1
|
Miranda MR, Montano C, Golino V, de Chiara M, Del Prete C, Pepe G, De Biase D, Ciaglia T, Bertamino A, Campiglia P, Sommella E, Vestuto V, Pasolini MP. Integrated proteomics highlights functional activation induced by advanced-platelet rich fibrin plus (A-PRF +) in primary equine fibroblasts. Sci Rep 2025; 15:18021. [PMID: 40410219 PMCID: PMC12102165 DOI: 10.1038/s41598-025-01820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
Wounds are common in equine practice, and often lead to complications such as infections, delayed healing and hypertrophic scarring, which can be costly and difficult to manage. Developing affordable and effective treatments has become an increasingly important focus in veterinary research. Equine advanced-platelet-rich fibrin plus (A-PRF+) demonstrates regenerative properties comparable to its human counterpart, but cellular-level investigations exploring its molecular mechanisms remain limited. This study aimed to investigate the in vitro effects of equine A-PRF + on primary fibroblast cell cultures. The secretome analysis of A-PRF + revealed a complex protein profile involved in matrix remodelling, cell proliferation, and inflammation. Treatment with this platelet concentrate resulted in increased cell proliferation, enhanced migration, and significant changes in cell cycle progression compared to control groups. Reactive oxygen species production and organelles metabolism stimulation were observed, indicating active cellular responses, as well as an increase in genes and proteins associated with cell proliferation and wound regeneration. Proteomic analysis of treated fibroblasts confirmed the differential expression of key proteins associated with extracellular matrix dynamics and tissue regeneration processes. These findings provide insights into the molecular profile and functional responses of equine fibroblasts exposed to A-PRF + , contributing to our understanding of its cellular effects, supporting further exploration of this product in regenerative medicine applications.
Collapse
Affiliation(s)
- Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
- NBFC-National Biodiversity Future Center, 90133, Palermo, Italy
| | - Chiara Montano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Valentina Golino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
- National PhD Program in "RNA Therapeutics and Gene Therapy", Napoli, Italy
| | - Mariaelena de Chiara
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Chiara Del Prete
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
- NBFC-National Biodiversity Future Center, 90133, Palermo, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy.
| | - Maria Pia Pasolini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Zagare A, Balaur I, Rougny A, Saraiva C, Gobin M, Monzel AS, Ghosh S, Satagopam VP, Schwamborn JC. Deciphering shared molecular dysregulation across Parkinson's disease variants using a multi-modal network-based data integration and analysis. NPJ Parkinsons Dis 2025; 11:63. [PMID: 40164620 PMCID: PMC11958823 DOI: 10.1038/s41531-025-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with no effective treatment. Advances in neuroscience and systems biomedicine now enable the use of complex patient-specific in vitro disease models and cutting-edge computational tools for data integration, enhancing our understanding of complex PD mechanisms. To explore common biomedical features across monogenic PD forms, we developed a knowledge graph (KG) by integrating previously published high-content imaging and RNA sequencing data of PD patient-specific midbrain organoids harbouring LRRK2-G2019S, SNCA triplication, GBA-N370S or MIRO1-R272Q mutations with publicly available biological data. Furthermore, we generated a single-cell RNA sequencing dataset of midbrain organoids derived from idiopathic PD patients (IPD) to stratify IPD patients within the spectrum of monogenic forms of PD. Despite the high degree of PD heterogeneity, we found that common transcriptomic dysregulation in monogenic PD forms is reflected in glial cells of IPD patient midbrain organoids. In addition, dysregulation in ROBO signalling might be involved in shared pathophysiology between monogenic PD and IPD cases.
Collapse
Affiliation(s)
- Alise Zagare
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Irina Balaur
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Adrien Rougny
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Matthieu Gobin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Soumyabrata Ghosh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata P Satagopam
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
3
|
Liu X, Dos Santos T, Spigelman AF, Duckett S, Smith N, Suzuki K, MacDonald PE. TMEM55A-mediated PI5P signalling regulates alpha cell actin depolymerisation and glucagon secretion. Diabetologia 2025:10.1007/s00125-025-06411-9. [PMID: 40140059 DOI: 10.1007/s00125-025-06411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
AIMS/HYPOTHESIS Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet alpha cells, although the underlying mechanisms regulating glucagon secretion and alpha cell dysfunction remain unclear. While insulin secretion from pancreatic beta cells has long been known to be controlled partly by intracellular phospholipid signalling, very little is known about the role of phospholipids in glucagon secretion. Using patch-clamp electrophysiology and single-cell RNA sequencing, we previously found that expression of PIP4P2 (encoding TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate [PIP2] to phosphatidylinositol-5-phosphate [PI5P]) correlates with alpha cell function. We hypothesise that TMEM55A is involved in glucagon secretion and aim to validate the role of TMEM55A and its potential signalling molecules in alpha cell function and glucagon secretion. METHODS Correlation analysis was generated from the data in www.humanislets.com . Human islets were isolated at the Alberta Diabetes Institute IsletCore. Electrical recordings were performed on dispersed human or mouse islets with scrambled siRNA or si-PIP4P2 (si-Pip4p2 for mouse) transfection. Glucagon secretion was measured using an islet perfusion system with intact mouse islets. TMEM55A activity was measured using an in vitro on-beads phosphatase assay and live-cell imaging. GTPase activity was measured using an active GTPase pull-down assay. Confocal microscopy was used to quantify F-actin intensity using primary alpha cells and alphaTC1-9 cell lines after chemical treatment. RESULTS TMEM55A regulated alpha cell exocytosis and glucagon secretion. TMEM55A knockdown in both human and mouse alpha cells reduced exocytosis at low glucose levels and this was rescued by the direct reintroduction of PI5P. PI5P, instead of PIP2 increased the glucagon secretion using intact mouse islets. This did not occur through an effect on Ca2+ channel activity but through a remodelling of cortical F-actin dependent on TMEM55A lipid phosphatase activity, which occurred in response to oxidative stress. TMEM55A- and PI5P-induced F-actin remodelling depends on the inactivation of GTPase and RhoA, instead of Ras-related C3 botulinum toxin substrate 1 or CDC42. CONCLUSIONS/INTERPRETATION We reveal a novel pathway by which TMEM55A regulates alpha cell exocytosis by controlling intracellular PI5P and the F-actin network.
Collapse
Affiliation(s)
- Xiong Liu
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Theodore Dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Shawn Duckett
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Shih PC, Tzeng IS, Chen YC, Chen ML. Gastrodin Mitigates Ketamine-Induced Inhibition of F-Actin Remodeling and Cell Migration by Regulating the Rho Signaling Pathway. Biomedicines 2025; 13:649. [PMID: 40149625 PMCID: PMC11940296 DOI: 10.3390/biomedicines13030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objects: Rho signaling plays a role in calcium-regulated cytoskeletal reorganization and cell movement, processes linked to neuronal function and cancer metastasis. Gastrodia elata, a traditional herbal medicine, can regulate glutamate-induced calcium influx in PC12 cells and influence cell function by modulating neuronal cytoskeleton remodeling via the monoaminergic system and Rho signaling. This study investigates the effects of gastrodin, a key component of Gastrodia elata, on Rho signaling, cytoskeleton remodeling, and cell migration in B35 and C6 cells. It also explores gastrodin's impact on Rho signaling in the prefrontal cortex of Sprague Dawley rats. Methods: B35 cells, C6 cells, and Sprague Dawley rats were treated with ketamine, gastrodin, or both. The expression of examined proteins from B35 cells, C6 cells, and the prefrontal cortex of Sprague Dawley rats were analyzed using immunoblotting. Immunofluorescent staining was applied to detect the phosphorylation of RhoGDI1. F-actin was stained using phalloidin-488 staining. Cell migration was analyzed using the Transwell and wound-healing assays. Results: Gastrodin reversed the ketamine-induced regulation of cell mobility inhibition, F-actin condensation, and Rho signaling modulation including Rho GDP dissociation inhibitor 1 (RhoGDI1); the Rho family protein (Ras homolog family member A (RhoA); cell division control protein 42 homolog (CDC42); Ras-related C3 botulinum toxin substrate 1(Rac1)); rho-associated, coiled-coil-containing protein kinase 1 (ROCK1); neural Wiskott-Aldrich syndrome protein (NWASP); myosin light chain 2 (MLC2); profilin1 (PFN1); and cofilin-1 (CFL1) in B35 and C6 cells. Similar modulations on Rho signaling were also observed in the prefrontal cortex of rats. Conclusions: Our findings show that gastrodin counteracts ketamine-induced disruptions in Rho signaling, cytoskeletal dynamics, and cell migration by regulating key components like RhoGDI1, ROCK1, MLC2, PFN1, and CFL1. This suggests the potential of gastrodin as a comprehensive regulator of cellular signaling.
Collapse
Affiliation(s)
- Ping-Cheng Shih
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| | - Yi-Chyan Chen
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| | - Mao-Liang Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| |
Collapse
|
5
|
Yuasa H, Matsubara T, Urushima H, Daikoku A, Ikenaga H, Kadono C, Kinoshita M, Kimura K, Ishizawa T, Ohta K, Kawada N, Ikeda K. Cdc42 is crucial for the early regulation of hepatic stellate cell activation. Am J Physiol Cell Physiol 2025; 328:C757-C775. [PMID: 39871537 DOI: 10.1152/ajpcell.00987.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/28/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
The activation of hepatic stellate cells (HSCs) from a quiescent state is a cause of liver fibrosis and a therapeutic target. HSCs are resident mesenchymal cells located in the space of Disse, exhibiting specialized morphological characteristics such as a stellate shape, large lipid droplets, and direct adhesions to hepatocytes via microprojections called HSC spines. Morphological alterations in HSCs play a crucial role in initiating their activation. However, the mechanisms regulating these changes remain unexplored. In this study, we analyzed the morphological alterations associated with HSC activation in vivo using carbon tetrachloride treatment and identified the key factors regulating these changes in vitro. Following carbon tetrachloride treatment, HSCs exhibited shortened cell processes and HSC spines, adopting an oval shape. Subsequently, the HSCs underwent further morphological changes into two activated forms: flattened and complex shapes. In vitro, activation of cell division cycle 42 (Cdc42) maintained the morphological characteristics of quiescent HSCs. Cdc42 activation in HSC cell lines inhibited the expression of markers associated with activated HSCs. Cdc42 inhibitor treatment in vivo prevented quiescent HSCs from maintaining their morphological characteristics and hindered activated HSCs from reverting to the quiescent state. In addition, HSCs around fibrotic areas in the human liver exhibited morphological alterations indicative of early activation. These findings demonstrate that Cdc42 is a crucial regulator of morphological and molecular alterations associated with HSC activation, identifying it as a novel target for the development of therapeutic agents against liver fibrosis.NEW & NOTEWORTHY The activation of hepatic stellate cells from a quiescent state is a cause and a therapeutic target for liver fibrosis. Morphological alterations in the hepatic stellate cells play a critical role in initiating their activation. However, the mechanisms that regulate these alterations remain unexplored. Our results indicate that cell division cycle 42 is a crucial regulator of hepatic stellate cell activation and a novel target for the development of therapeutic agents against liver fibrosis.
Collapse
Affiliation(s)
- Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Research Institute for Light-induced Acceleration System, Osaka Metropolitan University, Sakai, Japan
| | - Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsuko Daikoku
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chiho Kadono
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masahiko Kinoshita
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kenjiro Kimura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Takeaki Ishizawa
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Keisuke Ohta
- Division Microscopic and Development Anatomy, Department of Anatomy, School of Medicine, Kurume University, Kurume, Japan
- Advanced Imaging Research Center, School of Medicine, Kurume University, Kurume, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
6
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2025; 21:157-174. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
7
|
Niu L, Liu S, Shen J, Chang J, Li X, Zhang L. ATF3 regulates CDC42 transcription and influences cytoskeleton remodeling, thus inhibiting the proliferation, migration and invasion of malignant skin melanoma cells. Melanoma Res 2025; 35:37-49. [PMID: 39591541 DOI: 10.1097/cmr.0000000000001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Cutaneous malignant melanoma (CMM) is one of the most aggressive and lethal types of skin cancer. Cytoskeletal remodeling is a key factor in the progression of CMM. Previous research has shown that activating transcription factor 3 (ATF3) inhibits metastasis in bladder cancer by regulating actin cytoskeleton remodeling through gelsolin. However, whether ATF3 plays a similar role in cytoskeletal remodeling in CMM cells remains unknown. Various gene and protein expression analyses were performed using techniques such as reverse transcription quantitative PCR, western blot, immunofluorescent staining, and immunohistochemical staining. CMM viability, migration, and invasion were examined through cell counting kit-8 and transwell assays. The interactions between cell division cycle 42 (CDC42) and ATF3 were investigated using chromatin immunoprecipitation and dual-luciferase reporter assays. CDC42 was upregulated in CMM tissues and cells. Cytoskeletal remodeling of CMM cells, as well as CMM cell proliferation, migration, and invasion, were inhibited by CDC42 or ATF3. ATF3 targeted the CDC42 promoter region to regulate its transcriptional activity. ATF3 suppresses cytoskeletal remodeling in CMM cells, thereby inhibiting CMM progression and metastasis through CDC42. This research may provide a foundation for using ATF3 as a therapeutic target for CMM.
Collapse
Affiliation(s)
- Liang Niu
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| | - Shuo Liu
- Department of Stomatology, Handan First Hospital
| | - Jiuxiao Shen
- Medical Cosmetic Center, Affiliated Hospital of Hebei Engineering University, Handan City, Hebei Province, China
| | - Jin Chang
- Medical Cosmetic Center, Affiliated Hospital of Hebei Engineering University, Handan City, Hebei Province, China
| | - Xiaojing Li
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| | - Ling Zhang
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| |
Collapse
|
8
|
Yadav S, Kc S, Blaskovich MAT, Lu CT, Lam AK, Nguyen NT. RhoA and Rac1 as Mechanotransduction Mediators in Colorectal Cancer. Adv Biol (Weinh) 2025:e2400626. [PMID: 39887960 DOI: 10.1002/adbi.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths, creating an urgent need for innovative diagnostic solutions. Mechanobiology, a cutting-edge field that investigates how physical forces influence cell behavior, is now revealing new insights into cancer progression. This research focuses on two crucial players: RhoA and Rac1, small yet powerful proteins that regulate the structure and movement of cancer cells. RhoA controls cell adhesion and migration, while Rac1 drives cell movement and invasion. As CRC tumors grow and reshape the colon's mechanical environment, these pathways become disrupted, accelerating cancer progression. Examining the level of RhoA and Rac1 in CRC clinical samples under mechanical strain reveals their potential as diagnostic markers. Tracking the activity of these proteins can unlock valuable insights into cancer cell dissemination, offering new avenues for understanding and diagnosing CRC. This approach holds promise for earlier detection and better outcomes by offering key insights for more effective diagnostic strategies.
Collapse
Affiliation(s)
- Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia
| | - Sanjaya Kc
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Mark A T Blaskovich
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Cu-Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4222, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4222, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
9
|
Chideriotis S, Anastasiadi AT, Tzounakas VL, Fortis SP, Kriebardis AG, Valsami S. Morphogens and Cell-Derived Structures (Exosomes and Cytonemes) as Components of the Communication Between Cells. Int J Mol Sci 2025; 26:881. [PMID: 39940651 PMCID: PMC11816454 DOI: 10.3390/ijms26030881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Morphogens, which are non-classical transcription factors, according to several studies, display a crucial role in tissue patterning, organ architecture establishment, and human disease pathogenesis. Recent advances have expanded the morphogen participation to a wide range of human diseases. There are many genetic syndromes caused by mutations of components of morphogen signaling pathways. The aberrant morphogen pathways also promote cancer cell maintenance, renewal, proliferation, and migration. On the other hand, exosomes and their application in the biomedical field are of evolving significance. The evidence that membrane structures participate in the creation of morphogenic gradience and biodistribution of morphogen components renders them attractive as new therapeutic tools. This intercellular morphogen transport is performed by cell-derived structures, mainly exosomes and cytonemes, and extracellular substances like heparan sulphate proteoglycans and lipoproteins. The interaction between morphogens and Extracellular Vesicles has been observed at first in the most studied insect, Drosophila, and afterwards analogous findings have been proved in vertebrates. This review presents the protagonists and mechanisms of lipid-modified morphogens (Hedgehog and Wnt/β-catenin) biodistribution.
Collapse
Affiliation(s)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (S.P.F.); (A.G.K.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (S.P.F.); (A.G.K.)
| | - Serena Valsami
- Hematology Laboratory, Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
10
|
Salinas E, Ruano-Rivadeneira F, Leal JI, Caprile T, Torrejón M, Arriagada C. Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications. Front Cell Dev Biol 2025; 12:1457506. [PMID: 39834387 PMCID: PMC11743681 DOI: 10.3389/fcell.2024.1457506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling. The main cellular mechanisms that sustain this migration include contact inhibition of locomotion, co-attraction, chemotaxis and mechanical cues from the surrounding environment, all regulated by proteins that orchestrate cell polarity and motility. In this review we highlight the molecular mechanisms involved in neural crest cell migration and polarity, focusing on the role of small GTPases, Heterotrimeric G proteins and planar cell polarity complex. Here, we also discuss different congenital diseases caused by altered NC cell migration.
Collapse
Affiliation(s)
- Esteban Salinas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francis Ruano-Rivadeneira
- Developmental Biology Laboratory 116, School of Biological Sciences, Faculty of Exact and Natural Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan Ignacio Leal
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Teresa Caprile
- Laboratory of Axonal Guidance, Group for the Study of Developmental Processes (GDeP), Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Cecilia Arriagada
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
11
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
12
|
Gorla M, Guleria DS. Rho GTPase Signaling: A Molecular Switchboard for Regulating the Actin Cytoskeleton in Axon Guidance. J Cell Physiol 2025; 240:e70005. [PMID: 39888031 DOI: 10.1002/jcp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Axon pathfinding is a highly dynamic process regulated by the interactions between cell-surface guidance receptors and guidance cues present in the extracellular environment. During development, precise axon pathfinding is crucial for the formation of functional neural circuits. The spatiotemporal expression of axon guidance receptors helps the navigating axon make correct decisions in a complex environment comprising both attractive and repulsive guidance cues. Axon guidance receptors initiate distinct signaling cascades that eventually influence the cytoskeleton at the growing tip of an axon, called the growth cone. The actin cytoskeleton is the primary target of these guidance signals and plays a key role in growth cone motility, exploration, and behavior. Of the many regulatory molecules that modulate the actin cytoskeleton in response to distinct guidance signals, Rho GTPases play central roles. Rho GTPases are molecular switchboards; their ON (GTP-bound) and OFF (GDP-bound) switches are controlled by their interactions with proteins that regulate the exchange of GDP for GTP or with the proteins that promote GTP hydrolysis. Various upstream signals, including axon guidance signals, regulate the activity of these Rho GTPase switch regulators. As cycling molecular switches, Rho GTPases interact with and control the activities of downstream effectors, which directly influence actin reorganization in a context-dependent manner. A deeper exploration of the spatiotemporal dynamics of Rho GTPase signaling and the molecular basis of their involvement in regulating growth cone actin cytoskeleton can unlock promising therapeutic strategies for neurodevelopmental disorders linked to dysregulated Rho GTPase signaling. This review not only provides a comprehensive overview of the field but also highlights recent discoveries that have considerably advanced our understanding of the complex regulatory roles of Rho GTPases in modulating actin cytoskeleton arrangement at the growth cone during axon guidance.
Collapse
Affiliation(s)
- Madhavi Gorla
- National Institute of Animal Biotechnology, Hyderabad, India
| | | |
Collapse
|
13
|
Liu X, dos Santos T, Spigelman AF, Duckett S, Smith N, Suzuki K, MacDonald PE. TMEM55A-mediated PI5P signaling regulates α-cell actin depolymerization and glucagon secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628242. [PMID: 39763967 PMCID: PMC11702586 DOI: 10.1101/2024.12.16.628242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion. TMEM55A knockdown in both human and mouse α-cells reduces exocytosis at low glucose, and this is rescued by the direct reintroduction of PI5P. This does not occur through an effect on Ca2+ channel activity, but through a re-modelling of cortical F-actin dependent upon TMEM55A lipid phosphatase activity which occurs in response to oxidative stress. In summary, we reveal a novel pathway by which TMEM55A regulates α-cell exocytosis by manipulating intracellular PI5P level and the F-actin network.
Collapse
Affiliation(s)
- Xiong Liu
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Theodore dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Aliya F. Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Shawn Duckett
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| |
Collapse
|
14
|
Frampton E, Som P, Hill B, Yu A, Naval-Sanchez M, Nefzger CM, Noordstra I, Gordon E, Schimmel L. Endothelial c-Src Mediates Neovascular Tuft Formation in Oxygen-Induced Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2239-2251. [PMID: 39332676 DOI: 10.1016/j.ajpath.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
Vascular retinopathy, characterized by abnormal blood vessel growth in the retina, frequently results in vision impairment or loss. Neovascular tufts, a distinctive pathologic feature of this condition, are highly leaky blood vessel structures, exacerbating secondary complications. Despite their clinical significance, the mechanisms underlying tuft development are not fully elucidated, posing challenges for effective management and treatment of vascular retinopathy. This study investigates the role of cellular (c)-Src in neovascular tuft formation. Although c-Src is a pivotal regulator in developmental angiogenesis within the retinal vasculature, its specific role in governing pathologic retinal angiogenesis remains to be fully understood. Herein, the oxygen-induced retinopathy model was used for neovascular tuft formation in both Cre-mediated vascular-specific c-Src knockout mice and wild-type littermates. High-resolution imaging and analysis of isolated retinas were conducted. c-Src depletion demonstrated a significant reduction in neovascular tufts within the oxygen-induced retinopathy model. This decrease in tuft formation was observed independently of any alterations in cell death, cell proliferation, or cell adhesion, and the absence of c-Src did not impact tuft pericyte coverage and junctional morphology. These findings underline the critical role of c-Src in the pathogenesis of neovascular tufts in vascular retinopathy. Understanding the molecular mechanisms involving c-Src may offer valuable insights for the development of targeted therapies aimed at mitigating vision-threatening complications associated with retinopathy.
Collapse
Affiliation(s)
- Emmanuelle Frampton
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Priyanka Som
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Brittany Hill
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Alexander Yu
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Marina Naval-Sanchez
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Chistian M Nefzger
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Emma Gordon
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Lilian Schimmel
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Ferrari RR, Fantini V, Garofalo M, Di Gerlando R, Dragoni F, Rizzo B, Spina E, Rossi M, Calatozzolo C, Profka X, Ceroni M, Guaita A, Davin A, Gagliardi S, Poloni TE. A Map of Transcriptomic Signatures of Different Brain Areas in Alzheimer's Disease. Int J Mol Sci 2024; 25:11117. [PMID: 39456899 PMCID: PMC11508373 DOI: 10.3390/ijms252011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that progressively involves brain regions with an often-predictable pattern. Damage to the brain appears to spread and worsen with time, but the molecular mechanisms underlying the region-specific distribution of AD pathology at different stages of the disease are still under-investigated. In this study, a whole-transcriptome analysis was carried out on brain samples from the hippocampus (HI), temporal and parietal cortices (TC and PC, respectively), cingulate cortex (CG), and substantia nigra (SN) of six subjects with a definite AD diagnosis and three healthy age-matched controls in duplicate. The transcriptomic results showed a greater number of differentially expressed genes (DEGs) in the TC (1571) and CG (1210) and a smaller number of DEGs in the HI (206), PC (109), and SN (60). Furthermore, the GSEA showed a difference between the group of brain areas affected early (HI and TC) and the group of areas that were subsequently involved (PC, CG, and SN). Notably, in the HI and TC, there was a significant downregulation of shared DEGs primarily involved in synaptic transmission, while in the PC, CG, and SN, there was a significant downregulation of genes primarily involved in protein folding and trafficking. The course of AD could follow a definite time- and severity-related pattern that arises from protein misfolding, as observed in the PC, CG, and SN, and leads to synaptic impairment, as observed in the HI and TC. Therefore, a map of the molecular and biological processes involved in AD pathogenesis may be traced. This could aid in the discovery of novel biological targets in order to develop effective and well-timed therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Rocco Ferrari
- Department of Brain and Behavioral Sciences, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
| | - Valentina Fantini
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
- Laboratory of Translational Research, Azienda USL-IRCCS of Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Rosalinda Di Gerlando
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy
| | - Francesca Dragoni
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Erica Spina
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
| | - Michele Rossi
- Unity of Biostatistics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Mauro Ceroni
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Antonio Guaita
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Annalisa Davin
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
| | - Stella Gagliardi
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
- Department of Rehabilitation, ASP Golgi-Redaelli, Piazza E. Samek Lodovici 5, 20081 Abbiategrasso, Italy
| |
Collapse
|
16
|
Ignacio A, Cipelli M, Takiishi T, Favero Aguiar C, Fernandes Terra F, Ghirotto B, Martins Silva E, Castoldi A, Magalhães YT, Antonio T, Nunes Padovani B, Ioshie Hiyane M, Andrade-Oliveira V, Forti FL, Olsen Saraiva Camara N. Lack of mTORC2 signaling in CD11c+ myeloid cells inhibits their migration and ameliorates experimental colitis. J Leukoc Biol 2024; 116:779-792. [PMID: 38652699 DOI: 10.1093/jleuko/qiae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway plays a key role in determining immune cells function through modulation of their metabolic status. By specific deletion of Rictor in CD11c+ myeloid cells (referred to here as CD11cRicΔ/Δ), we investigated the role of mTOR complex 2 (mTORC2) signaling in dendritic cells (DCs) function in mice. We showed that upon dextran sulfate sodium-induced colitis, the lack of mTORC2 signaling CD11c+ cells diminishes the colitis score and abrogates DC migration to the mesenteric lymph nodes, thereby diminishing the infiltration of T helper 17 cells in the lamina propria and subsequent inflammation. These findings corroborate with the abrogation of cytoskeleton organization and the decreased activation of Rac1 and Cdc42 GTPases observed in CD11c+-mTORC2-deficient cells. Meta-analysis on colonic samples from ulcerative colitis patients revealed increased gene expression of proinflammatory cytokines, which coincided with augmented expression of the mTOR pathway, a positive correlation between the DC marker ITGAX and interleukin-6, the expression of RICTOR, and CDC42. Together, this work proposes that targeting mTORC2 on DCs offers a key to hamper inflammatory responses, and this way, ameliorates the progression and severity of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Aline Ignacio
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Marcella Cipelli
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Tatiane Takiishi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Cristhiane Favero Aguiar
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Fernanda Fernandes Terra
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Bruno Ghirotto
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Eloisa Martins Silva
- Center for Natural and Human Sciences, Federal University of ABC. Alameda da Universidade (UFABC) 09606045, São Bernardo do Campo, SP, Brazil
| | - Angela Castoldi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Yuli Thamires Magalhães
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo. Av. Prof. Lineu Prestes, 748 05508900, São Paulo, Brazil
| | - Tiago Antonio
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Meire Ioshie Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Fabio Luis Forti
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo. Av. Prof. Lineu Prestes, 748 05508900, São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
- Laboratory of Renal Physiology, Department of Medicine, Federal University of São Paulo (UNIFESP). Rua Botucatu 740, 04023-062, São Paulo, Brazil
| |
Collapse
|
17
|
Whitworth CP, Aw WY, Doherty EL, Handler C, Ambekar Y, Sawhney A, Scarcelli G, Polacheck WJ. P300 Modulates Endothelial Mechanotransduction of Fluid Shear Stress. Cell Mol Bioeng 2024; 17:507-523. [PMID: 39513009 PMCID: PMC11538229 DOI: 10.1007/s12195-024-00805-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/28/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose P300 is a lysine acetyltransferase that plays a significant role in regulating transcription and the nuclear acetylome. While P300 has been shown to be required for the transcription of certain early flow responsive genes, relatively little is known about its role in the endothelial response to hemodynamic fluid stress. Here we sought to define the role of P300 in mechanotransduction of fluid shear stress in the vascular endothelium. Methods To characterize cellular mechanotransduction and physical properties after perturbation of P300, we performed bulk RNA sequencing, confocal and Brillouin microscopy, and functional assays on HUVEC. Results Inhibition of P300 in HUVEC triggers a hyper-alignment phenotype, with cells aligning to flow sooner and more uniformly in the presence of the P300 inhibitor A-485 compared to load controls. Bulk transcriptomics revealed differential expression of genes related to the actin cytoskeleton and migration in cells exposed to A-485. Scratch wound and bead sprouting assays demonstrated that treatment with A-485 increased 2D and 3D migration of HUVEC. Closer examination of filamentous actin revealed the presence of a perinuclear actin cap in both P300 knockdown HUVEC and HUVEC treated with A-485. Interrogation of cell mechanical properties via Brillouin microscopy demonstrated that HUVEC treated with A-485 had lower Brillouin shifts in both the cell body and the nucleus, suggesting that P300 inhibition triggers an increase in cellular and nuclear compliance. Conclusions Together, these results point to a novel role of P300 in modulating endothelial cell mechanics and mechanotransduction of hemodynamic shear stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00805-2.
Collapse
Affiliation(s)
- Chloe P. Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina in Chapel Hill, Chapel Hill, NC USA
| | - Wen Y. Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
| | - Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
| | - Chenchen Handler
- Department of Mechanical Engineering, University of Maryland, College Park, MD USA
| | - Yogeshwari Ambekar
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
| | - Aanya Sawhney
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
18
|
Cook L, Gharzia FG, Bartsch JW, Yildiz D. A jack of all trades - ADAM8 as a signaling hub in inflammation and cancer. FEBS J 2024; 291:3989-4008. [PMID: 38097912 DOI: 10.1111/febs.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
As a member of the family of A Disintegrin And Metalloproteinases (ADAM) ADAM8 is preferentially expressed in lymphatic organs, immune cells, and tumor cells. The substrate spectrum for ADAM8 proteolytic activity is not exclusive but is related to effectors of inflammation and signaling in the tumor microenvironment. In addition, complexes of ADAM8 with extracellular binding partners such as integrin β-1 cause an extensive intracellular signaling in tumor cells, thereby activating kinase pathways with STAT3, ERK1/2, and Akt signaling, which causes increased cell survival and enhanced motility. The cytoplasmic domain of ADAM8 harbors five SRC homology-3 (SH3) domains that can potentially interact with several proteins involved in actin dynamics and cell motility, including Myosin 1F (MYO1F), which is essential for neutrophil motility. The concept of ADAM8 thus involves immune cell recruitment, in most cases leading to an enhancement of inflammatory (asthma, COPD) and tumor (including pancreatic and breast cancers) pathologies. In this review, we report on available studies that qualify ADAM8 as a therapeutic target in different pathologies. As a signaling hub, ADAM8 controls extracellular, intracellular, and intercellular communication, the latter one mainly mediated by the release of extracellular vesicles with ADAM8 as cargo. Here, we will dissect the contribution of different domains to these distinct ways of communication in several pathologies. We conclude that therapeutic targeting attempts for ADAM8 should consider blocking more than a single domain and that this requires a thorough evaluation of potent molecules targeting ADAM8 in an in vivo setting.
Collapse
Affiliation(s)
- Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Federico Guillermo Gharzia
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
19
|
Li X, Du H, Zhou H, Huang Y, Tang S, Yu C, Guo Y, Luo W, Gong Y. FOXL2 regulates RhoA expression to change actin cytoskeleton rearrangement in granulosa cells of chicken pre-ovulatory follicles†. Biol Reprod 2024; 111:391-405. [PMID: 38832713 DOI: 10.1093/biolre/ioae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/04/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024] Open
Abstract
Forkhead box L2 (FOXL2) is an indispensable key regulator of female follicular development, and it plays important roles in the morphogenesis, proliferation, and differentiation of follicle granulosa cells, such as establishing normal estradiol signaling and regulating steroid hormone synthesis. Nevertheless, the effects of FOXL2 on granulosa cell morphology and the underlying mechanism remain unknown. Using FOXL2 ChIP-seq analysis, we found that FOXL2 target genes were significantly enriched in the actin cytoskeleton-related pathways. We confirmed that FOXL2 inhibited the expression of RhoA, a key gene for actin cytoskeleton rearrangement, by binding to TCATCCATCTCT in RhoA promoter region. In addition, FOXL2 overexpression in granulosa cells induced the depolymerization of F-actin and disordered the actin filaments, resulting in a slowdown in the expansion of granulosa cells, while FOXL2 silencing inhibited F-actin depolymerization and stabilized the actin filaments, thereby accelerating granulosa cell expansion. RhoA/ROCK pathway inhibitor Y-27632 exhibited similar effects to FOXL2 overexpression, even reversed the actin polymerization in FOXL2 silencing granulosa cells. This study revealed for the first time that FOXL2 regulated granulosa cell actin cytoskeleton by RhoA/ROCK pathway, thus affecting granulosa cell expansion. Our findings provide new insights for constructing the regulatory network of FOXL2 and propose a potential mechanism for facilitating rapid follicle expansion, thereby laying a foundation for further understanding follicular development.
Collapse
Affiliation(s)
- Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongting Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Haobo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ying Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chengzhi Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
20
|
McDuffie EL, Panettieri RA, Scott CP. G 12/13 signaling in asthma. Respir Res 2024; 25:295. [PMID: 39095798 PMCID: PMC11297630 DOI: 10.1186/s12931-024-02920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.
Collapse
Affiliation(s)
- Elizabeth L McDuffie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Charles P Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. SCIENCE ADVANCES 2024; 10:eadl4694. [PMID: 39047090 PMCID: PMC11268418 DOI: 10.1126/sciadv.adl4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine filamentous actin (F-actin) structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of myocardin-related transcription factor, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G protein-coupled receptor Smog, G protein αq subunit, Rho1 guanosine triphosphatase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand folded gastrulation to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, an NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mahekta R. Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wei Yung Ding
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiawen Huang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiang Teng
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Low Siok Lan Christine
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
22
|
Parekh M, Miall A, Chou A, Buhl L, Deshpande N, Price MO, Price FW, Jurkunas UV. Enhanced Migration of Fuchs Corneal Endothelial Cells by Rho Kinase Inhibition: A Novel Ex Vivo Descemet's Stripping Only Model. Cells 2024; 13:1218. [PMID: 39056800 PMCID: PMC11274477 DOI: 10.3390/cells13141218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Descemet's Stripping Only (DSO) is a surgical technique that utilizes the peripheral corneal endothelial cell (CEnC) migration for wound closure. Ripasudil, a Rho-associated protein kinase (ROCK) inhibitor, has shown potential in DSO treatment; however, its mechanism in promoting CEnC migration remains unclear. We observed that ripasudil-treated immortalized normal and Fuchs endothelial corneal dystrophy (FECD) cells exhibited significantly enhanced migration and wound healing, particularly effective in FECD cells. Ripasudil upregulated mRNA expression of Snail Family Transcriptional Repressor (SNAI1/2) and Vimentin (VIM) while decreasing Cadherin (CDH1), indicating endothelial-to-mesenchymal transition (EMT) activation. Ripasudil activated Rac1, driving the actin-related protein complex (ARPC2) to the leading edge, facilitating enhanced migration. Ex vivo studies on cadaveric and FECD Descemet's membrane (DM) showed increased migration and proliferation of CEnCs after ripasudil treatment. An ex vivo DSO model demonstrated enhanced migration from the DM to the stroma with ripasudil. Coating small incision lenticule extraction (SMILE) tissues with an FNC coating mix and treating the cells in conjunction with ripasudil further improved migration and resulted in a monolayer formation, as detected by the ZO-1 junctional marker, thereby leading to the reduction in EMT. In conclusion, ripasudil effectively enhanced cellular migration, particularly in a novel ex vivo DSO model, when the stromal microenvironment was modulated. This suggests ripasudil as a promising adjuvant for DSO treatment, highlighting its potential clinical significance.
Collapse
Affiliation(s)
- Mohit Parekh
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
| | - Annie Miall
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
| | - Ashley Chou
- Faculty of Arts and Sciences, Harvard College, Boston, MA 02138, USA
| | - Lara Buhl
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neha Deshpande
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
| | | | - Francis W. Price
- Cornea Research Foundation of America, Indianapolis, IN 46260, USA
| | - Ula V. Jurkunas
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| |
Collapse
|
23
|
Tusnim J, Budharaju K, Grasman JM. Fabrication of ECM protein coated hollow collagen channels to study peripheral nerve regeneration. Sci Rep 2024; 14:16096. [PMID: 38997331 PMCID: PMC11245515 DOI: 10.1038/s41598-024-67046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Peripheral nerve injury is a prevalent clinical problem that often leads to lifelong disability and reduced quality of life. Although peripheral nerves can regenerate, recovery after severe injury is slow and incomplete. The current gold standard treatment, autologous nerve transplantation, has limitations including donor site morbidity and poor functional outcomes, highlighting the need for improved repair strategies. We developed a reproducible in vitro hollow channel collagen gel construct to investigate peripheral nerve regeneration (PNR) by exploring the influence of key extracellular matrix (ECM) proteins on axonal growth and regeneration. Channels were coated with ECM proteins: collagen IV, laminin, or fibronectin and seeded with dorsal root ganglia (DRG) collected from E16 rat embryos to compare the ability of the ECM proteins to enhance axonal growth. Robust axonal extension and Schwann cell (SC) infiltration were observed in fibronectin-coated channels, suggesting its superiority over other ECM proteins. Differential effects of ECM proteins on axons and SCs indicated direct growth stimulation beyond SC-mediated guidance. In vitro laceration injury modeling further confirmed fibronectin's superior pro-regenerative effects, showcasing its potential in enhancing axonal regrowth post-injury. Advancing in vitro modeling that closely replicates native microenvironments will accelerate progress in overcoming the limitations of current nerve repair approaches.
Collapse
Affiliation(s)
- Jarin Tusnim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Karthik Budharaju
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
24
|
Kamalesh K, Segal D, Avinoam O, Schejter ED, Shilo BZ. Structured RhoGEF recruitment drives myosin II organization on large exocytic vesicles. J Cell Sci 2024; 137:jcs261944. [PMID: 38899547 PMCID: PMC11267456 DOI: 10.1242/jcs.261944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
The Rho family of GTPases plays a crucial role in cellular mechanics by regulating actomyosin contractility through the parallel induction of actin and myosin assembly and function. Using exocytosis of large vesicles in the Drosophila larval salivary gland as a model, we followed the spatiotemporal regulation of Rho1, which in turn creates distinct organization patterns of actin and myosin. After vesicle fusion, low levels of activated Rho1 reach the vesicle membrane and drive actin nucleation in an uneven, spread-out pattern. Subsequently, the Rho1 activator RhoGEF2 distributes as an irregular meshwork on the vesicle membrane, activating Rho1 in a corresponding punctate pattern and driving local myosin II recruitment, resulting in vesicle constriction. Vesicle membrane buckling and subsequent crumpling occur at local sites of high myosin II concentrations. These findings indicate that distinct thresholds for activated Rho1 create a biphasic mode of actomyosin assembly, inducing anisotropic membrane crumpling during exocrine secretion.
Collapse
Affiliation(s)
- Kumari Kamalesh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dagan Segal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
25
|
Jara O, Maripillán J, Momboisse F, Cárdenas AM, García IE, Martínez AD. Differential Regulation of Hemichannels and Gap Junction Channels by RhoA GTPase and Actin Cytoskeleton: A Comparative Analysis of Cx43 and Cx26. Int J Mol Sci 2024; 25:7246. [PMID: 39000353 PMCID: PMC11242593 DOI: 10.3390/ijms25137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.
Collapse
Affiliation(s)
- Oscar Jara
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jaime Maripillán
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Fanny Momboisse
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, 75013 Paris, France
| | - Ana María Cárdenas
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Isaac E García
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
- Centro de Investigación en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D Martínez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| |
Collapse
|
26
|
Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal 2024; 22:265. [PMID: 38741195 DOI: 10.1186/s12964-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cisplatin (CDDP) is a widely used first-line chemotherapeutic drug in various cancers. However, CDDP resistance is frequently observed in cancer patients. Therefore, it is required to evaluate the molecular mechanisms associated with CDDP resistance to improve prognosis among cancer patients. Integrins are critical factors involved in tumor metastasis that regulate cell-matrix and cell-cell interactions. They modulate several cellular mechanisms including proliferation, invasion, angiogenesis, polarity, and chemo resistance. Modification of integrin expression levels can be associated with both tumor progression and inhibition. Integrins are also involved in drug resistance of various solid tumors through modulation of the tumor cell interactions with interstitial matrix and extracellular matrix (ECM). Therefore, in the present review we discussed the role of integrin protein family in regulation of CDDP response in tumor cells. It has been reported that integrins mainly promoted the CDDP resistance through interaction with PI3K/AKT, MAPK, and WNT signaling pathways. They also regulated the CDDP mediated apoptosis in tumor cells. This review paves the way to suggest the integrins as the reliable therapeutic targets to improve CDDP response in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584337. [PMID: 38903085 PMCID: PMC11188063 DOI: 10.1101/2024.03.11.584337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine F-actin structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of Mrtf, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G-protein-coupled receptor (GPCR) Smog, G-protein αq subunit, Rho1 GTPase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand Fog to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, a NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
|
28
|
Sutanto H. Mechanobiology of Type 1 hypersensitivity: Elucidating the impacts of mechanical forces in allergic reactions. MECHANOBIOLOGY IN MEDICINE 2024; 2:100041. [PMID: 40395452 PMCID: PMC12082325 DOI: 10.1016/j.mbm.2024.100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 05/22/2025]
Abstract
Type 1 hypersensitivity involves an exaggerated immune reaction triggered by allergen exposure, leading to rapid release of inflammatory mediators. Meanwhile, mechanobiology explores how physical forces influence cellular processes, and recent research underscores its relevance in allergic reactions. This review provides a concise overview of Type 1 hypersensitivity, highlighting the pivotal role of mast cells and immunoglobulin E (IgE) antibodies in orchestrating allergic reactions. Recognizing the dynamic nature of cellular responses in allergies, this study subsequently delves into the emerging field of mechanobiology and its significance in understanding the mechanical forces governing immune cell behavior. Furthermore, molecular forces during mast cell activation and degranulation are explored, elucidating the mechanical aspects of IgE binding and cytoskeletal rearrangements. Next, we discuss the intricate interplay between immune cells and the extracellular matrix, emphasizing the impact of matrix stiffness on cellular responses. Additionally, we examine key mechanosensitive signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway, Rho guanosine triphosphatase (GTPase) and integrin-mediated focal adhesion signaling, shedding light on their contributions to hypersensitivity reactions. This interplay of mechanobiology and Type 1 hypersensitivity provides insights into potential therapeutic targets and biomarkers, paving the way for better clinical management of Type 1 hypersensitivity reactions.
Collapse
Affiliation(s)
- Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
29
|
Zhang H, Rahman T, Lu S, Adam AP, Wan LQ. Helical vasculogenesis driven by cell chirality. SCIENCE ADVANCES 2024; 10:eadj3582. [PMID: 38381835 PMCID: PMC10881055 DOI: 10.1126/sciadv.adj3582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
The cellular helical structure is well known for its crucial role in development and disease. Nevertheless, the underlying mechanism governing this phenomenon remains largely unexplored, particularly in recapitulating it in well-controlled engineering systems. Leveraging advanced microfluidics, we present compelling evidence of the spontaneous emergence of helical endothelial tubes exhibiting robust right-handedness governed by inherent cell chirality. To strengthen our findings, we identify a consistent bias toward the same chirality in mouse vascular tissues. Manipulating endothelial cell chirality using small-molecule drugs produces a dose-dependent reversal of the handedness in engineered vessels, accompanied by non-monotonic changes in vascular permeability. Moreover, our three-dimensional cell vertex model provides biomechanical insights into the chiral morphogenesis process, highlighting the role of cellular torque and tissue fluidity in its regulation. Our study unravels an intriguing mechanism underlying vascular chiral morphogenesis, shedding light on the broader implications and distinctive perspectives of tubulogenesis within biological systems.
Collapse
Affiliation(s)
- Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
- Department of Ophthalmology, Albany Medical College, Albany, NY 12208, USA
| | - Leo Q. Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
30
|
Cho CH, Deyneko IV, Cordova-Martinez D, Vazquez J, Maguire AS, Diaz JR, Carbonell AU, Tindi JO, Cui MH, Fleysher R, Molholm S, Lipton ML, Branch CA, Hodgson L, Jordan BA. ANKS1B encoded AIDA-1 regulates social behaviors by controlling oligodendrocyte function. Nat Commun 2023; 14:8499. [PMID: 38129387 PMCID: PMC10739966 DOI: 10.1038/s41467-023-43438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Heterozygous deletions in the ANKS1B gene cause ANKS1B neurodevelopmental syndrome (ANDS), a rare genetic disease characterized by autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and speech and motor deficits. The ANKS1B gene encodes for AIDA-1, a protein that is enriched at neuronal synapses and regulates synaptic plasticity. Here we report an unexpected role for oligodendroglial deficits in ANDS pathophysiology. We show that Anks1b-deficient mouse models display deficits in oligodendrocyte maturation, myelination, and Rac1 function, and recapitulate white matter abnormalities observed in ANDS patients. Selective loss of Anks1b from the oligodendrocyte lineage, but not from neuronal populations, leads to deficits in social preference and sensory reactivity previously observed in a brain-wide Anks1b haploinsufficiency model. Furthermore, we find that clemastine, an antihistamine shown to increase oligodendrocyte precursor cell maturation and central nervous system myelination, rescues deficits in social preference in 7-month-old Anks1b-deficient mice. Our work shows that deficits in social behaviors present in ANDS may originate from abnormal Rac1 activity within oligodendrocytes.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Human Pathobiology and OMNI Reverse Translation, Genentech, Inc., San Francisco, CA, USA
| | - Ilana Vasilisa Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dylann Cordova-Martinez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne S Maguire
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenny R Diaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roman Fleysher
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael L Lipton
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
31
|
Mazarei M, Shahabi Rabori V, Ghasemi N, Salehi M, Rayatpisheh N, Jahangiri N, Saberiyan M. LncRNA MALAT1 signaling pathway and clinical applications in overcome on cancers metastasis. Clin Exp Med 2023; 23:4457-4472. [PMID: 37695391 DOI: 10.1007/s10238-023-01179-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
In spite of its high mortality rate and difficulty in finding a cure, scientific advancements have contributed to a reduction in cancer-related fatalities. Aberrant gene expression during carcinogenesis emphasizes the importance of targeting the signaling networks that control gene expression in cancer treatment. Long noncoding RNAs (lncRNAs), which are transcribed RNA molecules that play a role in gene expression regulation, are a recent innovative therapeutic approach for diagnosing and treating malignancies. MALAT1, a well-known lncRNA, functions in gene expression, RNA processing, and epigenetic control. High expression levels of MALAT1 are associated with several human disorders, including metastasis, invasion, autophagy, and proliferation of cancer cells. MALAT1 affects various signaling pathways and microRNAs (miRNAs), and this study aims to outline its functional roles in cancer metastasis and its interactions with cellular signaling pathways. Moreover, MALAT1 and its interactions with signaling pathways can be promising target for cancer treatment.
Collapse
Affiliation(s)
- Madineh Mazarei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nazila Ghasemi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehrnaz Salehi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Rayatpisheh
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Jahangiri
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
32
|
Li XM, Wang SP, Wang JY, Tang T, Wan B, Zeng L, Wang J, Chu BB, Yang GY, Pan JJ. RhoA suppresses pseudorabies virus replication in vitro. Virol J 2023; 20:264. [PMID: 37968757 PMCID: PMC10652432 DOI: 10.1186/s12985-023-02229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023] Open
Abstract
The porcine pseudorabies virus (PRV) is one of the most devastating pathogens and brings great economic losses to the swine industry worldwide. Viruses are intracellular parasites that have evolved numerous strategies to subvert and utilize different host processes for their life cycle. Among the different systems of the host cell, the cytoskeleton is one of the most important which not only facilitate viral invasion and spread into neighboring cells, but also help viruses to evade the host immune system. RhoA is a key regulator of cytoskeleton system that may participate in virus infection. In this study, we characterized the function of RhoA in the PRV replication by chemical drugs treatment, gene knockdown and gene over-expression strategy. Inhibition of RhoA by specific inhibitor and gene knockdown promoted PRV proliferation. On the contrary, overexpression of RhoA or activation of RhoA by chemical drug inhibited PRV infection. Besides, our data demonstrated that PRV infection induced the disruption of actin stress fiber, which was consistent with previous report. In turn, the actin specific inhibitor cytochalasin D markedly disrupted the normal fibrous structure of intracellular actin cytoskeleton and decreased the PRV replication, suggesting that actin cytoskeleton polymerization contributed to PRV replication in vitro. In summary, our data displayed that RhoA was a host restriction factor that inhibited PRV replication, which may deepen our understanding the pathogenesis of PRV and provide further insight into the prevention of PRV infection and the development of anti-viral drugs.
Collapse
Affiliation(s)
- Xin-Man Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Shi-Ping Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Jin-Yuan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Ting Tang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450047, China
| | - Jia-Jia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
33
|
Kim HJ, Cha S, Choi JS, Lee JY, Kim KE, Kim JK, Kim J, Moon SY, Lee SHS, Park K, Won SY. scAAV2-Mediated Expression of Thioredoxin 2 and C3 Transferase Prevents Retinal Ganglion Cell Death and Lowers Intraocular Pressure in a Mouse Model of Glaucoma. Int J Mol Sci 2023; 24:16253. [PMID: 38003443 PMCID: PMC10671512 DOI: 10.3390/ijms242216253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Elevated intraocular pressure (IOP) in glaucoma causes retinal ganglion cell (RGC) loss and damage to the optic nerve. Although IOP is controlled pharmacologically, no treatment is available to restore retinal and optic nerve function. In this paper, we aimed to develop a novel gene therapy for glaucoma using an AAV2-based thioredoxin 2 (Trx2)-exoenzyme C3 transferase (C3) fusion protein expression vector (scAAV2-Trx2-C3). We evaluated the therapeutic effects of this vector in vitro and in vivo using dexamethasone (DEX)-induced glaucoma models. We found that scAAV2-Trx2-C3-treated HeLa cells had significantly reduced GTP-bound active RhoA and increased phosphor-cofilin Ser3 protein expression levels. scAAV2-Trx2-C3 was also shown to inhibit oxidative stress, fibronectin expression, and alpha-SMA expression in DEX-treated HeLa cells. NeuN immunostaining and TUNEL assay in mouse retinal tissues was performed to evaluate its neuroprotective effect upon RGCs, whereas changes in mouse IOP were monitored via rebound tonometer. The present study showed that scAAV2-Trx2-C3 can protect RGCs from degeneration and reduce IOP in a DEX-induced mouse model of glaucoma, while immunohistochemistry revealed that the expression of fibronectin and alpha-SMA was decreased after the transduction of scAAV2-Trx2-C3 in murine eye tissues. Our results suggest that AAV2-Trx2-C3 modulates the outflow resistance of the trabecular meshwork, protects retinal and other ocular tissues from oxidative damage, and may lead to the development of a gene therapeutic for glaucoma.
Collapse
Affiliation(s)
- Hee Jong Kim
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Seho Cha
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Jun-Sub Choi
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea; (J.Y.L.); (K.E.K.)
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Ko Eun Kim
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea; (J.Y.L.); (K.E.K.)
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Jin Kwon Kim
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Jin Kim
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Seo Yun Moon
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Steven Hyun Seung Lee
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Keerang Park
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - So-Yoon Won
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| |
Collapse
|
34
|
Zang L, Song Y, Tian Y, Hu N. PHACTR1 promotes the mobility of papillary thyroid carcinoma cells by inducing F-actin formation. Heliyon 2023; 9:e20461. [PMID: 37876444 PMCID: PMC10590795 DOI: 10.1016/j.heliyon.2023.e20461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) limits effective biomarkers for predicting prognosis and targeted therapy. Phosphatase and actin regulator 1 (PHACTR1) is a mobility-promoting molecule due to its regulation on F-actin formation, which is valuable for the investigation of PTC. Our study aimed to investigate the relationship between PHACTR1 and PTC carcinogenesis, especially mobility. Our results displayed that PHACTR1 expression was elevated in metastatic or larger PTC tissues. In addition, PTC cells K1 with more obvious mobility had higher PHACTR1 expression whereas weakly mobile cells TPC-1 was contrary. Moreover, PHACTR1 silencing inhibited the invasion, migration and tumorigenicity of K1 cells, while PHACTR1 overexpression promoted the invasion, migration and tumorigenicity in TPC-1 cells. Furthermore, PHACTR1 overexpression increased the fluorescent intensity of F-actin in TPC-1 cells. Importantly, the enhanced invasion and migration in TPC-1 cells caused by PHACTR1 overexpression were significantly reversed by the disruption of F-actin assembly with swinholide A. In conclusion, PHACTR1 can promote the mobility of PTC cells, which results in the carcinogenesis of PTC. PHACTR1-regulated F-actin formation determines the mobility of PTC cells. Therefore, PHACTR1 can function as a potential biomarker for predicting prognosis and targeting therapy in PTC.
Collapse
Affiliation(s)
- Leilei Zang
- Department 5 of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050005, Hebei, China
| | - Yanmei Song
- Department of Infection Management/Public Health, Hebei People's Hospital, Shijiazhuang, 050057, Hebei, China
| | - Yanhua Tian
- Department 2 of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050005, Hebei, China
| | - Ning Hu
- Department 4 of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050005, Hebei, China
| |
Collapse
|
35
|
Belliveau NM, Footer MJ, Akdoǧan E, van Loon AP, Collins SR, Theriot JA. Whole-genome screens reveal regulators of differentiation state and context-dependent migration in human neutrophils. Nat Commun 2023; 14:5770. [PMID: 37723145 PMCID: PMC10507112 DOI: 10.1038/s41467-023-41452-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in humans and provide a critical early line of defense as part of our innate immune system. We perform a comprehensive, genome-wide assessment of the molecular factors critical to proliferation, differentiation, and cell migration in a neutrophil-like cell line. Through the development of multiple migration screen strategies, we specifically probe directed (chemotaxis), undirected (chemokinesis), and 3D amoeboid cell migration in these fast-moving cells. We identify a role for mTORC1 signaling in cell differentiation, which influences neutrophil abundance, survival, and migratory behavior. Across our individual migration screens, we identify genes involved in adhesion-dependent and adhesion-independent cell migration, protein trafficking, and regulation of the actomyosin cytoskeleton. This genome-wide screening strategy, therefore, provides an invaluable approach to the study of neutrophils and provides a resource that will inform future studies of cell migration in these and other rapidly migrating cells.
Collapse
Affiliation(s)
- Nathan M Belliveau
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Matthew J Footer
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Emel Akdoǧan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Aaron P van Loon
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
36
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
37
|
Zhang Y, Kitagawa T, Furutani-Seiki M, Yoshimura SH. Yes-associated protein regulates cortical actin architecture and dynamics through intracellular translocation of Rho GTPase-activating protein 18. FASEB J 2023; 37:e23161. [PMID: 37638562 DOI: 10.1096/fj.202201992r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Yes-associated protein (YAP) is a transcriptional co-activator that controls the transcription of target genes and modulates the structures of various cytoskeletal architecture as mechanical responses. Although it has been known that YAP regulates actin-regulatory proteins, the detailed molecular mechanism of how they control and coordinate intracellular actin architecture remains elusive. Herein, we aimed to examine the structure and dynamics of intracellular actin architecture from molecular to cellular scales in normal and YAP-knockout (YAP-KO) cells utilizing high-speed atomic force microscopy (HS-AFM) for live-cell imaging and other microscope-based mechanical manipulation and measurement techniques. YAP-KO Madin-Darby canine kidney cells had a higher density and turnover of actin filaments in the cell cortex and a higher elastic modulus. Laser aberration assay demonstrated that YAP-KO cells were more resistant to damage than normal cells. We also found that Rho GTPase-activating protein 18 (ARHGAP18), a downstream factor of YAP, translocated from the cortex to the edge of sparsely cultured YAP-KO cells. It resulted in high RhoA activity and promotion of actin polymerization in the cell cortex and their reductions at the edge. HS-AFM imaging of live cell edge and a cell-migration assay demonstrated lower membrane dynamics and motility of YAP-KO cells than those of normal cells, suggesting lower actin dynamics at the edge. Together, these results demonstrate that a YAP-dependent pathway changes the intracellular distribution of RhoGAP and modulates actin dynamics in different parts of the cell, providing a mechanistic insight into how a mechano-sensitive transcription cofactor regulates multiple intracellular actin architecture and coordinates mechano-responses.
Collapse
Affiliation(s)
- Yanshu Zhang
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takao Kitagawa
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | | |
Collapse
|
38
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. PLANT PHYSIOLOGY 2023; 193:9-25. [PMID: 37002825 DOI: 10.1093/plphys/kiad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.
Collapse
Affiliation(s)
- Ruihui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Zhou F, Li F, Hou Y, Yang B. HSPB8-Mediated Actin Filament Reorganization by Promoting Autophagic Flux Confers Resilience to Blood-Brain Barrier (BBB) Injury in an In Vitro Model of Ischemic Stroke. ACS Chem Neurosci 2023; 14:2868-2875. [PMID: 37522952 DOI: 10.1021/acschemneuro.3c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Recently, uncontrolled actin polymerization has been recognized as an initiator of early-onset blood-brain barrier (BBB) rupture. Here, using in vitro models, we found that after oxygen-glucose deprivation/reperfusion (OGD/R), endothelial overexpression of HSPB8 suppressed aberrant actin polymerization and thus preserved the integrity of BBB. We further investigated the mechanisms of HSPB8 in the control of actin assembly. HSPB8 suppressed the RhoA/ROCK2/p-MLC signaling pathway in bEnd.3 cells and the RhoA activator abrogated the inhibitory action of HSPB8 on actin reorganization after OGD/R. In addition, endothelial autophagic flux was impaired after OGD/R. This effect was attenuated by HSPB8 overexpression. Autophagy inhibition partially reversed the effect of HSPB8 on the RhoA/ROCK2/p-MLC pathway. Taken together, the present study revealed that the restoration of autophagic flux by overexpressing HSPB8, via the inhibition of the RhoA/ROCK2/p-MLC signaling pathway, reverses the aggregation of endothelial cytoskeleton actin, eventually alleviating OGD/R-induced BBB injury.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Fei Li
- Department of Neurology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ying Hou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
40
|
Bhansali S, Yadav AK, Bakshi C, Dhawan V. Interleukin-35 Mitigates ox-LDL-Induced Proatherogenic Effects via Modulating miRNAs Associated with Coronary Artery Disease (CAD). Cardiovasc Drugs Ther 2023; 37:667-682. [PMID: 35435604 DOI: 10.1007/s10557-022-07335-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Recent emergence of miRNAs as important regulators of processes involving lesion formation and regression has highlighted miRNAs as potent therapeutic targets for the treatment of atherosclerosis. Few studies have reported the atheroprotective role of IL-35, a novel immunosuppressive and anti-inflammatory cytokine; however, miRNA-dependent regulation underlying the anti-atherosclerotic potential of IL-35 remains elusive. METHODS THP-1 macrophages were incubated with human recombinant IL-35 (rIL-35) either in the presence or absence of ox-LDL. qRT-PCR was conducted to validate the expression levels of previously identified miRNAs including miR-197-5p, miR-4442, miR-324-3p, miR-6879-5p, and miR-6069 that were differentially expressed in peripheral blood mononuclear cells of coronary artery disease (CAD) patients vs. controls. Additionally, bioinformatic analysis was performed to predict miRNA-associated targets and their corresponding functional significance in CAD. RESULTS Exogenous IL-35 significantly decreased the average area of ox-LDL-stimulated macrophages, indicating the inhibitory effect of IL-35 on lipid-laden foam cell formation. Furthermore, rIL-35 treatment alleviated the ox-LDL-mediated atherogenic effects by modulating the expression levels of aforementioned CAD-associated miRNAs in the cultured macrophages. Moreover, functional enrichment analysis of these miRNA-related targets revealed their role in the molecular processes affecting different stages of atheroslerotic plaque development, such as macrophage polarization, T cell suppression, lipoprotein metabolism, foam cell formation, and iNOS-mediated inflammation. CONCLUSION Our observations uncover the novel role of IL-35 as an epigenetic modifier as it influences the expression level of miRNAs implicated in the pathogenesis of atherosclerosis. Thus, IL-35 cytokine therapy-mediated miRNA targeting could be an effective therapeutic strategy against the development of early atheromas in asymptomatic high-risk CAD patients.
Collapse
Affiliation(s)
- Shipra Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amit Kumar Yadav
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Chetan Bakshi
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
41
|
Park W, Wei S, Kim BS, Kim B, Bae SJ, Chae YC, Ryu D, Ha KT. Diversity and complexity of cell death: a historical review. Exp Mol Med 2023; 55:1573-1594. [PMID: 37612413 PMCID: PMC10474147 DOI: 10.1038/s12276-023-01078-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
Death is the inevitable fate of all living organisms, whether at the individual or cellular level. For a long time, cell death was believed to be an undesirable but unavoidable final outcome of nonfunctioning cells, as inflammation was inevitably triggered in response to damage. However, experimental evidence accumulated over the past few decades has revealed different types of cell death that are genetically programmed to eliminate unnecessary or severely damaged cells that may damage surrounding tissues. Several types of cell death, including apoptosis, necrosis, autophagic cell death, and lysosomal cell death, which are classified as programmed cell death, and pyroptosis, necroptosis, and NETosis, which are classified as inflammatory cell death, have been described over the years. Recently, several novel forms of cell death, namely, mitoptosis, paraptosis, immunogenic cell death, entosis, methuosis, parthanatos, ferroptosis, autosis, alkaliptosis, oxeiptosis, cuproptosis, and erebosis, have been discovered and advanced our understanding of cell death and its complexity. In this review, we provide a historical overview of the discovery and characterization of different forms of cell death and highlight their diversity and complexity. We also briefly discuss the regulatory mechanisms underlying each type of cell death and the implications of cell death in various physiological and pathological contexts. This review provides a comprehensive understanding of different mechanisms of cell death that can be leveraged to develop novel therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Shibo Wei
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Bosung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, UNIST, Ulsan, 44919, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
42
|
Luz Y, Rebouças A, Bernardes CPOS, Rossi EA, Machado TS, Souza BSF, Brodskyn CI, Veras PST, dos Santos WLC, de Menezes JPB. Leishmania infection alters macrophage and dendritic cell migration in a three-dimensional environment. Front Cell Dev Biol 2023; 11:1206049. [PMID: 37576604 PMCID: PMC10416637 DOI: 10.3389/fcell.2023.1206049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Leishmaniasis results in a wide spectrum of clinical manifestations, ranging from skin lesions at the site of infection to disseminated lesions in internal organs, such as the spleen and liver. While the ability of Leishmania-infected host cells to migrate may be important to lesion distribution and parasite dissemination, the underlying mechanisms and the accompanying role of host cells remain poorly understood. Previously published work has shown that Leishmania infection inhibits macrophage migration in a 2-dimensional (2D) environment by altering actin dynamics and impairing the expression of proteins involved in plasma membrane-extracellular matrix interactions. Although it was shown that L. infantum induces the 2D migration of dendritic cells, in vivo cell migration primarily occurs in 3-dimensional (3D) environments. The present study aimed to investigate the migration of macrophages and dendritic cells infected by Leishmania using a 3-dimensional environment, as well as shed light on the mechanisms involved in this process. Methods: Following the infection of murine bone marrow-derived macrophages (BMDM), human macrophages and human dendritic cells by L. amazonensis, L. braziliensis, or L. infantum, cellular migration, the formation of adhesion complexes and actin polymerization were evaluated. Results: Our results indicate that Leishmania infection inhibited 3D migration in both BMDM and human macrophages. Reduced expression of proteins involved in adhesion complex formation and alterations in actin dynamics were also observed in Leishmania-infected macrophages. By contrast, increased human dendritic cell migration in a 3D environment was found to be associated with enhanced adhesion complex formation and increased actin dynamics. Conclusion: Taken together, our results show that Leishmania infection inhibits macrophage 3D migration, while enhancing dendritic 3D migration by altering actin dynamics and the expression of proteins involved in plasma membrane extracellular matrix interactions, suggesting a potential association between dendritic cells and disease visceralization.
Collapse
Affiliation(s)
- Yasmin Luz
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Amanda Rebouças
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | | | - Erik A. Rossi
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Taíse S. Machado
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Bruno S. F. Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D’Or Institute for Research and Education, Salvador, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Claudia Ida Brodskyn
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Patricia S. T. Veras
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | | | - Juliana P. B. de Menezes
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| |
Collapse
|
43
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
44
|
Takayasu BS, Rodrigues SS, Madureira Trufen CE, Machado-Santelli GM, Onuki J. Effects on cell cycle progression and cytoskeleton organization of five Bothrops spp. venoms in cell culture-based assays. Heliyon 2023; 9:e18317. [PMID: 37539139 PMCID: PMC10393766 DOI: 10.1016/j.heliyon.2023.e18317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Snake envenomation is a neglected tropical disease. In Brazil, the Bothrops genus is responsible for about 86% of snakebite accidents. Despite extensive evidence of the cytotoxicity of snake venoms, the cellular and molecular mechanisms involved are not fully understood, especially regarding the effects on cell cycle progression and cytoskeleton organization. Traditionally, the effectiveness and quality control tests of venoms and antivenoms are assessed by in vivo assays. Despite this, there is a rising effort to develop surrogate in vitro models according to the 3R principle (Replacement, Reduction, and Refinement). In this study, we treated rat liver cells (BRL-3A) with venoms from five Bothrops species (B. jararaca, B. jararacussu, B. moojeni, B. alternatus, and B. neuwiedi) and analyzed cell viability and IC50 by MTT assay, cell cycle phases distribution by flow cytometry, and morphology and cytoskeleton alterations by immunofluorescence. In addition, we evaluated the correlation between IC50 and the enzymatic and biological activities of each venom. Our results indicated that Bothrops spp. venoms decreased the cell viability of rat liver BRL-3A cells. The rank order of potency was B. jararacussu > B. moojeni > B. alternatus > B. jararaca > B. neuwiedi. The mechanisms of cytotoxicity were related to microtubules and actin network disruption, but not to cell cycle arrest. No clear correlation was found between the IC50 and retrieved literature data of in vitro enzymatic and in vivo biological activities. This work contributed to understanding cellular and molecular mechanisms underlying the Bothrops spp. venom cytotoxicity, which can help to improve envenomation treatment, as well as disclose potential therapeutic properties of snake venoms.
Collapse
Affiliation(s)
- Bianca Sayuri Takayasu
- Laboratory of Structural Biology, Butantan Institute, São Paulo, Brazil
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Glaucia Maria Machado-Santelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Janice Onuki
- Laboratory of Structural Biology, Butantan Institute, São Paulo, Brazil
- Laboratory of Herpetology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
45
|
Distel JS, Di Venanzio G, Mackel JJ, Rosen DA, Feldman MF. Replicative Acinetobacter baumannii strains interfere with phagosomal maturation by modulating the vacuolar pH. PLoS Pathog 2023; 19:e1011173. [PMID: 37294840 DOI: 10.1371/journal.ppat.1011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/23/2023] [Indexed: 06/11/2023] Open
Abstract
Bacterial pneumonia is a common infection of the lower respiratory tract that can afflict patients of all ages. Multidrug-resistant strains of Acinetobacter baumannii are increasingly responsible for causing nosocomial pneumonias, thus posing an urgent threat. Alveolar macrophages play a critical role in overcoming respiratory infections caused by this pathogen. Recently, we and others have shown that new clinical isolates of A. baumannii, but not the common lab strain ATCC 19606 (19606), can persist and replicate in macrophages within spacious vacuoles that we called Acinetobacter Containing Vacuoles (ACV). In this work, we demonstrate that the modern A. baumannii clinical isolate 398, but not the lab strain 19606, can infect alveolar macrophages and produce ACVs in vivo in a murine pneumonia model. Both strains initially interact with the alveolar macrophage endocytic pathway, as indicated by EEA1 and LAMP1 markers; however, the fate of these strains diverges at a later stage. While 19606 is eliminated in an autophagy pathway, 398 replicates in ACVs and are not degraded. We show that 398 reverts the natural acidification of the phagosome by secreting large amounts of ammonia, a by-product of amino acid catabolism. We propose that this ability to survive within macrophages may be critical for the persistence of clinical A. baumannii isolates in the lung during a respiratory infection.
Collapse
Affiliation(s)
- Jesus S Distel
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joseph J Mackel
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - David A Rosen
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
46
|
Javanmardi Y, Agrawal A, Malandrino A, Lasli S, Chen M, Shahreza S, Serwinski B, Cammoun L, Li R, Jorfi M, Djordjevic B, Szita N, Spill F, Bertazzo S, Sheridan GK, Shenoy V, Calvo F, Kamm R, Moeendarbary E. Endothelium and Subendothelial Matrix Mechanics Modulate Cancer Cell Transendothelial Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206554. [PMID: 37051804 PMCID: PMC10238207 DOI: 10.1002/advs.202206554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/19/2023] [Indexed: 06/04/2023]
Abstract
Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation. It is found that cancer cell actin-rich protrusions generate complex push-pull forces to initiate and drive TEM, while transmigration success also relies on the forces generated by the endothelium. Consequently, mechanical properties of the subendothelial ECM and endothelial actomyosin contractility that mediate the endothelial forces also impact the endothelium's resistance to cancer cell transmigration. These results indicate that mechanical features of distant tissues, including force interactions between the endothelium and the subendothelial ECM, are key determinants of metastatic organotropism.
Collapse
Affiliation(s)
- Yousef Javanmardi
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Ayushi Agrawal
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Andrea Malandrino
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Biomaterials, Biomechanics and Tissue Engineering GroupDepartment of Materials Science and Engineering and Research Center for Biomedical EngineeringUniversitat Politécnica de Catalunya (UPC)08019BarcelonaSpain
| | - Soufian Lasli
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Michelle Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Somayeh Shahreza
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Bianca Serwinski
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Leila Cammoun
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ran Li
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mehdi Jorfi
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Boris Djordjevic
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Nicolas Szita
- Department of Biochemical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Fabian Spill
- School of MathematicsUniversity of BirminghamEdgbastonBirminghamB152TSUK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Graham K Sheridan
- School of Life SciencesQueen's Medical CentreUniversity of NottinghamNottinghamNG7 2UHUK
| | - Vivek Shenoy
- Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria)Santander39011Spain
| | - Roger Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Emad Moeendarbary
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
47
|
Minegishi T, Kastian RF, Inagaki N. Mechanical regulation of synapse formation and plasticity. Semin Cell Dev Biol 2023; 140:82-89. [PMID: 35659473 DOI: 10.1016/j.semcdb.2022.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 01/28/2023]
Abstract
Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.
Collapse
Affiliation(s)
- Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; Research Center for Genetic Engineering, National Research and Innovation Agency Republic of Indonesia, Cibinong, Bogor, Indonesia
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
48
|
Sagnak Yilmaz Z, Sarioglu S. Molecular Pathology of Micropapillary Carcinomas: Is Characteristic Morphology Related to Molecular Mechanisms? Appl Immunohistochem Mol Morphol 2023; 31:267-277. [PMID: 37036419 DOI: 10.1097/pai.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
Micropapillary carcinoma is an entity defined histologically in many organs. It is associated with lymph node metastasis and poor prognosis. The main mechanism for its histopathologic appearance is reverse polarization. Although the studies on this subject are limited, carcinomas with micropapillary morphology observed in different organs are examined by immunohistochemical and molecular methods. Differences are shown in these tumors compared with conventional carcinomas regarding the rate of somatic mutations, mRNA and miRNA expressions, and protein expression levels. TP53 , PIK3CA , TERT , KRAS , EGFR , MYC , FGFR1 , BRAF , AKT1 , HER2/ERBB2 , CCND1 , and APC mutations, which genes frequently detected in solid tumors, have also been detected in invasive micropapillary carcinoma (IMPC) in various organs. 6q chromosome loss, DNAH9 , FOXO3 , SEC. 63 , and FMN2 gene mutations associated with cell polarity or cell structure and skeleton have also been detected in IMPCs. Among the proteins that affect cell polarity, RAC1, placoglobin, as well as CLDNs, LIN7A, ZEB1, CLDN1, DLG1, CDH1 (E-cadherin), OCLN, AFDN/AF6, ZEB1, SNAI2, ITGA1 (integrin alpha 1), ITGB1 (integrin beta 1), RHOA, Jagged-1 (JAG1) mRNAs differentially express between IMPC and conventional carcinomas. Prediction of prognosis and targeted therapy may benefit from the understanding of molecular mechanisms of micropapillary morphology. This review describes the molecular pathologic mechanisms underlying the micropapillary changes of cancers in various organs in a cell polarity-related dimension.
Collapse
Affiliation(s)
- Zeynep Sagnak Yilmaz
- Department of Molecular Pathology, Dokuz Eylül University Graduate School of Health Sciences
- Pathology Department, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Sulen Sarioglu
- Department of Molecular Pathology, Dokuz Eylül University Graduate School of Health Sciences
- Pathology Department, Dokuz Eylül University Faculty of Medicine, Izmir
| |
Collapse
|
49
|
Niñoles R, Arjona P, Azad SM, Hashim A, Casañ J, Bueso E, Serrano R, Espinosa A, Molina I, Gadea J. Kaempferol-3-rhamnoside overaccumulation in flavonoid 3'-hydroxylase tt7 mutants compromises seed coat outer integument differentiation and seed longevity. THE NEW PHYTOLOGIST 2023; 238:1461-1478. [PMID: 36829299 DOI: 10.1111/nph.18836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Seeds slowly accumulate damage during storage, which ultimately results in germination failure. The seed coat protects the embryo from the external environment, and its composition is critical for seed longevity. Flavonols accumulate in the outer integument. The link between flavonol composition and outer integument development has not been explored. Genetic, molecular and ultrastructural assays on loss-of-function mutants of the flavonoid biosynthesis pathway were used to study the effect of altered flavonoid composition on seed coat development and seed longevity. Controlled deterioration assays indicate that loss of function of the flavonoid 3' hydroxylase gene TT7 dramatically affects seed longevity and seed coat development. Outer integument differentiation is compromised from 9 d after pollination in tt7 developing seeds, resulting in a defective suberin layer and incomplete degradation of seed coat starch. These distinctive phenotypes are not shared by other mutants showing abnormal flavonoid composition. Genetic analysis indicates that overaccumulation of kaempferol-3-rhamnoside is mainly responsible for the observed phenotypes. Expression profiling suggests that multiple cellular processes are altered in the tt7 mutant. Overaccumulation of kaempferol-3-rhamnoside in the seed coat compromises normal seed coat development. This observation positions TRANSPARENT TESTA 7 and the UGT78D1 glycosyltransferase, catalysing flavonol 3-O-rhamnosylation, as essential players in the modulation of seed longevity.
Collapse
Affiliation(s)
- Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Paloma Arjona
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Sepideh M Azad
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Aseel Hashim
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Jose Casañ
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Ana Espinosa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Isabel Molina
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Jose Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| |
Collapse
|
50
|
Tang X, Ren J, Wei X, Wang T, Li H, Sun Y, Liu Y, Chi M, Zhu S, Lu L, Zhang J, Yang B. Exploiting synergistic effect of CO/NO gases for soft tissue transplantation using a hydrogel patch. Nat Commun 2023; 14:2417. [PMID: 37105981 PMCID: PMC10140290 DOI: 10.1038/s41467-023-37959-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Autologous skin flap transplantation is a common method for repairing complex soft tissue defects caused by cancer, trauma, and congenital malformations. Limited blood supply range and post-transplantation ischemia-reperfusion injury can lead to distal necrosis of the flap and long-term functional loss, which severely restricts the decision-making regarding the optimal surgical plan. To address this issue, we develop a hydrogel patch that releases carbon monoxide and nitric oxide gases on demand, to afford a timely blood supply for skin flap transplantation during surgery. Using an ischemia-reperfusion dorsal skin flap model in rats, we show that the hydrogel patch maintains the immediate opening of blood flow channels in transplanted tissue and effective blood perfusion throughout the perioperative period, activating perfusion of the hemodynamic donor site. We demonstrate that the hydrogel patch promotes distal vascularization and long-term functional reconstruction of transplanted tissues by inhibiting inflammatory damage and accelerating blood vessel formation.
Collapse
Affiliation(s)
- Xiaoduo Tang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Jingyan Ren
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Xin Wei
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Tao Wang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Yihan Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Yang Liu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Mingli Chi
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Laijin Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| |
Collapse
|