1
|
Eid L, Lokmane L, Raju PK, Tene Tadoum SB, Jiang X, Toulouse K, Lupien-Meilleur A, Charron-Ligez F, Toumi A, Backer S, Lachance M, Lavertu-Jolin M, Montseny M, Lacaille JC, Bloch-Gallego E, Rossignol E. Both GEF domains of the autism and developmental epileptic encephalopathy-associated Trio protein are required for proper tangential migration of GABAergic interneurons. Mol Psychiatry 2025; 30:1338-1358. [PMID: 39300136 PMCID: PMC11919732 DOI: 10.1038/s41380-024-02742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Recessive and de novo mutations in the TRIO gene are associated with intellectual deficiency (ID), autism spectrum disorder (ASD) and developmental epileptic encephalopathies (DEE). TRIO is a dual guanine nucleotide exchange factor (GEF) that activates Rac1, Cdc42 and RhoA. Trio has been extensively studied in excitatory neurons, and has recently been found to regulate the switch from tangential to radial migration in GABAergic interneurons (INs) through GEFD1-Rac1-dependent SDF1α/CXCR4 signaling. Given the central role of Rho-GTPases during neuronal migration and the implication of IN pathologies in ASD and DEE, we investigated the relative roles of both Trio's GEF domains in regulating the dynamics of INs tangential migration. In Trio-/- mice, we observed reduced numbers of tangentially migrating INs, with intact progenitor proliferation. Further, we noted increased growth cone collapse in developing INs, suggesting altered cytoskeleton dynamics. To bypass the embryonic mortality of Trio-/- mice, we generated Dlx5/6Cre;Trioc/c conditional mutant mice (TriocKO), which develop spontaneous seizures and behavioral deficits reminiscent of ASD and ID. These phenotypes are associated with reduced cortical IN density and functional cortical inhibition. Mechanistically, this reduction of cortical IN numbers reflects a premature switch to radial migration, with an aberrant early entry in the cortical plate, as well as major deficits in cytoskeletal dynamics, including enhanced leading neurite branching and slower nucleokinesis reflecting reduced actin filament condensation and turnover as well as a loss of response to the motogenic effect of EphA4/ephrin A2 reverse signaling. Further, we show that both Trio GEFD1 and GEFD2 domains are required for proper IN migration, with a dominant role of the RhoA-activating GEFD2 domain. Altogether, our data show a critical role of the DEE/ASD-associated Trio gene in the establishment of cortical inhibition and the requirement of both GEF domains in regulating IN migration dynamics.
Collapse
Affiliation(s)
- Lara Eid
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Ludmilla Lokmane
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Praveen K Raju
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Samuel Boris Tene Tadoum
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Xiao Jiang
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Karolanne Toulouse
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Alexis Lupien-Meilleur
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - François Charron-Ligez
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Asmaa Toumi
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Stéphanie Backer
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mathieu Lachance
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Marisol Lavertu-Jolin
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Marie Montseny
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Jean-Claude Lacaille
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Groupe de recherche sur la signalisation neurale et la circuiterie, Université de Montréal, Montréal, QC, Canada
| | - Evelyne Bloch-Gallego
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France.
| | - Elsa Rossignol
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada.
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada.
- Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Gossen S, Gerstner S, Borchers A. The RhoGEF Trio is transported by microtubules and affects microtubule stability in migrating neural crest cells. Cells Dev 2024; 177:203899. [PMID: 38160720 DOI: 10.1016/j.cdev.2023.203899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in Xenopus cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.
Collapse
Affiliation(s)
- Stefanie Gossen
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Sarah Gerstner
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
3
|
Fung TS, Chakrabarti R, Kollasser J, Rottner K, Stradal TEB, Kage F, Higgs HN. Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Curr Biol 2022; 32:1577-1592.e8. [PMID: 35290799 PMCID: PMC9078333 DOI: 10.1016/j.cub.2022.02.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022]
Abstract
Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD is a rapid peri-mitochondrial actin polymerization termed ADA (acute damage-induced actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial depolarization or the complex I inhibitor metformin to induce ADA. We show that two parallel signaling pathways are required for ADA. In one pathway, increased cytosolic calcium in turn activates PKC-β, Rac, WAVE regulatory complex, and Arp2/3 complex. In the other pathway, a drop in cellular ATP in turn activates AMPK (through LKB1), Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange factors for Rac and Cdc42, Trio and Fgd1, respectively, whose phosphorylation states increase upon mitochondrial depolarization and whose suppression inhibits ADA. The depolarization-induced calcium increase is dependent on the mitochondrial sodium-calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux. We also show that ADA inhibition results in enhanced mitochondrial shape changes upon mitochondrial depolarization, suggesting that ADA inhibits these shape changes. These depolarization-induced shape changes are not fragmentation but a circularization of the inner mitochondrial membrane, which is dependent on the inner mitochondrial membrane protease Oma1. ADA inhibition increases the proteolytic processing of an Oma1 substrate, the dynamin GTPase Opa1. These results show that ADA requires the combined action of the Arp2/3 complex and formin proteins to polymerize a network of actin filaments around mitochondria and that the ADA network inhibits the rapid mitochondrial shape changes that occur upon mitochondrial depolarization.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
4
|
The RhoGEF Trio: A Protein with a Wide Range of Functions in the Vascular Endothelium. Int J Mol Sci 2021; 22:ijms221810168. [PMID: 34576329 PMCID: PMC8467920 DOI: 10.3390/ijms221810168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
Many cellular processes are controlled by small GTPases, which can be activated by guanine nucleotide exchange factors (GEFs). The RhoGEF Trio contains two GEF domains that differentially activate the small GTPases such as Rac1/RhoG and RhoA. These small RhoGTPases are mainly involved in the remodeling of the actin cytoskeleton. In the endothelium, they regulate junctional stabilization and play a crucial role in angiogenesis and endothelial barrier integrity. Multiple extracellular signals originating from different vascular processes can influence the activity of Trio and thereby the regulation of the forementioned small GTPases and actin cytoskeleton. This review elucidates how various signals regulate Trio in a distinct manner, resulting in different functional outcomes that are crucial for endothelial cell function in response to inflammation.
Collapse
|
5
|
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, Nordestgaard BG, Watts GF, Bruckert E, Fazio S, Ference BA, Graham I, Horton JD, Landmesser U, Laufs U, Masana L, Pasterkamp G, Raal FJ, Ray KK, Schunkert H, Taskinen MR, van de Sluis B, Wiklund O, Tokgozoglu L, Catapano AL, Ginsberg HN. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2021; 41:2313-2330. [PMID: 32052833 PMCID: PMC7308544 DOI: 10.1093/eurheartj/ehz962] [Citation(s) in RCA: 875] [Impact Index Per Article: 218.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/10/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.,National Institute for Health and Medical Research (INSERM), Paris, France
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute and UCSF, Oakland, CA 94609, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mat J Daemen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Denmark
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hopital de la Pitie, Paris, France
| | - Sergio Fazio
- Departments of Medicine, Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK.,Institute for Advanced Studies, University of Bristol, Bristol, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, IISPV, CIBERDEM, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Faculty of Medicine, Technische Universität München, Lazarettstr, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| | - Henry N Ginsberg
- Department of Medicine, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Johnstone EKM, Abhayawardana RS, See HB, Seeber RM, O'Brien SL, Thomas WG, Pfleger KDG. Complex interactions between the angiotensin II type 1 receptor, the epidermal growth factor receptor and TRIO-dependent signaling partners. Biochem Pharmacol 2021; 188:114521. [PMID: 33741329 DOI: 10.1016/j.bcp.2021.114521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Transactivation of the epidermal growth factor receptor (EGFR) by the angiotensin II (AngII) type 1 (AT1) receptor is involved in AT1 receptor-dependent growth effects and cardiovascular pathologies, however the mechanisms underpinning this transactivation are yet to be fully elucidated. Recently, a potential intermediate of this process was identified following the discovery that a kinase called TRIO was involved in AngII/AT1 receptor-mediated transactivation of EGFR. To investigate the mechanisms by which TRIO acts as an intermediate in AngII/AT1 receptor-mediated EGFR transactivation we used bioluminescence resonance energy transfer (BRET) assays to investigate proximity between the AT1 receptor, EGFR, TRIO and other proteins of interest. We found that AngII/AT1 receptor activation caused a Gαq-dependent increase in proximity of TRIO with Gγ2 and the AT1-EGFR heteromer, as well as trafficking of TRIO towards the Kras plasma membrane marker and into early, late and recycling endosomes. In contrast, we found that AngII/AT1 receptor activation caused a Gαq-independent increase in proximity of TRIO with Grb2, GRK2 and PKCζ, as well as trafficking of TRIO up to the plasma membrane from the Golgi. Furthermore, we confirmed the proximity between the AT1 receptor and the EGFR using the Receptor-Heteromer Investigation Technology, which showed AngII-induced recruitment of Grb2, GRK2, PKCζ, Gγ2 and TRIO to the EGFR upon AT1 coexpression. In summary, our results provide further evidence for the existence of the AT1-EGFR heteromer and reveal potential mechanisms by which TRIO contributes to the transactivation process.
Collapse
Affiliation(s)
- Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Rekhati S Abhayawardana
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Heng B See
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Ruth M Seeber
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Shannon L O'Brien
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia; Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Walter G Thomas
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; Dimerix Limited, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
7
|
Bircher JE, Koleske AJ. Trio family proteins as regulators of cell migration and morphogenesis in development and disease - mechanisms and cellular contexts. J Cell Sci 2021; 134:jcs248393. [PMID: 33568469 PMCID: PMC7888718 DOI: 10.1242/jcs.248393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The well-studied members of the Trio family of proteins are Trio and kalirin in vertebrates, UNC-73 in Caenorhabditis elegans and Trio in Drosophila Trio proteins are key regulators of cell morphogenesis and migration, tissue organization, and secretion and protein trafficking in many biological contexts. Recent discoveries have linked Trio and kalirin to human disease, including neurological disorders and cancer. The genes for Trio family proteins encode a series of large multidomain proteins with up to three catalytic activities and multiple scaffolding and protein-protein interaction domains. As such, Trio family proteins engage a wide array of cell surface receptors, substrates and interaction partners to coordinate changes in cytoskeletal regulatory and protein trafficking pathways. We provide a comprehensive review of the specific mechanisms by which Trio family proteins carry out their functions in cells, highlight the biological and cellular contexts in which they occur, and relate how alterations in these functions contribute to human disease.
Collapse
Affiliation(s)
- Josie E Bircher
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| | - Anthony J Koleske
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| |
Collapse
|
8
|
Puñal VM, Ahmed M, Thornton-Kolbe EM, Clowney EJ. Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx. Cell Tissue Res 2021; 383:91-112. [PMID: 33404837 PMCID: PMC9835099 DOI: 10.1007/s00441-020-03386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023]
Abstract
Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.
Collapse
Affiliation(s)
- Vanessa M. Puñal
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Ahmed
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma M. Thornton-Kolbe
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Josephine Clowney
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Matsuda J, Asano-Matsuda K, Kitzler TM, Takano T. Rho GTPase regulatory proteins in podocytes. Kidney Int 2020; 99:336-345. [PMID: 33122025 DOI: 10.1016/j.kint.2020.08.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The Rho family of small GTPases (Rho GTPases) are the master regulators of the actin cytoskeleton and consist of 22 members. Previous studies implicated dysregulation of Rho GTPases in podocytes in the pathogenesis of proteinuric glomerular diseases. Rho GTPases are primarily regulated by the three families of proteins; guanine nucleotide exchange factors (GEFs; 82 members), GTPase-activating proteins (GAPs; 69 members), and GDP dissociation inhibitors (GDIs; 3 members). Since the regulatory proteins far outnumber their substrate Rho GTPases and act in concert in a cell/context-dependent manner, the upstream regulatory mechanism directing Rho GTPases in podocytes is largely unknown. In this review, we summarize recent advances in the understanding of the role of Rho GTPase regulatory proteins in podocytes, including the known mutations of these proteins that cause proteinuria in humans. We also provide critical appraisal of the in vivo and in vitro studies and identify the knowledge gap in the field that will require further studies.
Collapse
Affiliation(s)
- Jun Matsuda
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kana Asano-Matsuda
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Thomas M Kitzler
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada; Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tomoko Takano
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Bhosle VK, Mukherjee T, Huang YW, Patel S, Pang BWF, Liu GY, Glogauer M, Wu JY, Philpott DJ, Grinstein S, Robinson LA. SLIT2/ROBO1-signaling inhibits macropinocytosis by opposing cortical cytoskeletal remodeling. Nat Commun 2020; 11:4112. [PMID: 32807784 PMCID: PMC7431850 DOI: 10.1038/s41467-020-17651-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Macropinocytosis is essential for myeloid cells to survey their environment and for growth of RAS-transformed cancer cells. Several growth factors and inflammatory stimuli are known to induce macropinocytosis, but its endogenous inhibitors have remained elusive. Stimulation of Roundabout receptors by Slit ligands inhibits directional migration of many cell types, including immune cells and cancer cells. We report that SLIT2 inhibits macropinocytosis in vitro and in vivo by inducing cytoskeletal changes in macrophages. In mice, SLIT2 attenuates the uptake of muramyl dipeptide, thereby preventing NOD2-dependent activation of NF-κB and consequent secretion of pro-inflammatory chemokine, CXCL1. Conversely, blocking the action of endogenous SLIT2 enhances CXCL1 secretion. SLIT2 also inhibits macropinocytosis in RAS-transformed cancer cells, thereby decreasing their survival in nutrient-deficient conditions which resemble tumor microenvironment. Our results identify SLIT2 as a physiological inhibitor of macropinocytosis and challenge the conventional notion that signals that enhance macropinocytosis negatively regulate cell migration, and vice versa.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Bo Wen Frank Pang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- BenchSci, Suite 201, 559 College Street, Toronto, ON, M6G 1A9, Canada
| | - Guang-Ying Liu
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON, M5G 2L3, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Centre for Advanced Dental Research and Care, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Jane Y Wu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON, M5C 1N8, Canada
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
11
|
Chen Y, Aslanoglou S, Murayama T, Gervinskas G, Fitzgerald LI, Sriram S, Tian J, Johnston APR, Morikawa Y, Suu K, Elnathan R, Voelcker NH. Silicon-Nanotube-Mediated Intracellular Delivery Enables Ex Vivo Gene Editing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000036. [PMID: 32378244 DOI: 10.1002/adma.202000036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Engineered nano-bio cellular interfaces driven by vertical nanostructured materials are set to spur transformative progress in modulating cellular processes and interrogations. In particular, the intracellular delivery-a core concept in fundamental and translational biomedical research-holds great promise for developing novel cell therapies based on gene modification. This study demonstrates the development of a mechanotransfection platform comprising vertically aligned silicon nanotube (VA-SiNT) arrays for ex vivo gene editing. The internal hollow structure of SiNTs allows effective loading of various biomolecule cargoes; and SiNTs mediate delivery of those cargoes into GPE86 mouse embryonic fibroblasts without compromising their viability. Focused ion beam scanning electron microscopy (FIB-SEM) and confocal microscopy results demonstrate localized membrane invaginations and accumulation of caveolin-1 at the cell-NT interface, suggesting the presence of endocytic pits. Small-molecule inhibition of endocytosis suggests that active endocytic process plays a role in the intracellular delivery of cargo from SiNTs. SiNT-mediated siRNA intracellular delivery shows the capacity to reduce expression levels of F-actin binding protein (Triobp) and alter the cellular morphology of GPE86. Finally, the successful delivery of Cas9 ribonucleoprotein (RNP) to specifically target mouse Hprt gene is achieved. This NT-enhanced molecular delivery platform has strong potential to support gene editing technologies.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Gediminas Gervinskas
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Laura I Fitzgerald
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Sharath Sriram
- MicroNano Research Facility (MNRF), RMIT University, Melbourne City Campus, Building 7, Level 4, Bowen Street, Melbourne, VIC, 3000, Australia
| | - Jie Tian
- MicroNano Research Facility (MNRF), RMIT University, Melbourne City Campus, Building 7, Level 4, Bowen Street, Melbourne, VIC, 3000, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Department of Materials Science and Engineering Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
- Department of Materials Science and Engineering Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| |
Collapse
|
12
|
Kratzer MC, Becker SFS, Grund A, Merks A, Harnoš J, Bryja V, Giehl K, Kashef J, Borchers A. The Rho guanine nucleotide exchange factor Trio is required for neural crest cell migration and interacts with Dishevelled. Development 2020; 147:dev.186338. [PMID: 32366678 DOI: 10.1242/dev.186338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/08/2020] [Indexed: 01/31/2023]
Abstract
Directional migration during embryogenesis and tumor progression faces the challenge that numerous external signals need to converge to precisely control cell movement. The Rho guanine exchange factor (GEF) Trio is especially well suited to relay signals, as it features distinct catalytic domains to activate Rho GTPases. Here, we show that Trio is required for Xenopus cranial neural crest (NC) cell migration and cartilage formation. Trio cell-autonomously controls protrusion formation of NC cells and Trio morphant NC cells show a blebbing phenotype. Interestingly, the Trio GEF2 domain is sufficient to rescue protrusion formation and migration of Trio morphant NC cells. We show that this domain interacts with the DEP/C-terminus of Dishevelled (DVL). DVL - but not a deletion construct lacking the DEP domain - is able to rescue protrusion formation and migration of Trio morphant NC cells. This is likely mediated by activation of Rac1, as we find that DVL rescues Rac1 activity in Trio morphant embryos. Thus, our data provide evidence for a novel signaling pathway, whereby Trio controls protrusion formation of cranial NC cells by interacting with DVL to activate Rac1.
Collapse
Affiliation(s)
- Marie-Claire Kratzer
- Philipps-Universität Marburg, Faculty of Biology, Molecular Embryology, 35043 Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Sarah F S Becker
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U1258, Université de Strasbourg, F-67400 Illkirch, CU Strasbourg, France
| | - Anita Grund
- Philipps-Universität Marburg, Faculty of Biology, Molecular Embryology, 35043 Marburg, Germany
| | - Anne Merks
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.,Department of Cytokinetics, Institute of Biophysics of the Academy of Sciences of the Czech Republic v.v.i., Brno 61265, Czech Republic
| | - Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Jubin Kashef
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Annette Borchers
- Philipps-Universität Marburg, Faculty of Biology, Molecular Embryology, 35043 Marburg, Germany .,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
13
|
Gellert M, Richter E, Mostertz J, Kantz L, Masur K, Hanschmann EM, Ribback S, Kroeger N, Schaeffeler E, Winter S, Hochgräfe F, Schwab M, Lillig CH. The cytosolic isoform of glutaredoxin 2 promotes cell migration and invasion. Biochim Biophys Acta Gen Subj 2020; 1864:129599. [PMID: 32173377 DOI: 10.1016/j.bbagen.2020.129599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
BACKROUND Cytosolic glutaredoxin 2 (Grx2c) controls axonal outgrowth and is specifically induced in many cancer cell lines. We thus hypothesized that Grx2c promotes cell motility and invasiveness. METHODS We characterized the impact of Grx2c expression in cell culture models. We combined stable isotope labeling, phosphopeptide enrichment, and high-accuracy mass spectrometry to characterize the underlying mechanisms. RESULTS The most prominent associations were found with actin dynamics, cellular adhesion, and receptor-mediated signal transduction, processes that are crucial for cell motility. For instance, collapsin response mediator protein 2, a protein involved in the regulation of cytoskeletal dynamics, is regulated by Grx2c through a redox switch that controls the phosphorylation state of the protein as well. Cell lines expressing Grx2c showed dramatic alterations in morphology. These cells migrated two-fold faster and gained the ability to infiltrate a collagen matrix. CONCLUSIONS The expression of Grx2c promotes cell migration, and may negatively correlate with cancer-specific survival. GENERAL SIGNIFICANCE Our results imply critical roles of Grx2c in cytoskeletal dynamics, cell adhesion, and cancer cell invasiveness.
Collapse
Affiliation(s)
- Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University Greifswald, Germany
| | - Erik Richter
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University Greifswald, Germany
| | - Liane Kantz
- Center for Innovation Competence plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Kai Masur
- Center for Innovation Competence plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University Greifswald, Germany
| | | | - Nils Kroeger
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University Greifswald, Germany; Clinic for Urology, University Medicine Greifswald, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University Greifswald, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University Greifswald, Germany.
| |
Collapse
|
14
|
Jiang W, Chen J, Guo ZP, Zhang L, Chen GP. Molecular characterization of a MOSPD2 homolog in the barbel steed (Hemibarbus labeo) and its involvement in monocyte/macrophage and neutrophil migration. Mol Immunol 2020; 119:8-17. [PMID: 31927202 DOI: 10.1016/j.molimm.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Motile sperm domain containing 2 (MOSPD2) is a single-pass membrane protein to which until recently little function had been ascribed. Although its mammalian homologs have been identified, the status of the mospd2 gene in lower vertebrates is still unknown. In the present study, cDNA of the mospd2 gene of barbel steed (Hemibarbus labeo) was cloned and sequenced to characterize its potential involvement in the innate immune system of this fish. Sequence analysis revealed that the predicted barbel steed MOSPD2 protein contained an N-terminal extracellular portion composed of a CRAL-TRIO domain, a motile sperm domain, and a transmembrane domain, as well as a short C-terminal intracellular domain. Phylogenetic tree analysis indicated that barbel steed MOSPD2 is closely related to that of zebrafish. Barbel steed mospd2 transcripts were detected in a wide range of tissues, with the highest level being found in the gill. In response to lipopolysaccharide (LPS) treatment or Aeromonas hydrophila infection, mospd2 gene expression was significantly altered in the head kidney, spleen, and mid-intestine. The expression of mospd2 gene was detected in monocytes/macrophages (MO/MФ), neutrophils, and lymphocytes, and was found to be mainly expressed in MO/MФ. At the same time, using flow cytometry, we also confirmed that MOSPD2 protein is located on MO/MФ, neutrophil, and lymphocyte membranes. Following treatment with LPS or A. hydrophila, MOSPD2 protein expression was induced in these immune cells. The migration of MO/MФ and neutrophils decreased significantly upon MOSPD2 blockade with anti-MOSPD2 IgG in a dose-dependent manner, whereas this treatment had no significant effect on lymphocytes migration. To the best of our knowledge, our study, for the first time, provides evidence that MOSPD2 mediates the migration of MO/MФ and neutrophils in a fish species.
Collapse
Affiliation(s)
- Wei Jiang
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Zhi-Ping Guo
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Le Zhang
- College of Medicine and Health, Lishui University, Lishui, 323000, China
| | - Guang-Ping Chen
- College of Medicine and Health, Lishui University, Lishui, 323000, China
| |
Collapse
|
15
|
Mohammad G, Duraisamy AJ, Kowluru A, Kowluru RA. Functional Regulation of an Oxidative Stress Mediator, Rac1, in Diabetic Retinopathy. Mol Neurobiol 2019; 56:8643-8655. [PMID: 31300985 PMCID: PMC6842106 DOI: 10.1007/s12035-019-01696-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Early activation of cytosolic NADPH oxidase-2 (Nox2) in diabetes increases retinal ROS production, damaging their mitochondria. The assembly of Nox2 holoenzyme requires activation of a small molecular weight G protein Rac1. Rac1 activation is regulated by guanine exchange factors and guanine nucleotide-dissociation inhibitors, and post-translational modifications assist in its association with exchange factors and dissociation inhibitors. The goal of this study is to investigate the mechanisms of Rac1 activation in the development of diabetic retinopathy. METHODS The levels of the dissociation inhibitor, prenylating enzyme (farnesyltransferase, FNTA), and exchange factor Vav2 were quantified in human retinal endothelial cells, incubated in normal or high glucose for 96 h. The roles of prenylation and Vav2 in Rac1-Nox2-ROS mitochondrial damage were confirmed in FNTA-siRNA-transfected cells and using the Vav2 inhibitor EHop, respectively. Retinal histopathology and functional changes associated with diabetic retinopathy were analyzed in diabetic mice receiving EHop for 6 months. Key parameters of Rac1 activation were confirmed in the retinal microvasculature from human donors with diabetic retinopathy. RESULTS In HRECs, glucose increased FNTA and Vav2 and decreased the dissociation inhibitor. FNTA-siRNA and EHop inhibited glucose-induced activation of Rac1-Nox2-ROS signaling. In diabetic mice, EHop ameliorated the development of retinopathy and functional/structural abnormalities and attenuated Rac1-Nox2-mitochondrial damage. Similar alterations in Rac1 regulators were observed in retinal microvasculature from human donors with diabetic retinopathy. In diabetes, Rac1 prenylation and its interactions with Vav2 contribute to Nox2-ROS-mitochondrial damage, and the pharmacological inhibitors to attenuate Rac1 interactions with its regulators could have the potential to halt/inhibit the development of diabetic retinopathy. Graphical Abstract Activation of prenylating enzyme farnesyltransferase (FNTA) in diabetes, prenylates Rac1. The binding of Rac1 with guanine nucleotide-dissociation inhibitor (GDI) is decreased, but its association with the guanine exchange factor, Vav2, is increased, resulting in Rac1 activation. Active Rac1 helps in the assembly of Nox2 holoenzyme, and Nox2 activation increases cytosolic ROS production, damaging the mitochondria. Damaged mitochondria accelerate capillary cell apoptosis, and ultimately, results in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Arul J Duraisamy
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Anjan Kowluru
- Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Renu A Kowluru
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI, 48201, USA.
| |
Collapse
|
16
|
Kratzer MC, England L, Apel D, Hassel M, Borchers A. Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development. Gene Expr Patterns 2019; 32:18-27. [PMID: 30844509 DOI: 10.1016/j.gep.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 01/23/2023]
Abstract
Guanine nucleotide exchange factors (GEFs) activate Rho GTPases by accelerating their GDP/GTP exchange. Trio and its paralog Kalirin (Kalrn) are unique members of the Rho-GEFs that harbor three catalytic domains: two functional GEF domains and a serine/threonine kinase domain. The N-terminal GEF domain activates Rac1 and RhoG GTPases, while the C-terminal GEF domain acts specifically on RhoA. Trio and Kalrn have an evolutionary conserved function in morphogenetic processes including neuronal development. De novo mutations in TRIO have lately been identified in patients with intellectual disability, suggesting that this protein family plays an important role in development and disease. Phylogenetic and domain analysis revealed that a Kalrn/Trio ancestor originated in Prebilateria and duplicated in Urbilateria to yield Kalrn and Trio. Only few taxa outside the vertebrates retained both of these highly conserved proteins. To obtain first insights into their redundant or distinct functions in a vertebrate model system, we show for the first time a detailed comparative analysis of trio and kalrn expression in Xenopus laevis development. The mRNAs are maternally transcribed and expression increases starting with neurula stages. Trio and kalrn are detected in mesoderm/somites and different neuronal populations in the neural plate/tube and later also in the brain. However, only trio is expressed in migrating neural crest cells, while kalrn expression is detected in the cranial nerves, suggesting distinct functions. Thus, our expression analysis provides a good basis for further functional studies.
Collapse
Affiliation(s)
- Marie-Claire Kratzer
- Philipps-Universität Marburg, Faculty of Biology, Molecular Embryology, Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Laura England
- Philipps-Universität Marburg, Faculty of Biology, Molecular Embryology, Marburg, Germany
| | - David Apel
- Philipps-Universität Marburg, Faculty of Biology, Morphology and Evolution of Invertebrates, Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Monika Hassel
- Philipps-Universität Marburg, Faculty of Biology, Morphology and Evolution of Invertebrates, Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Annette Borchers
- Philipps-Universität Marburg, Faculty of Biology, Molecular Embryology, Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
17
|
Siebert L, Staton ME, Headrick S, Lewis M, Gillespie B, Young C, Almeida RA, Oliver SP, Pighetti GM. Genome-wide association study identifies loci associated with milk leukocyte phenotypes following experimental challenge with Streptococcus uberis. Immunogenetics 2018; 70:553-562. [PMID: 29862454 DOI: 10.1007/s00251-018-1065-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/25/2018] [Indexed: 01/09/2023]
Abstract
Mastitis is a detrimental disease in the dairy industry that decreases milk quality and costs upwards of $2 billion annually. Often, mastitis results from bacteria entering the gland through the teat opening. Streptococcus uberis is responsible for a high percentage of subclinical and clinical mastitis. Following an intramammary experimental challenge with S. uberis on Holstein cows (n = 40), milk samples were collected and somatic cell counts (SCC) were determined by the Dairy Herd Improvement Association Laboratory. Traditional genome-wide association studies (GWAS) have utilized test day SCC or SCC lactation averages to identify loci of interest. Our approach utilizes SCC collected following a S. uberis experimental challenge to generate three novel phenotypes: (1) area under the curve (AUC) of SCC for 0-7 days and (2) 0-28 days post-challenge; and (3) when SCC returned to below 200,000 cells/mL post-challenge (< 21 days, 21-28 days, or > 28 days). Polymorphisms were identified using Illumina's BovineSNP50 v2 DNA BeadChip. Associations were tested using Plink software and identified 16 significant (p < 1.0 × 10-4) single-nucleotide polymorphisms (SNPs) across the phenotypes. Most significant SNPs were in genes linked to cell signaling, migration, and apoptosis. Several have been recognized in relation to infectious processes (ATF7, SGK1, and PACRG), but others less so (TRIO, GLRA1, CELSR2, TIAM2, CPE). Further investigation of these genes and their roles in inflammation (e.g., SCC) can provide potential targets that influence resolution of mammary gland infection. Likewise, further investigation of the identified SNP with mastitis and other disease phenotypes can provide greater insight to the potential of these SNP as genetic markers.
Collapse
Affiliation(s)
- Lydia Siebert
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, The University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN, 37996, USA
| | - Susan Headrick
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Mark Lewis
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Barbara Gillespie
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Charles Young
- Zoetis, 100 Campus Drive, Florham Park, NJ, 07932, USA
| | - Raul A Almeida
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Stephen P Oliver
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA.,AgResearch, The University of Tennessee, 2621 Morgan Circle, Knoxville, TN, 37996, USA
| | - Gina M Pighetti
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
18
|
Maier M, Baldwin C, Aoudjit L, Takano T. The Role of Trio, a Rho Guanine Nucleotide Exchange Factor, in Glomerular Podocytes. Int J Mol Sci 2018; 19:ijms19020479. [PMID: 29415466 PMCID: PMC5855701 DOI: 10.3390/ijms19020479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 12/16/2022] Open
Abstract
Nephrotic syndrome is a kidney disease featured by heavy proteinuria. It is caused by injury to the specialized epithelial cells called “podocytes” within the filtration unit of the kidney, glomerulus. Previous studies showed that hyperactivation of the RhoGTPase, Rac1, in podocytes causes podocyte injury and glomerulosclerosis (accumulation of extracellular matrix in the glomerulus). However, the mechanism by which Rac1 is activated during podocyte injury is unknown. Trio is a guanine nucleotide exchange factor (GEF) known to activate Rac1. By RNA-sequencing, we found that Trio mRNA is abundantly expressed in cultured human podocytes. Trio mRNA was also significantly upregulated in humans with minimal change disease and focal segmental glomerulosclerosis, two representative causes of nephrotic syndrome. Reduced expression of Trio in cultured human podocytes decreased basal Rac1 activity, cell size, attachment to laminin, and motility. Furthermore, while the pro-fibrotic cytokine, transforming growth factor β1 increased Rac1 activity in control cells, it decreases Rac1 activity in cells with reduced Trio expression. This was likely due to simultaneous activation of the Rac1-GTPase activation protein, CdGAP. Thus, Trio is important in the basal functions of podocytes and may also contribute to glomerular pathology, such as sclerosis, via Rac1 activation.
Collapse
Affiliation(s)
- Mirela Maier
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Cindy Baldwin
- Division of Nephrology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Lamine Aoudjit
- Division of Nephrology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Tomoko Takano
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
- Division of Nephrology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
19
|
Fischer A, Braga VMM. Vascular Permeability: Flow-Mediated, Non-canonical Notch Signalling Promotes Barrier Integrity. Curr Biol 2018; 28:R119-R121. [PMID: 29408259 DOI: 10.1016/j.cub.2017.11.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The vascular permeability barrier must be maintained in response to changes to vessel calibre, shear stress and blood pressure. A new study reveals a remarkable mechanism for flow-mediated regulation of permeability: Notch1 activation leads to the assembly of GTPase signalling complexes at VE-cadherin contacts and a strengthening of the endothelial barrier.
Collapse
Affiliation(s)
- Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Medicine I, Heidelberg University Hospital, Im Neuenheimer Feld 671, 69120 Heidelberg, Germany
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
20
|
Lee H, Kim M, Park J, Tran Q, Hong Y, Cho H, Park S, Hong S, Brazil DP, Kim SH, Park J. The roles of TRIO and F-actin-binding protein in glioblastoma cells. Mol Med Rep 2018; 17:4540-4546. [PMID: 29363730 PMCID: PMC5802229 DOI: 10.3892/mmr.2018.8458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/12/2018] [Indexed: 01/11/2023] Open
Abstract
TRIO and F-actin-binding protein (TrioBP), which was initially discovered as a binding partner of Trio and F-actin, is a critical factor associated with hearing loss in humans. However, the function of TrioBP in cancer has not been investigated. In the present study, TrioBP expression was indicated to be highly elevated in U87-MG and U343-MG cells. Furthermore, the TrioBP mRNA expression level was markedly increased in U87-MG and U251-MG cells compared with that in cerebral cortex cells, as determined by deep sequencing. Comprehensive analysis of a public TCGA dataset confirmed that TrioBP expression is elevated in patients with glioblastoma. In summary, the present data indicate that TrioBP expression is increased in glioblastoma cell lines and in patients with glioma, suggesting that TrioBP has potential as a diagnostic marker or therapeutic agent for glioma.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Minhee Kim
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Jisoo Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Quangdon Tran
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Youngeun Hong
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Hyeonjeong Cho
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Sungjin Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon, Gyeonggi‑do 21999, Republic of Korea
| | - Derek P Brazil
- Centre for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| |
Collapse
|
21
|
Katrancha SM, Wu Y, Zhu M, Eipper BA, Koleske AJ, Mains RE. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity. Hum Mol Genet 2017; 26:4728-4740. [PMID: 28973398 PMCID: PMC5886096 DOI: 10.1093/hmg/ddx355] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara M Katrancha
- Interdepartmental Neuroscience Program
- Department of Neuroscience
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yi Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
| | - Minsheng Zhu
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Betty A Eipper
- Department of Neuroscience
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony J Koleske
- Interdepartmental Neuroscience Program
- Department of Neuroscience
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
22
|
Omotade OF, Pollitt SL, Zheng JQ. Actin-based growth cone motility and guidance. Mol Cell Neurosci 2017; 84:4-10. [PMID: 28268126 DOI: 10.1016/j.mcn.2017.03.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 11/27/2022] Open
Abstract
Nerve growth cones, the dilated tip of developing axons, are equipped with exquisite abilities to sense environmental cues and to move rapidly through complex terrains of developing brain, leading the axons to their specific targets for precise neuronal wiring. The actin cytoskeleton is the major component of the growth cone that powers its directional motility. Past research has provided significant insights into the mechanisms by which growth cones translate extracellular signals into directional migration. In this review, we summarize the actin-based mechanisms underlying directional growth cone motility, examine novel findings, and discuss the outstanding questions concerning the actin-based growth cone behaviors.
Collapse
Affiliation(s)
- Omotola F Omotade
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Stephanie L Pollitt
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
23
|
Kinetics of recruitment and allosteric activation of ARHGEF25 isoforms by the heterotrimeric G-protein Gαq. Sci Rep 2016; 6:36825. [PMID: 27833100 PMCID: PMC5105084 DOI: 10.1038/srep36825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Rho GTPases are master regulators of the eukaryotic cytoskeleton. The activation of Rho GTPases is governed by Rho guanine nucleotide exchange factors (GEFs). Three RhoGEF isoforms are produced by the gene ARHGEF25; p63RhoGEF580, GEFT and a recently discovered longer isoform of 619 amino acids (p63RhoGEF619). The subcellular distribution of p63RhoGEF580 and p63RhoGEF619 is strikingly different in unstimulated cells, p63RhoGEF580 is located at the plasma membrane and p63RhoGEF619 is confined to the cytoplasm. Interestingly, we find that both P63RhoGEF580 and p63RhoGEF619 activate RhoGTPases to a similar extent after stimulation of Gαq coupled GPCRs. Furthermore, we show that p63RhoGEF619 relocates to the plasma membrane upon activation of Gαq coupled GPCRs, resembling the well-known activation mechanism of RhoGEFs activated by Gα12/13. Synthetic recruitment of p63RhoGEF619 to the plasma membrane increases RhoGEF activity towards RhoA, but full activation requires allosteric activation via Gαq. Together, these findings reveal a dual role for Gαq in RhoGEF activation, as it both recruits and allosterically activates cytosolic ARHGEF25 isoforms.
Collapse
|
24
|
van Unen J, Rashidfarrokhi A, Hoogendoorn E, Postma M, Gadella TWJ, Goedhart J. Quantitative Single-Cell Analysis of Signaling Pathways Activated Immediately Downstream of Histamine Receptor Subtypes. Mol Pharmacol 2016; 90:162-76. [PMID: 27358232 DOI: 10.1124/mol.116.104505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023] Open
Abstract
Genetically encoded biosensors based on Förster resonance energy transfer (FRET) can visualize responses of individual cells in real time. Here, we evaluated whether FRET-based biosensors provide sufficient contrast and specificity to measure activity of G-protein-coupled receptors. The four histamine receptor subtypes (H1R, H2R, H3R, and H4R) respond to the ligand histamine by activating three canonical heterotrimeric G-protein-mediated signaling pathways with a reported high degree of specificity. Using FRET-based biosensors, we demonstrate that H1R activates Gαq. We also observed that H1R activates Gαi, albeit at a 10-fold lower potency. In addition to increasing cAMP levels, most likely via Gαs, we found that the H2R induces Gαq-mediated calcium release. The H3R and H4R activated Gαi with high specificity and a high potency. We demonstrate that a number of FRET sensors provide sufficient contrast to: 1) analyze the specificity of the histamine receptor subtypes for different heterotrimeric G-protein families with single-cell resolution, 2) probe for antagonist specificity, and 3) allow the measurement of single-cell concentration-response curves.
Collapse
Affiliation(s)
- Jakobus van Unen
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Ali Rashidfarrokhi
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Eelco Hoogendoorn
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Marten Postma
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
The role of integrins in glaucoma. Exp Eye Res 2016; 158:124-136. [PMID: 27185161 DOI: 10.1016/j.exer.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023]
Abstract
Integrins are a family of heterodimeric transmembrane receptors that mediate adhesion to the extracellular matrix (ECM). In addition to their role as adhesion receptors, integrins can act as ''bidirectional signal transducers'' that coordinate a large number of cellular activities in response to the extracellular environment and intracellular signaling events. This bidirectional signaling helps maintain tissue homeostasis. Dysregulated bidirectional signaling, however, could trigger the propagation of feedback loops that can lead to the establishment of a disease state such as glaucoma. Here we discuss the role of integrins and bidirectional signaling as they relate to the glaucomatous phenotype with special emphasis on the αvβ3 integrin. We present evidence that this particular integrin may have a significant impact on the pathogenesis of glaucoma.
Collapse
|
26
|
Bouchet J, Del Río-Iñiguez I, Lasserre R, Agüera-Gonzalez S, Cuche C, Danckaert A, McCaffrey MW, Di Bartolo V, Alcover A. Rac1-Rab11-FIP3 regulatory hub coordinates vesicle traffic with actin remodeling and T-cell activation. EMBO J 2016; 35:1160-74. [PMID: 27154205 DOI: 10.15252/embj.201593274] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/05/2016] [Indexed: 11/09/2022] Open
Abstract
The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation.
Collapse
Affiliation(s)
- Jérôme Bouchet
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France INSERM U1221, Paris, France
| | - Iratxe Del Río-Iñiguez
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France INSERM U1221, Paris, France
| | - Rémi Lasserre
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France
| | - Sonia Agüera-Gonzalez
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France
| | - Céline Cuche
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France INSERM U1221, Paris, France
| | | | - Mary W McCaffrey
- Molecular Cell Biology Laboratory, Biosciences Institute, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France INSERM U1221, Paris, France
| | - Andrés Alcover
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France INSERM U1221, Paris, France
| |
Collapse
|
27
|
ROCK inhibition impedes macrophage polarity and functions. Cell Immunol 2016; 300:54-62. [DOI: 10.1016/j.cellimm.2015.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/02/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
|
28
|
van Buul JD, Timmerman I. Small Rho GTPase-mediated actin dynamics at endothelial adherens junctions. Small GTPases 2016; 7:21-31. [PMID: 26825121 DOI: 10.1080/21541248.2015.1131802] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VE-cadherin-based cell-cell junctions form the major restrictive barrier of the endothelium to plasma proteins and blood cells. The function of VE-cadherin and the actin cytoskeleton are intimately linked. Vascular permeability factors and adherent leukocytes signal through small Rho GTPases to tightly regulate actin cytoskeletal rearrangements in order to open and re-assemble endothelial cell-cell junctions in a rapid and controlled manner. The Rho GTPases are activated by guanine nucleotide exchange factors (GEFs), conferring specificity and context-dependent control of cell-cell junctions. Although the molecular mechanisms that couple cadherins to actin filaments are beginning to be elucidated, specific stimulus-dependent regulation of the actin cytoskeleton at VE-cadherin-based junctions remains unexplained. Accumulating evidence has suggested that depending on the vascular permeability factor and on the subcellular localization of GEFs, cell-cell junction dynamics and organization are differentially regulated by one specific Rho GTPase. In this Commentary, we focus on new insights how the junctional actin cytoskeleton is specifically and locally regulated by Rho GTPases and GEFs in the endothelium.
Collapse
Affiliation(s)
- Jaap D van Buul
- a Department of Molecular Cell Biology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam , Amsterdam , the Netherlands
| | - Ilse Timmerman
- b Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Academic Medical Center Amsterdam, University of Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
29
|
van Unen J, Reinhard NR, Yin T, Wu YI, Postma M, Gadella TWJ, Goedhart J. Plasma membrane restricted RhoGEF activity is sufficient for RhoA-mediated actin polymerization. Sci Rep 2015; 5:14693. [PMID: 26435194 PMCID: PMC4592971 DOI: 10.1038/srep14693] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023] Open
Abstract
The small GTPase RhoA is involved in cell morphology and migration. RhoA activity is tightly regulated in time and space and depends on guanine exchange factors (GEFs). However, the kinetics and subcellular localization of GEF activity towards RhoA are poorly defined. To study the mechanism underlying the spatiotemporal control of RhoA activity by GEFs, we performed single cell imaging with an improved FRET sensor reporting on the nucleotide loading state of RhoA. By employing the FRET sensor we show that a plasma membrane located RhoGEF, p63RhoGEF, can rapidly activate RhoA through endogenous GPCRs and that localized RhoA activity at the cell periphery correlates with actin polymerization. Moreover, synthetic recruitment of the catalytic domain derived from p63RhoGEF to the plasma membrane, but not to the Golgi apparatus, is sufficient to activate RhoA. The synthetic system enables local activation of endogenous RhoA and effectively induces actin polymerization and changes in cellular morphology. Together, our data demonstrate that GEF activity at the plasma membrane is sufficient for actin polymerization via local RhoA signaling.
Collapse
Affiliation(s)
- Jakobus van Unen
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands
| | - Nathalie R Reinhard
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands
| | - Taofei Yin
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032-6406
| | - Yi I Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032-6406
| | - Marten Postma
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands
| |
Collapse
|
30
|
Incorporating Functional Information in Tests of Excess De Novo Mutational Load. Am J Hum Genet 2015; 97:272-83. [PMID: 26235986 DOI: 10.1016/j.ajhg.2015.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022] Open
Abstract
A number of recent studies have investigated the role of de novo mutations in various neurodevelopmental and neuropsychiatric disorders. These studies attempt to implicate causal genes by looking for an excess load of de novo mutations within those genes. Current statistical methods for assessing this excess are based on the implicit assumption that all qualifying mutations in a gene contribute equally to disease. However, it is well established that different mutations can have radically different effects on the ultimate protein product and, as a result, on disease risk. Here, we propose a method, fitDNM, that incorporates functional information in a test of excess de novo mutational load. Specifically, we derive score statistics from a retrospective likelihood that incorporates the probability of a mutation being damaging to gene function. We show that, under the null, the resulting test statistic is distributed as a weighted sum of Poisson random variables and we implement a saddlepoint approximation of this distribution to obtain accurate p values. Using simulation, we have shown that our method outperforms current methods in terms of statistical power while maintaining validity. We have applied this approach to four de novo mutation datasets of neurodevelopmental and neuropsychiatric disorders: autism spectrum disorder, epileptic encephalopathy, schizophrenia, and severe intellectual disability. Our approach also implicates genes that have been implicated by existing methods. Furthermore, our approach provides strong statistical evidence supporting two potentially causal genes: SUV420H1 in autism spectrum disorder and TRIO in a combined analysis of the four neurodevelopmental and neuropsychiatric disorders investigated here.
Collapse
|
31
|
van Buul JD, Geerts D, Huveneers S. Rho GAPs and GEFs: controling switches in endothelial cell adhesion. Cell Adh Migr 2015; 8:108-24. [PMID: 24622613 PMCID: PMC4049857 DOI: 10.4161/cam.27599] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Within blood vessels, endothelial cell–cell and cell–matrix adhesions are crucial to preserve barrier function, and these adhesions are tightly controlled during vascular development, angiogenesis, and transendothelial migration of inflammatory cells. Endothelial cellular signaling that occurs via the family of Rho GTPases coordinates these cell adhesion structures through cytoskeletal remodelling. In turn, Rho GTPases are regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). To understand how endothelial cells initiate changes in the activity of Rho GTPases, and thereby regulate cell adhesion, we will discuss the role of Rho GAPs and GEFs in vascular biology. Many potentially important Rho regulators have not been studied in detail in endothelial cells. We therefore will first overview which GAPs and GEFs are highly expressed in endothelium, based on comparative gene expression analysis of human endothelial cells compared with other tissue cell types. Subsequently, we discuss the relevance of Rho GAPs and GEFs for endothelial cell adhesion in vascular homeostasis and disease.
Collapse
Affiliation(s)
- Jaap D van Buul
- Department of Molecular Cell Biology; Sanquin Research and Swammerdam Institute for Life Sciences; University of Amsterdam; The Netherlands
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology; Erasmus University Medical Center; Rotterdam, The Netherlands
| | - Stephan Huveneers
- Department of Molecular Cell Biology; Sanquin Research and Swammerdam Institute for Life Sciences; University of Amsterdam; The Netherlands
| |
Collapse
|
32
|
Son K, Smith TC, Luna EJ. Supervillin binds the Rac/Rho-GEF Trio and increases Trio-mediated Rac1 activation. Cytoskeleton (Hoboken) 2015; 72:47-64. [PMID: 25655724 DOI: 10.1002/cm.21210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/21/2015] [Indexed: 01/06/2023]
Abstract
We investigated cross-talk between the membrane-associated, myosin II-regulatory protein supervillin and the actin-regulatory small GTPases Rac1, RhoA, and Cdc42. Supervillin knockdown reduced Rac1-GTP loading, but not the GTP loading of RhoA or Cdc42, in HeLa cells with normal levels of the Rac1-activating protein Trio. No reduction in Rac1-GTP loading was observed when supervillin levels were reduced in Trio-depleted cells. Conversely, overexpression of supervillin isoform 1 (SV1) or, especially, isoform 4 (SV4) increased Rac1 activation. Inhibition of the Trio-mediated Rac1 guanine nucleotide exchange activity with ITX3 partially blocked the SV4-mediated increase in Rac1-GTP. Both SV4 and SV1 co-localized with Trio at or near the plasma membrane in ruffles and cell surface projections. Two sequences within supervillin bound directly to Trio spectrin repeats 4-7: SV1-171, which contains N-terminal residues found in both SV1 and SV4 and the SV4-specific differentially spliced coding exons 3, 4, and 5 within SV4 (SV4-E345; SV4 amino acids 276-669). In addition, SV4-E345 interacted with the homologous sequence in rat kalirin (repeats 4-7, amino acids 531-1101). Overexpressed SV1-174 and SV4-E345 affected Rac1-GTP loading, but only in cells with endogenous levels of Trio. Trio residues 771-1057, which contain both supervillin-interaction sites, exerted a dominant-negative effect on cell spreading. Supervillin and Trio knockdowns, separately or together, inhibited cell spreading, suggesting that supervillin regulates the Rac1 guanine nucleotide exchange activity of Trio, and potentially also kalirin, during cell spreading and lamellipodia extension.
Collapse
Affiliation(s)
- Kyonghee Son
- Department of Cell and Developmental Biology, Program in Cell & Developmental Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | |
Collapse
|
33
|
Zong W, Liu S, Wang X, Zhang J, Zhang T, Liu Z, Wang D, Zhang A, Zhu M, Gao J. Trio gene is required for mouse learning ability. Brain Res 2015; 1608:82-90. [PMID: 25727174 DOI: 10.1016/j.brainres.2015.02.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/03/2015] [Accepted: 02/15/2015] [Indexed: 01/08/2023]
Abstract
Trio is a guanine nucleotide exchange factor with multiple guanine nucleotide exchange factor domains. Trio regulates cytoskeleton dynamics and actin remodeling and is involved in cell migration and axonal guidance in neuronal development. The null allele of the Trio gene led to embryonic lethality, and Trio null embryos displayed aberrant organization in several regions of the brain at E18.5, including hippocampus. Nestin-Trio-/- mice, in which the Trio gene was deleted specifically in the neuronal system by the Nestin-Cre system, displayed severe phenotypes, including low survival rate, ataxia and multiple developmental defects of the cerebellum. All Nestin-Trio-/- mice died before reaching adulthood, which hinders research on Trio gene function in adult mice. Thus, we generated EMX1-Trio-/- mice by crossing Trio-floxed mice with EMX1-Cre mice in which Cre is expressed in the brain cortex and hippocampus. EMX1-Trio-/- mice can survive to adulthood. Trio gene deletion results in smaller brains, an abnormal hippocampus and disordered granule cells in the dentate gyrus (DG) and cornu ammonis (CA). Behavior tests showed that Trio deletion interfered with the hippocampal-dependent spatial learning in the mice, suggesting that Trio plays critical roles in the learning ability of adult mice. We conclude that the Trio gene regulates the neuronal development of the hippocampus and that it affects the intelligence of adult mice.
Collapse
Affiliation(s)
- Wen Zong
- Key Laboratory of the Ministry of Education for Experimental Teratology and School of Life Science, Shandong University, Jinan 250100, China
| | - Shuoyang Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology and School of Life Science, Shandong University, Jinan 250100, China
| | - Xiaotong Wang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jian Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology and School of Life Science, Shandong University, Jinan 250100, China
| | - Tingting Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology and School of Life Science, Shandong University, Jinan 250100, China
| | - Ziyi Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology and School of Life Science, Shandong University, Jinan 250100, China
| | - Dongdong Wang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Aizhen Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology and School of Life Science, Shandong University, Jinan 250100, China
| | - Minsheng Zhu
- Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing210061, China.
| | - Jiangang Gao
- Key Laboratory of the Ministry of Education for Experimental Teratology and School of Life Science, Shandong University, Jinan 250100, China.
| |
Collapse
|
34
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
35
|
Droppelmann CA, Campos-Melo D, Volkening K, Strong MJ. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases. Front Cell Neurosci 2014; 8:282. [PMID: 25309324 PMCID: PMC4159981 DOI: 10.3389/fncel.2014.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3' untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.
Collapse
Affiliation(s)
- Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada ; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada ; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University London, ON, Canada
| |
Collapse
|
36
|
A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 2014; 16:574-86. [PMID: 24859002 PMCID: PMC4083618 DOI: 10.1038/ncb2972] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
Rho family GTPases control cell migration and participate in the regulation of cancer metastasis. Invadopodia, associated with invasive tumor cells, are crucial for cellular invasion and metastasis. To study Rac1 GTPase in invadopodia dynamics, we developed a genetically-encoded, single-chain Rac1 Fluorescence Resonance Energy Transfer (FRET) biosensor. The biosensor shows Rac1 activity exclusion from the core of invadopodia, and higher activity when invadopodia disappear, suggesting that reduced Rac1 activity is necessary for their stability, and Rac1 activation is involved in disassembly. Photoactivating Rac1 at invadopodia confirmed this previously-unknown Rac1 function. We built an invadopodia disassembly model, where a signaling axis involving TrioGEF, Rac1, PAK1, and phosphorylation of cortactin, causing invadopodia dissolution. This mechanism is critical for the proper turnover of invasive structures during tumor cell invasion, where a balance of proteolytic activity and locomotory protrusions must be carefully coordinated to achieve a maximally invasive phenotype.
Collapse
|
37
|
Kowluru RA, Kowluru A, Veluthakal R, Mohammad G, Syed I, Santos JM, Mishra M. TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia 2014; 57:1047-56. [PMID: 24554007 DOI: 10.1007/s00125-014-3194-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS In diabetes, increased retinal oxidative stress is seen before the mitochondria are damaged. Phagocyte-like NADPH oxidase-2 (NOX2) is the predominant cytosolic source of reactive oxygen species (ROS). Activation of Ras-related C3 botulinum toxin substrate 1 (RAC1), a NOX2 holoenzyme member, is necessary for NOX2 activation and ROS generation. In this study we assessed the role of T cell lymphoma invasion and metastasis (TIAM1), a guanine nucleotide exchange factor for RAC1, in RAC1 and NOX2 activation and the onset of mitochondrial dysfunction in in vitro and in vivo models of glucotoxicity and diabetes. METHODS RAC1 and NOX2 activation, ROS generation, mitochondrial damage and cell apoptosis were quantified in bovine retinal endothelial cells exposed to high glucose concentrations, in the retina from normal and streptozotocin-induced diabetic rats and mice, and the retina from human donors with diabetic retinopathy. RESULTS High glucose activated RAC1 and NOX2 (expression and activity) and increased ROS in endothelial cells before increasing mitochondrial ROS and mitochondrial DNA (mtDNA) damage. N6-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine, trihydrochloride (NSC23766), a known inhibitor of TIAM1-RAC1, markedly attenuated RAC1 activation, total and mitochondrial ROS, mtDNA damage and cell apoptosis. An increase in NOX2 expression and membrane association of RAC1 and p47(phox) were also seen in diabetic rat retina. Administration of NSC23766 to diabetic mice attenuated retinal RAC1 activation and ROS generation. RAC1 activation and p47(phox) expression were also increased in the retinal microvasculature from human donors with diabetic retinopathy. CONCLUSIONS/INTERPRETATION The TIAM1-RAC1-NOX2 signalling axis is activated in the initial stages of diabetes to increase intracellular ROS leading to mitochondrial damage and accelerated capillary cell apoptosis. Strategies targeting TIAM1-RAC1 signalling could have the potential to halt the progression of diabetic retinopathy in the early stages of the disease.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Lawson CD, Burridge K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 2014; 5:e27958. [PMID: 24607953 DOI: 10.4161/sgtp.27958] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rho GTPases play an essential role in regulating cell spreading, adhesion, and migration downstream of integrin engagement with the extracellular matrix. In this review, we focus on RhoA and Rac1--2 Rho GTPases that are required for efficient adhesion and migration--and describe how specific guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate the extensive crosstalk that exists between them. In particular, we assess the role of GEFs and GAPs in light of recent, unexpected evidence concerning the spatiotemporal relationship between RhoA and Rac1 at the leading edge of migrating cells. Force is increasingly recognized as a key regulator of cell adhesion and we highlight the role of GEFs and GAPs in mechanotransduction, before debating the controversial role of tension in focal adhesion maturation.
Collapse
Affiliation(s)
- Campbell D Lawson
- Department of Cell Biology and Physiology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Keith Burridge
- Department of Cell Biology and Physiology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
39
|
Ma XM, Miller MB, Vishwanatha KS, Gross MJ, Wang Y, Abbott T, Lam TT, Mains RE, Eipper BA. Nonenzymatic domains of Kalirin7 contribute to spine morphogenesis through interactions with phosphoinositides and Abl. Mol Biol Cell 2014; 25:1458-71. [PMID: 24600045 PMCID: PMC4004595 DOI: 10.1091/mbc.e13-04-0215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Like several Rho GDP/GTP exchange factors (GEFs), Kalirin7 (Kal7) contains an N-terminal Sec14 domain and multiple spectrin repeats. A natural splice variant of Kalrn lacking the Sec14 domain and four spectrin repeats is unable to increase spine formation; our goal was to understand the function of the Sec14 and spectrin repeat domains. Kal7 lacking its Sec14 domain still increased spine formation, but the spines were short. Strikingly, Kal7 truncation mutants containing only the Sec14 domain and several spectrin repeats increased spine formation. The Sec14 domain bound phosphoinositides, a minor but crucial component of cellular membranes, and binding was increased by a phosphomimetic mutation. Expression of KalSec14-GFP in nonneuronal cells impaired receptor-mediated endocytosis, linking Kal7 to membrane trafficking. Consistent with genetic studies placing Abl, a non-receptor tyrosine kinase, and the Drosophila orthologue of Kalrn into the same signaling pathway, Abl1 phosphorylated two sites in the fourth spectrin repeat of Kalirin, increasing its sensitivity to calpain-mediated degradation. Treating cortical neurons of the wild-type mouse, but not the Kal7(KO) mouse, with an Abl inhibitor caused an increase in linear spine density. Phosphorylation of multiple sites in the N-terminal Sec14/spectrin region of Kal7 may allow coordination of the many signaling pathways contributing to spine morphogenesis.
Collapse
Affiliation(s)
- Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030 WM Keck Foundation Biotechnology Resource Laboratory, Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Goggs R, Harper MT, Pope RJ, Savage JS, Williams CM, Mundell SJ, Heesom KJ, Bass M, Mellor H, Poole AW. RhoG protein regulates platelet granule secretion and thrombus formation in mice. J Biol Chem 2013; 288:34217-34229. [PMID: 24106270 PMCID: PMC3837162 DOI: 10.1074/jbc.m113.504100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Matthew T Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Robert J Pope
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Joshua S Savage
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Christopher M Williams
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Stuart J Mundell
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Mark Bass
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alastair W Poole
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
41
|
Vulto-van Silfhout AT, Hehir-Kwa JY, van Bon BWM, Schuurs-Hoeijmakers JHM, Meader S, Hellebrekers CJM, Thoonen IJM, de Brouwer APM, Brunner HG, Webber C, Pfundt R, de Leeuw N, de Vries BBA. Clinical significance of de novo and inherited copy-number variation. Hum Mutat 2013; 34:1679-87. [PMID: 24038936 DOI: 10.1002/humu.22442] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/30/2013] [Indexed: 12/22/2022]
Abstract
Copy-number variations (CNVs) are a common cause of intellectual disability and/or multiple congenital anomalies (ID/MCA). However, the clinical interpretation of CNVs remains challenging, especially for inherited CNVs. Well-phenotyped patients (5,531) with ID/MCA were screened for rare CNVs using a 250K single-nucleotide polymorphism array platform in order to improve the understanding of the contribution of CNVs to a patients phenotype. We detected 1,663 rare CNVs in 1,388 patients (25.1%; range 0-5 per patient) of which 437 occurred de novo and 638 were inherited. The detected CNVs were analyzed for various characteristics, gene content, and genotype-phenotype correlations. Patients with severe phenotypes, including organ malformations, had more de novo CNVs (P < 0.001), whereas patient groups with milder phenotypes, such as facial dysmorphisms, were enriched for both de novo and inherited CNVs (P < 0.001), indicating that not only de novo but also inherited CNVs can be associated with a clinically relevant phenotype. Moreover, patients with multiple CNVs presented with a more severe phenotype than patients with a single CNV (P < 0.001), pointing to a combinatorial effect of the additional CNVs. In addition, we identified 20 de novo single-gene CNVs that directly indicate novel genes for ID/MCA, including ZFHX4, ANKH, DLG2, MPP7, CEP89, TRIO, ASTN2, and PIK3C3.
Collapse
Affiliation(s)
- Anneke T Vulto-van Silfhout
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences and Institute for Genetic and Metabolic Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim S, Dangelmaier C, Bhavanasi D, Meng S, Wang H, Goldfinger LE, Kunapuli SP. RhoG protein regulates glycoprotein VI-Fc receptor γ-chain complex-mediated platelet activation and thrombus formation. J Biol Chem 2013; 288:34230-34238. [PMID: 24106269 DOI: 10.1074/jbc.m113.504928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the mechanism of activation and functional role of a hitherto uncharacterized signaling molecule, RhoG, in platelets. We demonstrate for the first time the expression and activation of RhoG in platelets. Platelet aggregation, integrin αIIbβ3 activation, and α-granule and dense granule secretion in response to the glycoprotein VI (GPVI) agonists collagen-related peptide (CRP) and convulxin were significantly inhibited in RhoG-deficient platelets. In contrast, 2-MeSADP- and AYPGKF-induced platelet aggregation and secretion were minimally affected in RhoG-deficient platelets, indicating that the function of RhoG in platelets is GPVI-specific. CRP-induced phosphorylation of Syk, Akt, and ERK, but not SFK (Src family kinase), was significantly reduced in RhoG-deficient platelets. CRP-induced RhoG activation was consistently abolished by a pan-SFK inhibitor but not by Syk or PI3K inhibitors. Interestingly, unlike CRP, platelet aggregation and Syk phosphorylation induced by fucoidan, a CLEC-2 agonist, were unaffected in RhoG-deficient platelets. Finally, RhoG(-/-) mice had a significant delay in time to thrombotic occlusion in cremaster arterioles compared with wild-type littermates, indicating the important in vivo functional role of RhoG in platelets. Our data demonstrate that RhoG is expressed and activated in platelets, plays an important role in GPVI-Fc receptor γ-chain complex-mediated platelet activation, and is critical for thrombus formation in vivo.
Collapse
Affiliation(s)
- Soochong Kim
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Dheeraj Bhavanasi
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Shu Meng
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Hong Wang
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Lawrence E Goldfinger
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| | - Satya P Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
43
|
Targeting the Dbl and dock-family RhoGEFs: a yeast-based assay to identify cell-active inhibitors of Rho-controlled pathways. Enzymes 2013; 33 Pt A:169-91. [PMID: 25033805 DOI: 10.1016/b978-0-12-416749-0.00008-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Ras-like superfamily of low molecular weight GTPases is made of five major families (Arf/Sar, Rab, Ran, Ras, and Rho), highly conserved across evolution. This is in keeping with their roles in basic cellular functions (endo/exocytosis, vesicular trafficking, nucleocytoplasmic trafficking, cell signaling, proliferation and apoptosis, gene regulation, F-actin dynamics), whose alterations are associated with various types of diseases, in particular cancer, neurodegenerative, cardiovascular, and infectious diseases. For these reasons, Ras-like pathways are of great potential in therapeutics and identifying inhibitors that decrease signaling activity is under intense research. Along this line, guanine exchange factors (GEFs) represent attractive targets. GEFs are proteins that promote the active GTP-bound state of GTPases and represent the major entry points whereby extracellular cues are converted into Ras-like signaling. We previously developed the yeast exchange assay (YEA), an experimental setup in the yeast in which activity of a mammalian GEF can be monitored by auxotrophy and color reporter genes. This assay was further engineered for medium-throughput screening of GEF inhibitors, which can readily select for cell-active and specific compounds. We report here on the successful identification of inhibitors against Dbl and CZH/DOCK-family members, GEFs for Rho GTPases, and on the experimental setup to screen for inhibitors of GEFs of the Arf family. We also discuss on inhibitors developed using virtual screening (VS), which target the GEF/GTPase interface with high efficacy and specificity. We propose that using VS and YEA in combination may represent a method of choice for identifying specific and cell-active GEF inhibitors.
Collapse
|
44
|
Goel PN, Gude RP. Curbing the focal adhesion kinase and its associated signaling events by pentoxifylline in MDA-MB-231 human breast cancer cells. Eur J Pharmacol 2013; 714:432-41. [PMID: 23872375 DOI: 10.1016/j.ejphar.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 12/23/2022]
Abstract
Pentoxifylline (PTX) is a methylxanthine derivative currently being used in the treatment of peripheral vascular diseases. Recently, we had evaluated its action in human MDA-MB-231 breast cancer cells. PTX exhibited anti-metastatic activity by affecting key processes such as proliferation, adhesion, migration, invasion and apoptosis. In light of the preliminary findings, the present work accounts for the possible mechanistic insights of the pathways affected by PTX. Aberrant Focal Adhesion Kinase (FAK) signaling forms a key determinant in breast cancer and in view of this fact we had investigated downstream processes regulated by FAK. PTX at sub-toxic doses lowers the level of activated FAK, Extracellular Regulated Kinase or Mitogen Activated Protein Kinase (ERK/MAPK), Protein Kinase B (PKB/Akt) affecting cellular proliferation and survival. It blocks G1/S phase of cell cycle by inhibiting the expression of Cyclin D1/Cdk6. Further, it modulates the activities of RhoGTPases and alters actin organization resulting in decreased motility. PTX also delays tumor growth and inhibited blood vessel formation in vivo. In purview of these findings, PTX surely qualifies as a suitable prospect in the intervention of breast cancer.
Collapse
Affiliation(s)
- Peeyush N Goel
- Gude Lab, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | | |
Collapse
|
45
|
Paulson AF, Prasad MS, Thuringer AH, Manzerra P. Regulation of cadherin expression in nervous system development. Cell Adh Migr 2013; 8:19-28. [PMID: 24526207 DOI: 10.4161/cam.27839] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review addresses our current understanding of the regulatory mechanisms for classical cadherin expression during development of the vertebrate nervous system. The complexity of the spatial and temporal expression patterns is linked to morphogenic and functional roles in the developing nervous system. While the regulatory networks controlling cadherin expression are not well understood, it is likely that the multiple signaling pathways active in the development of particular domains also regulate the specific cadherins expressed at that time and location. With the growing understanding of the broader roles of cadherins in cell-cell adhesion and non-adhesion processes, it is important to understand both the upstream regulation of cadherin expression and the downstream effects of specific cadherins within their cellular context.
Collapse
Affiliation(s)
- Alicia F Paulson
- Division of Basic Biomedical Sciences; Sanford School of Medicine of The University of South Dakota; Vermillion, SD USA
| | - Maneeshi S Prasad
- Department of Molecular Biosciences; Northwestern University; Evanston, IL USA
| | | | - Pasquale Manzerra
- Division of Basic Biomedical Sciences; Sanford School of Medicine of The University of South Dakota; Vermillion, SD USA
| |
Collapse
|