is an attempt to encourage tackling a long-forgotten hive. Perhaps, one day, the smallest of the creatures would be of the greatest help.
Collapse
Affiliation(s)
- Israa M. Abd-Allah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim S. Yahia
- Research Center for Advanced Materials Science (RCAMS), Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
31
|
Kumar N, Gupta AK, Sudan SK, Pal D, Randhawa V, Sahni G, Mayilraj S, Kumar M. Abundance and Diversity of Phages, Microbial Taxa, and Antibiotic Resistance Genes in the Sediments of the River Ganges Through Metagenomic Approach. Microb Drug Resist 2021; 27:1336-1354. [PMID: 33913739 DOI: 10.1089/mdr.2020.0431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this study, we have analyzed the metagenomic DNA from the pooled sediment sample of the river Ganges to explore the abundance and diversity of phages, microbial community, and antibiotic resistance genes (ARGs). Utilizing data from Illumina platform, 4,174 (∼0.0013%) reads were classified for the 285 different DNA viruses largely dominated by the group of 260 distinctive phages (3,602 reads, ∼86.3%). Among all, Microcystis (782 hits), Haemophilus (403), Synechococcus (386), Pseudomonas (279), Enterococcus (232), Bacillus (196), Rhodococcus (166), Caulobacter (163), Salmonella (146), Enterobacteria (143), Mycobacterium and (128) phages show the highest abundance and account for ∼90% of the total identified phages. In addition, we have also identified corresponding host pertaining to these phages. Mainly, Proteobacteria (∼69.3%) dominates the microbial population structure. Primarily, orders such as Caulobacterales (∼28%), Burkholderiales (∼13.9%), Actinomycetales (∼13.7%), and Pseudomonadales (∼7.5%) signify the core section. Furthermore, 21,869 (∼0.00695%) reads were classified in 20 ARG types (classes) and 240 ARGs (subtypes), among which 4 ARG types, namely multidrug resistance (12,041 reads, ∼55%), bacitracin (3,202 reads, ∼15%), macrolide-lincosamide-streptogramin (1,744 reads, ∼7.98%), and fosmidomycin (990 reads, ∼4.53%), have the highest abundance. Simultaneously, six resistance mechanisms were also recognized with the dominance of antibiotic efflux (72.8%, 15,919 reads). The results unveil the distribution of (pro)-phages; microbial community; and various ARGs in the Ganges river sediments.
Collapse
Affiliation(s)
- Narender Kumar
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Amit Kumar Gupta
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Sarabjeet Kour Sudan
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Deepika Pal
- MTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Vinay Randhawa
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Girish Sahni
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Shanmugam Mayilraj
- MTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
32
|
Letarov AV. History of Early Bacteriophage Research and Emergence of Key Concepts in Virology. BIOCHEMISTRY (MOSCOW) 2021; 85:1093-1010. [PMID: 33050848 DOI: 10.1134/s0006297920090096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The viruses of bacteria - bacteriophages - were discovered 20 years after the discovery of viruses. However, this was mainly the bacteriophage research that, after the first 40 years, yielded the modern concept of the virus and to large extent formed the grounds of the emerging molecular genetics and molecular biology. Many specific aspects of the bacteriophage research history have been addressed in the existing publications. The integral outline of the events that led to the formation of the key concepts of modern virology is presented in this review. This includes the opposition of F. d'Herelle and J. Bordet viewpoints over the nature of the bacteriophage, the history of lysogeny discovery and of determination of the mechanisms of underlying this phenomenon, the work of the Phage group led by M. Delbruck in USA, the development of the genetic analysis of bacteriophages and other research that eventually led to emergence of the concept of the virus (bacteriophage) as a transmissive genetic program. The review also covers a brief history of early applications of the bacteriophages such as phage therapy and phage typing.
Collapse
Affiliation(s)
- A V Letarov
- Winogradskii Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 117312, Russia. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
33
|
Royer S, Morais AP, da Fonseca Batistão DW. Phage therapy as strategy to face post-antibiotic era: a guide to beginners and experts. Arch Microbiol 2021; 203:1271-1279. [PMID: 33474609 DOI: 10.1007/s00203-020-02167-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/20/2020] [Accepted: 12/27/2020] [Indexed: 01/05/2023]
Abstract
Interest in the therapeutic use of bacteriophages (phages) has emerged in recent years, driven mainly by the antimicrobial resistance crisis. This review aimed to summarize some important studies addressing the use of phages as a therapeutic alternative for multiresistant bacterial infections. To this end, a literature search was conducted to address the efficacy and versatility of phage therapy, the advantages and disadvantages of its use, and potential limitations for the application of phage therapy that need to be overcome, especially in Western countries. Thus, this review highlights that phage therapy may be a promising route in the treatment of infections caused by multidrug-resistant pathogens and that a combined approach has the potential to prolong the life of the current available antimicrobials. In addition, standardized clinical trials using monoclonal or polyclonal phages, alone or in combination with antimicrobials, are crucial to determine the real potential of these treatments in clinical practice.
Collapse
Affiliation(s)
- Sabrina Royer
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil. .,Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.
| | - Aléxia Pinheiro Morais
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.,Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
34
|
Does over a century of aerobic phage work provide a solid framework for the study of phages in the gut? Anaerobe 2021; 68:102319. [PMID: 33465423 DOI: 10.1016/j.anaerobe.2021.102319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Bacterial viruses (bacteriophages, phages) of the gut have increasingly become a focus in microbiome studies, with an understanding that they are likely key players in health and disease. However, characterization of the virome remains largely based on bioinformatic approaches, with the impact of these viromes inferred based on a century of knowledge from aerobic phage work. Studying the phages infecting anaerobes is difficult, as they are often technically demanding to isolate and propagate. In this review, we primarily discuss the phages infecting three well-studied anaerobes in the gut: Bifidobacterium, Clostridia and Bacteroides, with a particular focus on the challenges in isolating and characterizing these phages. We contrast the lessons learned from these to other anaerobic work on phages infecting facultative anaerobes of the gut: Enterococcus and Lactobacillus. Phages from the gut do appear to adhere to the lessons learned from aerobic work, but the additional challenges of working on them has required ingenious new approaches to enable their study. This, in turn, has uncovered remarkable biology likely underpinning phage-host relationships in many stable environments.
Collapse
|
35
|
Nagarajan K, Perumal SK, Marimuthu SK, Palanisamy S, Subbiah L. Addressing Antimicrobial Resistance Through Nanoantibiotics. HANDBOOK OF RESEARCH ON NANO-STRATEGIES FOR COMBATTING ANTIMICROBIAL RESISTANCE AND CANCER 2021:56-86. [DOI: 10.4018/978-1-7998-5049-6.ch003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, the irrational use of antibiotics has escalated the evolution of multidrug-resistant (MDR) bacterial strains. The infectious diseases caused by these MDR bacterial strains remain a major threat to human health and have emerged as the leading cause of morbidity and mortality. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. The antimicrobial resistance (AMR) poses a severe global threat of growing concern to human health and economic burden. Bacteria have developed the ability to resist antimicrobials by altering target site/enzyme, inactivation of the enzyme, decreasing cell permeability, increasing efflux due to over-expression of efflux pumps, target protection, target overproduction, and many other ways. The shortage of new antimicrobials and rapid rise in antibiotic resistance demands pressing need to develop alternate antibacterial agents.
Collapse
Affiliation(s)
- Krishnanand Nagarajan
- University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, India
| | | | | | | | | |
Collapse
|
36
|
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1-32. [PMID: 31578554 PMCID: PMC8042644 DOI: 10.1093/femsre/fuz024] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas is a well-studied genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide. Genomic and functional studies of these phytopathogens have provided significant understanding of microbial-host interactions, bacterial virulence and host adaptation mechanisms including microbial ecology and epidemiology. In addition, several strains of Xanthomonas are important as producers of the extracellular polysaccharide, xanthan, used in the food and pharmaceutical industries. This polymer has also been implicated in several phases of the bacterial disease cycle. In this review, we summarise the current knowledge on the infection strategies and regulatory networks controlling virulence and adaptation mechanisms from Xanthomonas species and discuss the novel opportunities that this body of work has provided for disease control and plant health.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA
| | - Max Dow
- School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland
| | | | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
37
|
Reuter M, Kruger DH. Approaches to optimize therapeutic bacteriophage and bacteriophage-derived products to combat bacterial infections. Virus Genes 2020; 56:136-149. [PMID: 32036540 PMCID: PMC7223754 DOI: 10.1007/s11262-020-01735-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The emerging occurrence of antibiotic-resistant bacterial pathogens leads to a recollection of bacteriophage as antimicrobial therapeutics. This article presents a short overview of the clinical phage application including their use in military medicine and discusses the genotypic and phenotypic properties of a potential "ideal" therapeutic phage. We describe current efforts to engineer phage for their improved usability in pathogen treatment. In addition, phage can be applied for pathogen detection, selective drug delivery, vaccine development, or food and surface decontamination. Instead of viable phage, (engineered) phage-derived enzymes, such as polysaccharide depolymerases or peptidoglycan-degrading enzymes, are considered as promising therapeutic candidates. Finally, we briefly summarize the use of phage for the detection and treatment of "Category A priority pathogens".
Collapse
Affiliation(s)
- Monika Reuter
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Detlev H. Kruger
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
38
|
Bacteriophage Therapy: Developments and Directions. Antibiotics (Basel) 2020; 9:antibiotics9030135. [PMID: 32213955 PMCID: PMC7148498 DOI: 10.3390/antibiotics9030135] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
In an era of proliferating multidrug resistant bacterial infections that are exhausting the capacity of existing chemical antibiotics and in which the development of new antibiotics is significantly rarer, Western medicine must seek additional therapeutic options that can be employed to treat these infections. Among the potential antibacterial solutions are bacteriophage therapeutics, which possess very different properties from broad spectrum antibiotics that are currently the standard of care, and which can be used in combination with them and often provide synergies. In this review we summarize the state of the development of bacteriophage therapeutics and discuss potential paths to the implementation of phage therapies in contemporary medicine, focused on fixed phage cocktail therapeutics since these are likely to be the first bacteriophage products licensed for broad use in Western countries.
Collapse
|
39
|
Jiménez-Avalos JA, Arrevillaga-Boni G, González-López L, García-Carvajal ZY, González-Avila M. Classical methods and perspectives for manipulating the human gut microbial ecosystem. Crit Rev Food Sci Nutr 2020; 61:234-258. [PMID: 32114770 DOI: 10.1080/10408398.2020.1724075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A healthy Human Gut Microbial Ecosystem (HGME) is a necessary condition for maintaining the orderly function of the whole body. Major alterations in the normal gut microbial composition, activity and functionality (dysbiosis) by an environmental or host-related disruptive event, can compromise metabolic, inflammatory, and neurological processes, causing disorders such as obesity, inflammatory bowel disease, colorectal cancer, and depressive episodes. The restore or the maintaining of the homeostatic balance of Gut Microbiota (GM) populations (eubiosis) is possible through diet, the use of probiotics, prebiotics, antibiotics, and even Fecal Microbiota Transplantation (FMT). Although these "classic methods" represent an effective and accepted way to modulate GM, the complexity of HGME requires new approaches to control it in a more appropriate way. Among the most promising emergent strategies for modulating GM are the use of engineered nanomaterials (metallic nanoparticles (NP), polymeric-NP, quantum dots, micelles, dendrimers, and liposomes); phagotherapy (i.e., phages linked with the CRISPR/Cas9 system), and the use of antimicrobial peptides, non-antibiotic drugs, vaccines, and immunoglobulins. Here we review the current state of development, implications, advantages, disadvantages, and perspectives of the different approaches for manipulating HGME.
Collapse
Affiliation(s)
- Jorge Armando Jiménez-Avalos
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Gerardo Arrevillaga-Boni
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | | | - Zaira Yunuen García-Carvajal
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Marisela González-Avila
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
40
|
Mohanraj U, Wan X, Spruit CM, Skurnik M, Pajunen MI. A Toxicity Screening Approach to Identify Bacteriophage-Encoded Anti-Microbial Proteins. Viruses 2019; 11:E1057. [PMID: 31739448 PMCID: PMC6893735 DOI: 10.3390/v11111057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
The rapid emergence of antibiotic resistance among many pathogenic bacteria has created a profound need to discover new alternatives to antibiotics. Bacteriophages, the viruses of microbes, express special proteins to overtake the metabolism of the bacterial host they infect, the best known of which are involved in bacterial lysis. However, the functions of majority of bacteriophage encoded gene products are not known, i.e., they represent the hypothetical proteins of unknown function (HPUFs). In the current study we present a phage genomics-based screening approach to identify phage HPUFs with antibacterial activity with a long-term goal to use them as leads to find unknown targets to develop novel antibacterial compounds. The screening assay is based on the inhibition of bacterial growth when a toxic gene is expression-cloned into a plasmid vector. It utilizes an optimized plating assay producing a significant difference in the number of transformants after ligation of the toxic and non-toxic genes into a cloning vector. The screening assay was first tested and optimized using several known toxic and non-toxic genes. Then, it was applied to screen 94 HPUFs of bacteriophage φR1-RT, and identified four HPUFs that were toxic to Escherichia coli. This optimized assay is in principle useful in the search for bactericidal proteins of any phage, and also opens new possibilities to understanding the strategies bacteriophages use to overtake bacterial hosts.
Collapse
Affiliation(s)
- Ushanandini Mohanraj
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (U.M.); (X.W.); (C.M.S.); (M.S.)
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Xing Wan
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (U.M.); (X.W.); (C.M.S.); (M.S.)
- Division Animal and Human Health Engineering, Kasteelpark Arenberg 21 - box 2462, 3001 Leuven, Belgium
| | - Cindy M. Spruit
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (U.M.); (X.W.); (C.M.S.); (M.S.)
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (U.M.); (X.W.); (C.M.S.); (M.S.)
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (U.M.); (X.W.); (C.M.S.); (M.S.)
| |
Collapse
|
41
|
Sharma R, Pielstick BA, Bell KA, Nieman TB, Stubbs OA, Yeates EL, Baltrus DA, Grose JH. A Novel, Highly Related Jumbo Family of Bacteriophages That Were Isolated Against Erwinia. Front Microbiol 2019; 10:1533. [PMID: 31428059 PMCID: PMC6690015 DOI: 10.3389/fmicb.2019.01533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023] Open
Abstract
Erwinia amylovora is a plant pathogen from the Erwiniaceae family and a causative agent of the devastating agricultural disease fire blight. Here we characterize eight lytic bacteriophages of E. amylovora that we isolated from the Wasatch front (Utah, United States) that are highly similar to vB_EamM_Ea35-70 which was isolated in Ontario, Canada. With the genome size ranging from 271 to 275 kb, this is a novel jumbo family of bacteriophages. These jumbo bacteriophages were further characterized through genomic and proteomic comparison, mass spectrometry, host range and burst size. Their proteomes are highly unstudied, with over 200 putative proteins with no known homologs. The production of 27 of these putative proteins was confirmed by mass spectrometry analysis. These bacteriophages appear to be most similar to bacteriophages that infect Pseudomonas and Ralstonia rather than Enterobacteriales bacteria by protein similarity, however, we were only able to detect infection of Erwinia and the closely related strains of Pantoea.
Collapse
Affiliation(s)
- Ruchira Sharma
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Brittany A. Pielstick
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Kimberly A. Bell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Tanner B. Nieman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Olivia A. Stubbs
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Edward L. Yeates
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - David A. Baltrus
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
42
|
Rehman S, Ali Z, Khan M, Bostan N, Naseem S. The dawn of phage therapy. Rev Med Virol 2019; 29:e2041. [PMID: 31050070 DOI: 10.1002/rmv.2041] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
Bacteriophages or phages, being the most abundant entities on earth, represent a potential solution to a diverse range of problems. Phages are successful antibacterial agents whose use in therapeutics was hindered by the discovery of antibiotics. Eventually, because of the development and spread of antibiotic resistance among most bacterial species, interest in phage as therapeutic entities has returned, because their noninfectious nature to humans should make them safe for human nanomedicine. This review highlights the most recent advances and progress in phage therapy and bacterial hosts against which phage research is currently being conducted with respect to food, human, and marine pathogens. Bacterial immunity against phages and tactics of phage revenge to defeat bacterial defense systems are also summarized. We have also discussed approved phage-based products (whole phage-based products and phage proteins) and shed light on their influence on the eukaryotic host with respect to host safety and induction of immune response against phage preparations. Moreover, creation of phages with desirable qualities and their uses in cancer treatment, vaccine production, and other therapies are also reviewed to bring together evidence from the scientific literature about the potentials and possible utility of phage and phage encoded proteins in the field of therapeutics and industrial biotechnology.
Collapse
Affiliation(s)
- Sana Rehman
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zahid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Momna Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saadia Naseem
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
43
|
Febvre HP, Rao S, Gindin M, Goodwin NDM, Finer E, Vivanco JS, Lu S, Manter DK, Wallace TC, Weir TL. PHAGE Study: Effects of Supplemental Bacteriophage Intake on Inflammation and Gut Microbiota in Healthy Adults. Nutrients 2019; 11:nu11030666. [PMID: 30897686 PMCID: PMC6471193 DOI: 10.3390/nu11030666] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is increasingly recognized as an important modulator of human health. As such, there is a growing need to identify effective means of selectively modifying gut microbial communities. Bacteriophages, which were briefly utilized as clinical antimicrobials in the early 20th century, present an opportunity to selectively reduce populations of undesirable microorganisms. However, whether intentional consumption of specific bacteriophages affects overall gut ecology is not yet known. Using a commercial cocktail of Escherichia coli-targeting bacteriophages, we examined their effects on gut microbiota and markers of intestinal and systemic inflammation in a healthy human population. In a double-blinded, placebo-controlled crossover trial, normal to overweight adults consumed bacteriophages for 28 days. Stool and blood samples were collected and used to examine inflammatory markers, lipid metabolism, and gut microbiota. Reductions in fecal E. coli loads were observed with phage consumption. However, there were no significant changes to alpha and beta diversity parameters, suggesting that consumed phages did not globally disrupt the microbiota. However, specific populations were altered in response to treatment, including increases in members of the butyrate-producing genera Eubacterium and a decreased proportion of taxa most closely related to Clostridium perfringens. Short-chain fatty acid production, inflammatory markers, and lipid metabolism were largely unaltered, but there was a small but significant decrease in circulating interleukin-4 (Il-4). Together, these data demonstrate the potential of bacteriophages to selectively reduce target organisms without global disruption of the gut community.
Collapse
Affiliation(s)
- Hallie P Febvre
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Melinda Gindin
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Natalie D M Goodwin
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Elijah Finer
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Jorge S Vivanco
- Polaris Expeditionary Learning School, Fort Collins, CO 80525, USA.
| | - Shen Lu
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Daniel K Manter
- Soil Management and Sugarbeet Research, ARS, USDA, Fort Collins, CO 80523, USA.
| | - Taylor C Wallace
- Think Healthy Group, Inc., Washington, DC 20001, USA.
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 220030, USA.
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
44
|
Abstract
Antibiotic resistance is arguably the biggest current threat to global health. An increasing number of infections are becoming harder or almost impossible to treat, carrying high morbidity, mortality, and financial cost. The therapeutic use of bacteriophages, viruses that infect and kill bacteria, is well suited to be part of the multidimensional strategies to combat antibiotic resistance. Although phage therapy was first implemented almost a century ago, it was brought to a standstill after the successful introduction of antibiotics. Now, with the rise of antibiotic resistance, phage therapy is experiencing a well-deserved rebirth. Among the admittedly vast literature recently published on this topic, this review aims to provide a forward-looking perspective on phage therapy and its role in modern society. We cover the key points of the antibiotic resistance crisis and then explain the biological and evolutionary principles that support the use of phages, their interaction with the immune system, and a comparison with antibiotic therapy. By going through up-to-date reports and, whenever possible, human clinical trials, we examine the versatility of phage therapy. We discuss conventional approaches as well as novel strategies, including the use of phage-antibiotic combinations, phage-derived enzymes, exploitation of phage resistance mechanisms, and phage bioengineering. Finally, we discuss the benefits of phage therapy beyond the clinical perspective, including opportunities for scientific outreach and effective education, interdisciplinary collaboration, cultural and economic growth, and even innovative use of social media, making the case that phage therapy is more than just an alternative to antibiotics.
Collapse
|
45
|
Moelling K, Broecker F, Willy C. A Wake-Up Call: We Need Phage Therapy Now. Viruses 2018; 10:E688. [PMID: 30563034 PMCID: PMC6316858 DOI: 10.3390/v10120688] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
The rise of multidrug-resistant bacteria has resulted in an increased interest in phage therapy, which historically preceded antibiotic treatment against bacterial infections. To date, there have been no reports of serious adverse events caused by phages. They have been successfully used to cure human diseases in Eastern Europe for many decades. More recently, clinical trials and case reports for a variety of indications have shown promising results. However, major hurdles to the introduction of phage therapy in the Western world are the regulatory and legal frameworks. Present regulations may take a decade or longer to be fulfilled. It is of urgent need to speed up the availability of phage therapy.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland.
- Max Planck Institute for molecular Genetics, 14195 Berlin, Germany.
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Christian Willy
- Department Trauma & Orthopedic Surgery, Septic & Reconstructive Surgery, Research and Treatment Center for Complex Combat Injuries, Military Hospital Berlin, 10115 Berlin, Germany.
| |
Collapse
|
46
|
Manohar P, Nachimuthu R, Lopes BS. The therapeutic potential of bacteriophages targeting gram-negative bacteria using Galleria mellonella infection model. BMC Microbiol 2018; 18:97. [PMID: 30170558 PMCID: PMC6119258 DOI: 10.1186/s12866-018-1234-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/15/2018] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Phage therapy is the therapeutic use of bacteriophages to treat highly drug resistant bacterial infections. The current surge in bacteriophage therapy is motivated mainly because of the emergence of antibiotic-resistant bacteria in clinics. This study evaluated the therapeutic potential of three bacteriophages isolated against Escherichia coli ec311, Klebsiella pneumoniae kp235 and Enterobacter cloacae el140 strains using Galleria mellonella. The in vitro activity of three different phages belonging to Podoviridae and Myoviridae families was studied by the double agar overlay method against multi-drug resistant strains. Larval survivability studies were performed to evaluate the potential of phages against infection using G. mellonella. RESULTS All the three phages were found to have potential to infect the host bacterial strains. For in vivo studies it was observed that E. coli and E. cloacae infected larvae, should be treated with three phage doses (20 μL, 104 PFU/mL) at 6 h interval to achieve 100% survival rate. But in the case of K. pneumoniae, a single phage dose treatment showed promising outcome. When mixed bacterial infections (all three bacterial cultures at 108 CFU/mL) were tested, minimum of four doses of phage cocktail (three phages) at 6 h interval was necessary to recover the larvae. All the results were confirmed by enumerating bacteria from the larvae. CONCLUSION Our data shows that although in vitro studies showed high infectivity of phages, for in vivo models multiple phage doses were required for effective treatment.
Collapse
Affiliation(s)
- Prasanth Manohar
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Bruno S Lopes
- School of Medicine, Medical Sciences and Nutrition, Medical Microbiology, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
47
|
Squires RA. Bacteriophage therapy for management of bacterial infections in veterinary practice: what was once old is new again. N Z Vet J 2018; 66:229-235. [PMID: 29925297 DOI: 10.1080/00480169.2018.1491348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteriophages (or phages) are naturally-occurring viruses that can infect and kill bacteria. They are remarkably diverse, numerous and widespread. Each phage has a narrow host range yet a large majority of bacteria studied so far play host to bacteriophages, hence the remarkable phage diversity. Phages were discovered just over 100 years ago and they have been used for treatment of bacterial infections in humans and other animals since the 1920s. They have also been studied intensively and this has led to, and continues to lead to, major insights in the fields of molecular biology and recombinant DNA technology, including that DNA is the genetic material, nucleotides are arranged in triplets to make codons, and messenger RNA is needed for protein synthesis. This article begins with a description of bacteriophages and explains why there has recently been a strong resurgence of interest in their clinical use for treatment of bacterial infections, particularly those caused by organisms resistant to multiple antimicrobial compounds. The history of bacteriophage therapy is briefly reviewed, followed by a review and critique of promising but very limited clinical research on the use of bacteriophages to treat bacterial infections in dogs. Other potential veterinary uses and benefits of bacteriophage therapy are also briefly discussed. There are important practical challenges that will have to be overcome before widespread implementation and commercialisation of bacteriophage therapy can be achieved, which are also considered.
Collapse
Affiliation(s)
- R A Squires
- a Discipline of Veterinary Science, College of Public Health, Medical and Veterinary Sciences , James Cook University , Townsville , Australia
| |
Collapse
|
48
|
Sinha S, Grewal RK, Roy S. Modeling Bacteria-Phage Interactions and Its Implications for Phage Therapy. ADVANCES IN APPLIED MICROBIOLOGY 2018; 103:103-141. [PMID: 29914656 DOI: 10.1016/bs.aambs.2018.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacteriophages are more abundant than any other organism on our planet. The interaction of bacteriophages and bacteria and their coevolution is well known. In this chapter, we describe various aspects of modeling such systems and their dynamics. We explore their interaction in: (i) liquid media, which leads to well-mixed populations and (ii) solid media, where their interaction is spatially restricted. Such modeling, when used in conjunction with experiments would not only shed deep insight into the underlying dynamics but also provide useful clues toward potential therapeutic applications.
Collapse
|
49
|
Abedon ST. Bacteriophage Clinical Use as Antibacterial "Drugs": Utility and Precedent. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0003-2016. [PMID: 28840811 PMCID: PMC11687515 DOI: 10.1128/microbiolspec.bad-0003-2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 12/25/2022] Open
Abstract
For phage therapy-the treatment of bacterial infections using bacterial viruses-a key issue is the conflict between apparent ease of clinical application, on the one hand, and on the other hand, numerous difficulties that can be associated with undertaking preclinical development. These conflicts between achieving efficacy in the real world versus rigorously understanding that efficacy should not be surprising because equivalent conflicts have been observed in applied biology for millennia: exploiting the inherent, holistic tendencies of useful systems, e.g., of dairy cows, inevitably is easier than modeling those systems or maintaining effectiveness while reducing such systems to isolated parts. Trial and error alone, in other words, can be a powerful means toward technological development. Undertaking trial and error-based programs, especially in the clinic, nonetheless is highly dependent on those technologies possessing both inherent safety and intrinsic tendencies toward effectiveness, but in this modern era we tend to forget that ideally there would exist antibacterials which could be thus developed, that is, with tendencies toward both safety and effectiveness, and which are even relatively inexpensive. Consequently, we tend to demand rigor as well as expense of development even to the point of potentially squandering such utility, were it to exist. In this review I lay out evidence that in phage therapy such potential, in fact, does exist. Advancement of phage therapy unquestionably requires effective regulation as well as rigorous demonstration of efficacy, but after nearly 100 years of clinical practice, perhaps not as much emphasis on strictly laboratory-based proof of principle.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906
| |
Collapse
|
50
|
Abedon ST, García P, Mullany P, Aminov R. Editorial: Phage Therapy: Past, Present and Future. Front Microbiol 2017. [PMID: 28663740 DOI: 10.3389/fmicb.2017.00981.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State UniversityMansfield, OH, United States
| | - Pilar García
- Spanish National Research CouncilVillaviciosa, Spain
| | - Peter Mullany
- Department of Microbial Diseases, Eastman Dental Institute, University College LondonLondon, United Kingdom
| | - Rustam Aminov
- School of Medicine and Dentistry, University of AberdeenAberdeen, United Kingdom
| |
Collapse
|