1
|
Fernandez A, Monsen PJ, Platanias LC, Schiltz GE. Medicinal chemistry approaches to target the MNK-eIF4E axis in cancer. RSC Med Chem 2023; 14:1060-1087. [PMID: 37360400 PMCID: PMC10285747 DOI: 10.1039/d3md00121k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Aberrant translation of proteins that promote cell proliferation is an essential factor that defines oncogenic processes and cancer. The process for ribosomal translation of proteins from mRNA requires an essential initiation step which is controlled by the protein eIF4E, which binds the RNA 5'-cap and forms the eIF4F complex that subsequently translates protein. Typically, eIF4E is activated by phosphorylation on Ser209 by MNK1 and MNK2 kinases. Substantial work has shown that eIF4E and MNK1/2 are dysregulated in many cancers and this axis has therefore become an active area of interest for developing new cancer therapeutics. This review summarizes and discusses recent work to develop small molecules that target different steps in the MNK-eIF4E axis as potential cancer therapeutics. The aim of this review is to cover the breadth of different molecular approaches being taken and the medicinal chemistry basis for their optimization and testing as new cancer therapeutics.
Collapse
Affiliation(s)
- Ann Fernandez
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Paige J Monsen
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago IL 60611 USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center Chicago IL 60612 USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine Chicago IL 60611 USA
| |
Collapse
|
2
|
Xie TT, Tian H, Du RF, Li F, Guo L. Mitogen-activated protein kinase-interacting kinase 1 is involved in mTOR-mediated pancreatic exocrine function of bovine pancreatic acinar cells with leucine supply. Arch Anim Nutr 2023:1-15. [PMID: 37133408 DOI: 10.1080/1745039x.2023.2199839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Leucine improves the exocrine capacity of the cow pancreas, but the mechanism was not revealed clearly. Mitogen-activated protein kinase-interacting kinase 1 (MNK1) is a pancreatic acinar cell-specific stress response kinase that regulates digestive enzyme abundance. We aimed to investigate the MNK1 gene and protein expression profiles among various organs or tissues of dairy cows and to demonstrate the mechanism by which leucine-stimulated MNK1 regulates pancreatic exocrine function. Firstly, the expression profiles of MNK1 protein and gene in the tissues and organs of dairy cows were measured using immunohistochemistry and RT-qPCR methods. Next, an in vitro model of cultured Holstein dairy calf pancreatic acinar cells was used to detect the role of MNK1 during pancreatic enzymes release which is stimulated by leucine. Cells were incubated in culture medium containing L-leucine (0.45 mM) for 180 min, and samples were collected hourly, with the control not containing L-leucine (0 mM). MNK1 was expressed at very high levels in the pancreatic tissue of dairy cows. Leucine supplementation increased the α-amylase level but not lipase level at three time-points (60, 120, and 180 min), and the interaction between treatments and times was significant only for α-amylase. Leucine treatment enhanced (P < 0.05) the phosphorylation of MNK1 and eIF4E. In addition, inhibition of MNK1 decreased leucine-mediated α-amylase and lipase release (P < 0.05) and the phosphorylation of Mnk1 and eIF4E but did not affect (P > 0.05) the phosphorylation of the mTOR signalling pathway factors 4EBP1 and S6K1. In summary, MNK1 is a key regulator of pancreatic exocrine function, which is regulated by leucine in the pancreas of dairy cows.
Collapse
Affiliation(s)
- Tong Tong Xie
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Huibin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rui Fang Du
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fei Li
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Long Guo
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Jin X, Qiu T, Xie J, Wei X, Wang X, Yu R, Proud C, Jiang T. Using Imidazo[2,1- b][1,3,4]thiadiazol Skeleton to Design and Synthesize Novel MNK Inhibitors. ACS Med Chem Lett 2023; 14:83-91. [PMID: 36655132 PMCID: PMC9841594 DOI: 10.1021/acsmedchemlett.2c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Mitogen-activated protein kinase-interacting protein kinases (MNKs) phosphorylate eukaryotic initiation factor 4E (eIF4E) and regulate the processes of cell proliferation, cell cycle, and migration and invasion of cancer cells. Selectively inhibiting the activity of MNKs could be effective in treating cancers. In this study, we report a series of novel MNK inhibitors with an imidazo[2,1-b][1,3,4]thiadiazol scaffold, from which, compound 18 inhibited the phosphorylation of eIF4E in various cancer cell lines potently. Compound 18 was more potent against MNK2 than MNK1, and decreased the levels of cyclin-B1, cyclin-D3, and MMP-3 in A549 and MDA-MB-231 cells, impaired cell growth and colony formation, arrested the cell cycle in the G0/G1 phase, and inhibited cell migration and the secretion of TNF-α, MCP-1, and IL-8 from A549 cells. It represents a starting compound to design further inhibitors that selectively target MNKs and apply in other diseases.
Collapse
Affiliation(s)
- Xin Jin
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- Shandong
Laboratory of Yantai Drug Discovery, Bohai
Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Tingting Qiu
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Jianling Xie
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
| | - Xianfeng Wei
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Xuemin Wang
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- School
of Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rilei Yu
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Christopher Proud
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- School
of Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tao Jiang
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, Klett-Mingo J, García-Hernández M, Pérez-Morgado M, Sacristán S, Barragán M, Seijo-Vila M, Tundidor I, Blasco-Benito S, Pérez-Gómez E, Gómez-Pinto I, Sánchez C, González C, González V, Martín M. An optimized MNK1b aptamer, apMNKQ2, and its potential use as a therapeutic agent in breast cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:553-568. [PMID: 36457699 PMCID: PMC9705393 DOI: 10.1016/j.omtn.2022.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most commonly diagnosed and leading cause of cancer death among women worldwide. Mitogen-activated protein kinase-interacting kinases (MNKs) promote the expression of several oncogenic proteins and are overexpressed in several types of cancer. In human cells, there are four isoforms of MNKs. The truncated isoform MNK1b, first described in our laboratory, has a higher basal activity and is constitutively active. Aptamers are emerging in recent years as potential therapeutic agents that show significant advantages over drugs of other nature. We have previously obtained and characterized a highly specific aptamer against MNK1b, named apMNK2F, with a dissociation constant in the nanomolar range, which produces significant inhibition of proliferation, migration, and colony formation in breast cancer cells. Furthermore, its sequence analysis predicted two G-quadruplex structures. In this work, we show the optimization process of the aptamer to reduce its size, improving its stability. The obtained aptamer, named apMNKQ2, is able to inhibit proliferation, colony formation, migration, and invasion in breast cancer cells. In murine models of breast cancer, apMNKQ2 has demonstrated its efficacy in reducing tumor volume and the number of metastases. In conclusion, apMNKQ2 could be used as an anti-tumor drug in the future.
Collapse
Affiliation(s)
- C. Pinto-Díez
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - R. Ferreras-Martín
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - R. Carrión-Marchante
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - J.I. Klett-Mingo
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - M. García-Hernández
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - M.I. Pérez-Morgado
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - S. Sacristán
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - M. Barragán
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - M. Seijo-Vila
- Department Biochemistry and Molecular Biology, School of Biology, Complutense University and Instituto de Investigación Hospital 12 de Octubre, 28040 Madrid, Spain
| | - I. Tundidor
- Department Biochemistry and Molecular Biology, School of Biology, Complutense University and Instituto de Investigación Hospital 12 de Octubre, 28040 Madrid, Spain
| | - S. Blasco-Benito
- Department Biochemistry and Molecular Biology, School of Biology, Complutense University and Instituto de Investigación Hospital 12 de Octubre, 28040 Madrid, Spain
| | - E. Pérez-Gómez
- Department Biochemistry and Molecular Biology, School of Biology, Complutense University and Instituto de Investigación Hospital 12 de Octubre, 28040 Madrid, Spain
| | - I. Gómez-Pinto
- Instituto de Química Física 'Rocasolano', CSIC, 28006 Madrid, Spain
| | - C. Sánchez
- Department Biochemistry and Molecular Biology, School of Biology, Complutense University and Instituto de Investigación Hospital 12 de Octubre, 28040 Madrid, Spain
| | - C. González
- Instituto de Química Física 'Rocasolano', CSIC, 28006 Madrid, Spain
| | - V.M. González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - M.E. Martín
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| |
Collapse
|
5
|
Design, Synthesis and Evaluation of Novel Phorbazole C Derivatives as MNK Inhibitors through Virtual High-Throughput Screening. Mar Drugs 2022; 20:md20070429. [PMID: 35877722 PMCID: PMC9319845 DOI: 10.3390/md20070429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E at Ser209 to control the translation of certain mRNAs and regulate the process of cell proliferation, cell migration and invasion, etc. Development of MNK inhibitors would be an effective treatment for related diseases. We used the MarineChem3D database to identify hit compounds targeting the protein MNK1 and MNK2 through high-throughput screening. Compounds from the phorbazole family showed good interactions with MNK1, and phorbazole C was selected as our hit compound. By analyzing the binding mode, we designed and synthesized 29 derivatives and evaluated their activity against MNKs, of which, six compounds showed good inhibition to MNKs. We also confirmed three interactions between this kind of compound and MNK1, which are vital for the activity. In conclusion, we report series of novel MNK inhibitors inspired from marine natural products and their relative structure–activity relationship. This will provide important information for further developing MNK inhibitors based on this kind of structure.
Collapse
|
6
|
Tang Y, Luo J, Yang Y, Liu S, Zheng H, Zhan Y, Fan S, Wen Q. Overexpression of p-4EBP1 associates with p-eIF4E and predicts poor prognosis for non-small cell lung cancer patients with resection. PLoS One 2022; 17:e0265465. [PMID: 35737644 PMCID: PMC9223369 DOI: 10.1371/journal.pone.0265465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/01/2022] [Indexed: 12/09/2022] Open
Abstract
Eukaryotic initiation factor 4E (eIF4E) and its phosphorylated form (p-eIF4E) play a crucial role in the protein synthesis, both are under regulation of eIF4E-binding protein 1 (4EBP1) and mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs). This study aims to explore the potential prognostic significance of p-4EBP1 and p-eIF4E in NSCLC patients. The expression of p-4EBP1 and p-eIF4E in NSCLC patients was detected by immunohistochemistry (IHC) staining in tissue microarrays (TMAs) containing 354 NSCLC and 53 non-cancerous lung tissues (Non-CLT). The overexpression percentage of p-4EBP1 and p-eIF4E in lung squamous cell carcinoma (SCC) and adenocarcinoma (ADC) was significantly higher than that of Non-CLT. P-4EBP1 expression in patients with advanced clinical stage was higher than that in early stage. Expression of p-4EBP1 had a positive relationship with p-eIF4E expression both in lung SCC and ADC. NSCLC patients with high expression of p-4EBP1 and p-eIF4E alone or in combination had a lower survival rate than that of other phenotypes. For NSCLC patients, p-4EBP1 is an independent poor prognostic factor as well as clinical stage, LNM and pathological grade. Overexpression of p-4EBP1 and p-eIF4E might be novel prognostic marker for NSCLC, who possesses potential application value for NSCLC targeted therapy.
Collapse
Affiliation(s)
- Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
7
|
Burman B, Drutman SB, Fury MG, Wong RJ, Katabi N, Ho AL, Pfister DG. Pharmacodynamic and therapeutic pilot studies of single-agent ribavirin in patients with human papillomavirus-related malignancies. Oral Oncol 2022; 128:105806. [PMID: 35339025 PMCID: PMC9788648 DOI: 10.1016/j.oraloncology.2022.105806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Ribavirin inhibits eukaryotic translation initiation factor 4E (eIF4E), thereby decreasing cap-dependent translation. In this two-part study, we assessed the pharmacodynamic effects and therapeutic potential of ribavirin in human papillomavirus (HPV)-related malignancies. METHODS In the pharmacodynamic study, ribavirin (400 mg BID for 14 days) was evaluated in 8 patients with HPV-positive localized oropharyngeal carcinoma with phosphorylated-eIF4E (p-eIF4E) ≥ 30%. In the therapeutic study, ribavirin (1400 mg BID in 28-day cycles, continuously dosed) was evaluated in 12 patients with recurrent and/or metastatic HPV-related cancer. Dose interruptions or reductions were allowed according to prespecified criteria. Toxicities were assessed in accordance with National Cancer Institute Common Terminology Criteria for Adverse Events version 4; response was assessed using Response Evaluation Criteria in Solid Tumors version 1.1. Patients remained on study until disease progression or unacceptable toxicity. RESULTS Six patients were evaluable in the pharmacodynamic study: 4 had decreased p-eIF4E after 14 days of ribavirin. In the therapeutic study, 12 patients were evaluable for toxicity, and 9 were evaluable for response. Among these, median follow-up was 3.5 months, and best overall response was stable disease in 5 patients and progression of disease in 4 patients. Median progression-free survival was 1.8 months. The most common treatment-related adverse events (grade > 2) were anemia, dyspnea, and hyperbilirubinemia. All patients had anemia (grades 1-3), with 33% having at least 1 dose reduction. CONCLUSION Oral ribavirin decreases p-eIF4E levels and is well-tolerated. However, a clear signal of efficacy in patients with recurrent and/or metastatic HPV-related cancers was not observed. (NCT02308241, NCT01268579).
Collapse
Affiliation(s)
- Bharat Burman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Scott B. Drutman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew G. Fury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY,Weill Cornell Medical College, New York, NY
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY,Weill Cornell Medical College, New York, NY
| | - Nora Katabi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alan L. Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY,Weill Cornell Medical College, New York, NY
| | - David G. Pfister
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY,Weill Cornell Medical College, New York, NY
| |
Collapse
|
8
|
Adamson AL, Jeffus D, Davis A, Greengrove E. Epstein-Barr virus lytic replication activates and is dependent upon MAPK-interacting kinase 1/2 in a cell-type dependent manner. Virology 2022; 572:72-85. [DOI: 10.1016/j.virol.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
|
9
|
Qi X, Zhang S, Chen Z, Wang L, Zhu W, Yin C, Fan J, Wu X, Wang J, Guo C. EGPI-1, a novel eIF4E/eIF4G interaction inhibitor, inhibits lung cancer cell growth and angiogenesis through Ras/MNK/ERK/eIF4E signaling pathway. Chem Biol Interact 2021; 352:109773. [PMID: 34902296 DOI: 10.1016/j.cbi.2021.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
eIF4E plays an important role in regulating tumor growth and angiogenesis, and eIF4E is highly expressed in a variety of lung cancer cell lines. siRNA eIF4E can significantly inhibit the proliferation of lung cancer cells, indicating that inhibition of eIF4E may become a novel anti-tumor target. In the previous study, we synthesized a series of small molecule compounds with the potential to inhibit eIF4E. Among them, the compound EGPI-1 significantly inhibited the proliferation of a variety of lung cancer cells such as A549, NCI-H460, NCI-H1650 and 95D without inhibiting the proliferation of HUVEC cells. Further studies found that EGPI-1 interfered with the eIF4E/eIF4G interaction and inhibited the phosphorylation of eIF4E in NCI-H460 cells. The results of flow cytometry showed that EGPI-1 induced apoptosis and G0/G1 cycle arrest in NCI-H460 cell. Interestingly, we also found that EGPI-1 induced autophagy and DNA damage in NCI-H460 cells. The mechanism results showed that EGPI-1 inhibited the Ras/MNK/ERK/eIF4E signaling pathway. Moreover, EGPI-1 inhibited tube formation of HUVECs, as well as inhibited the neovascularization of CAM, proving the anti-angiogenesis activity of EGPI-1. The NCI-H460 xenograft studies showed that EGPI-1 inhibited tumor growth and angiogenesis in vivo by regulating Ras/MNK/ERK/eIF4E pathway. Our studies proved that eIF4E was a novel target for regulating tumor growth, and the eIF4E/eIF4G interaction inhibitor EGPI-1 was promising to develop into a novel anti-lung cancer drug.
Collapse
Affiliation(s)
- Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuna Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Zekun Chen
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Chuanjin Yin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, 014030, China.
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
10
|
Gillen SL, Waldron JA, Bushell M. Codon optimality in cancer. Oncogene 2021; 40:6309-6320. [PMID: 34584217 PMCID: PMC8585667 DOI: 10.1038/s41388-021-02022-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
A key characteristic of cancer cells is their increased proliferative capacity, which requires elevated levels of protein synthesis. The process of protein synthesis involves the translation of codons within the mRNA coding sequence into a string of amino acids to form a polypeptide chain. As most amino acids are encoded by multiple codons, the nucleotide sequence of a coding region can vary dramatically without altering the polypeptide sequence of the encoded protein. Although mutations that do not alter the final amino acid sequence are often thought of as silent/synonymous, these can still have dramatic effects on protein output. Because each codon has a distinct translation elongation rate and can differentially impact mRNA stability, each codon has a different degree of 'optimality' for protein synthesis. Recent data demonstrates that the codon preference of a transcriptome matches the abundance of tRNAs within the cell and that this supply and demand between tRNAs and mRNAs varies between different cell types. The largest observed distinction is between mRNAs encoding proteins associated with proliferation or differentiation. Nevertheless, precisely how codon optimality and tRNA expression levels regulate cell fate decisions and their role in malignancy is not fully understood. This review describes the current mechanistic understanding on codon optimality, its role in malignancy and discusses the potential to target codon optimality therapeutically in the context of cancer.
Collapse
Affiliation(s)
- Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Joseph A Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, G61 1QH.
| |
Collapse
|
11
|
Zhu L, Chen Z, Zang H, Fan S, Gu J, Zhang G, Sun KDY, Wang Q, He Y, Owonikoko TK, Ramalingam SS, Sun SY. Targeting c-Myc to Overcome Acquired Resistance of EGFR Mutant NSCLC Cells to the Third-Generation EGFR Tyrosine Kinase Inhibitor, Osimertinib. Cancer Res 2021; 81:4822-4834. [PMID: 34289988 PMCID: PMC8448971 DOI: 10.1158/0008-5472.can-21-0556] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/15/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022]
Abstract
Osimertinib (AZD9291 or TAGRISSO) is a promising and approved third-generation EGFR tyrosine kinase inhibitor (TKI) for treating patients with advanced non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations or the resistant T790M mutation. However, the inevitable emergence of acquired resistance limits its long-term efficacy. A fuller understanding of the mechanism of action of osimertinib and its linkage to acquired resistance will enable the development of more efficacious therapeutic strategies. Consequently, we have identified a novel connection between osimertinib or other EGFR-TKIs and c-Myc. Osimertinib rapidly and sustainably decreased c-Myc levels primarily via enhancing protein degradation in EGFR-mutant (EGFRm) NSCLC cell lines and xenograft tumors. c-Myc levels were substantially elevated in different EGFRm NSCLC cell lines with acquired resistance to osimertinib in comparison with their corresponding parental cell lines and could not be reduced any further by osimertinib. Consistently, c-Myc levels were elevated in the majority of EGFRm NSCLC tissues relapsed from EGFR-TKI treatment compared with their corresponding untreated baseline c-Myc levels. Suppression of c-Myc through knockdown or pharmacologic targeting with BET inhibitors restored the response of resistant cell lines to osimertinib. These findings indicate that c-Myc modulation mediates the therapeutic efficacy of osimertinib and the development of osimertinib acquired resistance. Furthermore, they establish c-Myc as a potential therapeutic target and warrant clinical testing of BET inhibition as a potential strategy to overcome acquired resistance to osimertinib or other EGFR inhibitors. SIGNIFICANCE: This study demonstrates a critical role of c-Myc modulation in mediating therapeutic efficacy of osimertinib including osimertinib acquired resistance and suggests targeting c-Myc as a potential strategy to overcome osimertinib acquired resistance.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Zhen Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Hongjing Zang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jiajia Gu
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Kevin D-Y Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Chongqing, China
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia.
| |
Collapse
|
12
|
Knight JRP, Alexandrou C, Skalka GL, Vlahov N, Pennel K, Officer L, Teodosio A, Kanellos G, Gay DM, May-Wilson S, Smith EM, Najumudeen AK, Gilroy K, Ridgway RA, Flanagan DJ, Smith RCL, McDonald L, MacKay C, Cheasty A, McArthur K, Stanway E, Leach JD, Jackstadt R, Waldron JA, Campbell AD, Vlachogiannis G, Valeri N, Haigis KM, Sonenberg N, Proud CG, Jones NP, Swarbrick ME, McKinnon HJ, Faller WJ, Le Quesne J, Edwards J, Willis AE, Bushell M, Sansom OJ. MNK Inhibition Sensitizes KRAS-Mutant Colorectal Cancer to mTORC1 Inhibition by Reducing eIF4E Phosphorylation and c-MYC Expression. Cancer Discov 2021; 11:1228-1247. [PMID: 33328217 PMCID: PMC7611341 DOI: 10.1158/2159-8290.cd-20-0652] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/21/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
KRAS-mutant colorectal cancers are resistant to therapeutics, presenting a significant problem for ∼40% of cases. Rapalogs, which inhibit mTORC1 and thus protein synthesis, are significantly less potent in KRAS-mutant colorectal cancer. Using Kras-mutant mouse models and mouse- and patient-derived organoids, we demonstrate that KRAS with G12D mutation fundamentally rewires translation to increase both bulk and mRNA-specific translation initiation. This occurs via the MNK/eIF4E pathway culminating in sustained expression of c-MYC. By genetic and small-molecule targeting of this pathway, we acutely sensitize KRASG12D models to rapamycin via suppression of c-MYC. We show that 45% of colorectal cancers have high signaling through mTORC1 and the MNKs, with this signature correlating with a 3.5-year shorter cancer-specific survival in a subset of patients. This work provides a c-MYC-dependent cotargeting strategy with remarkable potency in multiple Kras-mutant mouse models and metastatic human organoids and identifies a patient population that may benefit from its clinical application. SIGNIFICANCE: KRAS mutation and elevated c-MYC are widespread in many tumors but remain predominantly untargetable. We find that mutant KRAS modulates translation, culminating in increased expression of c-MYC. We describe an effective strategy targeting mTORC1 and MNK in KRAS-mutant mouse and human models, pathways that are also commonly co-upregulated in colorectal cancer.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
| | | | - George L Skalka
- CRUK Beatson Institute, Glasgow, United Kingdom
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - Kathryn Pennel
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leah Officer
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ana Teodosio
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - David M Gay
- CRUK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | | - Rachael C L Smith
- CRUK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura McDonald
- Drug Discovery Unit, CRUK Beatson Institute, Glasgow, United Kingdom
| | - Craig MacKay
- Drug Discovery Unit, CRUK Beatson Institute, Glasgow, United Kingdom
| | - Anne Cheasty
- CRUK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Kerri McArthur
- CRUK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Emma Stanway
- CRUK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Joshua D Leach
- CRUK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | - Georgios Vlachogiannis
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Christopher G Proud
- Lifelong Health, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
- Department of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Neil P Jones
- CRUK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Martin E Swarbrick
- CRUK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - John Le Quesne
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
- Glenfield Hospital, Leicester University Hospitals NHS Trust, Leicester, United Kingdom
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Martin Bushell
- CRUK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Huang F, Gonçalves C, Bartish M, Rémy-Sarrazin J, Issa ME, Cordeiro B, Guo Q, Emond A, Attias M, Yang W, Plourde D, Su J, Gimeno MG, Zhan Y, Galán A, Rzymski T, Mazan M, Masiejczyk M, Faber J, Khoury E, Benoit A, Gagnon N, Dankort D, Journe F, Ghanem GE, Krawczyk CM, Saragovi HU, Piccirillo CA, Sonenberg N, Topisirovic I, Rudd CE, Miller WH, del Rincón SV. Inhibiting the MNK1/2-eIF4E axis impairs melanoma phenotype switching and potentiates antitumor immune responses. J Clin Invest 2021; 131:140752. [PMID: 33690225 PMCID: PMC8262472 DOI: 10.1172/jci140752] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Melanomas commonly undergo a phenotype switch, from a proliferative to an invasive state. Such tumor cell plasticity contributes to immunotherapy resistance; however, the mechanisms are not completely understood and thus are therapeutically unexploited. Using melanoma mouse models, we demonstrated that blocking the MNK1/2-eIF4E axis inhibited melanoma phenotype switching and sensitized melanoma to anti-PD-1 immunotherapy. We showed that phospho-eIF4E-deficient murine melanomas expressed high levels of melanocytic antigens, with similar results verified in patient melanomas. Mechanistically, we identified phospho-eIF4E-mediated translational control of NGFR, a critical effector of phenotype switching. Genetic ablation of phospho-eIF4E reprogrammed the immunosuppressive microenvironment, exemplified by lowered production of inflammatory factors, decreased PD-L1 expression on dendritic cells and myeloid-derived suppressor cells, and increased CD8+ T cell infiltrates. Finally, dual blockade of the MNK1/2-eIF4E axis and the PD-1/PD-L1 immune checkpoint demonstrated efficacy in multiple melanoma models regardless of their genomic classification. An increase in the presence of intratumoral stem-like TCF1+PD-1+CD8+ T cells, a characteristic essential for durable antitumor immunity, was detected in mice given a MNK1/2 inhibitor and anti-PD-1 therapy. Using MNK1/2 inhibitors to repress phospho-eIF4E thus offers a strategy to inhibit melanoma plasticity and improve response to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | | | - Margarita Bartish
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | | | - Mark E. Issa
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | | | - Qianyu Guo
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Audrey Emond
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Mikhael Attias
- Department of Microbiology and Immunology and
- Research Institute of the McGill University Health Centre, McGill University, Montréal, Quebec, Canada
| | - William Yang
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Dany Plourde
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Jie Su
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Marina Godoy Gimeno
- University Veterinary Teaching Hospital Camden, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Yao Zhan
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Alba Galán
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | | | | | | | | | - Elie Khoury
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Alexandre Benoit
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Natascha Gagnon
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - David Dankort
- Department of Biology and
- Goodman Cancer Research Center, McGill University, Montréal, Quebec, Canada
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - H. Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology and
- Research Institute of the McGill University Health Centre, McGill University, Montréal, Quebec, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, and
| | - Ivan Topisirovic
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Quebec, Canada
| | - Christopher E. Rudd
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Quebec, Canada
| | - Wilson H. Miller
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Quebec, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
14
|
Jin X, Yu R, Wang X, Proud CG, Jiang T. Progress in developing MNK inhibitors. Eur J Med Chem 2021; 219:113420. [PMID: 33892273 DOI: 10.1016/j.ejmech.2021.113420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
The MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E (eukaryotic initiation factor 4 E) at serine 209; eIF4E plays an important role in the translation of cytoplasmic mRNAs, all of which possess a 5' 'cap' structure to which eIF4E binds. Elevated levels of eIF4E, p-eIF4E and/or the MNK protein kinases have been found in many types of cancer, including solid tumors and leukemia. MNKs also play a role in metabolic disease. Regulation of the activities of MNKs (MNK1 and MNK2), control the phosphorylation of eIF4E, which in turn has a close relationship with the processes of tumor development, cell migration and invasion, and energy metabolism. MNK knock-out mice display no adverse effects on normal cells or phenotypes suggesting that MNK may be a potentially safe targets for the treatment of various cancers. Several MNK inhibitors or 'degraders' have been identified. Initially, some of the inhibitors were developed from natural products or based on other protein kinase inhibitors which inhibit multiple kinases. Subsequently, more potent and selective inhibitors for MNK1/2 have been designed and synthesized. Currently, three inhibitors (BAY1143269, eFT508 and ETC-206) are in various stages of clinical trials for the treatment of solid cancers or leukemia, either alone or combined with inhibitors of other protein kinase. In this review, we summarize the diverse MNK inhibitors that have been reported in patents and other literature, including those with activities in vitro and/or in vivo.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Rilei Yu
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tao Jiang
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
Zhang S, Chen Z, Shi P, Fan S, He Y, Wang Q, Li Y, Ramalingam SS, Owonikoko TK, Sun SY. Downregulation of death receptor 4 is tightly associated with positive response of EGFR mutant lung cancer to EGFR-targeted therapy and improved prognosis. Theranostics 2021; 11:3964-3980. [PMID: 33664875 PMCID: PMC7914351 DOI: 10.7150/thno.54824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 02/03/2023] Open
Abstract
Death receptor 4 (DR4), a cell surface receptor, mediates apoptosis or induces inflammatory cytokine secretion upon binding to its ligand depending on cell contexts. Its prognostic impact in lung cancer and connection between EGFR-targeted therapy and DR4 modulation has not been reported and thus was the focus of this study. Methods: Intracellular protein alterations were measured by Western blotting. Cell surface protein was detected with antibody staining and flow cytometry. mRNA expression was monitored with qRT-PCR. Gene transactivation was analyzed with promoter reporter assay. Drug dynamic effects in vivo were evaluated using xenografts. Gene modulations were achieved with gene overexpression and knockdown. Proteins in human archived tissues were stained with immunohistochemistry. Results: EGFR inhibitors (e.g., osimertinib) decreased DR4 levels only in EGFR mutant NSCLC cells and tumors, being tightly associated with induction of apoptosis. This modulation was lost once cells became resistant to these inhibitors. Increased levels of DR4 were detected in cell lines with acquired osimertinib resistance and in NSCLC tissues relapsed from EGFR-targeted therapy. DR4 knockdown induced apoptosis and augmented apoptosis when combined with osimertinib in both sensitive and resistant cell lines, whereas enforced DR4 expression significantly attenuated osimertinib-induced apoptosis. Mechanistically, osimertinib induced MARCH8-mediated DR4 proteasomal degradation and suppressed MEK/ERK/AP-1-dependent DR4 transcription, resulting in DR4 downregulation. Moreover, we found that DR4 positive expression in human lung adenocarcinoma was significantly associated with poor patient survival. Conclusions: Collectively, we suggest that DR4 downregulation is coupled to therapeutic efficacy of EGFR-targeted therapy and predicts improved prognosis, revealing a previously undiscovered connection between EGFR-targeted therapy and DR4 modulation.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Zhen Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Puyu Shi
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Chongqing, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Taofeek K. Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Minnee E, Faller WJ. Translation initiation and its relevance in colorectal cancer. FEBS J 2021; 288:6635-6651. [PMID: 33382175 PMCID: PMC9291299 DOI: 10.1111/febs.15690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Protein synthesis is one of the most essential processes in every kingdom of life, and its dysregulation is a known driving force in cancer development. Multiple signaling pathways converge on the translation initiation machinery, and this plays a crucial role in regulating differential gene expression. In colorectal cancer, dysregulation of initiation results in translational reprogramming, which promotes the selective translation of mRNAs required for many oncogenic processes. The majority of upstream mutations found in colorectal cancer, including alterations in the WNT, MAPK, and PI3K\AKT pathways, have been demonstrated to play a significant role in translational reprogramming. Many translation initiation factors are also known to be dysregulated, resulting in translational reprogramming during tumor initiation and/or maintenance. In this review, we outline the role of translational reprogramming that occurs during colorectal cancer development and progression and highlight some of the most critical factors affecting the etiology of this disease.
Collapse
Affiliation(s)
- Emma Minnee
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William James Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Ruan H, Li X, Xu X, Leibowitz BJ, Tong J, Chen L, Ao L, Xing W, Luo J, Yu Y, Schoen RE, Sonenberg N, Lu X, Zhang L, Yu J. eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. eLife 2020; 9:60151. [PMID: 33135632 PMCID: PMC7665890 DOI: 10.7554/elife.60151] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
To better understand a role of eIF4E S209 in oncogenic translation, we generated EIF4ES209A/+ heterozygous knockin (4EKI) HCT 116 human colorectal cancer (CRC) cells. 4EKI had little impact on total eIF4E levels, cap binding or global translation, but markedly reduced HCT 116 cell growth in spheroids and mice, and CRC organoid growth. 4EKI strongly inhibited Myc and ATF4 translation, the integrated stress response (ISR)-dependent glutamine metabolic signature, AKT activation and proliferation in vivo. 4EKI inhibited polyposis in ApcMin/+ mice by suppressing Myc protein and AKT activation. Furthermore, p-eIF4E was highly elevated in CRC precursor lesions in mouse and human. p-eIF4E cooperated with mutant KRAS to promote Myc and ISR-dependent glutamine addiction in various CRC cell lines, characterized by increased cell death, transcriptomic heterogeneity and immune suppression upon deprivation. These findings demonstrate a critical role of eIF4E S209-dependent translation in Myc and stress-driven oncogenesis and as a potential therapeutic vulnerability.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,UPMC Hillman Cancer Center, Pittsburgh, United States
| | - Xiangyun Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,UPMC Hillman Cancer Center, Pittsburgh, United States.,Department of Stem cell and regenerative medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Xu
- Department of Stem cell and regenerative medicine, Daping Hospital, Army Medical University, Chongqing, China.,Central laboratory, State key laboratory of trauma, burn and combined Injury, Daping Hospital, Chongqing, China
| | - Brian J Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,UPMC Hillman Cancer Center, Pittsburgh, United States
| | - Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Lujia Chen
- UPMC Hillman Cancer Center, Pittsburgh, United States.,Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Luoquan Ao
- Department of Stem cell and regenerative medicine, Daping Hospital, Army Medical University, Chongqing, China.,Central laboratory, State key laboratory of trauma, burn and combined Injury, Daping Hospital, Chongqing, China
| | - Wei Xing
- Department of Stem cell and regenerative medicine, Daping Hospital, Army Medical University, Chongqing, China.,Central laboratory, State key laboratory of trauma, burn and combined Injury, Daping Hospital, Chongqing, China
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Yanping Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Robert E Schoen
- Departments of Medicine and Epidemiology, University of Pittsburgh, Pittsburgh, United States
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Xinghua Lu
- UPMC Hillman Cancer Center, Pittsburgh, United States.,Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,UPMC Hillman Cancer Center, Pittsburgh, United States
| |
Collapse
|
18
|
Contribution of miRNAs, tRNAs and tRFs to Aberrant Signaling and Translation Deregulation in Lung Cancer. Cancers (Basel) 2020; 12:cancers12103056. [PMID: 33092114 PMCID: PMC7593945 DOI: 10.3390/cancers12103056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The profiles of miRNAs, tRNA-derived fragments and tRNAs from lung cancer biopsy specimens indicate involvement of gene networks that modulate signaling and translation initiation. The current study highlights the important role of several regulatory small non-coding RNAs in aberrant signaling and translation deregulation in lung cancer. Abstract Transcriptomics profiles of miRNAs, tRNAs or tRFs are used as biomarkers, after separate examination of several cancer cell lines, blood samples or biopsies. However, the possible contribution of all three profiles on oncogenic signaling and translation as a net regulatory effect, is under investigation. The present analysis of miRNAs and tRFs from lung cancer biopsies indicated putative targets, which belong to gene networks involved in cell proliferation, transcription and translation regulation. In addition, we observed differential expression of specific tRNAs along with several tRNA-related genes with possible involvement in carcinogenesis. Transfection of lung adenocarcinoma cells with two identified tRFs and subsequent NGS analysis indicated gene targets that mediate signaling and translation regulation. Broader analysis of all major signaling and translation factors in several biopsy specimens revealed a crosstalk between the PI3K/AKT and MAPK pathways and downstream activation of eIF4E and eEF2. Subsequent polysome profile analysis and 48S pre-initiation reconstitution experiments showed increased global translation rates and indicated that aberrant expression patterns of translation initiation factors could contribute to elevated protein synthesis. Overall, our results outline the modulatory effects that possibly correlate the expression of important regulatory non-coding RNAs with aberrant signaling and translation deregulation in lung cancer.
Collapse
|
19
|
Yang X, Zhong W, Cao R. Phosphorylation of the mRNA cap-binding protein eIF4E and cancer. Cell Signal 2020; 73:109689. [PMID: 32535199 PMCID: PMC8049097 DOI: 10.1016/j.cellsig.2020.109689] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Dysregulated protein synthesis is frequently involved in oncogenesis and cancer progression. Translation initiation is thought to be the rate-limiting step in protein synthesis, and the mRNA 5' cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) is a pivotal factor that initiates translation. The activities of eIF4E are regulated at multiple levels, one of which is through its phosphorylation at Serine 209 by the mitogen-activated protein kinase-interacting kinases (MNKs, including MNK1 and MNK2). Benefiting from novel mouse genetic tools and pharmacological MNK inhibitors, our understanding of a role for eIF4E phosphorylation in tumor biology and cancer therapy has greatly evolved in recent years. Importantly, recent studies have found that the level of eIF4E phosphorylation is frequently upregulated in a wide variety of human cancer types, and phosphorylation of eIF4E drives a number of important processes in cancer biology, including cell transformation, proliferation, apoptosis, metastasis and angiogenesis. The MNK-eIF4E axis is being assessed as a therapeutic target either alone or in combination with other therapies in different cancer models. As novel MNK inhibitors are being developed, experimental studies bring new hope to cure human cancers that are not responsive to traditional therapies. Herein we review recent progress on our understanding of a mechanistic role for phosphorylation of eIF4E in cancer biology and therapy.
Collapse
Affiliation(s)
- Xiaotong Yang
- School of Medicine, Tsinghua University, Beijing 100084, China; National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
20
|
Impact of Eukaryotic Translation Initiation Factors on Breast Cancer: Still Much to Investigate. Cancers (Basel) 2020; 12:cancers12071984. [PMID: 32708122 PMCID: PMC7409344 DOI: 10.3390/cancers12071984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Breast carcinoma (BC) remains one of the most serious health problems. It is a heterogeneous entity, and mainly classified according to receptor status for estrogen (ER), progesterone (PR) and egf (HER2/Neu), as well as the proliferation marker ki67. Gene expression in eukaryotes is regulated at the level of both gene transcription and translation, where eukaryotic initiation factors (eIFs) are key regulators of protein biosynthesis. Aberrant translation results in an altered cellular proteome, and this clearly effects cell growth supporting tumorigenesis. The relationship between various eIFs and BC entities, as well as the related regulatory mechanisms, has meanwhile become a focus of scientific interest. Here, we give an overview on the current research state of eIF function, focusing on BC.
Collapse
|
21
|
Dong Q, Dong L, Liu S, Kong Y, Zhang M, Wang X. Tumor-Derived Exosomal eIF4E as a Biomarker for Survival Prediction in Patients with Non-Small Cell Lung Cancer. Med Sci Monit 2020; 26:e923210. [PMID: 32502142 PMCID: PMC7297025 DOI: 10.12659/msm.923210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The aim of this study was to investigate the expression of tumor-derived exosomal RNA eIF4E (exo-eIF4E) in non-small cell lung cancer (NSCLC) and its correlation with prognosis. Material/Methods The Cancer Genome Atlas (TCGA) data was exacted to investigate the role of tissue eIF4E in NSCLC. We enrolled 99 NSCLC patients and 40 healthy volunteers with corresponding serum samples in this study. The levels of exo-eIF4E in the peripheral blood of each group were tested by quantitative polymerase chain reaction (PCR). The chi-squared test and the log-rank test were applied to analyze the correlation between the expression levels of exo-eIF4E and the patients’ clinical-pathological data, including the overall survival. Results TCGA data showed that increased eIF4E in NSCLC tissues was associated with late-stage disease (P=0.0497) and inferior overall survival (P=0.017). The expression of exo-eIF4E in the serum of the NSCLC group was significantly higher than that in healthy individuals (P<0.001). Furthermore, advanced TNM stage (P=0.003), distant metastasis (P=0.008), and serum positive cytokeratin fragment 19 (CYFRA21-1) (P=0.023) are more likely present in NSCLC patients with higher exo-eIF4E expression. Moreover, the multivariate combined with univariate analyses verified exo-eIF4E as an independent prognostic factor for shorter overall survival (P=0.01) and progression-free survival (P=0.005). Shorter overall survival (P=0.0005) and inferior progression-free survival (P=0.0017) are more likely present in NSCLC patients with higher exo-eIF4E. Conclusions Tumor-derived exo-eIF4E in serum can be a practical tool to predict the prognosis of NSCLC.
Collapse
Affiliation(s)
- Qian Dong
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Liangliang Dong
- Department of Medical Oncology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong, China (mainland)
| | - Sheng Liu
- Department of Interventional Therapy, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong, China (mainland)
| | - Yan Kong
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Mi Zhang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Xingwen Wang
- Department of Radiotherapy, Cancer Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
22
|
Prabhu SA, Moussa O, Miller WH, del Rincón SV. The MNK1/2-eIF4E Axis as a Potential Therapeutic Target in Melanoma. Int J Mol Sci 2020; 21:E4055. [PMID: 32517051 PMCID: PMC7312468 DOI: 10.3390/ijms21114055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
: Melanoma is a type of skin cancer that originates in the pigment-producing cells of the body known as melanocytes. Most genetic aberrations in melanoma result in hyperactivation of the mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. We and others have shown that a specific protein synthesis pathway known as the MNK1/2-eIF4E axis is often dysregulated in cancer. The MNK1/2-eIF4E axis is a point of convergence for these signaling pathways that are commonly constitutively activated in melanoma. In this review we consider the functional implications of aberrant mRNA translation in melanoma and other malignancies. Moreover, we discuss the consequences of inhibiting the MNK1/2-eIF4E axis on the tumor and tumor-associated cells, and we provide important avenues for the utilization of this treatment modality in combination with other targeted and immune-based therapies. The past decade has seen the increased development of selective inhibitors to block the action of the MNK1/2-eIF4E pathway, which are predicted to be an effective therapy regardless of the melanoma subtype (e.g., cutaneous, acral, and mucosal).
Collapse
Affiliation(s)
- Sathyen A. Prabhu
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Omar Moussa
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Rossy Cancer Network, McGill University, 1980 Sherbrooke Ouest, #1101, Montreal, QC H3H 1E8, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
23
|
Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12051298. [PMID: 32455578 PMCID: PMC7281195 DOI: 10.3390/cancers12051298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-20138714
| |
Collapse
|
24
|
Tan Q, Wang D, Yang J, Xing P, Yang S, Li Y, Qin Y, He X, Liu Y, Zhou S, Duan H, Liang T, Wang H, Wang Y, Jiang S, Zhao F, Zhong Q, Zhou Y, Wang S, Dai J, Yao J, Wu D, Zhang Z, Sun Y, Han X, Yu X, Shi Y. Autoantibody profiling identifies predictive biomarkers of response to anti-PD1 therapy in cancer patients. Am J Cancer Res 2020; 10:6399-6410. [PMID: 32483460 PMCID: PMC7255026 DOI: 10.7150/thno.45816] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Programmed cell death protein 1 (PD1) inhibitors have revolutionized cancer therapy, yet many patients fail to respond. Thus, the identification of accurate predictive biomarkers of therapy response will improve the clinical benefit of anti-PD1 therapy. Method: We assessed the baseline serological autoantibody (AAb) profile against ~2300 proteins in 10 samples and ~4600 proteins in 35 samples with alveolar soft part sarcoma (ASPS), non-small-cell lung cancer (NSCLC) and lymphoma using Nucleic Acid Programmable Protein Arrays (NAPPA). 23 selected potential AAb biomarkers were verified using simple, affordable and rapid enzyme linked immune sorbent assay (ELISA) technology with baseline plasma samples from 12 ASPS, 16 NSCLC and 46 lymphoma patients. SIX2 and EIF4E2 AAbs were further validated in independent cohorts of 17 NSCLC and 43 lymphoma patients, respectively, using ELISA. The IgG subtypes in response to therapy were also investigated. Results: Distinct AAb profiles between ASPS, NSCLC and lymphoma were observed. In ASPS, the production of P53 and PD1 AAbs were significantly increased in non-responders (p=0.037). In NSCLC, the SIX2 AAb was predictive of response with area under the curve (AUC) of 0.87, 0.85 and 0.90 at 3 months, 4.5 months, 6 months evaluation time points, respectively. In the validation cohort, the SIX2 AAb was consistently up-regulated in non-responders (p=0.024). For lymphoma, the EIF4E2 AAb correlated with a favorable response with AUCs of 0.68, 0.70, and 0.70 at 3 months, 4.5 months, and 6 months, respectively. In the validation cohort, the AUCs were 0.74, 0.75 and 0.66 at 3 months, 4.5 months, and 6 months, respectively. The PD1 and PD-L1 IgG2 AAbs were highly produced in ~20% of lymphoma responders. Furthermore, bioinformatics analysis revealed antigen functions of these AAb biomarkers. Conclusion: This study provides the first evidence that AAb biomarkers selected using high-throughput protein microarrays can predict anti-PD1 therapeutic response and guide anti-PD1 therapy.
Collapse
|
25
|
Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, González VM, Martín ME. Deeping in the Role of the MAP-Kinases Interacting Kinases (MNKs) in Cancer. Int J Mol Sci 2020; 21:2967. [PMID: 32340135 PMCID: PMC7215568 DOI: 10.3390/ijms21082967] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are involved in oncogenic transformation and can promote metastasis and tumor progression. In human cells, there are four MNKs isoforms (MNK1a/b and MNK2a/b), derived from two genes by alternative splicing. These kinases play an important role controlling the expression of specific proteins involved in cell cycle, cell survival and cell motility via eukaryotic initiation factor 4E (eIF4E) regulation, but also through other substrates such as heterogeneous nuclear ribonucleoprotein A1, polypyrimidine tract-binding protein-associated splicing factor and Sprouty 2. In this review, we provide an overview of the role of MNK in human cancers, describing the studies conducted to date to elucidate the mechanism involved in the action of MNKs, as well as the development of MNK inhibitors in different hematological cancers and solid tumors.
Collapse
Affiliation(s)
| | | | | | | | - María Elena Martín
- Grupo de Aptámeros, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Ctra. Colmenar Km. 9100, 28034 Madrid, Spain; (C.P.-D.); (R.F.-M.); (R.C.-M.); (V.M.G.)
| |
Collapse
|
26
|
Batool A, Majeed ST, Aashaq S, Majeed R, Andrabi KI. Eukaryotic Initiation Factor 4E phosphorylation acts a switch for its binding to 4E-BP1 and mRNA cap assembly. Biochem Biophys Res Commun 2020; 527:489-495. [PMID: 32336547 DOI: 10.1016/j.bbrc.2020.04.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022]
Abstract
Translational regulation has invited considerable interest consequent of its circumstantial dysregulation during cancer genesis. eIF4E (Eukaryotic Initiation Factor 4E) has been identified as an important factor involved in tumor progression by way of instrumenting the convergence of oncogenic signals for up-regulation of Cap-dependent translation. In the backdrop of dramatic eIF4E over-expression in a large population of human cancers, we suggest that the tumorigenic property of eIF4E is strictly attributed to its phosphorylation state. We provide evidence that while phosphorylated eIF4E fails to be sequestered by 4E-BP1, its dephosphorylated form shows overwhelming binding with 4E-BP1 without any consideration to the state of 4E-BP1 phosphorylation to suggest that eIF4E-4EBP1 binding is governed by eIF4E phosphorylation instead of 4E-BP1. We also show that eIF4E engages in Cap-assembly formation preferably in a phosphorylation-dependent manner to suggest that eIF4E phosphorylation rather than 4E-BP1 regulates its availability for Cap-assembly.
Collapse
Affiliation(s)
- Asiya Batool
- Department of Biotechnology, Science Block, University of Kashmir, Srinagar, 190006, J&K, India
| | - Sheikh Tahir Majeed
- Department of Biotechnology, Science Block, University of Kashmir, Srinagar, 190006, J&K, India
| | - Sabreena Aashaq
- Department of Biotechnology, Science Block, University of Kashmir, Srinagar, 190006, J&K, India
| | - Rabiya Majeed
- Department of Biotechnology, Science Block, University of Kashmir, Srinagar, 190006, J&K, India
| | - Khurshid Iqbal Andrabi
- Department of Biotechnology, Science Block, University of Kashmir, Srinagar, 190006, J&K, India.
| |
Collapse
|
27
|
Overexpression of p-Akt, p-mTOR and p-eIF4E proteins associates with metastasis and unfavorable prognosis in non-small cell lung cancer. PLoS One 2020; 15:e0227768. [PMID: 32023262 PMCID: PMC7001968 DOI: 10.1371/journal.pone.0227768] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/28/2019] [Indexed: 12/24/2022] Open
Abstract
The Akt (protein kinase B)/mammalian target of rapamycin (mTOR) pathway, which is dysregulated in various cancers, controls the assembly of eukaryotic translation initiation factor 4F (eIF4E) complex. However, whether aberrant expression of phosphorylated Akt (p-Akt), phosphorylated mTOR (p-mTOR) and phosphorylated eIF4E (p-eIF4E) is associated with clinicopathological characteristics in surgically resected non-small cell lung cancer (NSCLC) has been rarely reported. Here, we investigated expression of p-Akt, p-mTOR and p-eIF4E proteins in NSCLC by immunohistochemistry and evaluated their correlation with clinicopathological characteristics and prognostic significance. The results showed that the positive percentage of p-Akt, p-mTOR and p-eIF4E was higher in NSCLC. Additionally, p-mTOR and p-eIF4E was dramatically higher in lung adenocarcinoma (both P<0.05). Most importantly, NSCLC patients with lymph node metastasis had significantly elevated expression of p-Akt, p-mTOR and p-eIF4E (all P<0.05). Positive expression of p-Akt, and any positive expression of p-Akt, p-mTOR and p-eIF4E proteins were positively correlated with clinical stages (both P<0.05). Spearman’s rank correlation test revealed that expression of p-Akt was correlated with p-eIF4E and p-mTOR (r = 0.107, P = 0.047; r = 0.287, P<0.001, respectively). Also, p-eIF4E had positive correlation with p-mTOR (r = 0.265, P<0.001). Furthermore, NSCLC patients with increased expression of p-Akt, p-mTOR and p-eIF4E, and any positive expression of above three proteins had lower overall survival rates (all P<0.05). Multivariate Cox regression analysis further indicated thatp-eIF4E was an independent prognostic factor for NSCLC patients (P = 0.046). Taken together, overexpression of p-Akt, p-mTOR and p-eIF4E proteins is associated with metastasis and poor prognosis of NSCLC patients after surgical resection, and positive expression of p-eIF4E protein may act as an independent unfavorable prognostic biomarker for overall survival of NSCLC patients.
Collapse
|
28
|
Ramón y Cajal S, Sesé M, Capdevila C, Aasen T, De Mattos-Arruda L, Diaz-Cano SJ, Hernández-Losa J, Castellví J. Clinical implications of intratumor heterogeneity: challenges and opportunities. J Mol Med (Berl) 2020; 98:161-177. [PMID: 31970428 PMCID: PMC7007907 DOI: 10.1007/s00109-020-01874-2] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
In this review, we highlight the role of intratumoral heterogeneity, focusing on the clinical and biological ramifications this phenomenon poses. Intratumoral heterogeneity arises through complex genetic, epigenetic, and protein modifications that drive phenotypic selection in response to environmental pressures. Functionally, heterogeneity provides tumors with significant adaptability. This ranges from mutual beneficial cooperation between cells, which nurture features such as growth and metastasis, to the narrow escape and survival of clonal cell populations that have adapted to thrive under specific conditions such as hypoxia or chemotherapy. These dynamic intercellular interplays are guided by a Darwinian selection landscape between clonal tumor cell populations and the tumor microenvironment. Understanding the involved drivers and functional consequences of such tumor heterogeneity is challenging but also promises to provide novel insight needed to confront the problem of therapeutic resistance in tumors.
Collapse
Affiliation(s)
- Santiago Ramón y Cajal
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
- Department of Pathology, Vall d’Hebron University Hospital, Autonomous University of Barcelona, Pg. Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Marta Sesé
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Claudia Capdevila
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032 USA
| | - Trond Aasen
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Leticia De Mattos-Arruda
- Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, c/Natzaret, 115-117, 08035 Barcelona, Spain
| | - Salvador J. Diaz-Cano
- Department of Histopathology, King’s College Hospital and King’s Health Partners, London, UK
| | - Javier Hernández-Losa
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Josep Castellví
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
29
|
Lama D, Verma CS. Deciphering the mechanistic effects of eIF4E phosphorylation on mRNA-cap recognition. Protein Sci 2019; 29:1373-1386. [PMID: 31811670 DOI: 10.1002/pro.3798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022]
Abstract
The mRNA cap-binding oncoprotein "eIF4E" is phosphorylated at residue S209 by Mnk kinases, and is closely associated with tumor development and progression. Despite being well-established, mechanistic details at the molecular level of mRNA recognition by eIF4E due to phosphorylation have not been clearly elucidated. We investigated this through molecular modeling and simulations of the S209 phosphorylated derivative of eIF4E and explored the associated implication on the binding of the different variants of mRNA-cap analogs. A key feature that emerges as a result of eIF4E phosphorylation is a salt-bridge network between the phosphorylated S209 (pS209) and a specific pair of lysine residues (K159 and K162) within the cap-binding interface on eIF4E. This interaction linkage stabilizes the otherwise dynamic C-terminal region of the protein, resulting in the attenuation of the overall plasticity and accessibility of the binding pocket. The pS209-K159 salt-bridge also results in an energetically less favorable environment for the bound mRNA-cap primarily due to electrostatic repulsion between the negative potentials from the phosphates in the cap and those appearing as a result of phosphorylation of S209. These observations collectively imply that the binding of the mRNA-cap will be adversely affected in the phosphorylated derivative of eIF4E. We propose a mechanistic model highlighting the role of eIF4E phosphorylation as a regulatory tool in modulating eIF4E: mRNA-cap recognition and its potential impact on translation initiation.
Collapse
Affiliation(s)
- Dilraj Lama
- Biomolecular Modelling and Design Division, Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chandra S Verma
- Biomolecular Modelling and Design Division, Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
30
|
Batool A, Majeed ST, Aashaq S, Majeed R, Bhat NN, Andrabi KI. Eukaryotic initiation factor 4E is a novel effector of mTORC1 signaling pathway in cross talk with Mnk1. Mol Cell Biochem 2019; 465:13-26. [DOI: 10.1007/s11010-019-03663-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
|
31
|
Abdelaziz AM, Diab S, Islam S, Basnet SKC, Noll B, Li P, Mekonnen LB, Lu J, Albrecht H, Milne RW, Gerber C, Yu M, Wang S. Discovery of N-Phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine Derivatives as Potent Mnk2 Inhibitors: Design, Synthesis, SAR Analysis, and Evaluation of in vitro Anti-leukaemic Activity. Med Chem 2019; 15:602-623. [PMID: 30569866 DOI: 10.2174/1573406415666181219111511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Aberrant expression of eukaryotic translation initiation factor 4E (eIF4E) is common in many types of cancer including acute myeloid leukaemia (AML). Phosphorylation of eIF4E by MAPK-interacting kinases (Mnks) is essential for the eIF4E-mediated oncogenic activity. As such, the pharmacological inhibition of Mnks can be an effective strategy for the treatment of cancer. METHODS A series of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives was designed and synthesised. The Mnk inhibitory activity of these derivatives as well as their anti-proliferative activity against MV4-11 AML cells was determined. RESULTS These compounds were identified as potent Mnk2 inhibitors. Most of them demonstrated potent anti-proliferative activity against MV4-11 AML cells. The cellular mechanistic studies of the representative inhibitors revealed that they reduced the level of phosphorylated eIF4E and induced apoptosis by down-regulating the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and by cleaving poly(ADP-ribose)polymerase (PARP). The lead compound 7k possessed desirable pharmacokinetic properties and oral bioavailability. CONCLUSION This work proposes that exploration of the structural diversity in the context of Nphenyl- 4-(1H-pyrrol-3-yl)pyrimidin-2-amine would offer potent and selective Mnk inhibitors.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sarah Diab
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Saiful Islam
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sunita K C Basnet
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Benjamin Noll
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Peng Li
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Laychiluh B Mekonnen
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Jingfeng Lu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Robert W Milne
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Cobus Gerber
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
32
|
Wang L, Guo C, Li X, Yu X, Li X, Xu K, Jiang B, Jia X, Li C, Shi D. Design, synthesis and biological evaluation of bromophenol-thiazolylhydrazone hybrids inhibiting the interaction of translation initiation factors eIF4E/eIF4G as multifunctional agents for cancer treatment. Eur J Med Chem 2019; 177:153-170. [DOI: 10.1016/j.ejmech.2019.05.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
|
33
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
34
|
Robichaud N, Sonenberg N, Ruggero D, Schneider RJ. Translational Control in Cancer. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032896. [PMID: 29959193 DOI: 10.1101/cshperspect.a032896] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The translation of messenger RNAs (mRNAs) into proteins is a key event in the regulation of gene expression. This is especially true in the cancer setting, as many oncogenes and transforming events are regulated at this level. Cancer-promoting factors that are translationally regulated include cyclins, antiapoptotic factors, proangiogenic factors, regulators of cell metabolism, prometastatic factors, immune modulators, and proteins involved in DNA repair. This review discusses the diverse means by which cancer cells deregulate and reprogram translation, and the resulting oncogenic impacts, providing insights into the complexity of translational control in cancer and its targeting for cancer therapy.
Collapse
Affiliation(s)
- Nathaniel Robichaud
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, and Departments of Urology and of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Robert J Schneider
- NYU School of Medicine, Alexandria Center for Life Science, New York, New York 10016
| |
Collapse
|
35
|
Ichiyanagi O, Ito H, Naito S, Kabasawa T, Kanno H, Narisawa T, Ushijima M, Kurota Y, Ozawa M, Sakurai T, Nishida H, Kato T, Yamakawa M, Tsuchiya N. Impact of eIF4E phosphorylation at Ser209 via MNK2a on tumour recurrence after curative surgery in localized clear cell renal cell carcinoma. Oncotarget 2019; 10:4053-4068. [PMID: 31258849 PMCID: PMC6592294 DOI: 10.18632/oncotarget.27017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Background: We investigated the roles of eIF4E phosphorylation (Ser209) in tumour recurrence after curative nephrectomy for localized clear cell renal cell carcinoma (ccRCC). Methods: Expression of eIF4E, p eIF4E and MNKs (MAPK interacting kinases), was evaluated in surgical specimens obtained from consecutive non metastatic ccRCC patients (n = 290) by immunohistochemistry (IHC), immunoblotting, and qRT PCR at the protein and mRNA levels. In human RCC cell lines, the effects of eIF4E phosphorylation were examined using immunoblotting, proliferation, migration and invasion assays with pharmacological inhibitors (CGP57380 or ETP45835) and specific small interfering (si) RNAs against MNK1/2(a/b). Results: In postoperative follow-up (median, 7.9 y), 40 patients experienced metastatic recurrence. In multivariate Cox analyses, higher IHC expression of p eIF4E in ccRCC significantly predicted a longer recurrence-free interval. eIF4E is phosphorylated mainly by MNK2a in tumour specimens and cell lines. In 786-O and A-498 cell lines, pharmacological inhibition of MNKs decreased p-eIF4E and increased vimentin and N cadherin but did not influence proliferation. Similarly, MNK2 or MNK2a inhibition with siRNA reduced p-eIF4E and enhanced vimentin translation, cell migration and invasion in the cell lines. Conclusions: MNK2a-induced eIF4E phosphorylation may suppress metastatic recurrence of ccRCC, partially due to vimentin downregulation at the translational level, consequently leading to inhibition of epithelial–mesenchymal transition.
Collapse
Affiliation(s)
- Osamu Ichiyanagi
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan.,Department of Urology, Yamagata Prefectural Kahoku Hospital, Kahoku, Japan
| | - Hiromi Ito
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Sei Naito
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takanobu Kabasawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hidenori Kanno
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takafumi Narisawa
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masaki Ushijima
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuta Kurota
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Michinobu Ozawa
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Toshihiko Sakurai
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hayato Nishida
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tomoyuki Kato
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
36
|
Kolenda T, Guglas K, Kopczyńska M, Teresiak A, Bliźniak R, Mackiewicz A, Lamperska K, Mackiewicz J. Oncogenic Role of ZFAS1 lncRNA in Head and Neck Squamous Cell Carcinomas. Cells 2019; 8:cells8040366. [PMID: 31010087 PMCID: PMC6523746 DOI: 10.3390/cells8040366] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with high mortality. The identification of specific HNSCC biomarkers will increase treatment efficacy and limit the toxicity of current therapeutic strategies. Long non-coding RNAs (lncRNAs) are promising biomarkers. Accordingly, here we investigate the biological role of ZFAS1 and its potential as a biomarker in HNSCC. Methods: The expression level of ZFAS1 in HNSCC cell lines was analyzed using qRT-PCR. Based on the HNSCC TCGA data, the ZFAS1 expression profile, clinicopathological features, and expression of correlated genes were analyzed in patient tissue samples. The selected genes were classified according to their biological function using the PANTHER tool. The interaction between lncRNA:miRNA and miRNA:mRNA was tested using available online tools. All statistical analyses were accomplished using GraphPad Prism 5. Results: The expression of ZFAS1 was up-regulated in the metastatic FaDu cell line relative to the less aggressive SCC-25 and SCC-040 and dysplastic DOK cell lines. The TCGA data indicated an up-regulation of ZFAS1 in HNSCCs compared to normal tissue samples. The ZFAS1 levels typically differed depending on the cancer stage and T-stage. Patients with a lower expression of ZFAS1 presented a slightly longer disease-free survival and overall survival. The analysis of genes associated with ZFAS1, as well its targets, indicate that they are linked with crucial cellular processes. In the group of patients with low expression of ZFAS1, we detected the up-regulation of suppressors and down-regulation of genes associated with epithelial-to-mesenchymal transition (EMT) process, metastases, and cancer-initiating cells. Moreover, the negative correlation between ZFAS1 and its host gene, ZNFX1, was observed. The analysis of interactions indicated that ZFAS1 has a binding sequence for miR-150-5p. The expression of ZFAS1 and miR-150-5p is negatively correlated in HNSCC patients. miR-150-5p can regulate the 3′UTR of EIF4E mRNA. In the group of patients with high expression of ZFAS1 and low expression of miR-150-5p, we detected an up-regulation of EIF4E. Conclusions: In HNSCC, ZFAS1 displays oncogenic properties, regulates important processes associated with EMT, cancer-initiating cells, and metastases, and might affect patients’ clinical outcomes. ZFAS1 likely regulates the cell phenotype through miR-150-5p and its downstream targets. Following further validation, ZFAS1 might prove a new and valuable biomarker.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland.
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Zwirki i Wigury Street, 02-091 Warszawa, Poland.
| | - Magda Kopczyńska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland.
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland.
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland.
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
| | - Jacek Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland.
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, 16/18 Grunwaldzka Street, 60-786 Poznan, Poland.
- Department of Biology and Environmental Sciences, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland.
| |
Collapse
|
37
|
Batool A, Majeed ST, Aashaq S, Majeed R, Shah G, Nazir N, Andrabi KI. Eukaryotic Initiation Factor 4E (eIF4E) sequestration mediates 4E-BP1 response to rapamycin. Int J Biol Macromol 2019; 125:651-659. [DOI: 10.1016/j.ijbiomac.2018.12.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
38
|
De A, Jacobson BA, Peterson MS, Stelzner ME, Jay-Dixon J, Kratzke MG, Patel MR, Bitterman PB, Kratzke RA. Inhibition of oncogenic cap-dependent translation by 4EGI-1 reduces growth, enhances chemosensitivity and alters genome-wide translation in non-small cell lung cancer. Cancer Gene Ther 2018; 26:157-165. [DOI: 10.1038/s41417-018-0058-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/22/2018] [Accepted: 10/20/2018] [Indexed: 12/20/2022]
|
39
|
Lee HJ, Venkatarame Gowda Saralamma V, Kim SM, Ha SE, Raha S, Lee WS, Kim EH, Lee SJ, Heo JD, Kim GS. Pectolinarigenin Induced Cell Cycle Arrest, Autophagy, and Apoptosis in Gastric Cancer Cell via PI3K/AKT/mTOR Signaling Pathway. Nutrients 2018; 10:nu10081043. [PMID: 30096805 PMCID: PMC6115855 DOI: 10.3390/nu10081043] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Pectolinarigenin (PEC), a natural flavonoid present in Cirsium chanroenicum and in some species of Citrus fruits, has various pharmacological benefits such as anti-inflammatory and anti-cancer activities. In the present study, we investigated the anti-cancer mechanism of PEC induced cell death caused by autophagy and apoptosis in AGS and MKN28 human gastric cancer cells. The PEC treatment significantly inhibited the AGS and MKN28 cell growth in a dose-dependent manner. Further, PEC significantly elevated sub-G1 phase in AGS cells and G2/M phase cell cycle arrest in both AGS and MKN28 cells. Apoptosis was confirmed by Annexin V and Hoechst 33342 fluorescent staining. Moreover, Immunoblotting results revealed that PEC treatment down-regulated the inhibitor of apoptosis protein (IAP) family protein XIAP that leads to the activation of caspase-3 thereby cleavage of PARP (poly-ADP-ribose polymerase) in both AGS and MKN28 cells in a dose-dependent manner. The autophagy-inducing effect was indicated by the increased formation of acidic vesicular organelles (AVOs) and increased protein levels of LC3-II conversion in both AGS and MKN28 cells. PEC shows the down regulation of PI3K/AKT/mTOR pathway which is a major regulator of autophagic and apoptotic cell death in cancer cells that leads to the down-regulation of p-4EBP1, p-p70S6K, and p-eIF4E in PEC treated cells when compared with the untreated cells. In conclusion, PEC treatment might have anti-cancer effect by down-regulation of PI3K/AKT/mTOR pathway leading to G2/M phase cell cycle arrest, autophagic and apoptotic cell death in human gastric cancer cells. Further studies of PEC treatment can support to develop as a potential alternative therapeutic agent for human gastric carcinoma.
Collapse
Affiliation(s)
- Ho Jeong Lee
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Korea.
| | - Venu Venkatarame Gowda Saralamma
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| | - Seong Min Kim
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| | - Sang Eun Ha
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| | - Suchismita Raha
- Department of Internal Medicine, Gyeongsang National University Cancer Center, School of Medicine, Gyeongsang National University, 15 Jinju-daero, Jinju 52727, Korea.
| | - Won Sup Lee
- Department of Internal Medicine, Gyeongsang National University Cancer Center, School of Medicine, Gyeongsang National University, 15 Jinju-daero, Jinju 52727, Korea.
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, 965 Dongbu-ro, Jinju 52833, Korea.
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Korea.
| | - Jeong Doo Heo
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Korea.
| | - Gon Sup Kim
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
40
|
Anders PM, Montgomery ND, Montgomery SA, Bhatt AP, Dittmer DP, Damania B. Human herpesvirus-encoded kinase induces B cell lymphomas in vivo. J Clin Invest 2018; 128:2519-2534. [PMID: 29733294 DOI: 10.1172/jci97053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is the etiological agent of the endothelial cell cancer Kaposi's sarcoma (KS) and 2 B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). KSHV ORF36, also known as viral protein kinase (vPK), is a viral serine/threonine kinase. We previously reported that KSHV vPK enhances cell proliferation and mimics cellular S6 kinase to phosphorylate ribosomal protein S6, a protein involved in protein synthesis. We created a mouse model to analyze the function of vPK in vivo. We believe this is the first mouse tumor model of a viral kinase encoded by a pathogenic human virus. We observed increased B cell activation in the vPK transgenic mice compared with normal mice. We also found that, over time, vPK transgenic mice developed a B cell hyperproliferative disorder and/or a high-grade B cell non-Hodgkin lymphoma at a greatly increased incidence compared with littermate controls. This mouse model shows that a viral protein kinase is capable of promoting B cell activation and proliferation as well as augmenting lymphomagenesis in vivo and may therefore contribute to the development of viral cancers.
Collapse
Affiliation(s)
- Penny M Anders
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| | - Nathan D Montgomery
- Department of Pathology and Laboratory Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center.,Department of Pathology and Laboratory Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aadra P Bhatt
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| |
Collapse
|
41
|
Pinto-Díez C, García-Recio EM, Pérez-Morgado MI, García-Hernández M, Sanz-Criado L, Sacristán S, Toledo-Lobo MV, Pérez-Mies B, Esteban-Rodríguez I, Pascual A, Garcia-Villanueva M, Martínez-Jañez N, González VM, Martín ME. Increased expression of MNK1b, the spliced isoform of MNK1, predicts poor prognosis and is associated with triple-negative breast cancer. Oncotarget 2018; 9:13501-13516. [PMID: 29568373 PMCID: PMC5862594 DOI: 10.18632/oncotarget.24417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/31/2018] [Indexed: 02/05/2023] Open
Abstract
MAP kinase interacting kinases (MNKs) modulate the function of oncogene eukaryotic initiation factor 4E (eIF4E) through phosphorylation, which is necessary for oncogenic transformation. MNK1 gives rise to two mRNAs and thus two MNK1 isoforms, named MNK1a and MNK1b. MNK1b, the splice variant of human MNK1a, is constitutively active and independent of upstream MAP kinases. In this study, we have analyzed the expression of both MNK1 isoforms in 69 breast tumor samples and its association with clinicopathologic/prognostic characteristics of breast cancer. MNK1a and MNK1b expression was significantly increased in tumors relative to the corresponding adjacent normal tissue (p < 0.001). In addition, MNK1b overexpression was found in most of the triple-negative tumors and was associated with a shorter overall and disease-free survival time. Overexpression of MNK1b in MDA-MB-231 cells induced an increase in the expression of the MCL1 antiapoptotic protein and promoted proliferation, invasion and colony formation. In conclusion, a high expression level of MNK1b protein could be used as a marker of poor prognosis in breast cancer patients and it could be a therapeutic target in triple-negative tumors.
Collapse
Affiliation(s)
- Celia Pinto-Díez
- Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Eva M. García-Recio
- Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | | | | | - Lara Sanz-Criado
- Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Silvia Sacristán
- Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - M. Val Toledo-Lobo
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Belén Pérez-Mies
- Servicio de Anatomía Patológica, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | | | - Alejandro Pascual
- Servicio de Anatomía Patológica, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | | | | | - Víctor M. González
- Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - M. Elena Martín
- Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
42
|
Piserà A, Campo A, Campo S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J Genet Genomics 2018; 45:13-24. [DOI: 10.1016/j.jgg.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
|
43
|
Wen Q, Wang W, Luo J, Chu S, Chen L, Xu L, Zang H, Alnemah MM, Ma J, Fan S. CGP57380 enhances efficacy of RAD001 in non-small cell lung cancer through abrogating mTOR inhibition-induced phosphorylation of eIF4E and activating mitochondrial apoptotic pathway. Oncotarget 2017; 7:27787-801. [PMID: 27050281 PMCID: PMC5053688 DOI: 10.18632/oncotarget.8497] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/17/2016] [Indexed: 12/21/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a potentially important therapeutic target in a broad range of cancer types. mTOR inhibitors such as rapamycin and its analogs (rapalogs) have been proven effective as anticancer agents in non-small cell lung cancer (NSCLC), whereas they strongly enhance phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) and activation of Akt, which cause resistance to mTOR-targeted therapy after an initial response. Rapamycin induces eIF4E phosphorylation by activating MAPK-interacting kinases (Mnks), and therefore targeting Mnk/eIF4E pathway represents a potential therapeutic strategy for the treatment of NSCLC. Here, our results showed that over-expression of p-Mnk1 and p-eIF4E was significantly associated with poor overall survival of NSCLC patients and high expression of p-Mnk1 might act as an independent prognostic biomarker for these patients. Meanwhile, inhibiting Mnk1 expression by Mnk inhibitor (CGP57380) could abrogate rapalogs (RAD001)-induced eIF4E phosphorylation and Akt activation. Furthermore, combination of CGP57380 and RAD001 could induce NSCLC cells apoptosis via activating intrinsic mitochondrial pathway, and exert synergistic antitumor efficacy both in vitro and in vivo. In conclusion, combination of targeting both mTOR and Mnk/eIF4E signaling pathways to enhance effectiveness of mTOR-targeted cancer therapy might be significant innovation for the personalized treatment of NSCLC.
Collapse
Affiliation(s)
- Qiuyuan Wen
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Weiyuan Wang
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiadi Luo
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shuzhou Chu
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lingjiao Chen
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lina Xu
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hongjing Zang
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mohannad Ma Alnemah
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jian Ma
- Cancer Research Institute of Central South University, Changsha, Hunan, 410078, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
44
|
Wang W, Li J, Wen Q, Luo J, Chu S, Chen L, Qing Z, Xie G, Xu L, Alnemah MM, Li M, Fan S, Zhang H. 4EGI-1 induces apoptosis and enhances radiotherapy sensitivity in nasopharyngeal carcinoma cells via DR5 induction on 4E-BP1 dephosphorylation. Oncotarget 2017; 7:21728-41. [PMID: 26942880 PMCID: PMC5008318 DOI: 10.18632/oncotarget.7824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022] Open
Abstract
The eIF4F complex regulated by a various group of eIF4E-binding proteins (4E-BPs) can initial the protein synthesis. Small molecule compound 4EGI-1, an inhibitor of the cap-dependent translation initiation through disturbing the interaction between eIF4E and eIF4G which are main elements of the eIF4E complex, has been reported to suppress cell proliferation by inducing apoptosis in many types of cancer. And death receptor 5 (DR5) is a major component in the extrinsic apoptotic pathway. However, the correlation among 4EGI-1, DR5 and 4E-BPs have not been discovered in NPC now. Therefore, we intend to find out the effect of 4EGI-1 on the apoptosis process of NPC and the relationship among 4EGI-1, DR5 and 4E-BPs. Our results revealed a significant down regulation of DR5 expression in NPC tissues, which inversely correlated with lymph node metastasis status and clinical stages. Depressed DR5 expression was an independent biomarker for poor prognosis in NPC, and elevated DR5 expression showed longer overall survival time in 174 NPC patients. Besides, 4EGI-1 induced apoptosis in NPC cells through the DR5-caspase-8 axis on 4E-BP1 and eIF4E dephosphorylation exerting positive influence on their anti-tumor activities. The induction of DR5 also sensitized NPC cells to radiotherapy, and the SER was 1.195. These results establish the death receptor pathway as a novel anticancer mechanism of eIF4E/eIF4G interaction inhibitor in NPC.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiao Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuzhou Chu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingjiao Chen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenzhen Qing
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lina Xu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mohannad Ma Alnemah
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meirong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbo Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
Zhan Y, Guo J, Yang W, Goncalves C, Rzymski T, Dreas A, Żyłkiewicz E, Mikulski M, Brzózka K, Golas A, Kong Y, Ma M, Huang F, Huor B, Guo Q, da Silva SD, Torres J, Cai Y, Topisirovic I, Su J, Bijian K, Alaoui-Jamali MA, Huang S, Journe F, Ghanem GE, Miller WH, del Rincón SV. MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma. J Clin Invest 2017; 127:4179-4192. [PMID: 29035277 PMCID: PMC5663367 DOI: 10.1172/jci91258] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 09/05/2017] [Indexed: 12/25/2022] Open
Abstract
Melanoma can be stratified into unique subtypes based on distinct pathologies. The acral/mucosal melanoma subtype is characterized by aberrant and constitutive activation of the proto-oncogene receptor tyrosine kinase C-KIT, which drives tumorigenesis. Treatment of these melanoma patients with C-KIT inhibitors has proven challenging, prompting us to investigate the downstream effectors of the C-KIT receptor. We determined that C-KIT stimulates MAP kinase-interacting serine/threonine kinases 1 and 2 (MNK1/2), which phosphorylate eukaryotic translation initiation factor 4E (eIF4E) and render it oncogenic. Depletion of MNK1/2 in melanoma cells with oncogenic C-KIT inhibited cell migration and mRNA translation of the transcriptional repressor SNAI1 and the cell cycle gene CCNE1. This suggested that blocking MNK1/2 activity may inhibit tumor progression, at least in part, by blocking translation initiation of mRNAs encoding cell migration proteins. Moreover, we developed an MNK1/2 inhibitor (SEL201), and found that SEL201-treated KIT-mutant melanoma cells had lower oncogenicity and reduced metastatic ability. Clinically, tumors from melanoma patients harboring KIT mutations displayed a marked increase in MNK1 and phospho-eIF4E. Thus, our studies indicate that blocking MNK1/2 exerts potent antimelanoma effects and support blocking MNK1/2 as a potential strategy to treat patients positive for KIT mutations.
Collapse
Affiliation(s)
- Yao Zhan
- Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - William Yang
- Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Christophe Goncalves
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | | | | | | | | | | | | | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Fan Huang
- Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Bonnie Huor
- Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Qianyu Guo
- Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Sabrina Daniela da Silva
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Jose Torres
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Yutian Cai
- Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Ivan Topisirovic
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Jie Su
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Krikor Bijian
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Moulay A. Alaoui-Jamali
- Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Sidong Huang
- Biochemistry, Goodman Cancer Center, McGill University, Montréal, Quebec, Canada
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Wilson H. Miller
- Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
- Rossy Cancer Network, McGill University, Montréal, Quebec, Canada
| | - Sonia V. del Rincón
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
46
|
MAP kinase-interacting serine/threonine kinase 2 promotes proliferation, metastasis, and predicts poor prognosis in non-small cell lung cancer. Sci Rep 2017; 7:10612. [PMID: 28878291 PMCID: PMC5587555 DOI: 10.1038/s41598-017-10397-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 01/04/2023] Open
Abstract
We hypothesized that MAP kinase-interacting serine/threonine kinase 2 (MNK2) may contribute to non-small cell lung cancer (NSCLC) development, and serve as a new therapeutic target. Immunohistochemical staining evaluated the correlation between MNK2 expression and clinicopathological features in 367 NSCLC cancer tissues. We determined the effects of MNK2 silencing in NSCLC cell lines in vitro and in vivo. RT-PCR and western blotting was used to examine the impact of MNK2 on ERK and AKT pathways. MNK2 was overexpressed in NSCLC cell lines and tumor tissues. Patients with MNK2 overexpression had lower OS rates (P < 0.001). High expression of MNK2 was correlated with lymph node metastasis (P = 0.008). MNK2 functioned as an independent prognostic factor for poor survival in patients with NSCLC (P = 0.003). MNK2 down-regulation inhibited proliferation, migration and invasion in vitro (P < 0.001), and reduced tumor growth and invasion in nude mice (P < 0.05). MNK2 enhanced phosphorylation of eIF4E, a downstream target of ERK and AKT pathways, which promoted NSCLC proliferation and invasion. We conclude that MNK2 overexpression in NSCLC is associated with proliferation, migration, invasion, and lower survival rates in patients via the phosphorylated eIF4E-mediated signaling pathway.
Collapse
|
47
|
Ali MU, Ur Rahman MS, Jia Z, Jiang C. Eukaryotic translation initiation factors and cancer. Tumour Biol 2017; 39:1010428317709805. [PMID: 28653885 DOI: 10.1177/1010428317709805] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent technological advancements have shown tremendous mechanistic accomplishments in our understanding of the mechanism of messenger RNA translation in eukaryotic cells. Eukaryotic messenger RNA translation is very complex process that includes four phases (initiation, elongation, termination, and ribosome recycling) and diverse mechanisms involving protein and non-protein molecules. Translation regulation is principally achieved during initiation step of translation, which is organized by multiple eukaryotic translation initiation factors. Eukaryotic translation initiation factor proteins help in stabilizing the formation of the functional ribosome around the start codon and provide regulatory mechanisms in translation initiation. Dysregulated messenger RNA translation is a common feature of tumorigenesis. Various oncogenic and tumor suppressive genes affect/are affected by the translation machinery, making the components of the translation apparatus promising therapeutic targets for the novel anticancer drug. This review provides details on the role of eukaryotic translation initiation factors in messenger RNA translation initiation, their contribution to onset and progression of tumor, and how dysregulated eukaryotic translation initiation factors can be used as a target to treat carcinogenesis.
Collapse
Affiliation(s)
- Muhammad Umar Ali
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Muhammad Saif Ur Rahman
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyu Jia
- 2 Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Cao Jiang
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Dai L, Lin Z, Cao Y, Chen Y, Xu Z, Qin Z. Targeting EIF4F complex in non-small cell lung cancer cells. Oncotarget 2017; 8:55731-55735. [PMID: 28903455 PMCID: PMC5589694 DOI: 10.18632/oncotarget.18413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for about 85–90% of lung cancer cases, which represents the leading cause of cancer-related death in the world. The majority of lung cancer patients doesn't respond well to conventional chemo-/radio-therapeutic regimens and have a poor prognosis. The recent introduction of targeted therapy and immunotherapy gives new hopes to NSCLC patients, but their outcome/prognosis is far from satisfactory. The translation initiation EIF4F complex has been shown to play important roles in cancer progression, but its functional role and therapeutic effect in lung cancers especially NSCLC remain largely unknown. In this current review, we summarize recent findings regarding the role of EIF4F complex in NSCLC progression and targeted therapy potentials. We also discuss the unanswered questions and future directions in this field.
Collapse
Affiliation(s)
- Lu Dai
- Department of Genetics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA.,Department of Pediatrics, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhen Lin
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Yueyu Cao
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yihan Chen
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zengguang Xu
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhiqiang Qin
- Department of Genetics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA.,Department of Pediatrics, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
49
|
Islam F, Gopalan V, Wahab R, Smith RA, Qiao B, Lam AKY. Stage dependent expression and tumor suppressive function of FAM134B( JK1) in colon cancer. Mol Carcinog 2017; 56:238-249. [DOI: 10.1002/mc.22488] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Riajul Wahab
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Robert A. Smith
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Bin Qiao
- Department of Stomatology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province China
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
- Department of Stomatology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province China
| |
Collapse
|
50
|
Santag S, Siegel F, Wengner AM, Lange C, Bömer U, Eis K, Pühler F, Lienau P, Bergemann L, Michels M, von Nussbaum F, Mumberg D, Petersen K. BAY 1143269, a novel MNK1 inhibitor, targets oncogenic protein expression and shows potent anti-tumor activity. Cancer Lett 2016; 390:21-29. [PMID: 28043914 DOI: 10.1016/j.canlet.2016.12.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022]
Abstract
The initiation of mRNA translation has received increasing attention as an attractive target for cancer treatment in the recent years. The oncogenic eukaryotic translation initiation factor 4E (eIF4E) is the major substrate of MAP kinase-interacting kinase 1 (MNK1), and it is located at the junction of the cancer-associated PI3K and MAPK pathways. The fact that MNK1 is linked to cell transformation and tumorigenesis renders the kinase a promising target for cancer therapy. We identified a novel small molecule MNK1 inhibitor, BAY 1143269, by high-throughput screening and lead optimization. In kinase assays, BAY 1143269 showed potent and selective inhibition of MNK1. By targeting MNK1 activity, BAY 1143269 strongly regulated downstream factors involved in cell cycle regulation, apoptosis, immune response and epithelial-mesenchymal transition in vitro or in vivo. In addition, BAY 1143269 demonstrated strong efficacy in monotherapy in cell line and patient-derived non-small cell lung cancer xenograft models as well as delayed tumor regrowth in combination treatment with standard of care chemotherapeutics. In summary, the inhibition of MNK1 activity with a highly potent and selective inhibitor BAY 1143269 may provide an innovative approach for anti-cancer therapy.
Collapse
Affiliation(s)
- Susann Santag
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Franziska Siegel
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Antje M Wengner
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Claudia Lange
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Ulf Bömer
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Knut Eis
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Florian Pühler
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Linda Bergemann
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Martin Michels
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Kirstin Petersen
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|