1
|
Wang J, Li Y, Wang Y, Wang G, Zhao C, Zhang Y, Lu H. Comparison of Protein Solubilization and Normalization Methods for Proteomics Analysis of Extracellular Vesicles from Urine. J Proteome Res 2025; 24:2430-2442. [PMID: 40184522 DOI: 10.1021/acs.jproteome.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Extracellular vesicles (EVs) play a vital role in numerous biological processes. Proteomic research of EVs is crucial for understanding their functions and potential therapeutic implications. Despite many sample preparation protocols for mass spectrometry-based proteomics of EVs being described, the variability in protein extraction across different protocols has not been extensively investigated. Moreover, given the inherent heterogeneity of EVs, it is vital to conduct a thorough evaluation of normalization methods. Here, we present a comprehensive comparison of three widely used lysis agents─sodium dodecyl sulfate (SDS), urea, and sodium deoxycholate (SDC)─for protein extraction from EVs. We also assess the impact of different normalization strategies on protein quantification, which is crucial for ensuring reliable results. Our results show that method-dependent differences in protein recovery were observed, particularly for membrane-associated proteins. We also find that common normalization strategies, such as urine creatinine and EV markers, did not significantly stabilize protein quantification, indicating that these methods are not universally applicable as normalization standards. Our work thereby provides a reference for the selection of MS sample preparation and normalization strategies for a given EV proteomics project.
Collapse
Affiliation(s)
- Jun Wang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Yang Li
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Yisheng Wang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Guoli Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Chenyang Zhao
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Ying Zhang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Haojie Lu
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Li Y, Li K, Nakamura F. Characterization of open chromatin sensitive to actin polymerization and identification of core-binding factor subunit beta as mechanosensitive nucleocytoplasmic shuttling protein. Cytoskeleton (Hoboken) 2025; 82:260-269. [PMID: 39239837 DOI: 10.1002/cm.21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Mechanotransduction leads to a variety of biological responses including gene expression, changes in cell shape, migration, tissue development, and immune responses. Dysregulation of mechanotransduction is implicated in the progression of various diseases such as cardiovascular diseases and cancer. The actin cytoskeleton plays a crucial role in transmitting mechanical stimuli. Actin filaments, essential for cell motility and shape changes, respond to mechanical cues by remodeling, influencing gene expression via the linker of nucleoskeleton and cytoskeleton complex and mechanosensitive transcription factors. This study employs the dithiobis(succinimidyl propionate) (DSP)-micrococcal nuclease (MNase) proteogenomics method to explore the relationship between cellular mechanosensing, chromatin architecture, and the identification of proteins involved in mechanosensitive nucleocytoplasmic shuttling, revealing how actin polymerization affects chromatin and gene expression. We found that depolymerization of actin filaments by latrunculin B (Lat B) for 30 min is sufficient to alter open chromatin and identified core-binding factor subunit beta as mechanosensitive nucleocytoplasmic shuttling protein.
Collapse
Affiliation(s)
- Yaxin Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Kangjing Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Zu R, Ren H, Yin X, Zhang X, Rao L, Xu P, Wang D, Li Y, Luo H. The FLNA Gene in Tumour-Educated Platelets Can Be Utilised to Identify High-Risk Populations for NSCLCs. J Cell Mol Med 2025; 29:e70544. [PMID: 40208200 PMCID: PMC11984322 DOI: 10.1111/jcmm.70544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Selective screening of the population based on NSCLC risk is an effective technique for minimising overdiagnosis and overtreatment. Platelets and the components can be used as liquid-biopsy markers, potentially assessing the risk of NSCLC, which are easily deployed in clinical applications. Platelet RNA sequencing datasets were analysed to identify specific genes derived from NSCLC patients and healthy donors. Then, expressions of the selected gene were validated in a clinical trial. Not only the availability of the specific gene in differentiating NSCLC patients from healthy donors but also from patients with benign nodules was estimated respectively. Finally, the values of the specific TEP-gene in metastasis and survival prognosis were also evaluated. FLNA was selected based on the GSE datasets, of which mRNA expression levels were higher in platelets from NSCLC patients than in healthy donors and also higher than in benign patients. To discriminate the malignant patients from the healthy individuals, FLNA got an AUC for the ROC curve of 0.716. When discriminating from the benign individuals, FLNA got an AUC of 0.705. In addition, an AUC of 0.595 was found when the metastatic group was distinguished from the non-metastatic group using the relative quantitative results of FLNA, and it seemed that the high-FLNA-expression group had a poorer long-term survival rate than the low-expression group. These findings suggested that high expression of FLNA in TEPs may indicate the incidence and metastasis of NSCLC and serve as a biomarker for high-risk estimation for NSCLC.
Collapse
Affiliation(s)
- Ruiling Zu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Hanxiao Ren
- College of Medical Technology, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Xing Yin
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Xingmei Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Lubei Rao
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Yuping Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
4
|
Wang X, Lang Z, Yan Z, Xu J, Zhang J, Jiao L, Zhang H. Dilated cardiomyopathy: from genes and molecules to potential treatments. Mol Cell Biochem 2025:10.1007/s11010-025-05269-0. [PMID: 40155570 DOI: 10.1007/s11010-025-05269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Dilated cardiomyopathy is a myocardial condition marked by the enlargement of the heart's ventricular chambers and the gradual decline in systolic function, frequently resulting in congestive heart failure. Dilated cardiomyopathy has obvious familial characteristics, and mutations in related pathogenic genes can account for about 50% of patients with dilated cardiomyopathy. The most common genes related to dilated cardiomyopathy include TTN, LMNA, MYH7, etc. With more and more research on these genes, it will undoubtedly provide more potential targets and therapeutic pathways for the treatment of dilated cardiomyopathy. In addition, myocardial inflammation, myocardial metabolism abnormalities and cardiomyocyte apoptosis all have an important impact on the pathogenesis of dilated cardiomyopathy. Approximately half of sudden deaths among children and adolescents, along with the majority of patients undergoing heart transplantation, stem from cardiomyopathy. Therefore, precise and prompt clinical diagnosis holds paramount importance. Currently, diagnosis primarily hinges on the patient's medical background and imaging tests, with the significance of genetic testing steadily gaining prominence. The primary treatment for dilated cardiomyopathy remains heart transplantation. However, the scarcity of donors and the risk of severe immune rejection underscore the pressing need for novel therapies. Presently, research is actively exploring preclinical treatments like stem cell therapy as potential solutions.
Collapse
Affiliation(s)
- Xiumei Wang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou, 730000, The People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Zekun Lang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Zeyi Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Jinyuan Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Lianhang Jiao
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou, 730000, The People's Republic of China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China.
| |
Collapse
|
5
|
Ilchuk LA, Kochegarova KK, Baikova IP, Safonova PD, Bruter AV, Kubekina MV, Okulova YD, Minkovskaya TE, Kuznetsova NA, Dolmatova DM, Ryabinina AY, Mozhaev AA, Belousov VV, Ershov BP, Timashev PS, Filatov MA, Silaeva YY. Mutations in Filamin C Associated with Both Alleles Do Not Affect the Functioning of Mice Cardiac Muscles. Int J Mol Sci 2025; 26:1409. [PMID: 40003875 PMCID: PMC11855563 DOI: 10.3390/ijms26041409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Filamin C (FLNC) is a structural protein of muscle fibers. Mutations in the FLNC gene are known to cause myopathies and cardiomyopathies in humans. Here we report the generation by a CRISPR/Cas9 editing system injected into zygote pronuclei of two mouse strains carrying filamin C mutations-one of them (AGA) has a deletion of three nucleotides at position c.7418_7420, causing E>>D substitution and N deletion at positions 2472 and 2473, respectively. The other strain carries a deletion of GA nucleotides at position c.7419_7420, leading to a frameshift and a premature stop codon. Homozygous animals (FlncAGA/AGA and FlncGA/GA) were embryonically lethal. We determined that FlncGA/GA embryos died prior to the E12.5 stage and illustrated delayed development after the E9.5 stage. We performed histological analysis of heart tissue and skeletal muscles of heterozygous strains carrying mutations in different combinations (FlncGA/wt, FlncAGA/wt, and FlncGA/AGA). By performing physiological tests (grip strength and endurance tests), we have shown that heterozygous animals of both strains (FlncGA/wt, FlncAGA/wt) are functionally indistinguishable from wild-type animals. Interestingly, compound heterozygous mice (FlncGA/AGA) are viable, develop normally, reach puberty and it was verified by ECG and Eco-CG that their cardiac muscle is functionally normal. Intriguingly, FlncGA/AGA mice demonstrated better results in the grip strength physiological test in comparison to WT animals. We also propose a structural model that explains the complementary interaction of two mutant variants of filamin C.
Collapse
Affiliation(s)
- Leonid A. Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Ksenia K. Kochegarova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Iuliia P. Baikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
| | - Polina D. Safonova
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V. Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Yulia D. Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana E. Minkovskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
| | - Nadezhda A. Kuznetsova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Daria M. Dolmatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Anna Yu. Ryabinina
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
| | - Andrey A. Mozhaev
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
- Group of Genome Editing Techniques, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Vsevolod V. Belousov
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
- Group of Genome Editing Techniques, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maxim A. Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Yulia Yu. Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
6
|
Mulder T, Johnson J, González-Morales N. The filamins of Drosophila. Genome 2025; 68:1-11. [PMID: 39869855 DOI: 10.1139/gen-2024-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton. Filamins are required across various cells and tissues. In Drosophila early and recent studies have provided many details about filamin functions. This review centers on the two Drosophila filamins encoded by the cheerio and jitterbu g genes. We examine the structural and evolutionary aspects of filamin genes in flies, contrasting them with those of other model organisms. Then, we synthesize phenotypic data across diverse cell types. Additionally, we outline the genetic tools available for both genes. We also propose to divide filamins into typical and atypical based on the number of actin-binding domains and their relationship with other filamins.
Collapse
Affiliation(s)
- Tiara Mulder
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Johnson
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
7
|
Wade EM, Goodin EA, Morgan T, Pereira S, Woolley AG, Jenkins ZA, Daniel PB, Robertson SP. The hinge-1 domain of Flna is not necessary for diverse physiological functions in mice. Eur J Clin Invest 2024; 54:e14308. [PMID: 39215762 DOI: 10.1111/eci.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The filamins are cytoskeletal binding proteins that dynamically crosslink actin into orthogonal networks or bundle it into stress fibres. The domain structure of filamin proteins is very well characterised, with an N-terminal actin-binding region, followed by 24 immunoglobulin-like repeat units. The repeat domains are separated into distinct segments by two regions of low-complexity known as hinge-1 and hinge-2. The role of hinge-1 especially has been proposed to be essential for protein function as it provides flexibility to the otherwise rigid protein, and is a target for cleavage by calpain. Hinge-1 protects cells from otherwise destructive forces, and the products of calpain cleavage are involved in critical cellular signalling processes, such as survival during hypoxia. Pathogenic variants in FLNA encoding Filamin A, including those that remove the hinge-1 domain, cause a wide range of survivable developmental disorders. In contrast, complete loss of function of this gene is embryonic lethal in human and mouse. METHODS AND RESULTS In this study, we show that removing filamin A hinge-1 from mouse (FlnaΔH1), while preserving its expression level leads to no obvious developmental phenotype. Detailed characterisation of the skeletons of FlnaΔH1 mice showed no skeletal phenotype reminiscent of that found in the FLNA-causing skeletal dysplasia. Furthermore, nuclear functions of FLNA are maintained with loss of Filamin A hinge-1. CONCLUSION We conclude that hinge-1 is dispensable for filamin A protein function during development over the murine lifespan.
Collapse
Affiliation(s)
- Emma M Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Goodin
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephana Pereira
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Adele G Woolley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip B Daniel
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Guo J, Huang R, Mei Y, Lu S, Gong J, Wang L, Ding L, Wu H, Pan D, Liu W. Application of stress granule core element G3BP1 in various diseases: A review. Int J Biol Macromol 2024; 282:137254. [PMID: 39515684 DOI: 10.1016/j.ijbiomac.2024.137254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Ras-GTPase-activating protein-binding protein 1 (G3BP1) is a core component and crucial regulatory switch in stress granules (SGs). When the concentration of free RNA within cells increases, it can trigger RNA-dependent liquid-liquid phase separation (LLPS) with G3BP1 as the core, thereby forming SGs that affect cell survival or death. In addition, G3BP1 interacts with various host proteins to regulate the expression of SGs. As a multifunctional binding protein, G3BP1 has diverse biological functions, influencing cell proliferation, differentiation, apoptosis, and RNA metabolism and serving as a crucial regulator in signaling pathways such as Rac1-PAK1, TSC-mTORC1, NF-κB, and STAT3. Therefore, it plays a significant role in the regulation of neurodegenerative diseases, myocardial hypertrophy, and congenital immunity, and is involved in the proliferation, invasion, and metastasis of cancer cells. G3BP1 is an important antiviral factor that interacts with viral proteins, and regulates SG assembly to exert antiviral effects. This article focuses on the recent discoveries and progress of G3BP1 in biology, including its structure and function, regulation of SG formation and dissolution, and its relationships with non-neoplastic diseases, tumors, and viruses.
Collapse
Affiliation(s)
- Jieyu Guo
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Rongyi Huang
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Yan Mei
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Siao Lu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Jun Gong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Long Wang
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Liqiong Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Hongnian Wu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Dan Pan
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Wu Liu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| |
Collapse
|
9
|
Zolg S, Donzelli L, Geiss-Friedlander R. N-terminal processing by dipeptidyl peptidase 9: Cut and Go! Biochimie 2024; 226:180-192. [PMID: 38461970 DOI: 10.1016/j.biochi.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Dipeptidyl peptidase 9 (DPP9) is an intracellular amino-dipeptidase with physiological roles in the immune system, DNA repair and mitochondria homeostasis, while its deregulation is linked to cancer progression and immune-associated defects. Through its rare ability to cleave a peptide bond following the imino-acid proline, DPP9 acts as a molecular switch that regulates key proteins, such as the tumor-suppressor BRCA2. In this review we will discuss key concepts underlying the outcomes of protein processing by DPP9, including substrate turn-over by the N-degron pathway. Additionally, we will review non-enzymatic roles and the regulation of DPP9 by discussing the interactome of this protease, which includes SUMO1, Filamin A, NLRP1 and CARD8.
Collapse
Affiliation(s)
- Samuel Zolg
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Laura Donzelli
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Ruth Geiss-Friedlander
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.
| |
Collapse
|
10
|
Hong F, Mollica MY, Golla K, De Silva E, Sniadecki NJ, López JA, Kim H. Filamin A regulates platelet shape change and contractile force generation via phosphorylation of the myosin light chain. Biochem J 2024; 481:1395-1410. [PMID: 39189664 PMCID: PMC11555712 DOI: 10.1042/bcj20240114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Platelets are critical mediators of hemostasis and thrombosis. Platelets circulate as discs in their resting form but change shape rapidly upon activation by vascular damage and/or soluble agonists such as thrombin. Platelet shape change is driven by a dynamic remodeling of the actin cytoskeleton. Actin filaments interact with the protein myosin, which is phosphorylated on the myosin light chain (MLC) upon platelet activation. Actin-myosin interactions trigger contraction of the actin cytoskeleton, which drives platelet spreading and contractile force generation. Filamin A (FLNA) is an actin cross-linking protein that stabilizes the attachment between subcortical actin filaments and the cell membrane. In addition, FLNA binds multiple proteins and serves as a critical intracellular signaling scaffold. Here, we used platelets from mice with a megakaryocyte/platelet-specific deletion of FLNA to investigate the role of FLNA in regulating platelet shape change. Relative to controls, FLNA-null platelets exhibited defects in stress fiber formation, contractile force generation, and MLC phosphorylation in response to thrombin stimulation. Blockade of Rho kinase (ROCK) and protein kinase C (PKC) with the inhibitors Y27632 and bisindolylmaleimide (BIM), respectively, also attenuated MLC phosphorylation; our data further indicate that ROCK and PKC promote MLC phosphorylation through independent pathways. Notably, the activity of both ROCK and PKC was diminished in the FLNA-deficient platelets. We conclude that FLNA regulates thrombin-induced MLC phosphorylation and platelet contraction, in a ROCK- and PKC-dependent manner.
Collapse
Affiliation(s)
- Felix Hong
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Molly Y. Mollica
- Bloodworks Northwest Research Institute, Seattle, WA, U.S.A
- School of Medicine, Division of Hematology, University of Washington, Seattle, WA, U.S.A
- Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, U.S.A
| | - Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Enoli De Silva
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA, U.S.A
- Department of Bioengineering, University of Washington, Seattle, WA, U.S.A
- Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, U.S.A
| | - José A. López
- Bloodworks Northwest Research Institute, Seattle, WA, U.S.A
- School of Medicine, Division of Hematology, University of Washington, Seattle, WA, U.S.A
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
He C, Chen X, Chen Y, Sun J, Qi M, Rocha S, Wang M. Global acetylome profiling indicates EPA impedes but OA promotes prostate cancer motility through altered acetylation of PFN1 and FLNA. Proteomics 2024; 24:e2300393. [PMID: 38430206 DOI: 10.1002/pmic.202300393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer morbidity and mortality in men. Metastasis is the main cause of PCa-associated death. Recent evidence indicated a significant reduction in PCa mortality associated with higher ω-3 polyunsaturated fatty acids (PUFAs) consumption. However, the underlying mechanisms remained elusive. In this study, we applied global acetylome profiling to study the effect of fatty acids treatment. Results indicated that oleic acid (OA, monounsaturated fatty acid, MUFA, 100 µM) elevates while EPA (eicosapentaenoic acid, 100 µM) reduces the acetyl-CoA level, which alters the global acetylome. After treatment, two crucial cell motility regulators, PFN1 and FLNA, were found with altered acetylation levels. OA increased the acetylation of PFN1 and FLNA, whereas EPA decreased PFN1 acetylation level. Furthermore, OA promotes while EPA inhibits PCa migration and invasion. Immunofluorescence assay indicated that EPA impedes the formation of lamellipodia or filopodia through reduced localization of PFN1 and FLNA to the leading edge of cells. Therefore, perturbed acetylome may be one critical step in fatty acid-affected cancer cell motility. This study provides some new insights into the response of ω-3 PUFAs treatment and a better understanding of cancer cell migration and invasion modulation.
Collapse
Affiliation(s)
- Chao He
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Xiuyuan Chen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Ying Chen
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Jianying Sun
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Manting Qi
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mu Wang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Xue C, Wang Y, Peng J, Feng S, Guan Y, Hao Y. Unraveling the pathogenic mechanism of a novel filamin a frameshift variant in periventricular nodular heterotopia. Front Pharmacol 2024; 15:1429177. [PMID: 39399465 PMCID: PMC11466872 DOI: 10.3389/fphar.2024.1429177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Background Periventricular nodular heterotopia (PVNH) is a neuronal migration disorder caused by the inability of neurons to move to the cortex. Patients with PVNH often experience epilepsy due to ectopic neuronal discharges. Most cases of PVNH are associated with variations in filamin A (FLNA), which encodes an actin-binding protein. However, the underlying pathological mechanisms remain unclear. Methods Next-generation sequencing was performed to detect variants in the patient with PVNH, and the findings were confirmed using Sanger sequencing. Iterative threading assembly refinement was used to predict the structures of the variant proteins, and the search tool for the retrieval of interacting genes/proteins database was used to determine the interactions between FLNA and motility-related proteins. An induced pluripotent stem cell (iPSC) line was generated as a disease model by reprogramming human peripheral blood mononuclear cells. The FLNA expression in iPSCs was assessed using western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Immunofluorescence analysis was performed to determine the arrangement of F-actin. Results A novel FLNA frameshift variant (NM_001456.3: c.1466delG, p. G489Afs*9) was identified in a patient with PVNH and epilepsy. Bioinformatic analysis indicated that this variation was likely to impair FLNA function. Western blot and qRT-PCR analysis of iPSCs derived from the patient's peripheral blood mononuclear cells revealed the absence of FLNA protein and mRNA. Immunofluorescence analysis suggested an irregular arrangement and disorganization of F-actin compared to that observed in healthy donors. Conclusion Our findings indicate that the frameshift variant of FLNA (NM_001456.3: c.1466delG, p. G489Afs*9) impairs the arrangement and organization of F-actin, potentially influencing cell migration and causing PVNH.
Collapse
Affiliation(s)
- Chunran Xue
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yishu Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Peng
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sisi Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Punan Branch, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Koch F, Albrecht D, Albrecht E, Hansen C, Kuhla B. Novel Perspective on Molecular and Cellular Adaptations of the Mammary Gland-Regulating Milk Constituents and Immunity of Heat-Stressed Dairy Cows. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20286-20298. [PMID: 39226405 PMCID: PMC11421017 DOI: 10.1021/acs.jafc.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate change with increasing ambient temperatures negatively influences the biology of dairy cows and their milk production in the mammary gland (MG). This study aimed to elucidate the MG proteome, differences in milk composition, and ruminal short-chain fatty acid concentrations of dairy cows experiencing 7 days of heat stress [HS, 28 °C, temperature humidity index (THI) = 76], pair-feeding (PF), or ad libitum feeding (CON) at thermoneutrality (16 °C, THI = 60). Ruminal acetate, acetate/propionate ratio, and milk urea concentrations were greater, whereas milk protein and lactose were lower in HS than in control cows. Proteome analysis revealed an induced bacterial invasion of epithelial cells, leukocyte transendothelial migration, reduction of the pyruvate and carbon metabolism, and platelet activation in the MG of HS compared to CON or PF cows. These results highlight adaptive metabolic and immune responses to mitigate the negative effects of ambient heat in the MG.
Collapse
Affiliation(s)
- Franziska Koch
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Dirk Albrecht
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
| | - Elke Albrecht
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Christiane Hansen
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Institute of Livestock Farming, Dummerstorf 18196, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| |
Collapse
|
14
|
Xie Y, Qi J, Liu J. Curcumin suppresses the malignant phenotype of laryngeal squamous cell carcinoma through downregulating E2F1 to inhibit FLNA. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6929-6939. [PMID: 38592439 DOI: 10.1007/s00210-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Curcumin is a kind of polyphenol substance extracted from the rhizome of Curcuma longa. Because of its good biological activity and pharmacological effects, it has been used in anti-tumor research. The aim of this study was to investigate the anti-cancer mechanism of curcumin on laryngeal squamous cell carcinoma (LSCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to check the expression level of transcription factor E2F1 (E2F1) and filamin A (FLNA) mRNA. E2F1 and FLNA protein and proliferation-associated protein were detected through western blot. Cell viability was showed by MTT assay, and flow cytometry was used to exhibit cell cycle distribution and cell apoptosis. Tube formation assay was used to detect the angiogenesis ability of cells. Transwell was used as a method to observe cell migration and invasion. The online website JASPAR predicted the binding site of E2F1 and FLNA promoter, and chromatin immunoprecipitation (ChIP) and dual-luciferase report experiment verified the combination. Curcumin treatment made LSCC cells viability reduce, cell cycle retardant, angiogenesis decrease, metastasis inhibition and apoptosis increase. And curcumin treatment could downregulate the expression of E2F1, and E2F1 overexpression would reverse the influence of curcumin treatment in LSCC cells. Moreover, E2F1 could bind to FLAN promoter and promote FLNA expression. The expression level of FLNA was higher in LSCC tissue and cells compared with normal tissue and cells. E2F1 knockdown inhibited malignant phenotype of LSCC cells, which would be reversed by FLNA addition. In addition, FLNA had high level in LSCC tissue and cells. Curcumin regulated FLNA expression via inhibiting E2F1. Finally, in vivo assay showed that curcumin inhibition restrained LSCC tumor formation. Curcumin downregulated FLNA expression through inhibiting E2F1, thereby suppressing the malignant phenotype and angiogenesis of LSCC cells, which was a new regulatory pathway in LSCC.
Collapse
Affiliation(s)
- Yuanchun Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen People's Hospital, Jingmen, China.
| | - Jingjing Qi
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen No.2 People's Hospital, No.39, Xiangshan Avenue, Jingmen City, 448000, Hubei, China.
| | - Ju Liu
- Department of Operating Theatre, Jingmen No.2 People's Hospital, Jingmen City, 448000, Hubei, China
| |
Collapse
|
15
|
Goliusova DV, Sharikova MY, Lavrenteva KA, Lebedeva OS, Muranova LK, Gusev NB, Bogomazova AN, Lagarkova MA. Role of Filamin C in Muscle Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1546-1557. [PMID: 39418514 DOI: 10.1134/s0006297924090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Filamin C (FLNC) is a member of a high-molecular weight protein family, which bind actin filaments in the cytoskeleton of various cells. In human genome FLNC is encoded by the FLNC gene located on chromosome 7 and is expressed predominantly in striated skeletal and cardiac muscle cells. Filamin C is involved in organization and stabilization of thin actin filaments three-dimensional network in sarcomeres, and is supposed to play a role of mechanosensor transferring mechanical signals to different protein targets. Under mechanical stress FLNC can undergo unfolding that increases the risk of its aggregation. FLNC molecules with an impaired native structure could be eliminated by the BAG3-mediated chaperone-assisted selective autophagy. Mutations in the FLNC gene could be accompanied by the changes in FLNC interaction with its protein partners and could lead to formation of aggregates, which overload the autophagy and proteasome protein degradation systems, thus facilitating development of various pathological processes. Molecular mechanisms of the FLNC-associated congenital disorders, called filaminopathies, remain poorly understood. This review is devoted to analysis of the structure and mechanisms of filamin C function in muscle and heart cells in normal state and in the FLNC-associated pathologies. The presented data summarize the results of research at the molecular, cellular, and tissue levels and allow us to outline promising ways for further investigation of pathogenetic mechanisms in filaminopathies.
Collapse
Affiliation(s)
- Daria V Goliusova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita Y Sharikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Kristina A Lavrenteva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Lidia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
16
|
Boismal F, Peltier S, Ly Ka So S, Chevreux G, Blondel L, Serror K, Setterblab N, Zuelgaray E, Boccara D, Mimoun M, Guere C, Benssussan A, Dorr M, Beauchef G, Vie K, Michel L. Proteomic and secretomic comparison of young and aged dermal fibroblasts highlights cytoskeleton as a key component during aging. Aging (Albany NY) 2024; 16:11776-11795. [PMID: 39197170 PMCID: PMC11386920 DOI: 10.18632/aging.206055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/29/2024] [Indexed: 08/30/2024]
Abstract
Crucial for skin homeostasis, synthesis and degradation of extracellular matrix components are orchestrated by dermal fibroblasts. During aging, alterations of component expression, such as collagens and enzymes, lead to reduction of the mechanical cutaneous tension and defects of skin wound healing. The aim of this study was to better understand the molecular alterations underwent by fibroblasts during aging by comparing secretomic and proteomic signatures of fibroblasts from young (<35years) and aged (>55years) skin donors, in quiescence or TGF-stimulated conditions, using HLPC/MS. The comparison of the secretome from young and aged fibroblasts revealed that 16 proteins in resting condition, and 11 proteins after a 24h-lasting TGF-β1-treatment, were expressed in significant different ways between the two cell groups (fold change>2, p-value <0.05), with a 77% decrease in the number of secreted proteins in aged cells. Proteome comparison between young and aged fibroblasts identified a significant change of 63 proteins in resting condition, and 73 proteins in TGF-β1-stimulated condition, with a 67% increase in the number of proteins in aged fibroblasts. The majority of the differentially-expressed molecules belongs to the cytoskeleton-associated proteins and aging was characterized by an increase in Coronin 1C (CORO1C), and Filamin B (FLNB) expression in fibroblasts together with a decrease in Cofilin (CFL1), and Actin alpha cardiac muscle 1 (ACTC1) detection in aged cells, these proteins being involved in actin-filament polymerization and sharing co-activity in cell motility. Our present data reinforce knowledge about an age-related alteration in the synthesis of major proteins linked to the migratory and contractile functions of dermal human fibroblasts.
Collapse
Affiliation(s)
- Françoise Boismal
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
| | - Sandy Peltier
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | - Sophie Ly Ka So
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | | | - Loïse Blondel
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | - Kévin Serror
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | | | | | - David Boccara
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Maurice Mimoun
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | | | - Armand Benssussan
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
| | | | | | | | - Laurence Michel
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Dermatology Department, Saint-Louis Hospital, Paris, France
| |
Collapse
|
17
|
Nezamuldeen L, Jafri MS. Boolean Modeling of Biological Network Applied to Protein-Protein Interaction Network of Autism Patients. BIOLOGY 2024; 13:606. [PMID: 39194544 DOI: 10.3390/biology13080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Cellular molecules interact with one another in a structured manner, defining a regulatory network topology that describes cellular mechanisms. Genetic mutations alter these networks' pathways, generating complex disorders such as autism spectrum disorder (ASD). Boolean models have assisted in understanding biological system dynamics since Kauffman's 1969 discovery, and various analytical tools for regulatory networks have been developed. This study examined the protein-protein interaction network created in our previous publication of four ASD patients using the SPIDDOR R package, a Boolean model-based method. The aim is to examine how patients' genetic variations in INTS6L, USP9X, RSK4, FGF5, FLNA, SUMF1, and IDS affect mTOR and Wnt cell signaling convergence. The Boolean network analysis revealed abnormal activation levels of essential proteins such as β-catenin, MTORC1, RPS6, eIF4E, Cadherin, and SMAD. These proteins affect gene expression, translation, cell adhesion, shape, and migration. Patients 1 and 2 showed consistent patterns of increased β-catenin activity and decreased MTORC1, RPS6, and eIF4E activity. However, patient 2 had an independent decrease in Cadherin and SMAD activity due to the FLNA mutation. Patients 3 and 4 have an abnormal activation of the mTOR pathway, which includes the MTORC1, RPS6, and eIF4E genes. The shared mTOR pathway behavior in these patients is explained by a shared mutation in two closely related proteins (SUMF1 and IDS). Diverse activities in β-catenin, MTORC1, RPS6, eIF4E, Cadherin, and SMAD contributed to the reported phenotype in these individuals. Furthermore, it unveiled the potential therapeutic options that could be suggested to these individuals.
Collapse
Affiliation(s)
- Leena Nezamuldeen
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Kopsidas CA, Lowe CC, McDaniel DP, Zhou X, Feng Y. Sustained generation of neurons destined for neocortex with oxidative metabolic upregulation upon filamin abrogation. iScience 2024; 27:110199. [PMID: 38989458 PMCID: PMC11233971 DOI: 10.1016/j.isci.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Neurons in the neocortex are generated during embryonic development. While the adult ventricular-subventricular zone (V-SVZ) contains cells with neural stem/progenitors' characteristics, it remains unclear whether it has the capacity of producing neocortical neurons. Here, we show that generating neurons with transcriptomic resemblance to upper layer neocortical neurons continues in the V-SVZ of mouse models of a human condition known as periventricular heterotopia by abrogating Flna and Flnb. We found such surplus neurogenesis was associated with V-SVZ's upregulation of oxidative phosphorylation, mitochondrial biogenesis, and vascular abundance. Additionally, spatial transcriptomics analyses showed V-SVZ's neurogenic activation was coupled with transcriptional enrichment of genes in diverse pathways for energy metabolism, angiogenesis, cell signaling, synaptic transmission, and turnovers of nucleic acids and proteins in upper cortical layers. These findings support the potential of generating neocortical neurons in adulthood through boosting brain-wide vascular circulation, aerobic adenosine triphosphate synthesis, metabolic turnover, and neuronal activity.
Collapse
Affiliation(s)
- Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
19
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. Genetics 2024; 227:iyae071. [PMID: 38797871 PMCID: PMC11228842 DOI: 10.1093/genetics/iyae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
20
|
Shead KD, Salyahetdinova V, Baillie GS. Charting the importance of filamin A posttranslational modifications. Biochem J 2024; 481:865-881. [PMID: 38958472 PMCID: PMC11346442 DOI: 10.1042/bcj20240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Filamin A is an essential protein in the cell cytoskeleton because of its actin binding properties and unique homodimer rod-shaped structure, which organises actin into three-dimensional orthogonal networks imperative to cell motility, spreading and adhesion. Filamin A is subject to extensive posttranslational modification (PTM) which serves to co-ordinate cellular architecture and to modulate its large protein-protein interaction network which is key to the protein's role as a cellular signalling hub. Characterised PTMs include phosphorylation, irreversible cleavage, ubiquitin mediated degradation, hydroxylation and O-GlcNAcylation, with preliminary evidence of tyrosylation, carbonylation and acetylation. Each modification and its relation to filamin A function will be described here. These modifications are often aberrantly applied in a range of diseases including, but not limited to, cancer, cardiovascular disease and neurological disease and we discuss the concept of target specific PTMs with novel therapeutic modalities. In summary, our review represents a topical 'one-stop-shop' that enables understanding of filamin A function in cell homeostasis and provides insight into how a variety of modifications add an extra level of Filamin A control.
Collapse
Affiliation(s)
- Kyle D. Shead
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G128QQ, U.K
| | - Veneta Salyahetdinova
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G128QQ, U.K
| | - George S. Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G128QQ, U.K
| |
Collapse
|
21
|
Li SY, Xue ST, Li ZR. Osteoporosis: Emerging targets on the classical signaling pathways of bone formation. Eur J Pharmacol 2024; 973:176574. [PMID: 38642670 DOI: 10.1016/j.ejphar.2024.176574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.
Collapse
Affiliation(s)
- Si-Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Si-Tu Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
22
|
Giovannelli P, Di Donato M, Licitra F, Sabbatino E, Tutino V, Castoria G, Migliaccio A. Filamin A in triple negative breast cancer. Steroids 2024; 205:109380. [PMID: 38311094 DOI: 10.1016/j.steroids.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Triple-negative breast cancer is a rare but highly heterogeneous breast cancer subtype with a limited choice of specific treatments. Chemotherapy remains the only efficient treatment, but its side effects and the development of resistance consolidate the urgent need to discover new targets. In TNBC, filamin A expression correlates to grade and TNM stage. Accordingly, this protein could constitute a new target for this BC subtype. Even if most of the data indicates its direct involvement in cancer progression, some contrasting results underline the need to deepen the studies. To elucidate a possible function of this protein as a TNBC marker, we summarized the main characteristic of filamin A and its involvement in physiological and pathological processes such as cancer. Lastly, we scrutinized its actions in triple-negative breast cancer and highlighted the need to increase the number of studies useful to better clarify the role of this versatile protein as a marker and target in TNBC, alone or in "collaboration" with other proteins with a relevant role in this BC subgroup.
Collapse
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy.
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Fabrizio Licitra
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Emilia Sabbatino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Viviana Tutino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| |
Collapse
|
23
|
Muranova LK, Vostrikova VM, Shatov VM, Sluchanko NN, Gusev NB. Interaction of the C-terminal immunoglobulin-like domains (Ig 22-24) of filamin C with human small heat shock proteins. Biochimie 2024; 219:146-154. [PMID: 38016530 DOI: 10.1016/j.biochi.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Small heat shock proteins are the well-known regulators of the cytoskeleton integrity, yet their complexes with actin-binding proteins are underexplored. Filamin C, a dimeric 560 kDa protein, abundant in cardiac and skeletal muscles, crosslinks actin filaments and contributes to Z-disc formation and membrane-cytoskeleton attachment. Here, we analyzed the interaction of a human filamin C fragment containing immunoglobulin-like domains 22-24 (FLNC22-24) with five small heat shock proteins (HspB1, HspB5, HspB6, HspB7, HspB8) and their α-crystallin domains. On size-exclusion chromatography, only HspB7 or its α-crystallin domain formed complexes with FLNC22-24. Despite similar isoelectric points of the small heat shock proteins analyzed, only HspB7 and its α-crystallin domain interacted with FLNC22-24 on native gel electrophoresis. Crosslinking with glutaraldehyde confirmed the formation of complexes between HspB7 (or its α-crystallin domain) and the filamin С fragment, inhibiting intersubunit FLNC crosslinking. These data are consistent with the structure modeling using Alphafold. Thus, the C-terminal fragment (immunoglobulin-like domains 22-24) of filamin C contains the site for HspB7 (or its α-crystallin domain) interaction, which competes with FLNC22-24 dimerization and its probable interaction with different target proteins.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Varvara M Vostrikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Vladislav M Shatov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
24
|
Shen LP, Jiang HT. Pan-cancer and single-cell analysis of actin cytoskeleton genes related to disulfidptosis. Open Med (Wars) 2024; 19:20240929. [PMID: 38584831 PMCID: PMC10997004 DOI: 10.1515/med-2024-0929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Disulfidptosis was recently reported to be caused by abnormal disulfide accumulation in cells with high SLC7A11 levels subjected to glucose starvation, suggesting that targeting disulfidptosis was a potential strategy for cancer treatment. We analyzed the relationships between gene expression and mutations and prognoses of patients. In addition, the correlation between gene expression and immune cell infiltration was explored. The potential regulatory mechanisms of these genes were assessed by investigating their related signaling pathways involved in cancer, their expression patterns, and their cellular localization. Most cancer types showed a negative correlation between the gene-set variation analysis (GSVA) scores and infiltration of B cells and neutrophils, and a positive correlation between GSVA scores and infiltration of natural killer T and induced regulatory T cells. Single-cell analysis revealed that ACTB, DSTN, and MYL6 were highly expressed in different bladder urothelial carcinoma subtypes, but MYH10 showed a low expression. Immunofluorescence staining showed that actin cytoskeleton proteins were mainly localized in the actin filaments and plasma membrane. Notably, IQGAP1 was localized in the cell junctions. In conclusion, this study provided an overview of disulfidptosis-related actin cytoskeleton genes in pan-cancer. These genes were associated with the survival of patients and might be involved in cancer-related pathways.
Collapse
Affiliation(s)
- Li-ping Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| | - Han-tao Jiang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| |
Collapse
|
25
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
26
|
Vitali E, Franceschini B, Milana F, Soldani C, Polidoro MA, Carriero R, Kunderfranco P, Trivellin G, Costa G, Milardi G, Di Tommaso L, Torzilli G, Lleo A, Lania AG, Donadon M. Filamin A is involved in human intrahepatic cholangiocarcinoma aggressiveness and progression. Liver Int 2024; 44:518-531. [PMID: 38010911 DOI: 10.1111/liv.15800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is a primary liver tumour, characterized by poor prognosis and lack of effective therapy. The cytoskeleton protein Filamin A (FLNA) is involved in cancer progression and metastasis, including primary liver cancer. FLNA is cleaved by calpain, producing a 90 kDa fragment (FLNACT ) that can translocate to the nucleus and inhibit gene transcription. We herein aim to define the role of FLNA and its cleavage in iCCA carcinogenesis. METHODS & RESULTS We evaluated the expression and localization of FLNA and FLNACT in liver samples from iCCA patients (n = 82) revealing that FLNA expression was independently correlated with disease-free survival. Primary tumour cells isolated from resected iCCA patients expressed both FLNA and FLNACT , and bulk RNA sequencing revealed a significant enrichment of cell proliferation and cell motility pathways in iCCAs with high FLNA expression. Further, we defined the impact of FLNA and FLNACT on the proliferation and migration of primary iCCA cells (n = 3) and HuCCT1 cell line using silencing and Calpeptin, a calpain inhibitor. We observed that FLNA silencing decreased cell proliferation and migration and Calpeptin was able to reduce FLNACT expression in both the HuCCT1 and iCCA cells (p < .05 vs. control). Moreover, Calpeptin 100 μM decreased HuCCT1 and primary iCCA cell proliferation (p <.00001 vs. control) and migration (p < .05 vs. control). CONCLUSIONS These findings demonstrate that FLNA is involved in human iCCA progression and calpeptin strongly decreased FLNACT expression, reducing cell proliferation and migration.
Collapse
Affiliation(s)
- Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Flavio Milana
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela A Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Giampaolo Trivellin
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Guido Costa
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Milardi
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Donadon
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Department of General Surgery, University Maggiore Hospital, Novara, Italy
| |
Collapse
|
27
|
Ellis ML, Terreaux A, Alwis I, Smythe R, Perdomo J, Eckly A, Cranmer SL, Passam FH, Maclean J, Schoenwaelder SM, Ruggeri ZM, Lanza F, Taoudi S, Yuan Y, Jackson SP. GPIbα-filamin A interaction regulates megakaryocyte localization and budding during platelet biogenesis. Blood 2024; 143:342-356. [PMID: 37922495 DOI: 10.1182/blood.2023021292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023] Open
Abstract
ABSTRACT Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.
Collapse
Affiliation(s)
- Marc L Ellis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Antoine Terreaux
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Imala Alwis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Rhyll Smythe
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jose Perdomo
- Haematology Research Unit, St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Anita Eckly
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Susan L Cranmer
- Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia
| | - Freda H Passam
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jessica Maclean
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Simone M Schoenwaelder
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| | - Francois Lanza
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Samir Taoudi
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Yuping Yuan
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Shaun P Jackson
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
28
|
Lozano-Iturbe V, Blanco-Agudín N, Vázquez-Espinosa E, Fernández-Vega I, Merayo-Lloves J, Vazquez F, Girón RM, Quirós LM. The Binding of Pseudomonas aeruginosa to Cystic Fibrosis Bronchial Epithelial Model Cells Alters the Composition of the Exosomes They Produce Compared to Healthy Control Cells. Int J Mol Sci 2024; 25:895. [PMID: 38255969 PMCID: PMC10815301 DOI: 10.3390/ijms25020895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that causes dehydration of the surface of the airways, increasing lung infections, most frequently caused by Pseudomonas aeruginosa. Exosomes are nanovesicles released by cells that play an essential role in intercellular communication, although their role during bacterial infections is not well understood. In this article, we analyze the alterations in exosomes produced by healthy bronchial epithelial and cystic fibrosis cell lines caused by the interaction with P. aeruginosa. The proteomic study detected alterations in 30% of the species analyzed. In healthy cells, they mainly involve proteins related to the extracellular matrix, cytoskeleton, and various catabolic enzymes. In CF, proteins related to the cytoskeleton and matrix, in addition to the proteasome. These differences could be related to the inflammatory response. A study of miRNAs detected alterations in 18% of the species analyzed. The prediction of their potential biological targets identified 7149 genes, regulated by up to 7 different miRNAs. The identification of their functions showed that they preferentially affected molecules involved in binding and catalytic activities, although with differences between cell types. In conclusion, this study shows differences in exosomes between CF and healthy cells that could be involved in the response to infection.
Collapse
Affiliation(s)
- Víctor Lozano-Iturbe
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.-I.); (N.B.-A.); (F.V.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Noelia Blanco-Agudín
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.-I.); (N.B.-A.); (F.V.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Emma Vázquez-Espinosa
- Pneumology Service, Institute for Health Research (IP), Hospital Universitario de La Princesa, 28006 Madrid, Spain;
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Fernando Vazquez
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.-I.); (N.B.-A.); (F.V.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Microbiology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Rosa M. Girón
- Pneumology Service, Institute for Health Research (IP), Hospital Universitario de La Princesa, 28006 Madrid, Spain;
| | - Luis M. Quirós
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.-I.); (N.B.-A.); (F.V.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
29
|
Li Q, Hao M, Zhu J, Yi L, Cheng W, Xie Y, Zhao S. Comparison of differentially expressed genes in longissimus dorsi muscle of Diannan small ears, Wujin and landrace pigs using RNA-seq. Front Vet Sci 2024; 10:1296208. [PMID: 38249550 PMCID: PMC10796741 DOI: 10.3389/fvets.2023.1296208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Pig growth is an important economic trait that involves the co-regulation of multiple genes and related signaling pathways. High-throughput sequencing has become a powerful technology for establishing the transcriptome profiles and can be used to screen genome-wide differentially expressed genes (DEGs). In order to elucidate the molecular mechanism underlying muscle growth, this study adopted RNA sequencing (RNA-seq) to identify and compare DEGs at the genetic level in the longissimus dorsi muscle (LDM) between two indigenous Chinese pig breeds (Diannan small ears [DSE] pig and Wujin pig [WJ]) and one introduced pig breed (Landrace pig [LP]). Methods Animals under study were from two Chinese indigenous pig breeds (DSE pig, n = 3; WJ pig, n = 3) and one introduced pig breed (LP, n = 3) were used for RNA sequencing (RNA-seq) to identify and compare the expression levels of DEGs in the LDM. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Results The results revealed that for the DSE, WJ, and LP libraries, more than 66, 65, and 71 million clean reads were generated by transcriptome sequencing, respectively. A total of 11,213 genes were identified in the LDM tissue of these pig breeds, of which 7,127 were co-expressed in the muscle tissue of the three samples. In total, 441 and 339 DEGs were identified between DSE vs. WJ and LP vs. DSE in the study, with 254, 193 up-regulated genes and 187, 193 down-regulated genes in DSE compared to WJ and LP. GO analysis and KEGG signaling pathway analysis showed that DEGs are significantly related to contractile fiber, sarcolemma, and dystrophin-associated glycoprotein complex, myofibril, sarcolemma, and myosin II complex, Glycolysis/Gluconeogenesis, Propanoate metabolism, and Pyruvate metabolism, etc. In combination with functional annotation of DEGs, key genes such as ENO3 and JUN were identified by PPI network analysis. Discussion In conclusion, the present study revealed key genes including DES, FLNC, PSMD1, PSMD6, PSME4, PSMB4, RPL11, RPL13A, ROS23, RPS29, MYH1, MYL9, MYL12B, TPM1, TPM4, ENO3, PGK1, PKM2, GPI, and the unannotated new gene ENSSSCG00000020769 and related signaling pathways that influence the difference in muscle growth and could provide a theoretical basis for improving pig muscle growth traits in the future.
Collapse
Affiliation(s)
- Qiuyan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meilin Hao
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Junhong Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenjie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuxiao Xie
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
30
|
Johnson LG, Zhai C, Prusa KJ, Nair MN, Prenni JE, Chaparro JM, Huff-Lonergan E, Lonergan SM. Proteomic and metabolomic profiling of aged pork loin chops reveals molecular phenotypes linked to pork tenderness. J Anim Sci 2024; 102:skae355. [PMID: 39563021 PMCID: PMC11630860 DOI: 10.1093/jas/skae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
The ability to predict fresh pork tenderness and quality is hindered by an incomplete understanding of molecular factors that influence these complex traits. It is hypothesized that a comprehensive description of the metabolomic and proteomic phenotypes associated with variation in pork tenderness and quality will enhance the understanding and inform the development of rapid and nondestructive methods to measure pork quality. The objective of this investigation was to examine the proteomic and metabolomic profiles of ~2-wk aged pork chops categorized across instrumental tenderness groups. One hundred pork loin chops from a larger sample (N = 120) were assigned to one of the four categories (n = 25) based on instrumental star probe value (Category A, x¯ =4.23 kg, 3.43-4.55 kg; Category B, x¯ =4.79 kg, 4.66-5.00 kg; Category C, x¯ =5.43 kg, 5.20-5.64 kg; and Category D, x¯ =6.21 kg, 5.70-7.41 kg). Soluble protein from ~2 wk aged pork loin was prepared using a low-ionic-strength buffer. Proteins were digested with trypsin, labeled with 11-plex isobaric tandem mass tag reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Metabolites were extracted in 80% methanol from lyophilized and homogenized tissue samples. Derivatized metabolites were identified and quantified using gas chromatography-mass spectrometry. Between Categories A and D, 84 proteins and 22 metabolites were differentially abundant (adjusted P < 0.05). Fewer differences were detected in comparison between categories with less divergent tenderness measures. The molecular phenotype of the more tender (Category A) aged chops is consistent with a slower and less extended pH decline and markedly less abundance of glycolytic metabolites. The presence and greater abundance of proteins in the low-ionic-strength extract, including desmin, filamin C, calsequestrin, and fumarate hydratase, indicates a greater disruption of sarcoplasmic reticulum and mitochondrial membranes and the degradation and release of structural proteins from the continuous connections of myofibrils and the sarcolemma.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040, USA
| | - Kenneth J Prusa
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
31
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Di Donato M, Moretti A, Sorrentino C, Toro G, Gentile G, Iolascon G, Castoria G, Migliaccio A. Filamin A cooperates with the androgen receptor in preventing skeletal muscle senescence. Cell Death Discov 2023; 9:437. [PMID: 38040692 PMCID: PMC10692324 DOI: 10.1038/s41420-023-01737-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
Aging induces a slow and progressive decrease in muscle mass and function, causing sarcopenia. Androgens control muscle trophism and exert important anabolic functions through the binding to the androgen receptor. Therefore, analysis of the androgen receptor-mediated actions in skeletal muscle might provide new hints for a better understanding of sarcopenia pathogenesis. In this study, we report that expression of the androgen receptor in skeletal muscle biopsies from 20 subjects is higher in young, as compared with old subjects. Co-immunoprecipitation experiments reveal that the androgen receptor is complexed with filamin A mainly in young, that in old subjects. Therefore, we have in depth analyzed the role of such complex using C2C12 myoblasts that express a significant amount of the androgen receptor. In these cells, hormone stimulation rapidly triggers the assembly of the androgen receptor/filamin A complex. Such complex prevents the senescence induced by oxidative stress in C2C12 cells, as disruption of the androgen receptor/filamin A complex by Rh-2025u stapled peptide re-establishes the senescent phenotype in C2C12 cells. Simultaneously, androgen stimulation of C2C12 cells rapidly triggers the activation of various signaling effectors, including Rac1, focal adhesion kinase, and mitogen-activated kinases. Androgen receptor blockade by bicalutamide or perturbation of androgen receptor/filamin A complex by Rh-2025u stapled peptide both reverse the hormone activation of signaling effectors. These findings further reinforce the role of the androgen receptor and its extranuclear partners in the rapid hormone signaling that controls the functions of C2C12 cells. Further investigations are needed to promote clinical interventions that might ameliorate muscle cell function as well the clinical outcome of age-related frailty.
Collapse
Affiliation(s)
- Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Antimo Moretti
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Carmela Sorrentino
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Giuseppe Toro
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Giulia Gentile
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Giovanni Iolascon
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy.
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| |
Collapse
|
33
|
Huang L, Shao J, Xu X, Hong W, Yu W, Zheng S, Ge X. WTAP regulates autophagy in colon cancer cells by inhibiting FLNA through N6-methyladenosine. Cell Adh Migr 2023; 17:1-13. [PMID: 36849408 PMCID: PMC9980444 DOI: 10.1080/19336918.2023.2180196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Our study investigated the role of WTAP in colon cancer. We employed experiments including m6A dot blot hybridization, methylated RNA immunoprecipitation, dual-luciferase, and RNA immunoprecipitation to investigate the regulatory mechanism of WTAP. Western blot was performed to analyze the expression of WTAP, FLNA and autophagy-related proteins in cells. Our results confirmed the up-regulation of WTAP in colon cancer and its promoting effect on proliferation and inhibiting effect on apoptosis. FLNA was the downstream gene of WTAP and WTAP-regulated m6A modification led to post-transcriptional repression of FLNA. The rescue experiments showed that WTAP/FLNA could inhibit autophagy. WTAP-mediated m6A modification was confirmed to be crucial in colon cancer development, providing new insights into colon cancer therapy.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Jinfan Shao
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xijuan Xu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Weiwen Hong
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wenfeng Yu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Shuang Zheng
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xiaogang Ge
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China,CONTACT Xiaogang Ge Department of General Surgery, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
34
|
Catalano R, Altieri B, Angelousi A, Arosio M, Bravi F, Canu L, Croci GA, Detomas M, Esposito E, Ferrante E, Ferrero S, Fuss CT, Kaltsas G, Kimpel O, Landwehr LS, Luconi M, Morelli V, Nesi G, Nozza E, Sbiera S, Serban AL, Ronchi CL, Mantovani G, Peverelli E. High Filamin a Expression in Adrenocortical Carcinomas Is Associated with a Favourable Tumour Behaviour: A European Multicentric Study. Int J Mol Sci 2023; 24:16573. [PMID: 38068896 PMCID: PMC10706064 DOI: 10.3390/ijms242316573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The insulin-like growth factor 2 (IGF2) promotes cell growth by overactivating the IGF system in an autocrine loop in adrenocortical carcinomas (ACCs). The cytoskeleton protein filamin A (FLNA) acts as a repressor of IGF2 mitogenic signalling in ACC cells. The aims of this study were to test FLNA expression by immunohistochemistry in 119 ACCs and 26 adrenocortical adenomas (ACAs) and to evaluate its relationship with clinicopathological features and outcome in ACCs. We found that 71.4% of ACCs did not express FLNA, whereas FLNA absence was a rare event in ACAs (15.4%, p < 0.001 vs. ACCs). In addition, the expression of FLNA was associated with a less aggressive tumour behaviour in ACCs. Indeed, the subgroup of ACCs with high FLNA showed a lower ENSAT stage, Weiss score, and S-GRAS score compared to ACCs with low FLNA expression (p < 0.05). Moreover, patients with high FLNA had a longer overall survival than those with low FLNA (p < 0.05). In conclusion, our data suggest that FLNA may represent a "protective" factor in ACCs, and the integration of FLNA immunohistochemical expression in ACC tissues along with other clinical and molecular markers could be helpful to improve diagnostic accuracy and prognosis prediction in ACCs.
Collapse
Affiliation(s)
- Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Anna Angelousi
- First Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (G.K.)
- 51st Department of Propaedeutic Internal Medicine, National University of Athens, 11527 Athens, Greece
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Francesca Bravi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Giorgio A. Croci
- Pathology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (S.F.)
| | - Mario Detomas
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Ph.D. Program in Experimental Medicine, University of Milan, 20122 Milan, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Stefano Ferrero
- Pathology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (S.F.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Carmina T. Fuss
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Gregory Kaltsas
- First Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (G.K.)
- 51st Department of Propaedeutic Internal Medicine, National University of Athens, 11527 Athens, Greece
| | - Otilia Kimpel
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Valentina Morelli
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Gabriella Nesi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Emma Nozza
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Ph.D. Program in Experimental Medicine, University of Milan, 20122 Milan, Italy
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Andreea L. Serban
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Cristina L. Ronchi
- Institute of Metabolism and System Research, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| |
Collapse
|
35
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
36
|
陶 人, 谢 旭, 吴 建, 方 颖. [Molecular dynamics simulation of force-regulated interaction between glycoprotein Ib α and filamin]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:876-885. [PMID: 37879916 PMCID: PMC10600417 DOI: 10.7507/1001-5515.202302043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/06/2023] [Indexed: 10/27/2023]
Abstract
In resting platelets, the 17 th domain of filamin a (FLNa17) constitutively binds to the platelet membrane glycoprotein Ibα (GPIbα) at its cytoplasmic tail (GPIbα-CT) and inhibits the downstream signal activation, while the binding of ligand and blood shear force can activate platelets. To imitate the pull force transmitted from the extracellular ligand of GPIbα and the lateral tension from platelet cytoskeleton deformation, two pulling modes were applied on the GPIbα-CT/FLNa17 complex, and the molecular dynamics simulation method was used to explore the mechanical regulation on the affinity and mechanical stability of the complex. In this study, at first, nine pairs of key hydrogen bonds on the interface between GPIbα-CT and FLNa17 were identified, which was the basis for maintaining the complex structural stability. Secondly, it was found that these hydrogen bonding networks would be broken down and lead to the dissociation of FLNa17 from GPIbα-CT only under the axial pull force; but, under the lateral tension, the secondary structures at both terminals of FLNa17 would unfold to protect the interface of the GPIbα-CT/FLNa17 complex from mechanical damage. In the range of 0~40 pN, the increase of pull force promoted outward-rotation of the nitrogen atom of the 563 rd phenylalanine (PHE 563-N) at GPIbα-CT and the dissociation of the complex. This study for the first time revealed that the extracellular ligand-transmitted axial force could more effectively relieve the inhibition of FLNa17 on the downstream signal of GPIbα than pure mechanical tension at the atomic level, and would be useful for further understanding the platelet intracellular force-regulated signal pathway.
Collapse
Affiliation(s)
- 人才 陶
- 华南理工大学 生物科学与工程学院(广州 510006)School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 旭斌 谢
- 华南理工大学 生物科学与工程学院(广州 510006)School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 建华 吴
- 华南理工大学 生物科学与工程学院(广州 510006)School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 颖 方
- 华南理工大学 生物科学与工程学院(广州 510006)School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
37
|
Du T, Ma C, Wang Z, Hao Y, Zhang W. Distribution and Degradation of Pork Filamin during Postmortem Aging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15287-15295. [PMID: 37788342 DOI: 10.1021/acs.jafc.3c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The filamin C (FLNC) was hypothesized to be colocalized with its certain binding partners in pork tissues and calpain as well as caspase was assumed responsible for the postmortem degradation of FLNC. Therefore, the specific distribution of pork FLNC and its degradation pattern during postmortem aging were investigated in this study. The longissimus thoracis muscles from 12 pigs were removed from the carcasses and then aged at 4 °C for 1, 6, 12, 24, 72, and 168 h, respectively. The FLNC signals appeared to localize in subsarcolemmal areas by cross-sectional images, while the localization was found surrounding the myofibrils at the level of the Z-discs in longitudinal sections. FLNC displayed a highly overlapped spatial colocalization with actin or integrin. Western blot results showed that the intact 290 kDa FLNC was rapidly degraded to produce an approximately 280 kDa band. An almost overlapped distribution pattern was observed between FLNC and μ-calpain or caspase-3 in porcine skeletal muscle cells. Moreover, both the μ-calpain inhibitor and the caspase-3 inhibitor could inhibit the degradation of FLNC in porcine LT muscles during postmortem aging.
Collapse
Affiliation(s)
- Tongyao Du
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuejing Hao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
38
|
Wang HY, Cecon E, Dam J, Pei Z, Jockers R, Burns LH. Simufilam Reverses Aberrant Receptor Interactions of Filamin A in Alzheimer's Disease. Int J Mol Sci 2023; 24:13927. [PMID: 37762230 PMCID: PMC10531384 DOI: 10.3390/ijms241813927] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Simufilam is a novel oral drug candidate in Phase 3 clinical trials for Alzheimer's disease (AD) dementia. This small molecule binds an altered form of filamin A (FLNA) that occurs in AD. This drug action disrupts FLNA's aberrant linkage to the α7 nicotinic acetylcholine receptor (α7nAChR), thereby blocking soluble amyloid beta1-42 (Aβ42)'s signaling via α7nAChR that hyperphosphorylates tau. Here, we aimed to clarify simufilam's mechanism. We now show that simufilam reduced Aβ42 binding to α7nAChR with a 10-picomolar IC50 using time-resolved fluorescence resonance energy transfer (TR-FRET), a robust technology to detect highly sensitive molecular interactions. We also show that FLNA links to multiple inflammatory receptors in addition to Toll-like receptor 4 (TLR4) in postmortem human AD brains and in AD transgenic mice: TLR2, C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 5 (CCR5), and T-cell co-receptor cluster of differentiation 4 (CD4). These aberrant FLNA linkages, which can be induced in a healthy control brain by Aβ42 incubation, were disrupted by simufilam. Simufilam reduced inflammatory cytokine release from Aβ42-stimulated human astrocytes. In the AD transgenic mice, CCR5-G protein coupling was elevated, indicating persistent activation. Oral simufilam reduced both the FLNA-CCR5 linkage and the CCR5-G protein coupling in these mice, while restoring CCR5's responsivity to C-C chemokine ligand 3 (CCL3). By disrupting aberrant FLNA-receptor interactions critical to AD pathogenic pathways, simufilam may promote brain health.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA; (H.-Y.W.); (Z.P.)
- Department of Biology and Neuroscience, Graduate School, City University of New York, New York, NY 10016, USA
| | - Erika Cecon
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014 Paris, France; (E.C.); (J.D.); (R.J.)
| | - Julie Dam
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014 Paris, France; (E.C.); (J.D.); (R.J.)
| | - Zhe Pei
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA; (H.-Y.W.); (Z.P.)
| | - Ralf Jockers
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014 Paris, France; (E.C.); (J.D.); (R.J.)
| | | |
Collapse
|
39
|
Zhou X, Fang X, Ithychanda SS, Wu T, Gu Y, Chen C, Wang L, Bogomolovas J, Qin J, Chen J. Interaction of Filamin C With Actin Is Essential for Cardiac Development and Function. Circ Res 2023; 133:400-411. [PMID: 37492967 PMCID: PMC10529502 DOI: 10.1161/circresaha.123.322750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND FLNC (filamin C), a member of the filamin family predominantly expressed in striated muscles, plays a crucial role in bridging the cytoskeleton and ECM (extracellular matrix) in cardiomyocytes, thereby maintaining heart integrity and function. Although genetic variants within the N-terminal ABD (actin-binding domain) of FLNC have been identified in patients with cardiomyopathy, the precise contribution of the actin-binding capability to FLNC's function in mammalian hearts remains poorly understood. METHODS We conducted in silico analysis of the 3-dimensional structure of mouse FLNC to identify key amino acid residues within the ABD that are essential for FLNC's actin-binding capacity. Subsequently, we performed coimmunoprecipitation and immunofluorescent assays to validate the in silico findings and assess the impact of these mutations on the interactions with other binding partners and the subcellular localization of FLNC. Additionally, we generated and analyzed knock-in mouse models in which the FLNC-actin interaction was completely disrupted by these mutations. RESULTS Our findings revealed that F93A/L98E mutations completely disrupted FLNC-actin interaction while preserving FLNC's ability to interact with other binding partners ITGB1 (β1 integrin) and γ-SAG (γ-sarcoglycan), as well as maintaining FLNC subcellular localization. Loss of FLNC-actin interaction in embryonic cardiomyocytes resulted in embryonic lethality and cardiac developmental defects, including ventricular wall malformation and reduced cardiomyocyte proliferation. Moreover, disruption of FLNC-actin interaction in adult cardiomyocytes led to severe dilated cardiomyopathy, enhanced lethality and dysregulation of key cytoskeleton components. CONCLUSIONS Our data strongly support the crucial role of FLNC as a bridge between actin filaments and ECM through its interactions with actin, ITGB1, γ-SAG, and other associated proteins in cardiomyocytes. Disruption of FLN-actin interaction may result in detachment of actin filaments from the extracellular matrix, ultimately impairing normal cardiac development and function. These findings also provide insights into mechanisms underlying cardiomyopathy associated with genetic variants in FLNC ABD and other regions.
Collapse
Affiliation(s)
- Xiaohai Zhou
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Xi Fang
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Sujay Subbayya Ithychanda
- Department of Cardiovascular and Metabolic Sciences (S.S.I., J.Q.), Lerner Research Institute, Cleveland Clinic, OH
| | - Tongbin Wu
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Yusu Gu
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Chao Chen
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Li Wang
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Julius Bogomolovas
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences (S.S.I., J.Q.), Lerner Research Institute, Cleveland Clinic, OH
| | - Ju Chen
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| |
Collapse
|
40
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to LINC complexes and Cdc42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552041. [PMID: 37577634 PMCID: PMC10418278 DOI: 10.1101/2023.08.04.552041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and pro-inflammatory responses. Studies performed in tissue culture cells have implicated LINC (linker of nucleoskeleton and cytoskeleton) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In C. elegans larvae, 6 pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function, this and structural predictions suggest that FLN-2 is not a divergent filamin. The immunoglobulin (Ig)-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
41
|
Shepley-McTaggart A, Liang J, Ding Y, Djurkovic MA, Kriachun V, Shtanko O, Sunyer O, Harty RN. Contrasting effects of filamin A and B proteins in modulating filovirus entry. PLoS Pathog 2023; 19:e1011595. [PMID: 37585478 PMCID: PMC10461817 DOI: 10.1371/journal.ppat.1011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/28/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Ebola (EBOV) and Marburg viruses (MARV) cause severe hemorrhagic fever associated with high mortality rates in humans. A better understanding of filovirus-host interactions that regulate the EBOV and MARV lifecycles can provide biological and mechanistic insight critical for therapeutic development. EBOV glycoprotein (eGP) and MARV glycoprotein (mGP) mediate entry into host cells primarily by actin-dependent macropinocytosis. Here, we identified actin-binding cytoskeletal crosslinking proteins filamin A (FLNa) and B (FLNb) as important regulators of both EBOV and MARV entry. We found that entry of pseudotype psVSV-RFP-eGP, infectious recombinant rVSV-eGP-mCherry, and live authentic EBOV and MARV was inhibited in filamin A knockdown (FLNaKD) cells, but was surprisingly enhanced in filamin B knockdown (FLNbKD) cells. Mechanistically, our findings suggest that differential regulation of macropinocytosis by FLNa and FLNb likely contributes to their specific effects on EBOV and MARV entry. This study is the first to identify the filamin family of proteins as regulators of EBOV and MARV entry. These findings may provide insight into the development of new countermeasures to prevent EBOV and MARV infections.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marija A. Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Valeriia Kriachun
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
42
|
Da Ros F, Kowal K, Vicinanza C, Lombardi E, Agostini F, Ciancia R, Rupolo M, Durante C, Michieli M, Mazzucato M. IRE1a-Induced FilaminA Phosphorylation Enhances Migration of Mesenchymal Stem Cells Derived from Multiple Myeloma Patients. Cells 2023; 12:1935. [PMID: 37566015 PMCID: PMC10417526 DOI: 10.3390/cells12151935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Multiple myeloma (MM) is an aggressive malignancy that shapes, during its progression, a pro-tumor microenvironment characterized by altered protein secretion and the gene expression of mesenchymal stem cells (MSCs). In turn, MSCs from MM patients can exert an high pro-tumor activity and play a strong immunosuppressive role. Here, we show, for the first time, greater cell mobility paralleled by the activation of FilaminA (FLNA) in MM-derived MSCs, when compared to healthy donor (HD)-derived MSCs. Moreover, we suggest the possible involvement of the IRE1a-FLNA axis in the control of the MSC migration process. In this way, IRE1a can be considered as a good target candidate for MM therapy, considering its pro-survival, pro-osteoclast and chemoresistance role in the MM microenvironment. Our results suggest that IRE1a downregulation could also interfere with the response of MSCs to MM stimuli, possibly preventing cell-cell adhesion-mediated drug resistance. In addition, further investigations harnessing IRE1a-FLNA interaction could improve the homing efficiency of MSC as cell product for advanced therapy applications.
Collapse
Affiliation(s)
- Francesco Da Ros
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| | - Kinga Kowal
- Department of Life Sciences, University of Trieste, 34151 Trieste, Italy
| | - Carla Vicinanza
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| | - Elisabetta Lombardi
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| | - Francesco Agostini
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| | - Rosanna Ciancia
- Oncohematology and Cell Therapy Unit, Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Maurizio Rupolo
- Oncohematology and Cell Therapy Unit, Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Cristina Durante
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| | - Mariagrazia Michieli
- Oncohematology and Cell Therapy Unit, Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Mario Mazzucato
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| |
Collapse
|
43
|
Deng Y, Yan J. Force-Dependent Structural Changes of Filamin C Rod Domains Regulated by Filamin C Dimer. J Am Chem Soc 2023; 145:14670-14678. [PMID: 37369984 PMCID: PMC10348313 DOI: 10.1021/jacs.3c02303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/29/2023]
Abstract
Filamin C (FLNC), a large dimeric actin-binding protein in muscle cells, plays a critical role in transmitting force in the cytoskeleton and that between membrane receptors and the cytoskeleton. It performs crucial mechanosensing and downstream mechanotransduction functions via force-dependent interactions with signaling proteins. Mutations in FLNC have been linked to muscle and heart diseases. The mechanical responses of the force-bearing elements in FLNC have not been determined. This study investigated the mechanical responses of FLNC domains and their dimerization interface using magnetic tweezers. Results showed high stability of the N-terminal domains in the rod-1 segment but significant changes in the rod-2 domains in response to forces of a few piconewtons (pN). The dimerization interface, formed by the R24 domain, has a lifetime of seconds to tens of seconds at pN forces, and it dissociates within 1 s at forces greater than 14 pN. The findings suggest the FLNC dimerization interface provides sufficient mechanical stability that enables force-dependent structural changes in rod-2 domains for signaling protein binding and maintains structural integrity of the rod-1 domains.
Collapse
Affiliation(s)
- Yunxin Deng
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Department
of Physics, National University of Singapore, Singapore 117542, Singapore
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
44
|
Wang HY, Pei Z, Lee KC, Nikolov B, Doehner T, Puente J, Friedmann N, Burns LH. Simufilam suppresses overactive mTOR and restores its sensitivity to insulin in Alzheimer's disease patient lymphocytes. FRONTIERS IN AGING 2023; 4:1175601. [PMID: 37457922 PMCID: PMC10339288 DOI: 10.3389/fragi.2023.1175601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Introduction: Implicated in both aging and Alzheimer's disease (AD), mammalian target of rapamycin (mTOR) is overactive in AD brain and lymphocytes. Stimulated by growth factors such as insulin, mTOR monitors cell health and nutrient needs. A small molecule oral drug candidate for AD, simufilam targets an altered conformation of the scaffolding protein filamin A (FLNA) found in AD brain and lymphocytes that induces aberrant FLNA interactions leading to AD neuropathology. Simufilam restores FLNA's normal shape to disrupt its AD-associated protein interactions. Methods: We measured mTOR and its response to insulin in lymphocytes of AD patients before and after oral simufilam compared to healthy control lymphocytes. Results: mTOR was overactive and its response to insulin reduced in lymphocytes from AD versus healthy control subjects, illustrating another aspect of insulin resistance in AD. After oral simufilam, lymphocytes showed normalized basal mTOR activity and improved insulin-evoked mTOR activation in mTOR complex 1, complex 2, and upstream and downstream signaling components (Akt, p70S6K and phosphorylated Rictor). Suggesting mechanism, we showed that FLNA interacts with the insulin receptor until dissociation by insulin, but this linkage was elevated and its dissociation impaired in AD lymphocytes. Simufilam improved the insulin-mediated dissociation. Additionally, FLNA's interaction with Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN), a negative regulator of mTOR, was reduced in AD lymphocytes and improved by simufilam. Discussion: Reducing mTOR's basal overactivity and its resistance to insulin represents another mechanism of simufilam to counteract aging and AD pathology. Simufilam is currently in Phase 3 clinical trials for AD dementia.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, United States
- Department of Biology and Neuroscience, Graduate School of the City University of New York, New York, NY, United States
| | - Zhe Pei
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, United States
| | - Kuo-Chieh Lee
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, United States
| | | | | | - John Puente
- Cognitive Clinical Trials, Omaha, NE, United States
| | | | | |
Collapse
|
45
|
Ronco D, Buttiglione G, Garatti A, Parolari A. Biology of mitral valve prolapse: from general mechanisms to advanced molecular patterns-a narrative review. Front Cardiovasc Med 2023; 10:1128195. [PMID: 37332582 PMCID: PMC10272793 DOI: 10.3389/fcvm.2023.1128195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Mitral valve prolapse (MVP) represents the most frequent cause of primary mitral regurgitation. For several years, biological mechanisms underlying this condition attracted the attention of investigators, trying to identify the pathways responsible for such a peculiar condition. In the last ten years, cardiovascular research has moved from general biological mechanisms to altered molecular pathways activation. Overexpression of TGF-β signaling, for instance, was shown to play a key role in MVP, while angiotensin-II receptor blockade was found to limit MVP progression by acting on the same signaling pathway. Concerning extracellular matrix organization, the increased valvular interstitial cells density and dysregulated production of catalytic enzymes (matrix metalloproteinases above all) altering the homeostasis between collagen, elastin and proteoglycan components, have been shown to possibly provide a mechanistic basis contributing to the myxomatous MVP phenotype. Moreover, it has been observed that high levels of osteoprotegerin may contribute to the pathogenesis of MVP by increasing collagen deposition in degenerated mitral leaflets. Although MVP is believed to represent the result of multiple genetic pathways alterations, it is important to distinguish between syndromic and non-syndromic conditions. In the first case, such as in Marfan syndrome, the role of specific genes has been clearly identified, while in the latter a progressively increasing number of genetic loci have been thoroughly investigated. Moreover, genomics is gaining more interest as potential disease-causing genes and loci possibly associated with MVP progression and severity have been identified. Animal models could be of help in better understanding the molecular basis of MVP, possibly providing sufficient information to tackle specific mechanisms aimed at slowing down MVP progression, therefore developing non-surgical therapies impacting on the natural history of this condition. Although continuous progress has been made in this field, further translational studies are advocated to improve our knowledge of biological mechanisms underlying MVP development and progression.
Collapse
Affiliation(s)
- Daniele Ronco
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Gianpiero Buttiglione
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Andrea Garatti
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
| | - Alessandro Parolari
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
46
|
Zhao X, Kiyozuka K, Konishi A, Kawabata-Iwakawa R, Minamishima YA, Obinata H. Actin-binding protein Filamin B regulates the cell-surface retention of endothelial sphingosine 1-phosphate receptor 1. J Biol Chem 2023:104851. [PMID: 37220855 PMCID: PMC10300261 DOI: 10.1016/j.jbc.2023.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor essential for vascular development and postnatal vascular homeostasis. When exposed to sphingosine 1-phosphate (S1P) in the blood of ∼1 μM, S1PR1 in endothelial cells retains cell-surface localization, while lymphocyte S1PR1 shows almost complete internalization, suggesting the cell-surface retention of S1PR1 is endothelial cell-specific. To identify regulating factors that function to retain S1PR1 on the endothelial cell surface, here we utilized an enzyme-catalyzed proximity labeling technique followed by proteomic analyses. We identified Filamin B (FLNB), an actin-binding protein involved in F-actin cross-linking, as a candidate regulating protein. We show FLNB knockdown by RNA interference induced massive internalization of S1PR1 into early endosomes, which was partially ligand-dependent and required receptor phosphorylation. Further investigation showed FLNB was also important for the recycling of internalized S1PR1 back to the cell surface. FLNB knockdown did not affect the localization of S1PR3, another S1P receptor subtype expressed in endothelial cells, nor did it affect localization of ectopically expressed β2-adrenergic receptor. Functionally, we show FLNB knockdown in endothelial cells impaired S1P-induced intracellular phosphorylation events and directed cell migration and enhancement of the vascular barrier. Taken together, our results demonstrate that FLNB is a novel regulator critical for S1PR1 cell-surface localization and thereby proper endothelial cell function.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Keisuke Kiyozuka
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Akimitsu Konishi
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
| | | | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Gunma, Japan.
| |
Collapse
|
47
|
Schnabel F, Schuler E, Al-Maawali A, Chaurasia A, Syrbe S, Al-Kindi A, Bhavani GS, Shukla A, Altmüller J, Nürnberg P, Banka S, Girisha KM, Li Y, Wollnik B, Yigit G. Homozygous loss-of-function variants in FILIP1 cause autosomal recessive arthrogryposis multiplex congenita with microcephaly. Hum Genet 2023; 142:543-552. [PMID: 36943452 PMCID: PMC10060356 DOI: 10.1007/s00439-023-02528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/21/2023] [Indexed: 03/23/2023]
Abstract
Arthrogryposis multiplex congenita forms a broad group of clinically and etiologically heterogeneous disorders characterized by congenital joint contractures that involve at least two different parts of the body. Neurological and muscular disorders are commonly underlying arthrogryposis. Here, we report five affected individuals from three independent families sharing an overlapping phenotype with congenital contractures affecting shoulder, elbow, hand, hip, knee and foot as well as scoliosis, reduced palmar and plantar skin folds, microcephaly and facial dysmorphism. Using exome sequencing, we identified homozygous truncating variants in FILIP1 in all patients. FILIP1 is a regulator of filamin homeostasis required for the initiation of cortical cell migration in the developing neocortex and essential for the differentiation process of cross-striated muscle cells during myogenesis. In summary, our data indicate that bi-allelic truncating variants in FILIP1 are causative of a novel autosomal recessive disorder and expand the spectrum of genetic factors causative of arthrogryposis multiplex congenita.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103, Leipzig, Germany
| | - Elisabeth Schuler
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ankur Chaurasia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Adila Al-Kindi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Core Facility Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines To Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
48
|
Zhang H, Mao Z, Yang Z, Nakamura F. Identification of Filamin A Mechanobinding Partner III: SAV1 Specifically Interacts with Filamin A Mechanosensitive Domain 21. Biochemistry 2023; 62:1197-1208. [PMID: 36857526 DOI: 10.1021/acs.biochem.2c00665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Filamin A (FLNA) cross-links actin filaments and mediates mechanotransduction by force-induced conformational changes of its domains. FLNA's mechanosensitive immunoglobulin-like repeats (R) interact with each other to create cryptic binding sites, which can be exposed by physiologically relevant mechanical forces. Using the FLNA mechanosensing domains as an affinity ligand followed by stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics, we recently identified smoothelin and fimbacin as FLNA mechanobinding proteins. Here, using the mechanosensing domain as an affinity ligand and two labeled amino acids, we identify salvador homologue 1 (SAV1), a component of the Hippo pathway kinase cascade, as a new FLNA mechanobinding partner. We demonstrate that SAV1 specifically interacts with the cryptic C-D cleft of FLNA R21 and map the FLNA-binding site on SAV1. We show that point mutations on the R21 C strand block the SAV1 interaction and find that SAV1 contains a FLNA-binding motif in the central region (116Phe-124Val). Point mutations F116A and T118A (FT/AA) disrupt the interaction. A proximity ligation assay reveals that their interaction occurs in the cytosol in an actin polymerization-dependent manner. Although SAV1 is typically found in the cytosol, disrupting the interaction between SAV1 and FLNA causes SAV1 to diffuse to the nucleus and YAP1 to diffuse to the cytosol in an inverse relationship. These results suggest that FLNA mediates regulation of the Hippo pathway through actin polymerization-dependent interaction with SAV1.
Collapse
Affiliation(s)
- Huaguan Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zhenfeng Mao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Ziwei Yang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
49
|
Rathjen FG, Jüttner R. The IgSF Cell Adhesion Protein CLMP and Congenital Short Bowel Syndrome (CSBS). Int J Mol Sci 2023; 24:5719. [PMID: 36982793 PMCID: PMC10056934 DOI: 10.3390/ijms24065719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The immunoglobulin-like cell adhesion molecule CLMP is a member of the CAR family of cell adhesion proteins and is implicated in human congenital short-bowel syndrome (CSBS). CSBS is a rare but very severe disease for which no cure is currently available. In this review, we compare data from human CSBS patients and a mouse knockout model. These data indicate that CSBS is characterized by a defect in intestinal elongation during embryonic development and impaired peristalsis. The latter is driven by uncoordinated calcium signaling via gap junctions, which is linked to a reduction in connexin43 and 45 levels in the circumferential smooth muscle layer of the intestine. Furthermore, we discuss how mutations in the CLMP gene affect other organs and tissues, including the ureter. Here, the absence of CLMP produces a severe bilateral hydronephrosis-also caused by a reduced level of connexin43 and associated uncoordinated calcium signaling via gap junctions.
Collapse
Affiliation(s)
- Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany;
| | | |
Collapse
|
50
|
Feng Z, Mao Z, Yang Z, Liu X, Nakamura F. The force-dependent filamin A-G3BP1 interaction regulates phase-separated stress granule formation. J Cell Sci 2023; 136:297259. [PMID: 36806943 DOI: 10.1242/jcs.260684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Filamin A (FLNA) is an actin crosslinking protein that mediates mechanotransduction. External and internal mechanical forces, through the actin cytoskeleton, can induce conformational changes of the FLNA molecule to expose cryptic binding sites for its binding partners. Here, we identified Ras GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) as a new FLNA mechanobinding partner. Unlike other FLNA binding partners to the mechanosensing domain repeat 21 (R21), G3BP1 requires an additional neighboring repeat R22 to interact. We demonstrated that their interaction occurs in the cytosol of living cells in an actin polymerization-dependent manner. We also mapped the FLNA-binding site on G3BP1 and found that a F360A point mutation in the RNA recognition motif disrupts the interaction. RNA interfered with the FLNA-G3BP1 interaction, and FLNA did not localize in RNA-rich stress granules (SGs). Disruption of the interaction was sufficient to promote phase-separated SG formation, and arsenite treatment further stimulated the formation of SGs. Taken together, these data identify G3BP1 as a new mechanobinding protein that interacts with the FLNA mechanosensing domain R21 and suggest that SG formation is partially regulated by mechanical force.
Collapse
Affiliation(s)
- Ziyi Feng
- School of Pharmaceutical Science and Technology, Life Science Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zhenfeng Mao
- School of Pharmaceutical Science and Technology, Life Science Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Ziwei Yang
- School of Pharmaceutical Science and Technology, Life Science Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xiaowei Liu
- School of Pharmaceutical Science and Technology, Life Science Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Life Science Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|