1
|
Krawczyk A, Sladowska GE, Strzalka-Mrozik B. The Role of the Gut Microbiota in Modulating Signaling Pathways and Oxidative Stress in Glioma Therapies. Cancers (Basel) 2025; 17:719. [PMID: 40075568 PMCID: PMC11899293 DOI: 10.3390/cancers17050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Tumors of the central nervous system (CNS), especially gliomas, pose a significant clinical challenge due to their aggressive nature and limited therapeutic options. Emerging research highlights the critical role of the gut microbiota in regulating CNS health and disease. The composition of the gut microbiota is essential for maintaining CNS homeostasis, as it modulates immune responses, oxidative status, and neuroinflammation. The microbiota-gut-brain axis, a bidirectional communication network, plays a pivotal role in cancer and CNS disease treatment, exerting its influence through neural, endocrine, immunological, and metabolic pathways. Recent studies suggest that the gut microbiota influences the solidification of the tumor microenvironment and that dysbiosis may promote glioma development by modulating systemic inflammation and oxidative stress, which contributes to tumorigenesis and CNS tumor progression. This review interrogates the impact of the gut microbiota on glioma, focusing on critical pathways such as NF-κB, MAPK, PI3K/Akt/mTOR, and Kynurenine/AhR that drive tumor proliferation, immune evasion, and therapy resistance. Furthermore, we explore emerging therapeutic strategies, including probiotics and microbiota-based interventions, which show potential in modulating these pathways and enhancing immunotherapies such as checkpoint inhibitors. By focusing on the multifaceted interactions between the gut microbiota, oxidative stress, and CNS tumors, this review highlights the potential of microbiota-targeted therapies and their manipulation to complement and enhance current treatments.
Collapse
Affiliation(s)
| | | | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (A.K.); (G.E.S.)
| |
Collapse
|
2
|
Mustafa A, Shabbir M, Badshah Y, Khan K, Abid F, Trembley JH, Afsar T, Almajwal A, Razak S. Genetic polymorphism in untranslated regions of PRKCZ influences mRNA structure, stability and binding sites. BMC Cancer 2024; 24:1147. [PMID: 39272077 PMCID: PMC11401371 DOI: 10.1186/s12885-024-12900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Variations in untranslated regions (UTR) alter regulatory pathways impacting phenotype, disease onset, and course of disease. Protein kinase C Zeta (PRKCZ), a serine-threonine kinase, is implicated in cardiovascular, neurological and oncological disorders. Due to limited research on PRKCZ, this study aimed to investigate the impact of UTR genetic variants' on binding sites for transcription factors and miRNA. RNA secondary structure, eQTLs, and variation tolerance analysis were also part of the study. METHODS The data related to PRKCZ gene variants was downloaded from the Ensembl genome browser, COSMIC and gnomAD. The RegulomeDB database was used to assess the functional impact of 5' UTR and 3'UTR variants. The analysis of the transcription binding sites (TFBS) was done through the Alibaba tool, and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) was employed to identify pathways associated with PRKCZ. To predict the effect of variants on microRNA binding sites, PolymiRTS was utilized for 3' UTR variants, and the SNPinfo tool was used for 5' UTR variants. RESULTS The results obtained indicated that a total of 24 variants present in the 3' UTR and 25 variants present in the 5' UTR were most detrimental. TFBS analysis revealed that 5' UTR variants added YY1, repressor, and Oct1, whereas 3' UTR variants added AP-2alpha, AhR, Da, GR, and USF binding sites. The study predicted TFs that influenced PRKCZ expression. RNA secondary structure analysis showed that eight 5' UTR and six 3' UTR altered the RNA structure by either removal or addition of the stem-loop. The microRNA binding site analysis highlighted that seven 3' UTR and one 5' UTR variant altered the conserved site and also created new binding sites. eQTLs analysis showed that one variant was associated with PRKCZ expression in the lung and thyroid. The variation tolerance analysis revealed that PRKCZ was an intolerant gene. CONCLUSION This study laid the groundwork for future studies aimed at targeting PRKCZ as a therapeutic target.
Collapse
Affiliation(s)
- Aneela Mustafa
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Maria Shabbir
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | | | - Fizzah Abid
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
4
|
Gonçalves TL, de Araújo LP, Pereira Ferrer V. Tamoxifen as a modulator of CXCL12-CXCR4-CXCR7 chemokine axis: A breast cancer and glioblastoma view. Cytokine 2023; 170:156344. [PMID: 37639844 DOI: 10.1016/j.cyto.2023.156344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
The chemokine stromal cell-derived-factor 1 (SDF)-1/CXCL12 acts by binding to its receptors, the CXC-4 chemokine receptor (CXCR4) and the CXC-7 chemokine receptor (CXCR7). The binding of CXCL12 to its receptors results in downstream signaling that leads to cell survival, proliferation and migration of tumor cells. CXCL12 and CXCR4 are highly expressed in breast cancer (BC) and glioblastoma (GBM) compared to normal cells. High expression of this chemokine axis correlates with increased therapy resistance and grade, tumor spread and poorer prognosis in these tumors. Tamoxifen (TMX) is a selective estrogen receptor modulator (SERM) that inhibits the expression of estrogen-regulated genes, including growth and angiogenic factors secreted by tumor cells. Additionally, TMX targets several proteins, such as protein kinase C (PKC), phospholipase C (PLC), P-glycoprotein (PgP), phosphatidylinositol-3-kinase (PI3K) and ion channels. This drug showed promising antitumor activity against both BC and GBM cells. In this review, we discuss the role of the CXCL12-CXCR4-CXCR7 chemokine axis in BC and GBM tumor biology and propose TMX as a potential modulator of this axis in these tumors. TMX modulates the CXCL12-CXCR4-CXCR7 axis in BC, however, there are no studies on this in GBM. We propose that studying this axis in GBM cells/patients treated with TMX might be beneficial for these patients. TMX inhibits important signaling pathways in these tumors and the activation of this chemokine axis is associated with increased therapy resistance.
Collapse
Affiliation(s)
- Thaynan Lopes Gonçalves
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Postgraduate Program in Pathological Anatomy, Faculty of Medicine, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Luanna Prudencio de Araújo
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Valéria Pereira Ferrer
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Postgraduate Program in Pathological Anatomy, Faculty of Medicine, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Knowles T, Huang T, Qi J, An S, Burket N, Cooper S, Nazarian J, Saratsis AM. LIN28B and Let-7 in Diffuse Midline Glioma: A Review. Cancers (Basel) 2023; 15:3241. [PMID: 37370851 DOI: 10.3390/cancers15123241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Diffuse midline glioma (DMG) is the most lethal of all childhood cancers. DMGs are driven by histone-tail-mutation-mediated epigenetic dysregulation and partner mutations in genes controlling proliferation and migration. One result of this epigenetic and genetic landscape is the overexpression of LIN28B RNA binding protein. In other systems, LIN28B has been shown to prevent let-7 microRNA biogenesis; however, let-7, when available, faithfully suppresses tumorigenic pathways and induces cellular maturation by preventing the translation of numerous oncogenes. Here, we review the current literature on LIN28A/B and the let-7 family and describe their role in gliomagenesis. Future research is then recommended, with a focus on the mechanisms of LIN28B overexpression and localization in DMG.
Collapse
Affiliation(s)
- Truman Knowles
- W.M. Keck Science Department, Scripps, Pitzer, and Claremont McKenna Colleges, Claremont, CA 91711, USA
| | - Tina Huang
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jin Qi
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shejuan An
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Noah Burket
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Cooper
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Javad Nazarian
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Zurich Children's Hospital, 8032 Zurich, Switzerland
| | - Amanda M Saratsis
- Department of Neurosurgery, Lutheran General Hospital, Park Ridge, IL 60068, USA
| |
Collapse
|
6
|
El Atat O, Naser R, Abdelkhalek M, Habib RA, El Sibai M. Molecular targeted therapy: A new avenue in glioblastoma treatment. Oncol Lett 2022; 25:46. [PMID: 36644133 PMCID: PMC9811647 DOI: 10.3892/ol.2022.13632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, also referred to as glioblastoma multiforme (GBM), is grade IV astrocytoma characterized by being fast-growing and the most aggressive brain tumor. In adults, it is the most prevalent type of malignant brain tumor. Despite the advancements in both diagnosis tools and therapeutic treatments, GBM is still associated with poor survival rate without any statistically significant improvement in the past three decades. Patient's genome signature is one of the key factors causing the development of this tumor, in addition to previous radiation exposure and other environmental factors. Researchers have identified genomic and subsequent molecular alterations affecting core pathways that trigger the malignant phenotype of this tumor. Targeting intrinsically altered molecules and pathways is seen as a novel avenue in GBM treatment. The present review shed light on signaling pathways and intrinsically altered molecules implicated in GBM development. It discussed the main challenges impeding successful GBM treatment, such as the blood brain barrier and tumor microenvironment (TME), the plasticity and heterogeneity of both GBM and TME and the glioblastoma stem cells. The present review also presented current advancements in GBM molecular targeted therapy in clinical trials. Profound and comprehensive understanding of molecular participants opens doors for innovative, more targeted and personalized GBM therapeutic modalities.
Collapse
Affiliation(s)
- Oula El Atat
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Rayan Naser
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Maya Abdelkhalek
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon,Correspondence to: Professor Mirvat El Sibai, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Koraytem Street, Beirut 1102 2801, Lebanon, E-mail:
| |
Collapse
|
7
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
8
|
Zahra K, Shabbir M, Badshah Y, Trembley JH, Badar Z, Khan K, Afsar T, Almajwal A, Alruwaili NW, Razak S. Determining KLF14 tertiary structure and diagnostic significance in brain cancer progression. Sci Rep 2022; 12:8039. [PMID: 35577881 PMCID: PMC9110742 DOI: 10.1038/s41598-022-12072-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Expression analysis of new protein targets may play a crucial role in the early detection and diagnosis of brain tumor progression. The study aimed to investigate the possible relation of KLF14, TPD52, miR-124, and PKCε in the development and progression of brain cancer and space occupying lesion (SOL) of the brain. One hundred human blood samples comprising varying diagnostic groups (SOL brain, grade I, II, III, IV) were analyzed by real-time quantitative PCR to determine the expression level of KLF14, TPD52, miR-124, and PKCε. TPD52 and PKCε were upregulated in brain cancer by 2.5- and 1.6-fold, respectively, whereas, KLF14 and miR-124 were downregulated in brain cancer. In metastatic and high-grade brain cancer, TPD52 and PKCε expression were up-regulated and KLF14 and miR-124 expression were down-regulated. Further, these genes were found to be differentially expressed in the blood of patients with SOL. Upregulation of TPD52 and PKCε, however, reduced expression of KLF14 and miR-124 in SOL of the brain as compared to healthy controls. Expression analysis of TPD52, KLF14, miR-124, and PKCε provided useful information on the differences existing between the normal brain and SOL, in addition to gliomas; thus, might prove to be useful having diagnostic or prognostic value.
Collapse
Affiliation(s)
- Kainat Zahra
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Zunaira Badar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Hernández-Rojas R, Jiménez-Arellano C, de la Fuente-Granada M, Ordaz-Rosado D, García-Becerra R, Valencia-Mayoral P, Álvarez-Arellano L, Eguía-Aguilar P, Velasco-Velázquez MA, González-Arenas A. The interplay between estrogen receptor beta and protein kinase C, a crucial collaboration for medulloblastoma cell proliferation and invasion. Cell Signal 2022; 92:110246. [PMID: 35033667 DOI: 10.1016/j.cellsig.2022.110246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/03/2022]
Abstract
Medulloblastoma (MB) is the most common and aggressive pediatric intracranial tumor. Estrogen receptor β (ERβ) expression correlates with MB development and its phosphorylation modifies its transcriptional activity in a ligand-dependent or independent manner. Using in silico tools, we have identified several residues in ERβ protein as potential targets of protein kinases C (PKCs) α and δ. Using Daoy cells, we observed that PKCα and PKCδ associate with ERβ and induce its phosphorylation. The activation of ERβ promotes MB cells proliferation and invasion, and PKCs downregulation dysregulates these steroid receptor mediated processes. Our data suggest that these kinases may play a crucial role in the regulation of the ERβ transcriptional activity. Overexpression of both PKCα and PKCδ in MB biopsies samples supports their relevance in MB progression.
Collapse
Affiliation(s)
- Rubí Hernández-Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Carolina Jiménez-Arellano
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Marisol de la Fuente-Granada
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - Rocío García-Becerra
- Programa de Investigación de Cáncer de Mama y Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Pedro Valencia-Mayoral
- Departamento de Patología, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, México
| | | | - Pilar Eguía-Aguilar
- Laboratorio de Biología Molecular, Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, México
| | - Marco A Velasco-Velázquez
- Laboratorio de Farmacología Molecular, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.
| |
Collapse
|
10
|
Fabro F, Lamfers MLM, Leenstra S. Advancements, Challenges, and Future Directions in Tackling Glioblastoma Resistance to Small Kinase Inhibitors. Cancers (Basel) 2022; 14:600. [PMID: 35158868 PMCID: PMC8833415 DOI: 10.3390/cancers14030600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Despite clinical intervention, glioblastoma (GBM) remains the deadliest brain tumor in adults. Its incurability is partly related to the establishment of drug resistance, both to standard and novel treatments. In fact, even though small kinase inhibitors have changed the standard clinical practice for several solid cancers, in GBM, they did not fulfill this promise. Drug resistance is thought to arise from the heterogeneity of GBM, which leads the development of several different mechanisms. A better understanding of the evolution and characteristics of drug resistance is of utmost importance to improve the current clinical practice. Therefore, the development of clinically relevant preclinical in vitro models which allow careful dissection of these processes is crucial to gain insights that can be translated to improved therapeutic approaches. In this review, we first discuss the heterogeneity of GBM, which is reflected in the development of several resistance mechanisms. In particular, we address the potential role of drug resistance mechanisms in the failure of small kinase inhibitors in clinical trials. Finally, we discuss strategies to overcome therapy resistance, particularly focusing on the importance of developing in vitro models, and the possible approaches that could be applied to the clinic to manage drug resistance.
Collapse
Affiliation(s)
| | | | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| |
Collapse
|
11
|
Liu L, Zhang Y, Niu G, Li Q, Li Z, Zhu T, Feng C, Liu X, Zhang Y, Xu T, Chen R, Teng X, Zhang R, Zou D, Ma L, Zhang Z. BrainBase: a curated knowledgebase for brain diseases. Nucleic Acids Res 2022; 50:D1131-D1138. [PMID: 34718720 PMCID: PMC8728122 DOI: 10.1093/nar/gkab987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022] Open
Abstract
Brain is the central organ of the nervous system and any brain disease can seriously affect human health. Here we present BrainBase (https://ngdc.cncb.ac.cn/brainbase), a curated knowledgebase for brain diseases that aims to provide a whole picture of brain diseases and associated genes. Specifically, based on manual curation of 2768 published articles along with information retrieval from several public databases, BrainBase features comprehensive collection of 7175 disease-gene associations spanning a total of 123 brain diseases and linking with 5662 genes, 16 591 drug-target interactions covering 2118 drugs/chemicals and 623 genes, and five types of specific genes in light of expression specificity in brain tissue/regions/cerebrospinal fluid/cells. In addition, considering the severity of glioma among brain tumors, the current version of BrainBase incorporates 21 multi-omics datasets, presents molecular profiles across various samples/conditions and identifies four groups of glioma featured genes with potential clinical significance. Collectively, BrainBase integrates not only valuable curated disease-gene associations and drug-target interactions but also molecular profiles through multi-omics data analysis, accordingly bearing great promise to serve as a valuable knowledgebase for brain diseases.
Collapse
Affiliation(s)
- Lin Liu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Yang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianpeng Li
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Li
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changrui Feng
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaonan Liu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Xu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Ruru Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xufei Teng
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongqin Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zou
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Lina Ma
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ramaiah MJ, Kumar KR. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol Biol Rep 2021; 48:4813-4835. [PMID: 34132942 DOI: 10.1007/s11033-021-06462-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the aggressive brain cancers with patients having less survival period upto 12-15 months. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase, belongs to the phosphatidylinositol 3-kinases (PI3K) pathway and is involved in various cellular processes of cancer cells. Cancer metabolism is regulated by mTOR and its components. mTOR forms two complexes as mTORC1 and mTORC2. Studies have identified the key component of the mTORC2 complex, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) plays a prominent role in the regulation of cancer cell proliferation and metabolism. Apart, growth factor receptor signaling such as epidermal growth factor signaling mediated by epidermal growth factor receptor (EGFR) regulates cancer-related processes. In EGFR signaling various other signaling cascades such as phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR pathway) and Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) -dependent signaling cross-talk each other. From various studies about GBM, it is very well established that Rictor and EGFR mediated signaling pathways majorly playing a pivotal role in chemoresistance and tumor aggressiveness. Recent studies have shown that non-coding RNAs such as microRNAs (miRs) and long non-coding RNAs (lncRNAs) regulate the EGFR and Rictor and sensitize the cells towards chemotherapeutic agents. Thus, understanding of microRNA mediated regulation of EGFR and Rictor will help in cancer prevention and management as well as a future therapy.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| | - K Rohil Kumar
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
13
|
Protein Kinase C as a Therapeutic Target in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22115527. [PMID: 34073823 PMCID: PMC8197251 DOI: 10.3390/ijms22115527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Driver-directed therapeutics have revolutionized cancer treatment, presenting similar or better efficacy compared to traditional chemotherapy and substantially improving quality of life. Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest. Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC inhibition. PKC isoforms α, ε, η, ι, ζ upregulation has been reported in lung cancer, and overexpression correlates with worse prognosis in NSCLC patients. Most importantly, PKC isozymes have been established as mediators of resistance to tyrosine kinase inhibitors in NSCLC. Unfortunately, however, PKC-directed therapeutics have yielded unsatisfactory results, likely due to a lack of specific evaluation for PKC. To achieve satisfactory results in clinical trials, predictive biomarkers of PKC activity must be established and screened for prior to patient enrollment. Furthermore, tandem inhibition of PKC and molecular drivers may be a potential therapeutic strategy to prevent the emergence of resistance in NSCLC.
Collapse
|
14
|
Dagdelen DN, Akkulak A, Donmez Yalcin G. The investigation of glutamate transporter 1 (GLT-1) degradation pathway in glioblastoma cells. Mol Biol Rep 2021; 48:3495-3502. [PMID: 34003424 DOI: 10.1007/s11033-021-06407-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 11/25/2022]
Abstract
Glioblastoma multiform is a primary brain tumor derived from glial cells. The aim of this study is to investigate how glutamate metabolism is regulated by glutamate transporter 1 (GLT-1) degradation pathway in glioblastoma and glial cell lines. The protein expression levels of GLT-1, total ubiquitin, protein kinase C (PKC) proteins involved in the GLT-1 degradation pathway were measured by the western blot technique. Additionally, in glial and glioblastoma cells, the level of glutamate accumulated in the medium and the lysates was measured with the glutamate assay. GLT-1 protein expression was increased significantly in glioblastoma cells. The expression levels of the PKC protein and total ubiquitin were found to be decreased in glioblastoma cells although not significantly. The glutamate accumulated in the medium and lysates of glioblastoma cells is reduced compared to glial cells. Further research regarding excitotoxicity in glioblastoma focusing on GLT-1 degradation or activation pathway may create new opportunities of drug and treatment development.
Collapse
Affiliation(s)
- Duriye Nur Dagdelen
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Aysenur Akkulak
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Gizem Donmez Yalcin
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
| |
Collapse
|
15
|
Pieles O, Reichert TE, Morsczeck C. Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both β-catenin and NF-κB. Stem Cell Res Ther 2021; 12:242. [PMID: 33853677 PMCID: PMC8048169 DOI: 10.1186/s13287-021-02313-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human dental follicle cells (DFCs) are the precursor cells of the periodontium with a high potential for regenerative therapies of (alveolar) bone. However, the molecular mechanisms of osteogenic differentiation are inadequately understood. Classical isoforms of protein kinase C (PKC) are reported to inhibit osteogenesis of stem/precursor cells. This study evaluated the role of classical PKCs and potential downstream targets on the osteogenic differentiation of DFCs. METHODS DFCs were osteogenic differentiated with dexamethasone or bone morphogenetic protein 2 (BMP2). Expression of PKC and potential upstream/downstream regulators was manipulated using activators, inhibitors, and small interfering ribonucleic acid (siRNA). Expression of proteins was examined by Western blot analysis, while the activation levels of enzymes and transcription factors were examined by their phosphorylation states or by specific activation assays. Expression levels of osteogenic markers were examined by RT-qPCR (reverse transcription-quantitative polymerase chain reaction) analysis. Activity of alkaline phosphatase (ALP) and accumulation of calcium nodules by Alizarin Red staining were measured as indicators of mineralization. RESULTS Classical PKCs like PKCα inhibit the osteogenic differentiation of DFCs, but do not interfere with the induction of differentiation. Inhibition of classical PKCs by Gö6976 enhanced activity of Akt after osteogenic induction. Akt was also regulated during differentiation and especially disturbed BMP2-induced mineralization. The PKC/Akt axis was further shown to regulate the canonical Wnt signaling pathway and eventually nuclear expression of active β-catenin during dexamethasone-induced osteogenesis. Moreover, the nuclear factor "kappa-light-chain-enhancer" of activated B cells (NF-κB) pathway is regulated during osteogenic differentiation of DFCs and via the PKC/Akt axis and disturbs the mineralization. Upstream, parathyroid hormone-related protein (PTHrP) sustained the activity of PKC, while Wnt5a inhibited it. CONCLUSIONS Our results demonstrate that classical PKCs like PKCα and Akt regulate the osteogenic differentiation of DFCs partly via both β-catenin and NF-κB.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
16
|
Targeting Protein Kinase C in Glioblastoma Treatment. Biomedicines 2021; 9:biomedicines9040381. [PMID: 33916593 PMCID: PMC8067000 DOI: 10.3390/biomedicines9040381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor and is associated with a poor prognosis. Despite the use of combined treatment approaches, recurrence is almost inevitable and survival longer than 14 or 15 months after diagnosis is low. It is therefore necessary to identify new therapeutic targets to fight GBM progression and recurrence. Some publications have pointed out the role of glioma stem cells (GSCs) as the origin of GBM. These cells, with characteristics of neural stem cells (NSC) present in physiological neurogenic niches, have been proposed as being responsible for the high resistance of GBM to current treatments such as temozolomide (TMZ). The protein Kinase C (PKC) family members play an essential role in transducing signals related with cell cycle entrance, differentiation and apoptosis in NSC and participate in distinct signaling cascades that determine NSC and GSC dynamics. Thus, PKC could be a suitable druggable target to treat recurrent GBM. Clinical trials have tested the efficacy of PKCβ inhibitors, and preclinical studies have focused on other PKC isozymes. Here, we discuss the idea that other PKC isozymes may also be involved in GBM progression and that the development of a new generation of effective drugs should consider the balance between the activation of different PKC subtypes.
Collapse
|
17
|
Valdés-Rives SA, Arcos-Montoya D, de la Fuente-Granada M, Zamora-Sánchez CJ, Arias-Romero LE, Villamar-Cruz O, Camacho-Arroyo I, Pérez-Tapia SM, González-Arenas A. LPA 1 Receptor Promotes Progesterone Receptor Phosphorylation through PKCα in Human Glioblastoma Cells. Cells 2021; 10:807. [PMID: 33916643 PMCID: PMC8066126 DOI: 10.3390/cells10040807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
Lysophosphatidic acid (LPA) induces a wide range of cellular processes and its signaling is increased in several cancers including glioblastoma (GBM), a high-grade astrocytoma, which is the most common malignant brain tumor. LPA1 receptor is expressed in GBM cells and its signaling pathways activate protein kinases C (PKCs). A downstream target of PKC, involved in GBM progression, is the intracellular progesterone receptor (PR), which can be phosphorylated by this enzyme, increasing its transcriptional activity. Interestingly, in GBM cells, PKCα isotype translocates to the nucleus after LPA stimulation, resulting in an increase in PR phosphorylation. In this study, we determined that LPA1 receptor activation induces protein-protein interaction between PKCα and PR in human GBM cells; this interaction increased PR phosphorylation in serine400. Moreover, LPA treatment augmented VEGF transcription, a known PR target. This effect was blocked by the PR selective modulator RU486; also, the activation of LPA1/PR signaling promoted migration of GBM cells. Interestingly, using TCGA data base, we found that mRNA expression of LPAR1 increases according to tumor malignancy and correlates with a lower survival in grade III astrocytomas. These results suggest that LPA1/PR pathway regulates GBM progression.
Collapse
Affiliation(s)
- Silvia Anahi Valdés-Rives
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (S.A.V.-R.); (D.A.-M.); (M.d.l.F.-G.)
| | - Denisse Arcos-Montoya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (S.A.V.-R.); (D.A.-M.); (M.d.l.F.-G.)
| | - Marisol de la Fuente-Granada
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (S.A.V.-R.); (D.A.-M.); (M.d.l.F.-G.)
| | - Carmen J. Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (C.J.Z.-S.); (I.C.-A.)
| | - Luis Enrique Arias-Romero
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, 54090 Estado de México, Mexico; (O.V.-C.); (L.E.A.-R.)
| | - Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, 54090 Estado de México, Mexico; (O.V.-C.); (L.E.A.-R.)
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (C.J.Z.-S.); (I.C.-A.)
| | - Sonia M. Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11350 Ciudad de México, Mexico;
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (S.A.V.-R.); (D.A.-M.); (M.d.l.F.-G.)
| |
Collapse
|
18
|
Tang M, Tiwari SK, Agrawal K, Tan M, Dang J, Tam T, Tian J, Wan X, Schimelman J, You S, Xia Q, Rana TM, Chen S. Rapid 3D Bioprinting of Glioblastoma Model Mimicking Native Biophysical Heterogeneity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006050. [PMID: 33502104 PMCID: PMC8049977 DOI: 10.1002/smll.202006050] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/05/2020] [Indexed: 05/14/2023]
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor characterized by high cellular and molecular heterogeneity, hypervascularization, and innate drug resistance. Cellular components and extracellular matrix (ECM) are the two primary sources of heterogeneity in GBM. Here, biomimetic tri-regional GBM models with tumor regions, acellular ECM regions, and an endothelial region with regional stiffnesses patterned corresponding to the GBM stroma, pathological or normal brain parenchyma, and brain capillaries, are developed. Patient-derived GBM cells, human endothelial cells, and hyaluronic acid derivatives are used to generate a species-matched and biochemically relevant microenvironment. This in vitro study demonstrates that biophysical cues are involved in various tumor cell behaviors and angiogenic potentials and promote different molecular subtypes of GBM. The stiff models are enriched in the mesenchymal subtype, exhibit diffuse invasion of tumor cells, and induce protruding angiogenesis and higher drug resistance to temozolomide. Meanwhile, the soft models demonstrate enrichment in the classical subtype and support expansive cell growth. The three-dimensional bioprinting technology utilized in this study enables rapid, flexible, and reproducible patient-specific GBM modeling with biophysical heterogeneity that can be employed by future studies as a tunable system to interrogate GBM disease mechanisms and screen drug compounds.
Collapse
Affiliation(s)
- Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Kriti Agrawal
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew Tan
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Jason Dang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Trevor Tam
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jing Tian
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Xueyi Wan
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Qinghui Xia
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
19
|
Pottoo FH, Javed MN, Rahman JU, Abu-Izneid T, Khan FA. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Semin Cancer Biol 2021; 69:391-398. [PMID: 32302695 DOI: 10.1016/j.semcancer.2020.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive (WHO grade IV) form of diffuse glioma endowed with tremendous invasive capacity. The availability of narrow therapeutic choices for GBM management adds to the irony, even the post-treatment median survival time is roughly around 14-16 months. Gene mutations seem to be cardinal to GBM formation, owing to involvement of amplified and mutated receptor tyrosine kinase (RTK)-encoding genes, leading to dysregulation of growth factor signaling pathways. Of-late, the role of different microRNAs (miRNAs) in progression and proliferation of GBM was realized, which lead to their burgeon potential applications for diagnostic and therapeutic purposes. miRNA signatures are intricately linked with onset and progression of GBM. Although, progression of GBM causes significant changes in the BBB to form BBTB, but still efficient passage of cancer therapeutics, including antibodies and miRNAs are prevented, leading to low bioavailability. Recent developments in the nanomedicine field provide novel approaches to manage GBM via efficient and brain targeted delivery of miRNAs either alone or as part of cytotoxic pharmaceutical composition, thereby modulating cell signaling in well predicted manner to promise positive therapeutic outcomes.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India.
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
20
|
Dey A, Islam SMA, Patel R, Acevedo-Duncan M. The interruption of atypical PKC signaling and Temozolomide combination therapy against glioblastoma. Cell Signal 2020; 77:109819. [PMID: 33147518 DOI: 10.1016/j.cellsig.2020.109819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
Current treatment options of glioblastoma include chemotherapy and limited surgical resection. Temozolomide (TMZ) is the current therapeutic choice for chemotherapy. Still, it has severe limitations due to the development of resistance that occurs by genetic modification and constitutive activation of several cell signaling pathways. Therefore, it is essential to develop combination therapy of TMZ with other novel compounds to prevent the development of chemo-resistance. In this study, we used two inhibitors; ICA, an inhibitor of PKC-ι and ζ-Stat, an inhibitor of PKC-ζ. T98G and U87MG glioblastoma cells were treated with either ICA or ζ-stat or TMZ monotherapies, as well as TMZ were combined with either ICA or ζ-stat for five consecutive days. Our in vitro results exhibited that ICA when combined with TMZ, significantly decreased the viability of cancerous cells compared with untreated or TMZ or ICA monotherapies. Additionally, glioblastoma cells were remarkably undergoing apoptosis against the combination treatment of TMZ and ICA nucleotide compared with untreated control cells, as suggested by our Annexin-V/PI flow cytometric analysis. Moreover, the combination of TMZ and ICA also decreased the invasion of glioblastoma cell lines by acting on FAK/Paxillin pathway, as evidenced by scratch assay, transwell invasion assay, Western blot and immunoprecipitation analysis. Furthermore, our in vivo data presented that the combination of ICA and TMZ also reduced glioblastoma tumor growth and volume in mice. These data suggest that atypical PKCs, particularly PKC-ι might be an important therapeutic target as adjuvant therapy in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Avijit Dey
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, United States of America
| | - S M Anisul Islam
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, United States of America
| | - Rekha Patel
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, United States of America
| | - Mildred Acevedo-Duncan
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, United States of America.
| |
Collapse
|
21
|
Juraszek B, Czarnecka-Herok J, Nałęcz KA. Glioma cells survival depends both on fatty acid oxidation and on functional carnitine transport by SLC22A5. J Neurochem 2020; 156:642-657. [PMID: 32654140 DOI: 10.1111/jnc.15124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Gliomas are the most common primary malignant brain tumor in adults, but current treatment for glioblastoma multiforme (GBM) is insufficient. Even though glucose is the primary energetic substrate of glioma cells, they are capable of using fatty acids to generate energy. Fatty acid oxidation (FAO) in mitochondria requires L-carnitine for the formation of acylcarnitines by carnitine palmitoylotransferase 1 (CPT1) and further transport of acyl carnitine esters to mitochondrial matrix. Carnitine can be delivered to the cell by an organic cation/carnitine transporter-SLC22A5/OCTN2. In this study, we show that SLC22A5 is up-regulated in glioma cells and that they vary in the amount of SLC22A5 in the plasma membrane. Research on glioma cells (lines U87MG, LN229, T98G) with various expression levels of SLC22A5 demonstrated a correlation between the FAO rate, the level of the transporter, and the carnitine transport. Inhibition of carnitine transport by chemotherapeutics, such as vinorelbine and vincristine, led to inhibition of FAO, which was further intensified by etomoxir-a CPT1 inhibitor. This led to reduced viability and increased apoptosis in glioma cells. Modulation of SLC22A5 level by either silencing or up-regulation of SLC22A5 also affected glioma cell survival in a FAO-dependent way. These observations suggest that the survival of glioma cells is heavily reliant on both FAO and SLC22A5 activity, as well as that CPT1 and SLC22A5 might be possible drug targets.
Collapse
Affiliation(s)
- Barbara Juraszek
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Czarnecka-Herok
- Laboratory of Molecular Bases of Ageing, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna A Nałęcz
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
22
|
Liu L, Wang G, Wang L, Yu C, Li M, Song S, Hao L, Ma L, Zhang Z. Computational identification and characterization of glioma candidate biomarkers through multi-omics integrative profiling. Biol Direct 2020; 15:10. [PMID: 32539851 PMCID: PMC7294636 DOI: 10.1186/s13062-020-00264-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glioma is one of the most common malignant brain tumors and exhibits low resection rate and high recurrence risk. Although a large number of glioma studies powered by high-throughput sequencing technologies have led to massive multi-omics datasets, there lacks of comprehensive integration of glioma datasets for uncovering candidate biomarker genes. RESULTS In this study, we collected a large-scale assemble of multi-omics multi-cohort datasets from worldwide public resources, involving a total of 16,939 samples across 19 independent studies. Through comprehensive molecular profiling across different datasets, we revealed that PRKCG (Protein Kinase C Gamma), a brain-specific gene detectable in cerebrospinal fluid, is closely associated with glioma. Specifically, it presents lower expression and higher methylation in glioma samples compared with normal samples. PRKCG expression/methylation change from high to low is indicative of glioma progression from low-grade to high-grade and high RNA expression is suggestive of good survival. Importantly, PRKCG in combination with MGMT is effective to predict survival outcomes in a more precise manner. CONCLUSIONS PRKCG bears the great potential for glioma diagnosis, prognosis and therapy, and PRKCG-like genes may represent a set of important genes associated with different molecular mechanisms in glioma tumorigenesis. Our study indicates the importance of computational integrative multi-omics data analysis and represents a data-driven scheme toward precision tumor subtyping and accurate personalized healthcare.
Collapse
Affiliation(s)
- Lin Liu
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangyu Wang
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
- Present Address: The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Chunlei Yu
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengwei Li
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuhui Song
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lili Hao
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lina Ma
- China National Center for Bioinformation, Beijing, 100101, China.
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhang Zhang
- China National Center for Bioinformation, Beijing, 100101, China.
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Silva VAO, Rosa MN, Tansini A, Martinho O, Tanuri A, Evangelista AF, Cruvinel Carloni A, Lima JP, Pianowski LF, Reis RM. Semi-Synthetic Ingenol Derivative from Euphorbia tirucalli Inhibits Protein Kinase C Isotypes and Promotes Autophagy and S-phase Arrest on Glioma Cell Lines. Molecules 2019; 24:molecules24234265. [PMID: 31771098 PMCID: PMC6930609 DOI: 10.3390/molecules24234265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
The identification of signaling pathways that are involved in gliomagenesis is crucial for targeted therapy design. In this study we assessed the biological and therapeutic effect of ingenol-3-dodecanoate (IngC) on glioma. IngC exhibited dose-time-dependent cytotoxic effects on large panel of glioma cell lines (adult, pediatric cancer cells, and primary cultures), as well as, effectively reduced colonies formation. Nevertheless, it was not been able to attenuate cell migration, invasion, and promote apoptotic effects when administered alone. IngC exposure promoted S-phase arrest associated with p21CIP/WAF1 overexpression and regulated a broad range of signaling effectors related to survival and cell cycle regulation. Moreover, IngC led glioma cells to autophagy by LC3B-II accumulation and exhibited increased cytotoxic sensitivity when combined to a specific autophagic inhibitor, bafilomycin A1. In comparison with temozolomide, IngC showed a mean increase of 106-fold in efficacy, with no synergistic effect when they were both combined. When compared with a known compound of the same class, namely ingenol-3-angelate (I3A, Picato®), IngC showed a mean 9.46-fold higher efficacy. Furthermore, IngC acted as a potent inhibitor of protein kinase C (PKC) activity, an emerging therapeutic target in glioma cells, showing differential actions against various PKC isotypes. These findings identify IngC as a promising lead compound for the development of new cancer therapy and they may guide the search for additional PKC inhibitors.
Collapse
Affiliation(s)
- Viviane Aline Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
| | - Marcela Nunes Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
| | - Aline Tansini
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
| | - Olga Martinho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Amilcar Tanuri
- Laboratory of Molecular Virology, Departaments of genetics, IB, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
| | - Adriana Cruvinel Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
| | - João Paulo Lima
- Medical Oncology, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil;
- Medical Oncology Department, A C Camargo Cancer Center, São Paulo 01509-010, SP, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +55-1733216600 (ext. 7090)
| |
Collapse
|
24
|
In vivo 2-hydroxyglutarate-proton magnetic resonance spectroscopy (3 T, PRESS technique) in treatment-naïve suspect lower-grade gliomas: feasibility and accuracy in a clinical setting. Neurol Sci 2019; 41:347-355. [PMID: 31650436 DOI: 10.1007/s10072-019-04087-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Isocitrate dehydrogenase 1/2 (IDH1/2) mutations are often detected in lower-grade gliomas (LGG) and result into 2-hydroxyglutarate (2HG) synthesis. Prior studies showed that 2HG can be detected in vivo using magnetic resonance spectroscopy (MRS), but its accuracy and translational impact are still under investigation. PURPOSE To investigate the clinical feasibility of MRS for in vivo detection and quantification of 2HG on consecutive treatment-naïve suspect LGG patients and to compare MRS accuracy with tissue IDH1/2 analysis. METHODS MRS spectra at 3 T were acquired with 1H-MRS single-voxel PRESS 2HG-tailored sequences with TE 30 (group 1) or TE 97 (groups 2A and B). Voxel sizes were 1.5 × 1.5 × 1.5 cm3 for group 1 (n = 13) and group 2A (n = 14) and 2 × 2 × 2 cm3 for group 2B (n = 32). Multiple metabolites' concentrations were analyzed with LCModel. Tumors were assessed for IDH status and main molecular markers. 2HG levels in urine/blood were measured by liquid chromatography-mass spectrometry. RESULTS The larger voxel TE 97 sequence resulted in highest specificity (100%), sensitivity (79%), and accuracy (87%). Urine and blood 2HG did not result predictive. CONCLUSION Our data confirm that 2 × 2 × 2-cm3 voxel TE 97 MRS shows high accuracy for 2HG detection, with good sensitivity and 100% specificity in distinguishing IDH mutant gliomas. Main limits of the technique are small tumor volume and low cellularity. Integrating 2HG-MRS with other metabolites may help non-invasive diagnosis of glioma, prognostic assessment, and treatment planning in clinical setting.
Collapse
|
25
|
Wang H, Diaz AK, Shaw TI, Li Y, Niu M, Cho JH, Paugh BS, Zhang Y, Sifford J, Bai B, Wu Z, Tan H, Zhou S, Hover LD, Tillman HS, Shirinifard A, Thiagarajan S, Sablauer A, Pagala V, High AA, Wang X, Li C, Baker SJ, Peng J. Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nat Commun 2019; 10:3718. [PMID: 31420543 PMCID: PMC6697699 DOI: 10.1038/s41467-019-11661-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities.
Collapse
Affiliation(s)
- Hong Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Alexander K Diaz
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Barbara S Paugh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Sifford
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bing Bai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Laura D Hover
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather S Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Thiagarajan
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andras Sablauer
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
26
|
Fujita M, Yamamoto T, Iyoda T, Fujisawa T, Nagai R, Kudo C, Sasada M, Kodama H, Fukai F. Autocrine Production of PDGF Stimulated by the Tenascin-C-Derived Peptide TNIIIA2 Induces Hyper-Proliferation in Glioblastoma Cells. Int J Mol Sci 2019; 20:E3183. [PMID: 31261783 PMCID: PMC6651645 DOI: 10.3390/ijms20133183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 01/11/2023] Open
Abstract
Expression level of tenascin-C is closely correlated to poor prognosis in glioblastoma patients, while the substantial role of tenascin-C responsible for aggressive progression in glioblastoma cells has not been clarified. We previously found that peptide TNIIIA2, which is derived from the tumor-associated tenascin-C variants, has the ability to promote cell adhesion by activating β1-integrins. Our recent study demonstrated that potentiated activation of integrin α5β1 by TNIIIA2 causes not only a dysregulated proliferation in a platelet-derived growth factor (PDGF)-dependent manner, but also disseminative migration in glioblastoma cells. Here, we show that TNIIIA2 enhances the proliferation in glioblastoma cells expressing PDGF-receptorβ, even without exogenous PDGF. Mechanistically, TNIIIA2 induced upregulated expression of PDGF, which in turn stimulated the expression of tenascin-C, a parental molecule of TNIIIA2. Moreover, in glioblastoma cells and rat brain-derived fibroblasts, tenascin-C upregulated matrix metalloproteinase-2, which has the potential to release TNIIIA2 from tenascin-C. Thus, it was shown that autocrine production of PDGF triggered by TNIIIA2 functions to continuously generate a functional amount of PDGF through a positive spiral loop, which might contribute to hyper-proliferation in glioblastoma cells. TNIIIA2 also enhanced in vitro disseminative migration of glioblastoma cells via the PKCα signaling. Collectively, the tenascin-C/TNIIIA2 could be a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Tatsuya Fujisawa
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reo Nagai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chikako Kudo
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Manabu Sasada
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroaki Kodama
- Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga-city, Saga 840-8502, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Translational Research Center, Research Institutes for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
27
|
Mallavarapu T, Hao J, Kim Y, Oh JH, Kang M. Pathway-based deep clustering for molecular subtyping of cancer. Methods 2019; 173:24-31. [PMID: 31247294 DOI: 10.1016/j.ymeth.2019.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer is a genetic disease comprising multiple subtypes that have distinct molecular characteristics and clinical features. Cancer subtyping helps in improving personalized treatment and making decision, as different cancer subtypes respond differently to the treatment. The increasing availability of cancer related genomic data provides the opportunity to identify molecular subtypes. Several unsupervised machine learning techniques have been applied on molecular data of the tumor samples to identify cancer subtypes that are genetically and clinically distinct. However, most clustering methods often fail to efficiently cluster patients due to the challenges imposed by high-throughput genomic data and its non-linearity. In this paper, we propose a pathway-based deep clustering method (PACL) for molecular subtyping of cancer, which incorporates gene expression and biological pathway database to group patients into cancer subtypes. The main contribution of our model is to discover high-level representations of biological data by learning complex hierarchical and nonlinear effects of pathways. We compared the performance of our model with a number of benchmark clustering methods that recently have been proposed in cancer subtypes. We assessed the hypothesis that clusters (subtypes) may be associated to different survivals by logrank tests. PACL showed the lowest p-value of the logrank test against the benchmark methods. It demonstrates the patient groups clustered by PACL may correspond to subtypes which are significantly associated with distinct survival distributions. Moreover, PACL provides a solution to comprehensively identify subtypes and interpret the model in the biological pathway level. The open-source software of PACL in PyTorch is publicly available at https://github.com/tmallava/PACL.
Collapse
Affiliation(s)
| | - Jie Hao
- Analytics and Data Science, Kennesaw State University, Kennesaw, USA.
| | - Youngsoon Kim
- Department of Computer Science, Kennesaw State University, Marietta, USA.
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA.
| | - Mingon Kang
- Analytics and Data Science, Kennesaw State University, Kennesaw, USA; Department of Computer Science, Kennesaw State University, Marietta, USA.
| |
Collapse
|
28
|
Valdés-Rives SA, de la Fuente-Granada M, Velasco-Velázquez MA, González-Flores O, González-Arenas A. LPA 1 receptor activation induces PKCα nuclear translocation in glioblastoma cells. Int J Biochem Cell Biol 2019; 110:91-102. [PMID: 30849522 DOI: 10.1016/j.biocel.2019.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 02/06/2019] [Accepted: 03/04/2019] [Indexed: 01/04/2023]
Abstract
Lysophosphatidic acid (LPA) is a ubiquitous lysophospholipid that induces a wide range of cellular processes such as wound healing, differentiation, proliferation, migration, and survival. LPA signaling is increased in a number of cancers. In Glioblastoma (GBM), the most aggressive brain tumor, autotaxin the enzyme that produces LPA and its receptor LPA1 are overexpressed. LPA1 is preferentially couple to Gαq proteins in these tumors that in turn activates PKCs. PKCs are involved in many cellular processes including proliferation and metastasis. In this study, we aimed to determine if a classical PKC (α isozyme), could be activated through LPA1 in GBM cell lines and if this activation impacts on cell number. We found that LPA1 induces PKCα translocation to the nucleus, but not to the cell membrane after LPA treatment and the cell number diminished when LPA1/PKCα signaling was blocked, suggesting a relevant role of LPA1 and PKCα in GBM growth.
Collapse
Affiliation(s)
- Silvia Anahi Valdés-Rives
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Marisol de la Fuente-Granada
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Marco A Velasco-Velázquez
- Departamento de Farmacología y, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Unidad Periférica de Investigación en Biomedicina Traslacional (C.M.N. 20 de noviembre, ISSSTE), Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico; Área de Neurociencias, Departamento de Biología de la Reproducción, CBS, UAM-I, Ciudad de México, Mexico.
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
29
|
Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 2018; 58:130-141. [PMID: 30266571 DOI: 10.1016/j.semcancer.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the more frequent and malignant brain tumour. In spite of all efforts, the median overall survival of GB patients remains approximately 15 months under therapy. The molecular biology underlying GB is complex, which highlight the need of specific treatment strategies. In fact, the deregulation of several molecular signalling pathways, the existence of the blood-brain barrier (BBB), that makes almost all the chemotherapeutic agents inaccessible to the tumour site, and the existence of a population of stem-like cells known to be responsible for tumour recurrence after therapy, can contribute to GB chemoresistance. In the present review, we summarize the reliable factors responsible for the failure of the most important chemotherapeutic agents in GB. Specifically, we describe the utmost important characteristics of the BBB, as well as the genetic, molecular and transcription factors alterations that lead to tumour malignancy, and ultimately their impact on stem-like cell plasticity modulation. Recently, nanocarriers have attracted increasing attention in brain- and tumour-targeted drug-delivery systems, owing to their potential ability to target cell surface specific molecules and to cross the BBB delivering the drug specifically to the tumour cells, improving efficacy and thus reducing non-specific toxicity. In this sense, we will lastly highlight the therapeutic challenges and improvements regarding GB treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Clinical Pathology Department, Coimbra Hospital and Universitary Center (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, University of Coimbra (FMUC) and Coimbra Institute for Clinical and Biomedical Research (iCBR), group of Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC); Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Li H, Cui Y, Li F, Shi W, Gao W, Wang X, Zeng Q. Measuring the lactate-to-creatine ratio via 1H NMR spectroscopy can be used to noninvasively evaluate apoptosis in glioma cells after X-ray irradiation. Cell Mol Biol Lett 2018; 23:27. [PMID: 29946338 PMCID: PMC6003206 DOI: 10.1186/s11658-018-0092-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Radiotherapy is among the commonly applied treatment options for glioma, which is one of the most common types of primary brain tumor. To evaluate the effect of radiotherapy noninvasively, it is vital for oncologists to monitor the effects of X-ray irradiation on glioma cells. Preliminary research had showed that PKC-ι expression correlates with tumor cell apoptosis induced by X-ray irradiation. It is also believed that the lactate-to-creatine (Lac/Cr) ratio can be used as a biomarker to evaluate apoptosis in glioma cells after X-ray irradiation. In this study, we evaluated the relationships between the Lac/Cr ratio, apoptotic rate, and protein kinase C iota (PKC-ι) expression in glioma cells. METHODS Cells of the glioma cell lines C6 and U251 were randomly divided into 4 groups, with every group exposed to X-ray irradiation at 0, 1, 5, 10 and 15 Gy. Single cell gel electrophoresis (SCGE) was conducted to evaluate the DNA damage. Flow cytometry was performed to measure the cell cycle blockage and apoptotic rates. Western blot analysis was used to detect the phosphorylated PKC-ι (p-PKC-ι) level. 1H NMR spectroscopy was employed to determine the Lac/Cr ratio. RESULTS The DNA damage increased in a radiation dose-dependent manner (p < 0.05). With the increase in X-ray irradiation, the apoptotic rate also increased (C6, p < 0.01; U251, p < 0.05), and the p-PKC-ι level decreased (C6, p < 0.01; U251, p < 0.05). The p-PKC-ι level negatively correlated with apoptosis, whereas the Lac/Cr ratio positively correlated with the p-PKC-ι level. CONCLUSION The Lac/Cr ratio decreases with an increase in X-ray irradiation and thus can be used as a biomarker to reflect the effects of X-ray irradiation in glioma cells.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Radiology, the Second Hospital of Shandong University, Jinan, China
| | - Yi Cui
- Department of Radiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Fuyan Li
- Department of Radiology, Shandong Medical Imaging Research Institute, Jinan, China
| | - Wenqi Shi
- Department of Radiology, the Third Affiliated Hospital, Sun Yat- Sen University, Guangzhou, China
| | - Wenjing Gao
- Department of Radiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Xiao Wang
- Department of Radiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Qingshi Zeng
- Department of Radiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| |
Collapse
|
31
|
Elsherbiny ME, Chen H, Emara M, Godbout R. ω-3 and ω-6 Fatty Acids Modulate Conventional and Atypical Protein Kinase C Activities in a Brain Fatty Acid Binding Protein Dependent Manner in Glioblastoma Multiforme. Nutrients 2018; 10:nu10040454. [PMID: 29642372 PMCID: PMC5946239 DOI: 10.3390/nu10040454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly infiltrative brain cancer with a dismal prognosis. High levels of brain fatty acid binding protein (B-FABP) are associated with increased migration/infiltration in GBM cells, with a high ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA) driving B-FABP-mediated migration. Since several protein kinase Cs (PKCs) are overexpressed in GBM and linked to migration, we explored a possible relationship between B-FABP and levels/activity of different PKCs, as a function of AA and DHA supplementation. We report that ectopic expression of B-FABP in U87 cells alters the levels of several PKCs, particularly PKCζ. Upon analysis of PKCζ RNA levels in a panel of GBM cell lines and patient-derived GBM neurospheres, we observed a trend towards moderate positive correlation (r = 0.624, p = 0.054) between B-FABP and PKCζ RNA levels. Analysis of PKC activity in U87 GBM cells revealed decreased typical PKC activity (23.4%) in B-FABP-expressing cells compared with nonexpressing cells, with no difference in novel and atypical PKC activities. AA and DHA modulated both conventional and atypical PKC activities in a B-FABP-dependent manner, but had no effect on novel PKC activity. These results suggest that conventional and atypical PKCs are potential downstream effectors of B-FABP/fatty acid-mediated alterations in GBM growth properties.
Collapse
Affiliation(s)
- Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Hua Chen
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
32
|
Zhou SX, Huo DM, He XY, Yu P, Xiao YH, Ou CL, Jiang RM, Li D, Li H. High glucose/lysophosphatidylcholine levels stimulate extracellular matrix deposition in diabetic nephropathy via platelet‑activating factor receptor. Mol Med Rep 2018; 17:2366-2372. [PMID: 29207067 PMCID: PMC5783481 DOI: 10.3892/mmr.2017.8102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Platelet-activating factor (PAF), protein kinase C (PKC)βI, transforming growth factor (TGF)‑β1 and aberrant extracellular matrix (ECM) deposition have been associated with diabetic nephropathy (DN). However, the mechanistic basis underlying this association remains to be elucidated. The present study investigated the association among the aforementioned factors in a DN model consisting of human mesangial cells (HMCs) exposed to high glucose (HG) and lysophosphatidylcholine (LPC) treatments. HMCs were divided into the following treatment groups: Control; PAF; PAF+PKCβI inhibitor LY333531; HG + LPC; PAF + HG + LPC; and PAF + HG + LPC + LY333531. Cells were cultured for 24 h, and PKCβI and TGF‑β1 expression was determined using the reverse transcription‑quantitative polymerase chain reaction and western blotting. The expression levels of the ECM‑associated molecules collagen IV and fibronectin in the supernatant were detected using ELISA analysis. Subcellular localization of PKCβI was assessed using immunocytochemistry. PKCβI and TGF‑β1 expression was increased in the PAF + HG + LPC group compared with the other groups (P<0.05); however, this effect was abolished in the presence of LY333531 (P<0.05). Supernatant fibronectin and collagen IV levels were increased in the PAF + HG + LPC group compared with the others (P<0.05); this was reversed by treatment with LY333531 (P<0.05). In cells treated with PAF, HG and LPC, PKCβI was translocated from the cytosol to the nucleus, an effect which was blocked when PKCβI expression was inhibited (P<0.05). The findings of the present study demonstrated that PAF stimulated ECM deposition in HMCs via activation of the PKC‑TGF‑β1 axis in a DN model.
Collapse
Affiliation(s)
- Su-Xian Zhou
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Dong-Mei Huo
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Xiao-Yun He
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Ping Yu
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Yan-Hua Xiao
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Chun-Lin Ou
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ren-Mei Jiang
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Dan Li
- Heibei Software Institute, Baoding, Hebei 071000, P.R. China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
33
|
Stec WJ, Rosiak K, Siejka P, Peciak J, Popeda M, Banaszczyk M, Pawlowska R, Treda C, Hulas-Bigoszewska K, Piaskowski S, Stoczynska-Fidelus E, Rieske P. Cell line with endogenous EGFRvIII expression is a suitable model for research and drug development purposes. Oncotarget 2017; 7:31907-25. [PMID: 27004406 PMCID: PMC5077985 DOI: 10.18632/oncotarget.8201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/10/2016] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII. The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach.
Collapse
Affiliation(s)
- Wojciech J Stec
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Kamila Rosiak
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Paulina Siejka
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Joanna Peciak
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Marta Popeda
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | | | - Roza Pawlowska
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Cezary Treda
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | | | - Sylwester Piaskowski
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Piotr Rieske
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
34
|
Sonic hedgehog induces GLT-1 degradation via PKC delta to suppress its transporter activities. Neuroscience 2017; 365:217-225. [PMID: 28993237 DOI: 10.1016/j.neuroscience.2017.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/20/2023]
Abstract
GLT-1 is mainly expressed in astrocytes and has a crucial role in glutamate uptake. Sonic hedgehog (SHH) can inhibit glutamate uptake and its pathway is activated in many brain diseases related with glutamate excitotoxicity. However, whether SHH regulates GLT-1 to affect glutamate uptake is not clear. Here, we use pharmacological and genetic methods to show that SHH induces GLT-1 degradation in astrocytes in a manner that is dependent on PKC delta (PKCδ) to regulate GLT-1 activities. GLT-1 protein levels are reduced as early as 2 hs in astrocytes after incubation with SHH, whereas its mRNA levels are not changed. This reduction is recapitulated when astrocytes are transfected with SmoA1, a constitutively active form of Smoothened (Smo), the mediator of SHH pathway. The reduction of GLT-1 and inhibition of aspartate current are not observed when staurosporine (STP) and BisindolylmaleimideII (BisII), agents known as PKC inhibitors, are present. Further, when PKCδ is knocked down in astrocytes, SHH cannot reduce GLT-1 protein levels. Therefore, SHH induces degradation of GLT-1 through PKCδ to regulate its activities.
Collapse
|
35
|
Ratnayake WS, Apostolatos AH, Ostrov DA, Acevedo-Duncan M. Two novel atypical PKC inhibitors; ACPD and DNDA effectively mitigate cell proliferation and epithelial to mesenchymal transition of metastatic melanoma while inducing apoptosis. Int J Oncol 2017; 51:1370-1382. [PMID: 29048609 PMCID: PMC5642393 DOI: 10.3892/ijo.2017.4131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022] Open
Abstract
Atypical protein kinase Cs (aPKC) are involved in cell cycle progression, tumorigenesis, cell survival and migration in many cancers. We believe that aPKCs play an important role in cell motility of melanoma by regulating cell signaling pathways and inducing epithelial to mesenchymal transition (EMT). We have investigated the effects of two novel aPKC inhibitors; 2-acetyl-1,3-cyclopentanedione (ACPD) and 3,4-diaminonaphthalene-2,7-disulfonic acid (DNDA) on cell proliferation, apoptosis, migration and invasion of two malignant melanoma cell lines compared to normal melanocytes. Molecular docking data suggested that both inhibitors specifically bind to protein kinase C-zeta (PKC-ζ) and PKC-iota (PKC-ι) and kinase activity assays were carried out to confirm these observations. Both inhibitors decreased the levels of total and phosphorylated PKC-ζ and PKC-ι. Increased levels of E-cadherin, RhoA, PTEN and decreased levels of phosphorylated vimentin, total vimentin, CD44, β-catenin and phosphorylated AKT in inhibitor treated cells. This suggests that inhibition of both PKC-ζ and PKC-ι using ACPD and DNDA downregulates EMT and induces apoptosis in melanoma cells. We also carried out PKC-ι and PKC-ζ directed siRNA treatments to prove the above observations. Immunoprecipitation data suggested an association between PKC-ι and vimentin and PKC-ι siRNA treatments confirmed that PKC-ι activates vimentin by phosphorylation. These results further suggested that PKC-ι is involved in signaling pathways which upregulate EMT and which can be effectively suppressed using ACPD and DNDA. Our results summarize that melanoma cells proliferate via aPKC/AKT/NF-κB mediated pathway while inducing the EMT via PKC-ι/Par6/RhoA pathway. Overall, results show that aPKCs are essential for melanoma progression and metastasis, suggesting that ACPD and DNDA can be effectively used as potential therapeutic drugs for melanoma by inhibiting aPKCs.
Collapse
Affiliation(s)
| | | | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | | |
Collapse
|
36
|
Bedini A, Baiula M, Vincelli G, Formaggio F, Lombardi S, Caprini M, Spampinato S. Nociceptin/orphanin FQ antagonizes lipopolysaccharide-stimulated proliferation, migration and inflammatory signaling in human glioblastoma U87 cells. Biochem Pharmacol 2017; 140:89-104. [PMID: 28583844 DOI: 10.1016/j.bcp.2017.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
Glioblastoma is among the most aggressive brain tumors and has an exceedingly poor prognosis. Recently, the importance of the tumor microenvironment in glioblastoma cell growth and progression has been emphasized. Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and endogenous ligands originating from dying cells or the extracellular matrix involved in host defense and in inflammation. G-protein coupled receptors (GPCRs) have gained interest in anti-tumor drug discovery due to the role that they directly or indirectly play by transactivating other receptors, causing cell migration and proliferation. A proteomic analysis showed that the nociceptin receptor (NOPr) is among the GPCRs significantly expressed in glioblastoma cells, including U87 cells. We describe a novel role of the peptide nociceptin (N/OFQ), the endogenous ligand of the NOPr that counteracts cell migration, proliferation and increase in IL-1β mRNA elicited by LPS via TLR4 in U87 glioblastoma cells. Signaling pathways through which N/OFQ inhibits LPS-mediated cell migration and elevation of [Ca2+]i require β-arrestin 2 and are sensitive to TNFR-associated factor 6, c-Src and protein kinase C (PKC). LPS-induced cell proliferation and increase in IL-1β mRNA are counteracted by N/OFQ via β-arrestin 2, PKC and extracellular signal-regulated kinase 1/2; furthermore, the contributions of the transcription factors NF-kB and AP-1 were investigated. Independent of LPS, N/OFQ induces a significant increase in cell apoptosis. Contrary to what was observed in other cell models, a prolonged exposure to this endotoxin did not promote any tolerance of the cellular effects above described, including NOPr down-regulation while N/OFQ loses its inhibitory role.
Collapse
Affiliation(s)
- Andrea Bedini
- Department of Pharmacy and Biotechnology, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Gabriele Vincelli
- Department of Pharmacy and Biotechnology, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Francesco Formaggio
- Department of Pharmacy and Biotechnology, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Sara Lombardi
- Department of Pharmacy and Biotechnology, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
37
|
Cenciarelli C, Marei HE, Felsani A, Casalbore P, Sica G, Puglisi MA, Cameron AJ, Olivi A, Mangiola A. PDGFRα depletion attenuates glioblastoma stem cells features by modulation of STAT3, RB1 and multiple oncogenic signals. Oncotarget 2016; 7:53047-53063. [PMID: 27344175 PMCID: PMC5288168 DOI: 10.18632/oncotarget.10132] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
Abstract
Platelet derived growth factor receptors (PDGFRs) play an important role in tumor pathogenesis, and they are frequently overexpressed in glioblastoma (GBM). Earlier we have shown a higher protein expression of PDGFR isoforms (α and β) in peritumoral-tissue derived cancer stem cells (p-CSC) than in tumor core (c-CSC) of several GBM affected patients. In the current study, in order to assess the activity of PDGFRα/PDGF-AA signaling axis, we performed time course experiments to monitor the effects of exogenous PDGF-AA on the expression of downstream target genes in c-CSC vs p-CSC. Interestingly, in p-CSC we detected the upregulation of Y705-phosphorylated Stat3, concurrent with a decrement of Rb1 protein in its active state, within minutes of PDGF-AA addition. This finding prompted us to elucidate the role of PDGFRα in self-renewal, invasion and differentiation in p-CSC by using short hairpin RNA depletion of PDGFRα expression. Notably, in PDGFRα-depleted cells, protein analysis revealed attenuation of stemness-related and glial markers expression, alongside early activation of the neuronal marker MAP2a/b that correlated with the induction of tumor suppressor Rb1. The in vitro reduction of the invasive capacity of PDGFRα-depleted CSC as compared to parental cells correlated with the downmodulation of markers of epithelial-mesenchymal transition phenotype and angiogenesis. Surprisingly, we observed the induction of anti-apoptotic proteins and compensatory oncogenic signals such as EDN1, EDNRB, PRKCB1, PDGF-C and PDGF-D. To conclude, we hypothesize that the newly discovered PDGFRα/Stat3/Rb1 regulatory axis might represent a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Carlo Cenciarelli
- Institute of Translational Pharmacology, Department of Biomedical Sciences-National Research Council (IFT-CNR), Rome, Italy
| | - Hany E. Marei
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology, Dept. of Biomedical Sciences-National Research Council (IBCN-CNR), Rome, Italy
| | - Patrizia Casalbore
- Institute of Cell Biology and Neurobiology, Dept. of Biomedical Sciences-National Research Council (IBCN-CNR), Rome, Italy
| | - Gigliola Sica
- Institute of Histology and Embryology, Catholic University-School of Medicine, Rome, Italy
| | | | - Angus J.M. Cameron
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Alessandro Olivi
- Institute of Neurosurgery, Department of Head and Neck, Catholic University-School of Medicine, Rome, Italy
| | - Annunziato Mangiola
- Institute of Neurosurgery, Department of Head and Neck, Catholic University-School of Medicine, Rome, Italy
| |
Collapse
|
38
|
Volovitz I, Shapira N, Ezer H, Gafni A, Lustgarten M, Alter T, Ben-Horin I, Barzilai O, Shahar T, Kanner A, Fried I, Veshchev I, Grossman R, Ram Z. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells. BMC Neurosci 2016; 17:30. [PMID: 27251756 PMCID: PMC4888249 DOI: 10.1186/s12868-016-0262-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023] Open
Abstract
Background Conducting research on the molecular biology, immunology, and physiology of brain tumors (BTs) and primary brain tissues requires the use of viably dissociated single cells. Inadequate methods for tissue dissociation generate considerable loss in the quantity of single cells produced and in the produced cells’ viability. Improper dissociation may also demote the quality of data attained in functional and molecular assays due to the presence of large quantities cellular debris containing immune-activatory danger associated molecular patterns, and due to the increased quantities of degraded proteins and RNA. Results Over 40 resected BTs and non-tumorous brain tissue samples were dissociated into single cells by mechanical dissociation or by mechanical and enzymatic dissociation. The quality of dissociation was compared for all frequently used dissociation enzymes (collagenase, DNase, hyaluronidase, papain, dispase) and for neutral protease (NP) from Clostridium histolyticum. Single-cell-dissociated cell mixtures were evaluated for cellular viability and for the cell-mixture dissociation quality. Dissociation quality was graded by the quantity of subcellular debris, non-dissociated cell clumps, and DNA released from dead cells. Of all enzymes or enzyme combinations examined, NP (an enzyme previously not evaluated on brain tissues) produced dissociated cell mixtures with the highest mean cellular viability: 93 % in gliomas, 85 % in brain metastases, and 89 % in non-tumorous brain tissue. NP also produced cell mixtures with significantly less cellular debris than other enzymes tested. Dissociation using NP was non-aggressive over time—no changes in cell viability or dissociation quality were found when comparing 2-h dissociation at 37 °C to overnight dissociation at ambient temperature. Conclusions The use of NP allows for the most effective dissociation of viable single cells from human BTs or brain tissue. Its non-aggressive dissociative capacity may enable ambient-temperature shipping of tumor pieces in multi-center clinical trials, meanwhile being dissociated. As clinical grade NP is commercially available it can be easily integrated into cell-therapy clinical trials in neuro-oncology. The high quality viable cells produced may enable investigators to conduct more consistent research by avoiding the experimental artifacts associated with the presence dead cells or cellular debris. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0262-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilan Volovitz
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel. .,Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel.
| | - Netanel Shapira
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Haim Ezer
- Department of Neurosurgery, Galilee Medical Center, Lohamei HaGeta'ot 5, Nahariya, Israel
| | - Aviv Gafni
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Merav Lustgarten
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Tal Alter
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Idan Ben-Horin
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Ori Barzilai
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Tal Shahar
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Andrew Kanner
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Itzhak Fried
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Igor Veshchev
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| |
Collapse
|
39
|
Chandrika G, Natesh K, Ranade D, Chugh A, Shastry P. Suppression of the invasive potential of Glioblastoma cells by mTOR inhibitors involves modulation of NFκB and PKC-α signaling. Sci Rep 2016; 6:22455. [PMID: 26940200 PMCID: PMC4778030 DOI: 10.1038/srep22455] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/10/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumors in adults with survival period <1.5 years of patients. The role of mTOR pathway is documented in invasion and migration, the features associated with aggressive phenotype in human GBM. However, most of the preclinical and clinical studies with mTOR inhibitors are focused on antiproliferative and cytotoxic activity in GBM. In this study, we demonstrate that mTOR inhibitors-rapamycin (RAP), temisirolimus (TEM), torin-1 (TOR) and PP242 suppress invasion and migration induced by Tumor Necrosis Factor-α (TNFα) and tumor promoter, Phorbol 12-myristate 13-acetate (PMA) and also reduce the expression of the TNFα and IL1β suggesting their potential to regulate factors in microenvironment that support tumor progression. The mTOR inhibitors significantly decreased MMP-2 and MMP-9 mRNA, protein and activity that was enhanced by TNFα and PMA. The effect was mediated through reduction of Protein kinase C alpha (PKC-α) activity and downregulation of NFκB. TNFα- induced transcripts of NFκB targets -VEGF, pentraxin-3, cathepsin-B and paxillin, crucial in invasion were restored to basal level by these inhibitors. With limited therapeutic interventions currently available for GBM, our findings are significant and suggest that mTOR inhibitors may be explored as anti-invasive drugs for GBM treatment.
Collapse
Affiliation(s)
- Goparaju Chandrika
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Kumar Natesh
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Deepak Ranade
- Department of Neurosurgery, D.Y. Patil Medical College, Pune, India
| | - Ashish Chugh
- Department of Neurosurgery, Cimet's Inamdar Multispecialty Hospital, Pune, India
| | - Padma Shastry
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
40
|
ROS and ROS-Mediated Cellular Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4350965. [PMID: 26998193 PMCID: PMC4779832 DOI: 10.1155/2016/4350965] [Citation(s) in RCA: 1212] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/01/2015] [Accepted: 12/20/2015] [Indexed: 12/22/2022]
Abstract
It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca(2+) and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System.
Collapse
|
41
|
ZHOU RONGJING, XU XIONGYING, LIU BUXING, DAI WENZHEN, CAI MEIQIN, BAI CHUNFENG, ZHANG XIANFEI, WANG LIMIN, LIN LI, JIA SHUZHEN, WANG WENHUA. Growth-inhibitory and chemosensitizing effects of microRNA-31 in human glioblastoma multiforme cells. Int J Mol Med 2015; 36:1159-64. [DOI: 10.3892/ijmm.2015.2312] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/30/2015] [Indexed: 11/06/2022] Open
|
42
|
Grabacka M, Waligorski P, Zapata A, Blake DA, Wyczechowska D, Wilk A, Rutkowska M, Vashistha H, Ayyala R, Ponnusamy T, John VT, Culicchia F, Wisniewska-Becker A, Reiss K. Fenofibrate subcellular distribution as a rationale for the intracranial delivery through biodegradable carrier. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY : AN OFFICIAL JOURNAL OF THE POLISH PHYSIOLOGICAL SOCIETY 2015; 66:233-247. [PMID: 25903954 PMCID: PMC5865398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Fenofibrate, a well-known normolipidemic drug, has been shown to exert strong anticancer effects against tumors of neuroectodermal origin including glioblastoma. Although some pharmacokinetic studies were performed in the past, data are still needed about the detailed subcellular and tissue distribution of fenofibrate (FF) and its active metabolite, fenofibric acid (FA), especially in respect to the treatment of intracranial tumors. We used high performance liquid chromatography (HPLC) to elucidate the intracellular, tissue and body fluid distribution of FF and FA after oral administration of the drug to mice bearing intracranial glioblastoma. Following the treatment, FF was quickly cleaved to FA by blood esterases and FA was detected in the blood, urine, liver, kidney, spleen and lungs. We have also detected small amounts of FA in the brains of two out of six mice, but not in the brain tumor tissue. The lack of FF and FA in the intracranial tumors prompted us to develop a new method for intracranial delivery of FF. We have prepared and tested in vitro biodegradable poly-lactic-co-glycolic acid (PLGA) polymer wafers containing FF, which could ultimately be inserted into the brain cavity following resection of the brain tumor. HPLC-based analysis demonstrated a slow and constant diffusion of FF from the wafer, and the released FF abolished clonogenic growth of glioblastoma cells. On the intracellular level, FF and FA were both present in the cytosolic fraction. Surprisingly, we also detected FF, but not FA in the cell membrane fraction. Electron paramagnetic resonance spectroscopy applied to spin-labeled phospholipid model-membranes revealed broadening of lipid phase transitions and decrease of membrane polarity induced by fenofibrate. Our results indicate that the membrane-bound FF could contribute to its exceptional anticancer potential in comparison to other lipid-lowering drugs, and advocate for intracranial delivery of FF in the combined pharmacotherapy against glioblastoma.
Collapse
Affiliation(s)
- M Grabacka
- Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture in Cracow, Cracow, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Balça-Silva J, Matias D, do Carmo A, Girão H, Moura-Neto V, Sarmento-Ribeiro AB, Lopes MC. Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines. Biochim Biophys Acta Gen Subj 2014; 1850:722-32. [PMID: 25554223 DOI: 10.1016/j.bbagen.2014.12.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a highly proliferative, angiogenic grade IV astrocytoma that develops resistance to the alkylating agents used in chemotherapy, such as temozolomide (TMZ), which is considered the gold standard. The mean survival time for GBM patients is approximately 12 months, increasing to 14.6 months after TMZ treatment. The resistance of GBM to chemotherapy seems to be associated to genetic alterations and to the constitutive activation of several signaling pathways. Therefore, the combination of different drugs with different mechanisms of action may contribute to circumvent the chemoresistance of glioma cells. Here we describe the potential synergistic behavior of the therapeutic combination of tamoxifen (TMX), a known inhibitor of PKC, and TMZ in GBM. METHODS We used two GBM cell lines incubated in absence and presence of TMX and/or TMZ and measured cell viability, proliferation, apoptosis, cell cycle, migration ability, cytoskeletal organization and the phosphorylated amount of the p-PKC-pan. RESULTS The combination of low doses of TMX with increasing doses of TMZ shows an increased antiproliferative and apoptotic effect compared to the effect with TMX alone. CONCLUSIONS The combination of TMX and TMZ seems to potentiate the effect of each other. These alterations seem to be associated to a decrease in the phosphorylation status of PKC. GENERAL SIGNIFICANCE We emphasize that TMX is an inhibitor of the p-PKC-pan and that these combination is more effective in the reduction of proliferation and in the increase of apoptosis than each drug alone, which presents a new therapeutic strategy in GBM treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Diana Matias
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Henrique Girão
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center of Ophthalmology and Vision Sciences, Institute of Biomedical Imaging and Life Sciences (IBILI), Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil.
| | - Ana Bela Sarmento-Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
44
|
Bian EB, Li J, Xie YS, Zong G, Li J, Zhao B. LncRNAs: New Players in Gliomas, With Special Emphasis on the Interaction of lncRNAs With EZH2. J Cell Physiol 2014; 230:496-503. [PMID: 24403021 DOI: 10.1002/jcp.24549] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Er-Bao Bian
- Department of Neurosurgery; The Second Affiliated Hospital of Anhui Medical University; Hefei China
- Cerebral Vascular Disease Research Center; Anhui Medical University; Hefei China
| | - Jia Li
- Department of Neurosurgery; The Second Affiliated Hospital of Anhui Medical University; Hefei China
- Cerebral Vascular Disease Research Center; Anhui Medical University; Hefei China
| | - Yong-Sheng Xie
- Department of Neurosurgery; The Second Affiliated Hospital of Anhui Medical University; Hefei China
- Cerebral Vascular Disease Research Center; Anhui Medical University; Hefei China
| | - Gang Zong
- Department of Neurosurgery; The Second Affiliated Hospital of Anhui Medical University; Hefei China
- Cerebral Vascular Disease Research Center; Anhui Medical University; Hefei China
| | - Jun Li
- School of Pharmacy; Anhui Medical University; Hefei China
| | - Bing Zhao
- Department of Neurosurgery; The Second Affiliated Hospital of Anhui Medical University; Hefei China
- Cerebral Vascular Disease Research Center; Anhui Medical University; Hefei China
| |
Collapse
|
45
|
The daidzein metabolite, 6,7,4'-Trihydroxyisoflavone, is a novel inhibitor of PKCα in suppressing solar UV-induced matrix metalloproteinase 1. Int J Mol Sci 2014; 15:21419-32. [PMID: 25415304 PMCID: PMC4264233 DOI: 10.3390/ijms151121419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022] Open
Abstract
Soy isoflavone is an attractive source of functional cosmetic materials with anti-wrinkle, whitening and skin hydration effects. After consumption, the majority of soy isoflavones are converted to their metabolites in the human gastrointestinal tract. To understand the physiological impact of soy isoflavone on the human body, it is necessary to evaluate and address the biological function of its metabolites. In this study, we investigated the effect of 6,7,4'-trihydroxyisoflavone (6,7,4'-THIF), a major metabolite of daidzein, against solar UV (sUV)-induced matrix metalloproteinases (MMPs) in normal human dermal fibroblasts. MMPs play a critical role in the degradation of collagen in skin, thereby accelerating the aging process of skin. The mitogen-activated protein/extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MKK)3/6/p38 and MKK4/c-Jun N-terminal kinases (JNK) signaling pathways are known to modulate MMP-1 function, and their activation by sUV was significantly reduced by 6,7,4'-THIF pretreatment. Our results also indicated that the enzyme activity of protein kinase C (PKC)α, an upstream regulator of MKKs signaling, is suppressed by 6,7,4'-THIF using the in vitro kinase assay. Furthermore, the direct interaction between 6,7,4'-THIF and endogenous PKCα was confirmed using the pull-down assay. Not only sUV-induced MMP-1 expression, but also sUV-induced signaling pathway activation were decreased in PKCα knockdown cells. Overall, we elucidated the inhibitory effect of 6,7,4'-THIF on sUV-induced MMPs and suggest PKCα as its direct molecular target.
Collapse
|
46
|
Christofides A, Kosmopoulos M, Piperi C. Pathophysiological mechanisms regulated by cytokines in gliomas. Cytokine 2014; 71:377-84. [PMID: 25458967 DOI: 10.1016/j.cyto.2014.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Glioma, a neuroglia originated malignancy, consists of one of the most aggressive primary tumors of the central nervous system with poor prognosis and lack of efficient treatment strategy. Cytokines have been implicated in several stages of glioma progression, participating in tumor onset, growth enhancement, angiogenesis and aggressiveness. Interestingly, cytokines have also the ability to inhibit glioma growth upon specific regulation or interplay with other molecules. This review addresses the dual role of major cytokines implicated in glioma pathology, pointing toward promising therapeutic approaches.
Collapse
Affiliation(s)
- Anthos Christofides
- Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece
| | - Marinos Kosmopoulos
- Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece.
| |
Collapse
|
47
|
Kusne Y, Carrera-Silva EA, Perry AS, Rushing EJ, Mandell EK, Dietrich JD, Errasti AE, Gibbs D, Berens ME, Loftus JC, Hulme C, Yang W, Lu Z, Aldape K, Sanai N, Rothlin CV, Ghosh S. Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFα in glioblastoma. Sci Signal 2014; 7:ra75. [PMID: 25118327 PMCID: PMC4486020 DOI: 10.1126/scisignal.2005196] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Grade IV glioblastoma is characterized by increased kinase activity of epidermal growth factor receptor (EGFR); however, EGFR kinase inhibitors have failed to improve survival in individuals with this cancer because resistance to these drugs often develops. We showed that tumor necrosis factor-α (TNFα) produced in the glioblastoma microenvironment activated atypical protein kinase C (aPKC), thereby producing resistance to EGFR kinase inhibitors. Additionally, we identified that aPKC was required both for paracrine TNFα-dependent activation of the transcription factor nuclear factor κB (NF-κB) and for tumor cell-intrinsic receptor tyrosine kinase signaling. Targeting aPKC decreased tumor growth in mouse models of glioblastoma, including models of EGFR kinase inhibitor-resistant glioblastoma. Furthermore, aPKC abundance and activity were increased in human glioblastoma tumor cells, and high aPKC abundance correlated with poor prognosis. Thus, targeting aPKC might provide an improved molecular approach for glioblastoma therapy.
Collapse
Affiliation(s)
- Yael Kusne
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Anthony S. Perry
- Department of Pathology, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, USA
| | | | - Edward K. Mandell
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Andrea E. Errasti
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel Gibbs
- Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Michael E. Berens
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | | | | | - Weiwei Yang
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhimin Lu
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Nader Sanai
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Carla V. Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sourav Ghosh
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| |
Collapse
|
48
|
Liu XY, Zhang L, Wu J, Zhou L, Ren YJ, Yang WQ, Ming ZJ, Chen B, Wang J, Zhang Y, Yang JM. Inhibition of elongation factor-2 kinase augments the antitumor activity of Temozolomide against glioma. PLoS One 2013; 8:e81345. [PMID: 24303044 PMCID: PMC3841121 DOI: 10.1371/journal.pone.0081345] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/10/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM), the most common form of brain cancer with an average survival of less than 12 months, is a highly aggressive and fatal disease characterized by survival of glioma cells following initial treatment, invasion through the brain parenchyma and destruction of normal brain tissues, and ultimately resistance to current treatments. Temozolomide (TMZ) is commonly used chemotherapy for treatment of primary and recurrent high-grade gliomas. Nevertheless, the therapeutic outcome of TMZ is often unsatisfactory. In this study, we sought to determine whether eEF-2 kinase affected the sensitivity of glioma cells to treatment with TMZ. METHODOLOGY/PRINCIPAL FINDINGS Using RNA interference approach, a small molecule inhibitor of eEF-2 kinase, and in vitro and in vivo glioma models, we observed that inhibition of eEF-2 kinase could enhance sensitivity of glioma cells to TMZ, and that this sensitizing effect was associated with blockade of autophagy and augmentation of apoptosis caused by TMZ. CONCLUSIONS/SIGNIFICANCE These findings demonstrated that targeting eEF-2 kinase can enhance the anti-glioma activity of TMZ, and inhibitors of this kinase may be exploited as chemo-sensitizers for TMZ in treatment of malignant glioma.
Collapse
Affiliation(s)
- Xiao-yuan Liu
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Li Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - JianPing Wu
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhou
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Yi-Jie Ren
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Wei-Qiong Yang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Zi-Jun Ming
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Jianrong Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Jin-Ming Yang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|