1
|
Yan C, He L, Ma Y, Cheng J, Shen L, Singla RK, Zhang Y. Establishing and Validating an Innovative Focal Adhesion-Linked Gene Signature for Enhanced Prognostic Assessment in Endometrial Cancer. Reprod Sci 2024; 31:2468-2480. [PMID: 38653857 DOI: 10.1007/s43032-024-01564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Studies have highlighted the significant role of focal adhesion signaling in cancer. Nevertheless, its specific involvement in the pathogenesis of endometrial cancer and its clinical significance remains uncertain. We analyzed TCGA-UCEC and GSE119041 datasets with corresponding clinical data to investigate focal adhesion-related gene expression and their clinical significance. A signature, "FA-riskScore," was developed using LASSO regression in the TCGA cohort and validated in the GSE dataset. The FA-riskScore was compared with four existing models in terms of their prediction performance. We employed univariate and multivariate Cox regression analyses towards FA-riskScore to assess its independent prognostic value. A prognostic evaluation nomogram based on our model and clinical indexes was established subsequently. Biological and immune differences between high- and low-risk groups were explored through functional enrichment, PPI network analysis, mutation mining, TME evaluation, and single-cell analysis. Sensitivity tests on commonly targeted drugs were performed on both groups, and Connectivity MAP identified potentially effective molecules for high-risk patients. qRT-PCR validated the expressions of FA-riskScore genes. FA-riskScore, based on FN1, RELN, PARVG, and PTEN, indicated a poorer prognosis for high-risk patients. Compared with published models, FA-riskScore achieved better and more stable performance. High-risk groups exhibited a more challenging TME and suppressive immune status. qRT-PCR showed differential expression in FN1, RELN, and PTEN. Connectivity MAP analysis suggested that BU-239, potassium-canrenoate, and tubocurarine are effective for high-risk patients. This study introduces a novel prognostic model for endometrial cancer and offers insights into focal adhesion's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Cuiyin Yan
- Department of Obstetrics and Gynecology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Leilei He
- Department of Obstetrics and Gynecology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuhui Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Jing Cheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Li Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Yueming Zhang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Wang D, Hu B, Xu G, Wei R, Liu Z, Wu H, Xu L, Huang S, Hou J. L1 cell adhesion molecule may be a protective molecule for atrial fibrillation in patients with valvular heart disease. Heliyon 2023; 9:e16831. [PMID: 37303506 PMCID: PMC10248256 DOI: 10.1016/j.heliyon.2023.e16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Background Atrial fibrillation (AF) is the most prevalent sustained arrhythmia. L1 cell adhesion molecule (L1CAM) served as a crucial regulator of signaling pathways. This research sought to examine the clinical value and functions of soluble L1CAM in the serum of AF patients. Methods In total, 118 patients (valvular heart disease patients [VHD, total: n = 93; AF: n = 47; sinus rhythm (SR): n = 46] and healthy controls [n = 25]) were recruited in this retrospective study. Plasma levels of L1CAM were detected by enzyme-linked immunosorbent assays. The Pearson's correlation approach, as applicable, was used for analyzing the correlations. The L1CAM was shown to independently serve as a risk indicator of AF in VHD after being analyzed by the multivariable logistic regression. To examine the specificity and sensitivity of AF, receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used. A nomogram was developed for the visualisation of the model. We further evaluate the prediction model for AF using calibration plot and decision curve analysis. Results The plasma level of L1CAM was substantially decreased in AF patients as opposed to healthy control and SR patients (healthy control = 46.79 ± 12.55 pg/ml, SR = 32.86 ± 6.11 pg/ml, AF = 22.48 ± 5.39 pg/ml; SR vs. AF, P < 0.001; control vs. AF, P < 0.001). L1CAM was significantly and negatively correlated with LA and NT-proBNP (LA: r = -0.344, P = 0.002; NT-proBNP: r = -0.380, P = 0.001). Analyses using logistic regression showed a substantial correlation between L1CAM and AF in patients with VHD (For L1CAM, Model 1: OR = 0.704, 95%CI = 0.607-0.814, P < 0.001; Model 2: OR = 0.650, 95% CI = 0.529-0.798, P < 0.001; Model 3: OR = 0.650, 95% CI = 0.529-0.798, P < 0.001). ROC analysis showed that inclusion of L1CAM in the model significantly improved the ability of other clinical indicators to predict AF. The predictive model including L1CAM, LA, NT-proBNP and LVDd had excellent discrimination and a nomogram was developed. The model had good the calibration and clinical utility. Conclusion L1CAM was shown to independently serve as a risk indicator for AF in VHD. In AF patients with VHD, the prognostic and predictive effectiveness of models incorporating L1CAM was satisfactory. Collectively, L1CAM may be a protective molecule for atrial fibrillation in patients with valvular heart disease.
Collapse
Affiliation(s)
- Dayu Wang
- Department of Cardiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, GD, China
| | - Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing 314001, ZJ, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, ZJ, China
| | - Ruibin Wei
- Department of Cardiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, GD, China
| | - Zhen Liu
- Department of Cardiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, GD, China
| | - Huajun Wu
- Department of Cardiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, GD, China
| | - Long Xu
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, ZJ, China
| | - Suiqing Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, GD, China
| | - Jian Hou
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, GD, China
| |
Collapse
|
3
|
Mohammadzadeh Hosseini Moghri SAH, Mahmoodi Chalbatani G, Ranjbar M, Raposo C, Abbasian A. CD171 Multi-epitope peptide design based on immuno-informatics approach as a cancer vaccine candidate for glioblastoma. J Biomol Struct Dyn 2023; 41:1028-1040. [PMID: 36617427 DOI: 10.1080/07391102.2021.2020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glioblastoma (GB) is a common primary malignancy of the central nervous system, and one of the highly lethal brain tumors. GB cells can promote therapeutic resistance and tumor angiogenesis. The CD171 is an adhesion molecule in neuronal cells that is expressed in glioma cells as a regulator of brain development during the embryonic period. CD171 is one of the immunoglobulin-like CAMs (cell adhesion molecules) families that can be associated with prognosis in a variety of human tumors. The multi-epitope peptide vaccines are based on synthetic peptides with a combination of both B-cell epitopes and T-cell epitopes, which can induce specific humoral or cellular immune responses. Moreover, Cholera toxin subunit B (CTB), a novel TLR agonist was utilized in the final construct to polarize CD4+ T cells toward T-helper 1 to induce strong cytotoxic T lymphocytes (CTL) responses. In the present study, several immune-informatics tools were used for analyzing the CD171 sequence and studying the important characteristics of a designed vaccine. The results included molecular docking, molecular dynamics simulation, immune response simulation, prediction and validation of the secondary and tertiary structure, physicochemical properties, solubility, conservancy, toxicity as well as antigenicity and allergenicity of the promising candidate for a vaccine against CD171. The immuno-informatic analyze suggested 12 predicted multi-epitope peptides, whose construction consists of 582 residues long. Therewith, cloning adaptation of the designed vaccine was performed, and eventually sequence was inserted into pET30a (+) vector for the application of the anti-glioblastoma vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Department of Microbial Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Catarina Raposo
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arefeh Abbasian
- Faculty of Basic Sciences, Department of Biology, Semnan University, Semnan, Iran
| |
Collapse
|
4
|
Hypergraph geometry reflects higher-order dynamics in protein interaction networks. Sci Rep 2022; 12:20879. [PMID: 36463292 PMCID: PMC9719542 DOI: 10.1038/s41598-022-24584-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Protein interactions form a complex dynamic molecular system that shapes cell phenotype and function; in this regard, network analysis is a powerful tool for studying the dynamics of cellular processes. Current models of protein interaction networks are limited in that the standard graph model can only represent pairwise relationships. Higher-order interactions are well-characterized in biology, including protein complex formation and feedback or feedforward loops. These higher-order relationships are better represented by a hypergraph as a generalized network model. Here, we present an approach to analyzing dynamic gene expression data using a hypergraph model and quantify network heterogeneity via Forman-Ricci curvature. We observe, on a global level, increased network curvature in pluripotent stem cells and cancer cells. Further, we use local curvature to conduct pathway analysis in a melanoma dataset, finding increased curvature in several oncogenic pathways and decreased curvature in tumor suppressor pathways. We compare this approach to a graph-based model and a differential gene expression approach.
Collapse
|
5
|
Nam JK, Kim AR, Choi SH, Kim JH, Choi KJ, Cho S, Lee JW, Cho HJ, Kwon YW, Cho J, Kim KS, Kim J, Lee HJ, Lee TS, Bae S, Hong HJ, Lee YJ. An antibody against L1 cell adhesion molecule inhibits cardiotoxicity by regulating persistent DNA damage. Nat Commun 2021; 12:3279. [PMID: 34078883 PMCID: PMC8172563 DOI: 10.1038/s41467-021-23478-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Targeting the molecular pathways underlying the cardiotoxicity associated with thoracic irradiation and doxorubicin (Dox) could reduce the morbidity and mortality associated with these anticancer treatments. Here, we find that vascular endothelial cells (ECs) with persistent DNA damage induced by irradiation and Dox treatment exhibit a fibrotic phenotype (endothelial-mesenchymal transition, EndMT) correlating with the colocalization of L1CAM and persistent DNA damage foci. We demonstrate that treatment with the anti-L1CAM antibody Ab417 decreases L1CAM overexpression and nuclear translocation and persistent DNA damage foci. We show that in whole-heart-irradiated mice, EC-specific p53 deletion increases vascular fibrosis and the colocalization of L1CAM and DNA damage foci, while Ab417 attenuates these effects. We also demonstrate that Ab417 prevents cardiac dysfunction-related decrease in fractional shortening and prolongs survival after whole-heart irradiation or Dox treatment. We show that cardiomyopathy patient-derived cardiovascular ECs with persistent DNA damage show upregulated L1CAM and EndMT, indicating clinical applicability of Ab417. We conclude that controlling vascular DNA damage by inhibiting nuclear L1CAM translocation might effectively prevent anticancer therapy-associated cardiotoxicity.
Collapse
Affiliation(s)
- Jae-Kyung Nam
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - A-Ram Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seo-Hyun Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Department of Surgery, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Ji-Hee Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - Kyu Jin Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seulki Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Jae Won Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyun-Jai Cho
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yoo-Wook Kwon
- Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Tae Sup Lee
- Division of RI Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sangwoo Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyo Jeong Hong
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.
- Scripps Korea Antibody Institute, Chuncheon, Korea.
| | - Yoon-Jin Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| |
Collapse
|
6
|
Communication of Glioma cells with neuronal plasticity: What is the underlying mechanism? Neurochem Int 2020; 141:104879. [PMID: 33068685 DOI: 10.1016/j.neuint.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
There has been a significantly rising discussion on how neuronal plasticity communicates with the glioma growth and invasion. This literature review aims to determine which neurotransmitters, ion channels and signaling pathways are involved in this context, how information is transferred from synaptic sites to the glioma cells and how glioma cells apply established mechanics of synaptic plasticity for their own increment. This work is a compilation of some outstanding findings related to the influence of the glutamate, calcium, potassium, chloride and sodium channels and other important brain plasticity molecules over the glioma progression. These topics also include the relevant molecular signaling data which could prove to be helpful for an effective clinical management of brain tumors in the future.
Collapse
|
7
|
Hötzel J, Melling N, Müller J, Polonski A, Wolters-Eisfeld G, Izbicki JR, Karstens KF, Tachezy M. Protein expression of close homologue of L1 (CHL1) is a marker for overall survival in non-small cell lung cancer (NSCLC). J Cancer Res Clin Oncol 2019; 145:2285-2292. [PMID: 31372722 DOI: 10.1007/s00432-019-02989-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The cell adhesion molecule close homologue of L1 (CHL1) is a potential tumour suppressor and was recently detected in non-small cell lung cancer (NSCLC) specimens. The expression pattern, prognostic, and functional role of CHL1 in NSCLCs is unknown. METHODS We evaluated the protein expression of CHL1 by immunohistochemistry in 2161 NSCLC patients based on a tissue microarray. The results were correlated with clinical, histopathological, and patient survival data (Chi square test, t test, and log-rank test, respectively). A multivariate analysis (Cox regression) was performed to validate its impact on patients' survival. RESULTS CHL1 was expressed in NSCLC patients and was significantly overexpressed in lung adenocarcinomas and squamous cell carcinomas compared to neuroendocrine and large cell carcinomas of the lung (p < 0.001). CHL1 expression was associated with the T stage in adenocarcinomas (p = 0.011) and with metastatic lymph node status and UICC stage in squamous cell carcinomas (p = 0.034 and p = 0.035, respectively). Increased CHL1 expression was associated with improved survival in univariate (p = 0.031) and multivariate analyses (odds ratio 0.797, 95% confidence interval 0.677-0.939, p = 0.007). CONCLUSION The prognostic significance of CHL1 makes it a potential prognostic and therapeutic target and underlines its role as a tumour suppressor. Further validation studies and functional analyses are needed to investigate its potential role in tumourigenesis and dissemination.
Collapse
Affiliation(s)
- Jenny Hötzel
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Julia Müller
- Institute of Pathology, Municipal Hospital Lüneburg, Lüneburg, Germany
| | - Adam Polonski
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Karl-F Karstens
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
8
|
Cancer astrocytes have a more conserved molecular status in long recurrence free survival (RFS) IDH1 wild-type glioblastoma patients: new emerging cancer players. Oncotarget 2018; 9:24014-24027. [PMID: 29844869 PMCID: PMC5963624 DOI: 10.18632/oncotarget.25265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/02/2018] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is a devastating disease that despite all the information gathered so far, its optimal management remains elusive due to the absence of validated targets from clinical studies. A better clarification of the molecular mechanisms is needed. In this study, having access to IDH1 wild-type glioblastoma of patients with exceptionally long recurrence free survival (RFS), we decided to compare their mutational and gene expression profile to groups of IDH1 wild-type glioblastoma of patients with shorter RFS, by using NGS technology. The exome analysis revealed that Long-RFS tumors have a lower mutational rate compared to the other groups. A total of 158 genes were found differentially expressed among the groups, 112 of which distinguished the two RFS extreme groups. Overall, the exome data suggests that shorter RFS tumors could be, chronologically, in a more advanced state in the muli-step tumor process of sequential accumulation of mutations. New players in this kind of cancer emerge from the analysis, confirmed at the RNA/DNA level, identifying, therefore, possible oncodrivers or tumor suppressor genes.
Collapse
|
9
|
Samulin Erdem J, Arnoldussen YJ, Skaug V, Haugen A, Zienolddiny S. Copy number variation, increased gene expression, and molecular mechanisms of neurofascin in lung cancer. Mol Carcinog 2017; 56:2076-2085. [PMID: 28418179 PMCID: PMC6084301 DOI: 10.1002/mc.22664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/31/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
Abstract
Metastasis and cell adhesion are key aspects of cancer progression. Neurofascin (NFASC) is a member of the immunoglobulin superfamily of adhesion molecules and, while studies on NFASC are inadequate, other members have been indicated pivotal roles in cancer progression and metastasis. This study aimed at increasing the knowledge on the involvement of adhesion molecules in lung cancer progression by studying the regulation and role of NFASC in non‐small cell lung cancer (NSCLC). Here, copy number variations in the NFASC gene were analyzed in tumor and non‐tumorous lung tissues of 204 NSCLC patients. Frequent gene amplifications (OR = 4.50, 95%CI: 2.27‐8.92, P ≤ 0.001) and increased expression of NFASC (P = 0.034) were identified in tumors of NSCLC patients. Furthermore, molecular mechanisms of NFASC in lung cancer progression were evaluated by investigating the effects of NFASC silencing on cell proliferation, viability, migration, and invasion using siRNA technology in four NSCLC cell lines. Silencing of NFASC did not affect cell proliferation or viability but rather decreased NSCLC cell migration (P ≤ 0.001) and led to morphological changes, rearrangements in the actin cytoskeleton and changes in F‐actin networks in migrating NSCLC cell lines. This study is the first to report frequent copy number gain and increased expression of NFASC in NSCLC. Moreover, these data suggest that NFASC is a novel regulator of NSCLC cell motility and support a role of NFASC in the regulation of NSCLC progression.
Collapse
Affiliation(s)
- Johanna Samulin Erdem
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Yke Jildouw Arnoldussen
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Vidar Skaug
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Aage Haugen
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Shanbeh Zienolddiny
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
10
|
Baharudin R, Ab Mutalib NS, Othman SN, Sagap I, Rose IM, Mohd Mokhtar N, Jamal R. Identification of Predictive DNA Methylation Biomarkers for Chemotherapy Response in Colorectal Cancer. Front Pharmacol 2017; 8:47. [PMID: 28243201 PMCID: PMC5303736 DOI: 10.3389/fphar.2017.00047] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Resistance to 5-Fluorouracil (5-FU) is a major obstacle to the successful treatment of colorectal cancer (CRC) and posed an increased risk of recurrence. DNA methylation has been suggested as one of the underlying mechanisms for recurrent disease and its contribution to the development of drug resistance remains to be clarified. This study aimed to determine the methylation phenotype in CRC for identification of predictive markers for chemotherapy response. We performed DNA methylation profiling on 43 non-recurrent and five recurrent CRC patients using the Illumina Infinium HumanMethylation450 Beadchip assay. In addition, CRC cells with different genetic backgrounds, response to 5-FU and global methylation levels (HT29 and SW48) were treated with 5-FU and DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC). The singular and combined effects of these two drug classes on cell viability and global methylation profiles were investigated. Our genome-wide methylation study on the clinical specimens showed that recurrent CRCs exhibited higher methylation levels compared to non-recurrent CRCs. We identified 4787 significantly differentially methylated genes (P < 0.05); 3112 genes were hyper- while 1675 genes were hypomethylated in the recurrent group compared to the non-recurrent. Fifty eight and 47 of the significantly hypermethylated and hypomethylated genes have an absolute recurrent/non-recurrent methylation difference of ≥20%. Most of the hypermethylated genes were involved in the MAPK signaling pathway which is a key regulator for apoptosis while the hypomethylated genes were involved in the PI3K-AKT signaling pathway and proliferation process. We also demonstrate that 5-azadC treatment enhanced response to 5-FU which resulted in significant growth inhibition compared to 5-FU alone in hypermethylated cell lines SW48. In conclusion, we found the evidence of five potentially biologically important genes in recurrent CRCs that could possibly serve as a new potential therapeutic targets for patients with chemoresistance. We postulate that aberrant methylation of CCNEI, CCNDBP1, PON3, DDX43, and CHL1 in CRC might be associated with the recurrence of CRC and 5-azadC-mediated restoration of 5-FU sensitivity is mediated at least in part by MAPK signaling pathway.
Collapse
Affiliation(s)
- Rashidah Baharudin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | | | - Sri N Othman
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Ismail Sagap
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Isa M Rose
- Department of Clinical Oral Biology, Faculty of Dentistry, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Shi G, Du Y, Li Y, An Y, He Z, Lin Y, Zhang R, Yan X, Zhao J, Yang S, Brendan PNK, Liu F. Cell Recognition Molecule L1 Regulates Cell Surface Glycosylation to Modulate Cell Survival and Migration. Int J Med Sci 2017; 14:1276-1283. [PMID: 29104485 PMCID: PMC5666562 DOI: 10.7150/ijms.20479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/12/2017] [Indexed: 01/14/2023] Open
Abstract
Background: Cell recognition molecule L1 (L1) plays an important role in cancer cell differentiation, proliferation, migration and survival, but its mechanism remains unclear. Methodology/Principal: Our previous study has demonstrated that L1 enhanced cell survival and migration in neural cells by regulating cell surface glycosylation. In the present study, we show that L1 affected cell migration and survival in CHO (Chinese hamster ovary) cell line by modulation of sialylation and fucosylation at the cell surface via the PI3K (phosphoinositide 3-kinase) and Erk (extracellularsignal-regulated kinase) signaling pathways. Flow cytometry analysis indicated that L1 modulated cell surface sialylation and fucosylation in CHO cells. Activated L1 upregulated the protein expressions of ST6Gal1 (β-galactoside α-2,6-sialyltransferase 1) and FUT9 (Fucosyltransferase 9) in CHO cells. Furthermore, activated L1 promoted CHO cells migration and survival as shown by transwell assay and MTT assay. Inhibitors of sialylation and fucosylation blocked L1-induced cell migration and survival, while decreasing FUT9 and ST6Gal1 expressions via the PI3K-dependent and Erk-dependent signaling pathways. Conclusion : L1 modulated cell migration and survival by regulation of cell surface sialylation and fucosylation via the PI3K-dependent and Erk-dependent signaling pathways.
Collapse
Affiliation(s)
- Gang Shi
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Yue Du
- Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yali Li
- National University Hospital, Singapore 119074, Singapore
| | - Yue An
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Zhenwei He
- Department of Neurology, Forth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Yingwei Lin
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Xiaofei Yan
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Jianfeng Zhao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Shihua Yang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | | | - Fang Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
12
|
Abstract
L1 cell adhesion molecule (L1CAM) is the prototype member of the L1-family of closely related neural adhesion molecules. L1CAM is differentially expressed in the normal nervous system as well as pathological tissues and displays a wide range of biological activities. In human malignancies, L1CAM plays a vital role in tumor growth, invasion and metastasis. Recently, increasing evidence has suggested that L1CAM exerts a variety of functions at different steps of tumor progression through a series of signaling pathways. In addition, L1CAM has been identified as a promising target for cancer therapy by using synthetic and natural inhibitors. In this review, we provide an up-to-date overview of the role of L1CAM involved in cancers and the rationale for L1CAM as a novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Xinzhe Yu
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - Feng Yang
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - De-Liang Fu
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - Chen Jin
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| |
Collapse
|
13
|
Abstract
Cancer metastasis is the major cause of cancer morbidity and mortality, and accounts for about 90% of cancer deaths. Although cancer survival rate has been significantly improved over the years, the improvement is primarily due to early diagnosis and cancer growth inhibition. Limited progress has been made in the treatment of cancer metastasis due to various factors. Current treatments for cancer metastasis are mainly chemotherapy and radiotherapy, though the new generation anti-cancer drugs (predominantly neutralizing antibodies for growth factors and small molecule kinase inhibitors) do have the effects on cancer metastasis in addition to their effects on cancer growth. Cancer metastasis begins with detachment of metastatic cells from the primary tumor, travel of the cells to different sites through blood/lymphatic vessels, settlement and growth of the cells at a distal site. During the process, metastatic cells go through detachment, migration, invasion and adhesion. These four essential, metastatic steps are inter-related and affected by multi-biochemical events and parameters. Additionally, it is known that tumor microenvironment (such as extracellular matrix structure, growth factors, chemokines, matrix metalloproteinases) plays a significant role in cancer metastasis. The biochemical events and parameters involved in the metastatic process and tumor microenvironment have been targeted or can be potential targets for metastasis prevention and inhibition. This review provides an overview of these metastasis essential steps, related biochemical factors, and targets for intervention.
Collapse
Key Words
- Adhesion
- BM, basement membrane
- CAFs, cancer-associated fibroblasts
- CAMs, cell adhesion molecules
- CAT, collective amoeboid transition
- CCL2, chemokine (C–C motif) ligand 2
- CCR3, chemokine receptor 3
- COX2, cyclooxygenase 2
- CSF-1, chemokine colonystimulating factor–1
- CTGF, connective tissue growth factor
- CXCR2, chemokine receptor type 2
- Cancer
- Col, collagen
- DISC, death-inducing signaling complex
- Detachment
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, EGF receptor
- EMT, epithelial–mesenchymal transition
- FAK, focal adhesion kinase
- FAs, focal adhesions
- FGF, fibroblast growth factor
- FN, fibronectin
- HA, hyaluronan
- HGF, hepatocyte growth factor
- HIFs, hypoxia-inducible factors
- IKK, IκB kinase
- Invasion
- JAK, the Janus kinases
- LN, laminin
- MAPK, mitogen-activated protein kinase
- MAT, mesenchymal to amoeboid transition
- MET, mesenchymal–epithelial transition
- MMPs, matrix metalloproteinases
- Metastasis
- Migration
- PDGF, platelet-derived growth factor
- PI3K, phosphatidylinositol 3-kinase
- STATs, signal transducers and activators of transcription
- TAMs, tumor-associated macrophages
- TGF-β, transforming growth factor β
- TME, tumor microenvironment
- VCAMs, vascular cell adhesion molecules
- VEGF, vascular endothelial growth factor
- VN, vitronectin
Collapse
|
14
|
Altevogt P, Doberstein K, Fogel M. L1CAM in human cancer. Int J Cancer 2015; 138:1565-76. [DOI: 10.1002/ijc.29658] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology; University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg; Mannheim Germany
| | - Kai Doberstein
- Ovarian Cancer Research Center, Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA
| | - Mina Fogel
- Central Laboratories; Kaplan Medical Center; Rehovot Israel
| |
Collapse
|
15
|
Lesser-Known Molecules in Ovarian Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:321740. [PMID: 26339605 PMCID: PMC4538335 DOI: 10.1155/2015/321740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/14/2015] [Accepted: 07/07/2015] [Indexed: 12/23/2022]
Abstract
Currently, the deciphering of the signaling pathways brings about new advances in the understanding of the pathogenic mechanism of ovarian carcinogenesis, which is based on the interaction of several molecules with different biochemical structure that, consequently, intervene in cell metabolism, through their role as regulators in proliferation, differentiation, and cell death. Given that the ensemble of biomarkers in OC includes more than 50 molecules the interest of the researchers focuses on the possible validation of each one's potential as prognosis markers and/or therapeutic targets. Within this framework, this review presents three protein molecules: ALCAM, c-FLIP, and caveolin, motivated by the perspectives provided through the current limited knowledge on their role in ovarian carcinogenesis and on their potential as prognosis factors. Their structural stability, once altered, triggers the initiation of the sequences characteristic for ovarian carcinogenesis, through their role as modulators for several signaling pathways, contributing to the disruption of cellular junctions, disturbance of pro-/antiapoptotic equilibrium, and alteration of transmission of the signals specific for the molecular pathways. For each molecule, the text is built as follows: (i) general remarks, (ii) structural details, and (iii) particularities in expression, from different tumors to landmarks in ovarian carcinoma.
Collapse
|
16
|
DU Y, Zhang H, Jiang Z, Huang G, Lu W, Wang H. Expression of L1 protein correlates with cluster of differentiation 24 and integrin β1 expression in gastrointestinal stromal tumors. Oncol Lett 2015; 9:2595-2602. [PMID: 26137113 DOI: 10.3892/ol.2015.3096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/29/2015] [Indexed: 12/11/2022] Open
Abstract
The present study examined 66 cases of gastrointestinal stromal tumors (GISTs), 20 cases of smooth muscle tumors, 20 cases of schwannomas and 20 cases of normal gastric tissues in order to analyze the expression of L1, cluster of differentiation (CD)24 and integrin β1 by immunohistochemical staining. Patients were subjected to follow-up, and survival data were evaluated. L1 expression was detected in 57.6% of GIST cases; this was a significantly higher percentage compared with that found in the smooth muscle tumor cases or the normal control group. CD24 and integrin β1 were also expressed at significantly higher levels in the GIST cases than in the normal control group, although no significant difference was found in the expression levels of these proteins in smooth muscle tumor or schwannoma cases. These higher levels of L1 and integrin β1 expression were associated with an increased risk of invasive GIST, and were significantly positively correlated with Ki-67 expression. CD24 expression was not associated with the risk of GIST invasion or Ki-67 expression. There were positive correlations between L1, CD24 and integrin β1 expression; however, these had no significant association with patient survival. Therefore, L1 alone or in conjunction with CD24 (L1 + CD24), or integrin β1 (L1 + integrin β1) can be considered a valuable indicator for the differential diagnosis of GIST. Furthermore, L1 and integrin β1 can be used alone or in combination to evaluate the biological behavior of GISTs. Future studies are required to evaluate the prognostic value of these markers.
Collapse
Affiliation(s)
- Yue DU
- Department of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Haihong Zhang
- Department of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhongmin Jiang
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Guowei Huang
- Department of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Wenli Lu
- Department of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Hesheng Wang
- Department of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
17
|
Yoo M, Lee GA, Park C, Cohen RI, Schachner M. Analysis of human embryonic stem cells with regulatable expression of the cell adhesion molecule l1 in regeneration after spinal cord injury. J Neurotrauma 2014; 31:553-64. [PMID: 24125017 DOI: 10.1089/neu.2013.2886] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell replacement therapy is one potential avenue for central nervous system (CNS) repair. However, transplanted stem cells may not contribute to long-term recovery of the damaged CNS unless they are engineered for functional advantage. To fine tune regenerative capabilities, we developed a human neural cell line expressing L1, a regeneration-conducive adhesion molecule, under the control of a doxycycline regulatable Tet-off promoter. Controlled expression of L1 is desired because overexpression after regenerative events may lead to adverse consequences. The regulated system was tested in several cell lines, where doxycycline completely eliminated green fluorescent protein or L1 expression by 3-5 days in vitro. Increased colony formation as well as decreased proliferation were observed in H9NSCs without doxycycline (hL1-on). To test the role of L1 in vivo after acute compression spinal cord injury of immunosuppressed mice, quantum dot labeled hL1-on or hL1-off cells were injected at three sites: lesion; proximal; and caudal. Mice transplanted with hL1-on cells showed a better Basso Mouse Scale score, when compared to those with hL1-off cells. As compared to the hL1-off versus hL1-on cell transplanted mice 6 weeks post-transplantation, expression levels of L1, migration of transplanted cells, and immunoreactivity for tyrosine hydroxylase were higher, whereas expression of chondroitin sulfate proteoglycans was lower. Results indicate that L1 expression is regulatable in human stem cells by doxycycline in a nonviral engineering approach. Regulatable expression in a prospective nonleaky Tet-off system could hold promise for therapy, based on the multifunctional roles of L1, including neuronal migration and survival, neuritogenesis, myelination, and synaptic plasticity.
Collapse
Affiliation(s)
- Myungsik Yoo
- 1 W.M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University , Piscataway, New Jersey
| | | | | | | | | |
Collapse
|
18
|
Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol 2014; 35:8483-523. [PMID: 25104089 DOI: 10.1007/s13277-014-2421-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Collapse
Affiliation(s)
- Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran,
| | | | | |
Collapse
|
19
|
Bai Y, Lathia JD, Zhang P, Flavahan W, Rich JN, Mattson MP. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia 2014; 62:1687-98. [PMID: 24909307 DOI: 10.1002/glia.22708] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 12/23/2022]
Abstract
Glioblastoma is the most prevalent primary brain tumor and is essentially universally fatal within 2 years of diagnosis. Glioblastomas contain cellular hierarchies with self-renewing glioblastoma stem cells (GSCs) that are often resistant to chemotherapy and radiation therapy. GSCs express high amounts of repressor element 1 silencing transcription factor (REST), which may contribute to their resistance to standard therapies. Telomere repeat-binding factor 2 (TRF2) stablizes telomeres and REST to maintain self-renewal of neural stem cells and tumor cells. Here we show viral vector-mediated delivery of shRNAs targeting TRF2 mRNA depletes TRF2 and REST from GSCs isolated from patient specimens. As a result, GSC proliferation is reduced and the level of proteins normally expressed by postmitotic neurons (L1CAM and β3-tubulin) is increased, suggesting that loss of TRF2 engages a cell differentiation program in the GSCs. Depletion of TRF2 also sensitizes GSCs to temozolomide, a DNA-alkylating agent currently used to treat glioblastoma. Targeting TRF2 significantly increased the survival of mice bearing GSC xenografts. These findings reveal a role for TRF2 in the maintenance of REST-associated proliferation and chemotherapy resistance of GSCs, suggesting that TRF2 is a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
20
|
Ito T, Yamada S, Tanaka C, Ito S, Murai T, Kobayashi D, Fujii T, Nakayama G, Sugimoto H, Koike M, Nomoto S, Fujiwara M, Kodera Y. Overexpression of L1CAM is associated with tumor progression and prognosis via ERK signaling in gastric cancer. Ann Surg Oncol 2013; 21:560-8. [PMID: 24046108 DOI: 10.1245/s10434-013-3246-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND L1 cell adhesion molecule (L1CAM), which belongs to the immunoglobulin superfamily, has recently been observed in a variety of human malignancies. However, its clinical implication in gastric cancer remains unclear. The aim of this study was to explore the role of L1CAM in gastric cancer and to analyze its correlation with tumor progression and prognosis. METHODS L1CAM expression was measured in human gastric cancer cell lines and knockdown was conducted using siRNA. Cell proliferation, invasion and migration ability was assessed in vitro. The downstream pathway of L1CAM was explored by western blot analysis. L1CAM expression was measured in 112 pairs of human gastric cancer and adjacent noncancerous tissues using real-time quantitative RT-PCR, and the correlation with clinicopathological features and prognosis was analyzed. RESULTS L1CAM downregulation by siRNA significantly decreased cell proliferation, migration, and invasion in gastric cancer cell lines. Phosphorylated ERK levels began to decline more rapidly in L1CAM knockdown cells compared with parental cells. L1CAM overexpression was significantly correlated with local tumor cell growth (P = 0.041), distant metastasis (P = 0.047), and tumor stage (P = 0.031). The overall survival in patients with high L1CAM expression was significantly shorter than that of patients with low L1CAM expression (P = 0.02). CONCLUSIONS L1CAM overexpression may be a critical prognostic factor in patients with gastric cancer, and was strongly associated with tumor proliferation, migration, and invasion through the ERK pathway. L1CAM might be an attractive therapeutic molecular target for the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Takeshi Ito
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen DL, Zeng ZL, Yang J, Ren C, Wang DS, Wu WJ, Xu RH. L1cam promotes tumor progression and metastasis and is an independent unfavorable prognostic factor in gastric cancer. J Hematol Oncol 2013; 6:43. [PMID: 23806079 PMCID: PMC3717076 DOI: 10.1186/1756-8722-6-43] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background Previous reports have demonstrated that L1cam is aberrantly expressed in various tumors. The potential role of L1cam in the progression and metastasis of gastric cancer is still not clear and needs exploring. Methods Expression of L1cam was evaluated in gastric cancer tissues and cell lines by immunohistochemistry and Western blot. The relationship between L1cam expression and clinicopathological characteristics was analyzed. The effects of L1cam on cell proliferation, migration and invasion were investigated in gastric cancer cell lines both in vitro and in vivo. The impact of L1cam on PI3K/Akt pathway was also evaluated. Results L1cam was overexpressed in gastric cancer tissues and cell lines. L1cam expression was correlated with aggressive tumor phenotype and poor overall survival in gastric cancer patients. Ectopic expression of L1cam in gastric cell lines significantly promoted cell proliferation, migration and invasion whereas knockdown of L1cam inhibited cell proliferation, migration and invasion in vitro as well as tumorigenesis and metastasis in vivo. The low level of phosphorylated Akt in HGC27 cells was up-regulated after ectopic expression of L1cam, whereas the high level of phosphorylated Akt in SGC7901 cells was suppressed by knockdown of L1cam. Moreover, the migration and invasion promoted by L1cam overexpression in gastric cancer cells could be abolished by either application of LY294002 (a phosphoinositide-3-kinase inhibitor) or knockdown of endogenous Akt by small interfering RNA. Conclusions Our study demonstrated that L1cam, overexpressed in gastric cancer and associated with poor prognosis, plays an important role in the progression and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Dong-liang Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dong Feng East Load, Guangzhou 510060, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhao WJ, Schachner M. Neuregulin 1 enhances cell adhesion molecule l1 expression in human glioma cells and promotes their migration as a function of malignancy. J Neuropathol Exp Neurol 2013; 72:244-55. [PMID: 23399902 DOI: 10.1097/nen.0b013e3182863dc5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Similar functions of L1, a cell adhesion molecule, and the cytokine neuregulin 1 (Nrg1) have been suggested in tumorigenesis and the promotion of metastasis. We studied the relationships of Nrg1 and L1 expression in human gliomas. Using immunofluorescence staining on a human glioma tissue microarray, we found a positive correlation between levels of L1 and Nrg1α or Nrg1β expression; expression tended to increase with increasing WHO (World Health Organization) tumor grade. L1 was also found to colocalize with either Nrg1 isoform. In cultures of U87-MG human glioblastoma and human U251 and SHG-44 glioma cells, the base levels of full-length L1 expression were increased by the 2 Nrg1 molecules in the nanomolar range, and Nrg1 siRNA downregulated full-length L1 expression in these tumor cell lines. U87-MG cells treated with either Nrg1 isoform also showed enhanced migration when compared with that treated with vehicle control. In addition, administration of either lapatinib (a dual inhibitor of both the epidermal growth factor receptor and ErbB-2) or erlotinib (an inhibitor of the epidermal growth factor receptor) in combination with either Nrg1α or Nrg1β inhibited the L1 expression elicited by these cytokines in U87-MG cells. Together, our data suggest that Nrg1 regulates L1 expression in gliomas, and that Nrg1 may contribute to malignancy by upregulating the L1 expression in glioblastoma cells, thereby enhancing their migration.
Collapse
Affiliation(s)
- Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guandong Province, People's Republic of China
| | | |
Collapse
|
23
|
Dippel V, Milde-Langosch K, Wicklein D, Schumacher U, Altevogt P, Oliveira-Ferrer L, Jänicke F, Schröder C. Influence of L1-CAM expression of breast cancer cells on adhesion to endothelial cells. J Cancer Res Clin Oncol 2013; 139:107-21. [PMID: 22983139 DOI: 10.1007/s00432-012-1306-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Expression of the adhesion molecule L1-CAM (L1) has been shown to correlate with early recurrence in breast cancer. Here, we investigated whether L1-CAM expression of breast cancer cells might influence adherence to human pulmonary microvascular endothelial cells (HPMEC) and thus promote metastasis. METHODS MDA-MB231-Fra2 breast cancer cells that express high levels of L1-CAM (L1(high) cells) were stably transfected to generate clones with strong L1-CAM downregulation. Adhesion to activated HPMEC was studied in dynamic cell flow and static assays. Potential binding partners on endothelial cells were identified by blocking experiments and adhesion assays after coating of the flow channels with recombinant proteins. RESULTS Adhesion of L1(high) cells to activated HPMEC was significantly higher compared to L1l(ow) clones under flow conditions. Blocking experiments and adhesion assays with recombinant proteins identified activated leucocyte cell adhesion molecule (ALCAM) or L1 itself, but not ICAM-1, as potential binding partners on endothelial cells. E-selectin blocking antibodies strongly diminished the adherence of breast cancer cells irrespective of their L1-CAM expression. CONCLUSIONS Our experiments indicate that L1-CAM expression on breast cancer cells can promote adherence to activated endothelial cells by binding to endothelial L1-CAM or ALCAM. This mechanism might lead to increased metastasis and a poor prognosis in L1-CAM-positive carcinomas in vivo. Therefore, L1-CAM might be a suitable therapeutic target in breast cancers with a high L1-CAM expression.
Collapse
Affiliation(s)
- Virginia Dippel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Bldg. N27, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Loers G, Pan HC, Gouveia R, Zhao WJ, Shen YQ, Kleene R, Costa J, Schachner M. Antibody fragments directed against different portions of the human neural cell adhesion molecule L1 act as inhibitors or activators of L1 function. PLoS One 2012; 7:e52404. [PMID: 23272240 PMCID: PMC3525558 DOI: 10.1371/journal.pone.0052404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/16/2012] [Indexed: 02/05/2023] Open
Abstract
The neural cell adhesion molecule L1 plays important roles in neuronal migration and survival, neuritogenesis and synaptogenesis. L1 has also been found in tumors of different origins, with levels of L1 expression correlating positively with the metastatic potential of tumors. To select antibodies targeting the varied functions of L1, we screened the Tomlinson library of recombinant human antibody fragments to identify antibodies binding to recombinant human L1 protein comprising the entire extracellular domain of human L1. We obtained four L1 binding single-chain variable fragment antibodies (scFvs), named I4, I6, I13, and I27 and showed by enzyme-linked immunosorbent assay (ELISA) that scFvs I4 and I6 have high affinity to the immunoglobulin-like (Ig) domains 1-4 of L1, while scFvs I13 and I27 bind strongly to the fibronectin type III homologous (Fn) domains 1-3 of L1. Application of scFvs I4 and I6 to human SK-N-SH neuroblastoma cells reduced proliferation and transmigration of these cells. Treatment of SK-N-SH cells with scFvs I13 and I27 enhanced cell proliferation and migration, neurite outgrowth, and protected against the toxic effects of H(2)O(2) by increasing the ratio of Bcl-2/Bax. In addition, scFvs I4 and I6 inhibited and scFvs I13 and I27 promoted phosphorylation of src and Erk. Our findings indicate that scFvs reacting with the immunoglobulin-like domains 1-4 inhibit L1 functions, whereas scFvs interacting with the fibronectin type III domains 1-3 trigger L1 functions of cultured neuroblastoma cells.
Collapse
Affiliation(s)
- Yan Wang
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | - Hong-Chao Pan
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Ricardo Gouveia
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Yan-Qin Shen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | - Julia Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
25
|
Tagliavacca L, Colombo F, Racchetti G, Meldolesi J. L1CAM and its cell-surface mutants: new mechanisms and effects relevant to the physiology and pathology of neural cells. J Neurochem 2012; 124:397-409. [PMID: 22973895 PMCID: PMC3557714 DOI: 10.1111/jnc.12015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 11/27/2022]
Abstract
The L1 syndrome, a genetic disease that affects 1/30 000 newborn males, is sustained by numerous missense mutations of L1 cell adhesion molecule (L1CAM), an adhesion surface protein active also in transmembrane signaling, essential for the development and function of neurons. To investigate the cell biology of L1CAM, we employed a high RE1-silencing transcription (factor) clone of the pheochromocytoma PC12 line, defective in L1CAM expression and neurite outgrowth. The clone was transfected with wild-type L1CAM and four missense, disease-inducing point mutants encoding proteins distributed to the cell surface. The mutant-expressing cells, defective in adhesion to extracellular matrix proteins and in migration, exhibited unchanged proliferation. The nerve growth factor (NGF)-induced neurite outgrowth was re-established in defective clone cells transfected with the wild-type and the H210Q and I219T L1CAMs mutants, but not in the others. The stimulated outgrowth was confirmed in a second defective PC12 clone over-expressing the NGF receptor TrkA, treated with NGF and/or a recombinant L1CAM chimera. These results revealed a new function of L1CAM, a positive, robust and dose-dependent modulation of the TrkA receptor activated spontaneously or by NGF. The variable effects observed with the different L1CAM mutants suggest that this function contributes to the marked heterogeneity of symptoms and severity observed in the patients affected by the L1 syndrome.
Collapse
Affiliation(s)
- Luigina Tagliavacca
- Department of Neuroscience, Vita-Salute San Raffaele University and San Raffaele Institute, Milano, Italy
| | | | | | | |
Collapse
|
26
|
ZHAO WEIJIANG. Comparison of L1 expression and secretion in glioblastoma and neuroblastoma cells. Oncol Lett 2012; 4:812-816. [PMID: 23205105 PMCID: PMC3506679 DOI: 10.3892/ol.2012.787] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/27/2012] [Indexed: 02/05/2023] Open
Abstract
The expression of cell adhesion molecule L1 has been identified in a vast spectrum of tumors; however, its expression pattern with regard to tumor type is rarely discussed. In the present study, we studied L1 levels in human glioblastomas and neuroblastomas, and compared the expression and secretion of L1 in human glioblastoma U87-MG and neuroblastoma SK-N-SH cells. Immunofluorescence staining revealed different grades of L1 staining in human glioblastoma and neuroblastoma samples. In U87-MG cells, full-length L1 was weakly detected in cell lysates (CLs), while greater levels of abundant soluble L1 were confined in conditioned culture medium (CCM). In contrast, higher levels of full-length L1 were confined in SK-N-SH CLs, while almost no soluble forms of L1 were detected in CCM. Our data indicates various expression patterns of L1 in U87-MG and SK-N-SH cells, which may underlie the different malignancies of the two neural tumor types and further stress the importance of soluble L1-mediated signaling pathways in cell malignancy.
Collapse
Affiliation(s)
- WEIJIANG ZHAO
- Correspondence to: Dr Weijiang Zhao, Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
27
|
Crossin KL. Oxygen levels and the regulation of cell adhesion in the nervous system: a control point for morphogenesis in development, disease and evolution? Cell Adh Migr 2012; 6:49-58. [PMID: 22647940 DOI: 10.4161/cam.19582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this article, I discuss the hallmarks of hypoxia in vitro and in vivo and review work showing that many types of stem cell proliferate more robustly in lowered oxygen. I then discuss recent studies showing that alterations in the levels and the types of cell and substrate adhesion molecules are a notable response to reduced O(2) levels in both cultured primary neural stem cells and brain tissues in response to hypoxia in vivo. The ability of O(2) levels to regulate adhesion molecule expression is linked to the Wnt signaling pathway, which can control and be controlled by adhesion events. The ability of O(2) levels to influence cell adhesion also has far-reaching implications for development, ischemic trauma and neural regeneration, as well as for cancer and other diseases. Finally I discuss the possibility that the fluctuations in O(2) levels known to have occurred over evolutionary time could, by influencing adhesion systems, have contributed to early symbiotic events in unicellular organisms and to the emergence of multicellularity. It is not my intention to be exhaustive in these domains, which are far from my own field of study. Rather this article is meant to provoke and stimulate thinking about molecular evolution involving O(2) sensing and signaling during eras of geologic and atmospheric change that might inform modern studies on development and disease.
Collapse
Affiliation(s)
- Kathryn L Crossin
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
28
|
Mikulak J, Negrini S, Klajn A, D'Alessandro R, Mavilio D, Meldolesi J. Dual REST-dependence of L1CAM: from gene expression to alternative splicing governed by Nova2 in neural cells. J Neurochem 2012; 120:699-709. [PMID: 22176577 DOI: 10.1111/j.1471-4159.2011.07626.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
L1 cell adhesion molecule (L1CAM), an adhesion/signaling protein encoded by a gene target of the transcription repressor RE-1-Silencing Transcription factor (REST), is expressed in two alternatively spliced isoforms. The full-length isoform, typical of low-REST neural cells, plays key roles in survival/migration, outgrowth/fasciculation/regeneration of axons, synaptic plasticity; the isoform missing two mini-exons, abundant in a few high-REST non-neural cells, maintains some effect on migration and proliferation. To investigate whether and how L1CAM alternative splicing depends on REST we used neural cell models expressing low or high levels of REST (PC12, SH-SY5Y, differentiated NT2/D1 and primary neurons transduced or not with REST). The short isoform was found to rise when the low-REST levels of neural cells were experimentally increased, while the full-length isoform increased in high-REST cells when the repressor tone was attenuated. These results were due to Nova2, a neural cell-specific splicing factor shown here to be repressed by REST. REST control of L1CAM occurs therefore by two mechanisms, transcription and alternative splicing. The splicing mechanism, affecting not only L1CAM but all Nova2 targets (∼7% of brain-specific splicing, including the mRNAs of other adhesion and synaptic proteins) is expected to be critical during development and important also for the structure and function of mature neural cells.
Collapse
|
29
|
Wai Wong C, Dye DE, Coombe DR. The role of immunoglobulin superfamily cell adhesion molecules in cancer metastasis. Int J Cell Biol 2012; 2012:340296. [PMID: 22272201 PMCID: PMC3261479 DOI: 10.1155/2012/340296] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/18/2011] [Indexed: 01/04/2023] Open
Abstract
Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF) commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs) such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM), L1CAM, neural CAM (NCAM), leukocyte CAM (ALCAM), intercellular CAM-1 (ICAM-1) and platelet endothelial CAM-1 (PECAM-1) could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.
Collapse
Affiliation(s)
- Chee Wai Wong
- Molecular Immunology Group, School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University Level 3 MRF Building, Rear 50 Murray Street, Perth, WA 6000, Australia
| | - Danielle E. Dye
- Molecular Immunology Group, School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University Level 3 MRF Building, Rear 50 Murray Street, Perth, WA 6000, Australia
| | - Deirdre R. Coombe
- Molecular Immunology Group, School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University Level 3 MRF Building, Rear 50 Murray Street, Perth, WA 6000, Australia
| |
Collapse
|
30
|
Palmer TD, Ashby WJ, Lewis JD, Zijlstra A. Targeting tumor cell motility to prevent metastasis. Adv Drug Deliv Rev 2011; 63:568-81. [PMID: 21664937 PMCID: PMC3132821 DOI: 10.1016/j.addr.2011.04.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/31/2011] [Accepted: 04/05/2011] [Indexed: 01/15/2023]
Abstract
Mortality and morbidity in patients with solid tumors invariably result from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities.
Collapse
Affiliation(s)
- Trenis D. Palmer
- Department of Pathology, Vanderbilt University, C2104A Medical Center North 1161 21 Ave. S., Nashville TN, 37232
| | - William J. Ashby
- Department of Pathology, Vanderbilt University, C2104A Medical Center North 1161 21 Ave. S., Nashville TN, 37232
| | - John D. Lewis
- London Regional Cancer Program, London Health Science Centre, A4-823 790 Commissioners Rd E London ON, N6A 4L6
| | - Andries Zijlstra
- Department of Pathology, Vanderbilt University, C2104A Medical Center North 1161 21 Ave. S., Nashville TN, 37232
| |
Collapse
|
31
|
Full-length L1CAM and not its Δ2Δ27 splice variant promotes metastasis through induction of gelatinase expression. PLoS One 2011; 6:e18989. [PMID: 21541352 PMCID: PMC3081839 DOI: 10.1371/journal.pone.0018989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/24/2011] [Indexed: 01/09/2023] Open
Abstract
Tumour-specific splicing is known to contribute to cancer progression. In the case of the L1 cell adhesion molecule (L1CAM), which is expressed in many human tumours and often linked to bad prognosis, alternative splicing results in a full-length form (FL-L1CAM) and a splice variant lacking exons 2 and 27 (SV-L1CAM). It has not been elucidated so far whether SV-L1CAM, classically considered as tumour-associated, or whether FL-L1CAM is the metastasis-promoting isoform. Here, we show that both variants were expressed in human ovarian carcinoma and that exposure of tumour cells to pro-metastatic factors led to an exclusive increase of FL-L1CAM expression. Selective overexpression of one isoform in different tumour cells revealed that only FL-L1CAM promoted experimental lung and/or liver metastasis in mice. In addition, metastasis formation upon up-regulation of FL-L1CAM correlated with increased invasive potential and elevated Matrix metalloproteinase (MMP)-2 and -9 expression and activity in vitro as well as enhanced gelatinolytic activity in vivo. In conclusion, we identified FL-L1CAM as the metastasis-promoting isoform, thereby exemplifying that high expression of a so-called tumour-associated variant, here SV-L1CAM, is not per se equivalent to a decisive role of this isoform in tumour progression.
Collapse
|
32
|
Cheng L, Wu Q, Huang Z, Guryanova OA, Huang Q, Shou W, Rich JN, Bao S. L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J 2011; 30:800-13. [PMID: 21297581 DOI: 10.1038/emboj.2011.10] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 01/11/2011] [Indexed: 12/21/2022] Open
Abstract
Glioblastomas (GBMs) are highly lethal brain tumours with current therapies limited to palliation due to therapeutic resistance. We previously demonstrated that GBM stem cells (GSCs) display a preferential activation of DNA damage checkpoint and are relatively resistant to radiation. However, the molecular mechanisms underlying the preferential checkpoint response in GSCs remain undefined. Here, we show that L1CAM (CD171) regulates DNA damage checkpoint responses and radiosensitivity of GSCs through nuclear translocation of L1CAM intracellular domain (L1-ICD). Targeting L1CAM by RNA interference attenuated DNA damage checkpoint activation and repair, and sensitized GSCs to radiation. L1CAM regulates expression of NBS1, a critical component of the MRE11-RAD50-NBS1 (MRN) complex that activates ataxia telangiectasia mutated (ATM) kinase and early checkpoint response. Ectopic expression of NBS1 in GSCs rescued the decreased checkpoint activation and radioresistance caused by L1CAM knockdown, demonstrating that L1CAM signals through NBS1 to regulate DNA damage checkpoint responses. Mechanistically, nuclear translocation of L1-ICD mediates NBS1 upregulation via c-Myc. These data demonstrate that L1CAM augments DNA damage checkpoint activation and radioresistance of GSCs through L1-ICD-mediated NBS1 upregulation and the enhanced MRN-ATM-Chk2 signalling.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Linking L1CAM-mediated signaling to NF-κB activation. Trends Mol Med 2010; 17:178-87. [PMID: 21195665 DOI: 10.1016/j.molmed.2010.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 01/13/2023]
Abstract
The cell adhesion molecule L1 (L1CAM) was originally identified as a neural adhesion molecule essential for neurite outgrowth and axon guidance. Many studies have now shown that L1CAM is overexpressed in human carcinomas and associated with poor prognosis. So far, L1CAM-mediated cellular signaling has been largely attributed to an association with growth factor receptors, referred to as L1CAM-'assisted' signaling. New data demonstrate that L1CAM can signal via two additional mechanisms: 'forward' signaling via regulated intramembrane proteolysis and 'reverse' signaling via the activation of the transcription factor nuclear factor (NF)-κB. Taken together, these findings lead to a new understanding of L1CAM downstream signaling that is fundamental for the development of anti-L1CAM antibody-mediated therapeutics in human tumor cells.
Collapse
|