1
|
Pedraza N, Monserrat MV, Ferrezuelo F, Torres-Rosell J, Colomina N, Miguez-Cabello F, Párraga JP, Soto D, López-Merino E, García-Vilela C, Esteban JA, Egea J, Garí E. Cyclin D1-Cdk4 regulates neuronal activity through phosphorylation of GABAA receptors. Cell Mol Life Sci 2023; 80:280. [PMID: 37684532 PMCID: PMC10491536 DOI: 10.1007/s00018-023-04920-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 09/10/2023]
Abstract
Nuclear Cyclin D1 (Ccnd1) is a main regulator of cell cycle progression and cell proliferation. Interestingly, Ccnd1 moves to the cytoplasm at the onset of differentiation in neuronal precursors. However, cytoplasmic functions and targets of Ccnd1 in post-mitotic neurons are unknown. Here we identify the α4 subunit of gamma-aminobutyric acid (GABA) type A receptors (GABAARs) as an interactor and target of Ccnd1-Cdk4. Ccnd1 binds to an intracellular loop in α4 and, together with Cdk4, phosphorylates the α4 subunit at threonine 423 and serine 431. These modifications upregulate α4 surface levels, increasing the response of α4-containing GABAARs, measured in whole-cell patch-clamp recordings. In agreement with this role of Ccnd1-Cdk4 in neuronal signalling, inhibition of Cdk4 or expression of the non-phosphorylatable α4 decreases synaptic and extra-synaptic currents in the hippocampus of newborn rats. Moreover, according to α4 functions in synaptic pruning, CCND1 knockout mice display an altered pattern of dendritic spines that is rescued by the phosphomimetic α4. Overall, our findings molecularly link Ccnd1-Cdk4 to GABAARs activity in the central nervous system and highlight a novel role for this G1 cyclin in neuronal signalling.
Collapse
Affiliation(s)
- Neus Pedraza
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain.
| | - Ma Ventura Monserrat
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Francisco Ferrezuelo
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Jordi Torres-Rosell
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Neus Colomina
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Federico Miguez-Cabello
- Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Javier Picañol Párraga
- Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - David Soto
- Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Esperanza López-Merino
- Department of Molecular Neurobiology, Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Celia García-Vilela
- Department of Molecular Neurobiology, Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José A Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Joaquim Egea
- Molecular and Developmental Neurobiology, Dept. Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain
| | - Eloi Garí
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain.
| |
Collapse
|
2
|
Rodriguez-Polanco WR, Norris A, Velasco AB, Gleason AM, Grant BD. Syndapin Regulates the RAP-1 GTPase to Control Endocytic Recycling via RHO-1 and Non-Muscle Myosin II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530328. [PMID: 36909525 PMCID: PMC10002613 DOI: 10.1101/2023.02.27.530328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
After endocytosis, many plasma membrane components are recycled via narrow-diameter membrane tubules that emerge from early endosomes to form recycling endosomes, eventually leading to their return to the plasma membrane. We previously showed that the F-BAR and SH3 domain Syndapin/PACSIN-family protein SDPN-1 is required in vivo for basolateral endocytic recycling in the C. elegans intestine. Here we sought to determine the significance of a predicted interaction between the SDPN-1 SH3 domain and a target sequence in PXF-1/PDZ-GEF1/RAPGEF2, a known exchange factor for Rap-GTPases. We found that endogenous mutations we engineered into the SDPN-1 SH3 domain, or its binding site in the PXF-1 protein, interfere with recycling in vivo , as does loss of the PXF-1 target RAP-1. Rap-GTPases have been shown in several contexts to negatively regulate RhoA activity. Our results show that RHO-1/RhoA is enriched on SDPN-1 and RAP-1 positive endosomes in the C. elegans intestine, and loss of SDPN-1 or RAP-1 elevates RHO-1(GTP) levels on intestinal endosomes. Furthermore, we found that depletion of RHO-1 suppressed sdpn-1 mutant recycling defects, indicating that control of RHO-1 activity is a key mechanism by which SDPN-1 acts to promote endocytic recycling. RHO-1/RhoA is well-known for controlling actomyosin contraction cycles, although little is known of non-muscle myosin II on endosomes. Our analysis found that non-muscle myosin II is enriched on SDPN-1 positive endosomes, with two non-muscle myosin II heavy chain isoforms acting in apparent opposition. Depletion of nmy-2 inhibited recycling like sdpn-1 mutants, while depletion of nmy-1 suppressed sdpn-1 mutant recycling defects, indicating actomyosin contractility in controlling recycling endosome function.
Collapse
|
3
|
Park K, Yoo HS, Oh CK, Lee JR, Chung HJ, Kim HN, Kim SH, Kee KM, Kim TY, Kim M, Kim BG, Ra JS, Myung K, Kim H, Han SH, Seo MD, Lee Y, Kim DW. Reciprocal interactions among Cobll1, PACSIN2, and SH3BP1 regulate drug resistance in chronic myeloid leukemia. Cancer Med 2022; 11:4005-4020. [PMID: 35352878 PMCID: PMC9636508 DOI: 10.1002/cam4.4727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cobll1 affects blast crisis (BC) progression and tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML). PACSIN2, a novel Cobll1 binding protein, activates TKI‐induced apoptosis in K562 cells, and this activation is suppressed by Cobll1 through the interaction between PACSIN2 and Cobll1. PACSIN2 also binds and inhibits SH3BP1 which activates the downstream Rac1 pathway and induces TKI resistance. PACSIN2 competitively interacts with Cobll1 or SH3BP1 with a higher affinity for Cobll1. Cobll1 preferentially binds to PACSIN2, releasing SH3BP1 to promote the SH3BP1/Rac1 pathway and suppress TKI‐mediated apoptosis and eventually leading to TKI resistance. Similar interactions among Cobll1, PACSIN2, and SH3BP1 control hematopoiesis during vertebrate embryogenesis. Clinical analysis showed that most patients with CML have Cobll1 and SH3BP1 expression at the BC phase and BC patients with Cobll1 and SH3BP1 expression showed severe progression with a higher blast percentage than those without any Cobll1, PACSIN2, or SH3BP1 expression. Our study details the molecular mechanism of the Cobll1/PACSIN2/SH3BP1 pathway in regulating drug resistance and BC progression in CML.
Collapse
Affiliation(s)
- Kibeom Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hee-Seop Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Chang-Kyu Oh
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Anatomy, School of Medicine, Inje University, Busan, Republic of Korea
| | - Joo Rak Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hee Jin Chung
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ha-Neul Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Soo-Hyun Kim
- Leukemia Omics Research Institute, Eulji University-Uijeongbu Campus, Gyeonggi-do, Republic of Korea
| | - Kyung-Mi Kee
- Leukemia Omics Research Institute, Eulji University-Uijeongbu Campus, Gyeonggi-do, Republic of Korea
| | - Tong Yoon Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Hongtae Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Seung Hun Han
- Department of Medicine Quality Analysis, Andong Science College, Gyeongbuk, Republic of Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Wook Kim
- Leukemia Omics Research Institute, Eulji University-Uijeongbu Campus, Gyeonggi-do, Republic of Korea.,Hematology Center, Uijeongbu Eulji Medical Center, Eulji University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Dumont V, Lehtonen S. PACSIN proteins in vivo: Roles in development and physiology. Acta Physiol (Oxf) 2022; 234:e13783. [PMID: 34990060 PMCID: PMC9285741 DOI: 10.1111/apha.13783] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/15/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022]
Abstract
Protein kinase C and casein kinase substrate in neurons (PACSINs), or syndapins (synaptic dynamin‐associated proteins), are a family of proteins involved in the regulation of cell cytoskeleton, intracellular trafficking and signalling. Over the last twenty years, PACSINs have been mostly studied in the in vitro and ex vivo settings, and only in the last decade reports on their function in vivo have emerged. We first summarize the identification, structure and cellular functions of PACSINs, and then focus on the relevance of PACSINs in vivo. During development in various model organisms, PACSINs participate in diverse processes, such as neural crest cell development, gastrulation, laterality development and neuromuscular junction formation. In mouse, PACSIN2 regulates angiogenesis during retinal development and in human, PACSIN2 associates with monosomy and embryonic implantation. In adulthood, PACSIN1 has been extensively studied in the brain and shown to regulate neuromorphogenesis, receptor trafficking and synaptic plasticity. Several genetic studies suggest a role for PACSIN1 in the development of schizophrenia, which is also supported by the phenotype of mice depleted of PACSIN1. PACSIN2 plays an essential role in the maintenance of intestinal homeostasis and participates in kidney repair processes after injury. PACSIN3 is abundant in muscle tissue and necessary for caveolar biogenesis to create membrane reservoirs, thus controlling muscle function, and has been linked to certain genetic muscular disorders. The above examples illustrate the importance of PACSINs in diverse physiological or tissue repair processes in various organs, and associations to diseases when their functions are disturbed.
Collapse
Affiliation(s)
- Vincent Dumont
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
- Department of Pathology University of Helsinki Helsinki Finland
| |
Collapse
|
5
|
Proteogenomic Analysis Reveals Proteins Involved in the First Step of Adipogenesis in Human Adipose-Derived Stem Cells. Stem Cells Int 2021; 2021:3168428. [PMID: 34956370 PMCID: PMC8702357 DOI: 10.1155/2021/3168428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background Obesity is characterized as a disease that directly affects the whole-body metabolism and is associated with excess fat mass and several related comorbidities. Dynamics of adipocyte hypertrophy and hyperplasia play an important role in health and disease, especially in obesity. Human adipose-derived stem cells (hASC) represent an important source for understanding the entire adipogenic differentiation process. However, little is known about the triggering step of adipogenesis in hASC. Here, we performed a proteogenomic approach for understanding the protein abundance alterations during the initiation of the adipogenic differentiation process. Methods hASC were isolated from adipose tissue of three donors and were then characterized and expanded. Cells were cultured for 24 hours in adipogenic differentiation medium followed by protein extraction. We used shotgun proteomics to compare the proteomic profile of 24 h-adipogenic, differentiated, and undifferentiated hASC. We also used our previous next-generation sequencing data (RNA-seq) of the total and polysomal mRNA fractions of hASC to study posttranscriptional regulation during the initial steps of adipogenesis. Results We identified 3420 proteins out of 48,336 peptides, of which 92 proteins were exclusively identified in undifferentiated hASC and 53 proteins were exclusively found in 24 h-differentiated cells. Using a stringent criterion, we identified 33 differentially abundant proteins when comparing 24 h-differentiated and undifferentiated hASC (14 upregulated and 19 downregulated, respectively). Among the upregulated proteins, we shortlisted several adipogenesis-related proteins. A combined analysis of the proteome and the transcriptome allowed the identification of positive correlation coefficients between proteins and mRNAs. Conclusions These results demonstrate a specific proteome profile related to adipogenesis at the beginning (24 hours) of the differentiation process in hASC, which advances the understanding of human adipogenesis and obesity. Adipogenic differentiation is finely regulated at the transcriptional, posttranscriptional, and posttranslational levels.
Collapse
|
6
|
Abstract
Radioproteomics is the integration of proteomics, the systematic study of the protein expression of an organism, with radiomics, the extraction and analysis of large numbers of quantitative features from medical images. This article examines this developing field, and it's application in high grade serous ovarian carcinoma. Seminal proteomic studies in the area of ovarian cancer, such as the PROVAR and CPTA studies are discussed, along side recent research, such as that highlighting the central role of methyltransferase nicotinamide N-methyltransferase as the metabolic regulation of cancer progression in the tumour stroma. Finally, this article considers a novel, hypothesis generating approach to integrate CT-based qualitative and radiomic features with proteomic analysis, and the future direction of the field. Combined advances in radiomic, proteomic and genomic analysis has the potential to signal the age of true precision medicine, where treatment is centered specifically on the molecular profile of the tumour, rather than based on empirical knowledge, thus altering the course of a disease that has the highest mortality of all cancers of the female reproductive system.
Collapse
Affiliation(s)
- Cathal McCague
- Department of Radiology, University of Cambridge, Cambridge, UK.,Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Lucian Beer
- Department of Radiology, University of Cambridge, Cambridge, UK.,Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Jaswal S, Anand V, Ali SA, Jena MK, Kumar S, Kaushik JK, Mohanty AK. TMT based deep proteome analysis of buffalo mammary epithelial cells and identification of novel protein signatures during lactogenic differentiation. FASEB J 2021; 35:e21621. [PMID: 33977573 DOI: 10.1096/fj.202002476rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/04/2023]
Abstract
The lactating mammary gland harbours numerous matured alveoli with their lumen surrounded by differentiated mammary epithelial cells (MECs), which are exclusively involved in milk synthesis and secretion. Buffalo (Bubalus bubalis) is the second major milk-producing animal, and its physiology is different from cattle. The complete protein machinery involved in MECs differentiation is still not defined in ruminants, in particular, buffalo. Therefore, we have studied the differential expression of regulated proteins in the in vitro grown buffalo MECs (BuMECs) at different time points (on 3, 6, 12, and 15 days) of their differentiation in the presence of lactogenic hormones. TMT-based MS analysis identified 4,934 proteins; of them, 681 were differentially expressed proteins (DEPs). The principal component analysis suggested a highly heterogeneous expression of DEPs at the four-time points of hormone treatment, with most of them (307) attained the highest expression on 12 days. Bioinformatics analysis revealed the association of DEPs with 24 KEGG pathways. We observed few new proteins, namely ABCA13, IVL, VPS37, CZIB, RFX7, Rab5, TTLL12, SMEK1, GDI2, and TMEM131 in BuMECs. The function of one of the highly upregulated proteins, namely involucrin in the differentiation of BuMECs was confirmed based on biochemical inhibition assay. The results further conclude that the proteins with higher abundance can be considered as the potential biomarkers for differentiation, and they may have a significant association with the lactation process in buffalo too. The proteome dataset obtained can be used to understand the species-specific variations among other lactating animals.
Collapse
Affiliation(s)
- Shalini Jaswal
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Vijay Anand
- Department of Veterinary Physiology and Biochemistry, Veterinary College and Research Institute (TANUVAS), Orathanadu, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Manoj K Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Jai K Kaushik
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Ashok K Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| |
Collapse
|
8
|
Endogenous Cyclin D1 Promotes the Rate of Onset and Magnitude of Mitogenic Signaling via Akt1 Ser473 Phosphorylation. Cell Rep 2021; 32:108151. [PMID: 32937140 PMCID: PMC7707112 DOI: 10.1016/j.celrep.2020.108151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 08/25/2020] [Indexed: 01/07/2023] Open
Abstract
Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates RB and functions as a collaborative nuclear oncogene. The serine threonine kinase Akt plays a pivotal role in the control of cellular metabolism, survival, and mitogenic signaling. Herein, Akt1-mediated phosphorylation of downstream substrates in the mammary gland is reduced by cyclin D1 genetic deletion and is induced by mammary-gland-targeted cyclin D1 overexpression. Cyclin D1 is associated with Akt1 and augments the rate of onset and maximal cellular Akt1 activity induced by mitogens. Cyclin D1 is identified in a cytoplasmic-membrane-associated pool, and cytoplasmic-membrane-localized cyclin D1—but not nuclear-localized cyclin D1—recapitulates Akt1 transcriptional function. These studies identify a novel extranuclear function of cyclin D1 to enhance proliferative functions via augmenting Akt1 phosphorylation at Ser473. Chen et al. show that the rate of onset and maximal cellular Akt1 activity induced by mitogens was augmented by cyclin D1. Cyclin D1 bound and phosphorylated Akt1 at Ser473. These studies identify a novel extranuclear function of cyclin D1 to enhance proliferative functions via augmenting Akt1 phosphorylation at Ser473.
Collapse
|
9
|
Abstract
Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.
Collapse
|
10
|
Montalto FI, De Amicis F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 2020; 9:cells9122648. [PMID: 33317149 PMCID: PMC7763888 DOI: 10.3390/cells9122648] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin D1, an important regulator of cell cycle, carries out a central role in the pathogenesis of cancer determining uncontrolled cellular proliferation. In normal cells, Cyclin D1 expression levels are strictly regulated, conversely, in cancer, its activity is intensified in various manners. Different studies demonstrate that CCDN1 gene is amplified in several tumor types considering it as a negative prognostic marker of this pathology. Cyclin D1 is known for its role in the nucleus, but recent clinical studies associate the amount located in the cytoplasmic membrane with tumor invasion and metastasis. Cyclin D1 has also other functions: it governs the expression of specific miRNAs and it plays a crucial role in the tumor-stroma interactions potentiating most of the cancer hallmarks. In the present review, we will summarize the current scientific evidences that highlight the involvement of Cyclin D1 in the pathogenesis of different types of cancer, best of all in breast cancer. We will also focus on recent insights regarding the Cyclin D1 as molecular bridge between cell cycle control, adhesion, invasion, and tumor/stroma/immune-system interplay in cancer.
Collapse
Affiliation(s)
- Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-984-496204
| |
Collapse
|
11
|
Chen K, Jiao X, Ashton A, Di Rocco A, Pestell TG, Sun Y, Zhao J, Casimiro MC, Li Z, Lisanti MP, McCue PA, Shen D, Achilefu S, Rui H, Pestell RG. The membrane-associated form of cyclin D1 enhances cellular invasion. Oncogenesis 2020; 9:83. [PMID: 32948740 PMCID: PMC7501870 DOI: 10.1038/s41389-020-00266-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The essential G1-cyclin, CCND1, is a collaborative nuclear oncogene that is frequently overexpressed in cancer. D-type cyclins bind and activate CDK4 and CDK6 thereby contributing to G1–S cell-cycle progression. In addition to the nucleus, herein cyclin D1 was also located in the cytoplasmic membrane. In contrast with the nuclear-localized form of cyclin D1 (cyclin D1NL), the cytoplasmic membrane-localized form of cyclin D1 (cyclin D1MEM) induced transwell migration and the velocity of cellular migration. The cyclin D1MEM was sufficient to induce G1–S cell-cycle progression, cellular proliferation, and colony formation. The cyclin D1MEM was sufficient to induce phosphorylation of the serine threonine kinase Akt (Ser473) and augmented extranuclear localized 17β-estradiol dendrimer conjugate (EDC)-mediated phosphorylation of Akt (Ser473). These studies suggest distinct subcellular compartments of cell cycle proteins may convey distinct functions.
Collapse
Affiliation(s)
- Ke Chen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Anthony Ashton
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Timothy G Pestell
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jun Zhao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA.,Dept of Science and Math, Abraham Baldwin Agricultural college, Tifton, GA, 31794, Georgia
| | - Zhiping Li
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Michael P Lisanti
- Biomedical Research Centre (BRC), Translational Medicine, School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Peter A McCue
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Duanwen Shen
- Departments of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Departments of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA.,Departments of Radiology, Washington University, St. Louis, MO, 63110, USA.,Departments of Biochemistry & Molecular Biophysics, Washington University, St. Louis, MO, 63110, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA. .,The Wistar Cancer Center, Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Rashkin SR, Graff RE, Kachuri L, Thai KK, Alexeeff SE, Blatchins MA, Cavazos TB, Corley DA, Emami NC, Hoffman JD, Jorgenson E, Kushi LH, Meyers TJ, Van Den Eeden SK, Ziv E, Habel LA, Hoffmann TJ, Sakoda LC, Witte JS. Pan-cancer study detects genetic risk variants and shared genetic basis in two large cohorts. Nat Commun 2020; 11:4423. [PMID: 32887889 PMCID: PMC7473862 DOI: 10.1038/s41467-020-18246-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Deciphering the shared genetic basis of distinct cancers has the potential to elucidate carcinogenic mechanisms and inform broadly applicable risk assessment efforts. Here, we undertake genome-wide association studies (GWAS) and comprehensive evaluations of heritability and pleiotropy across 18 cancer types in two large, population-based cohorts: the UK Biobank (408,786 European ancestry individuals; 48,961 cancer cases) and the Kaiser Permanente Genetic Epidemiology Research on Adult Health and Aging cohorts (66,526 European ancestry individuals; 16,001 cancer cases). The GWAS detect 21 genome-wide significant associations independent of previously reported results. Investigations of pleiotropy identify 12 cancer pairs exhibiting either positive or negative genetic correlations; 25 pleiotropic loci; and 100 independent pleiotropic variants, many of which are regulatory elements and/or influence cross-tissue gene expression. Our findings demonstrate widespread pleiotropy and offer further insight into the complex genetic architecture of cross-cancer susceptibility.
Collapse
Affiliation(s)
- Sara R Rashkin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.,Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Khanh K Thai
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Maruta A Blatchins
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Taylor B Cavazos
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.,Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Nima C Emami
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.,Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua D Hoffman
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Travis J Meyers
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen K Van Den Eeden
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Elad Ziv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.,Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. .,Department of Urology, University of California, San Francisco, San Francisco, CA, USA. .,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
14
|
Nguyen LP, Tran SC, Suetsugu S, Lim YS, Hwang SB. PACSIN2 Interacts with Nonstructural Protein 5A and Regulates Hepatitis C Virus Assembly. J Virol 2020; 94:e01531-19. [PMID: 31801866 PMCID: PMC7022371 DOI: 10.1128/jvi.01531-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a major etiologic agent of chronic liver diseases. HCV is highly dependent on cellular machinery for viral propagation. Using protein microarray analysis, we previously identified 90 cellular proteins as nonstructural 5A (NS5A) interacting partners. Of these, protein kinase C and casein kinase substrate in neurons protein 2 (PACSIN2) was selected for further study. PACSIN2 belongs to the PACSIN family, which is involved in the formation of caveolae. Protein interaction between NS5A and PACSIN2 was confirmed by pulldown assay and further verified by both coimmunoprecipitation and immunofluorescence assays. We showed that PACSIN2 interacted with domain I of NS5A and the Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) region of PACSIN2. Interestingly, NS5A specifically attenuated protein kinase C alpha (PKCα)-mediated phosphorylation of PACSIN2 at serine 313 by interrupting PACSIN2 and PKCα interaction. In fact, mutation of the serine 313 to alanine (S313A) of PACSIN2 increased protein interaction with NS5A. Silencing of PACSIN2 decreased both viral RNA and protein expression levels of HCV. Ectopic expression of the small interfering RNA (siRNA)-resistant PACSIN2 recovered the viral infectivity, suggesting that PACSIN2 was specifically required for HCV propagation. PACSIN2 was involved in viral assembly without affecting other steps of the HCV life cycle. Indeed, overexpression of PACSIN2 promoted NS5A and core protein (core) interaction. We further showed that inhibition of PKCα increased NS5A and core interaction, suggesting that phosphorylation of PACSIN2 might influence HCV assembly. Moreover, PACSIN2 was required for lipid droplet formation via modulating extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Taken together, these data indicate that HCV modulates PACSIN2 via NS5A to promote virion assembly.IMPORTANCE PACSIN2 is a lipid-binding protein that triggers the tubulation of the phosphatidic acid-containing membranes. The functional involvement of PACSIN2 in the virus life cycle has not yet been demonstrated. We showed that phosphorylation of PACSIN2 displayed a negative effect on NS5A and core interaction. The most significant finding is that NS5A prevents PKCα from binding to PACSIN2. Therefore, the phosphorylation level of PACSIN2 is decreased in HCV-infected cells. We showed that HCV NS5A interrupted PKCα-mediated PACSIN2 phosphorylation at serine 313, thereby promoting NS5A-PACSIN2 interaction. We further demonstrated that PACSIN2 modulated lipid droplet formation through ERK1/2 phosphorylation. These data provide evidence that PACSIN2 is a proviral cellular factor required for viral propagation.
Collapse
Affiliation(s)
- Lap P Nguyen
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Si C Tran
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Shiro Suetsugu
- Laboratory of Molecular Medicine and Cell Biology, Graduate School of Biosciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Soon B Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| |
Collapse
|
15
|
Abstract
The cell cycle is tightly regulated by cyclins and their catalytic moieties, the cyclin-dependent kinases (CDKs). Cyclin D1, in association with CDK4/6, acts as a mitogenic sensor and integrates extracellular mitogenic signals and cell cycle progression. When deregulated (overexpressed, accumulated, inappropriately located), cyclin D1 becomes an oncogene and is recognized as a driver of solid tumors and hemopathies. Recent studies on the oncogenic roles of cyclin D1 reported non-canonical functions dependent on the partners of cyclin D1 and its location within tumor cells or tissues. Support for these new functions was provided by various mouse models of oncogenesis. Finally, proteomic and transcriptomic data identified complex cyclin D1 networks. This review focuses on these aspects of cyclin D1 pathophysiology, which may be crucial for targeted therapy.Abbreviations: aa, amino acid; AR, androgen receptor; ATM, ataxia telangectasia mutant; ATR, ATM and Rad3-related; CDK, cyclin-dependent kinase; ChREBP, carbohydrate response element binding protein; CIP, CDK-interacting protein; CHK1/2, checkpoint kinase 1/2; CKI, CDK inhibitor; DDR, DNA damage response; DMP1, cyclin D-binding myb-like protein; DSB, double-strand DNA break; DNA-PK, DNA-dependent protein kinase; ER, estrogen receptor; FASN, fatty acid synthase; GSK3β, glycogen synthase-3β; HAT, histone acetyltransferase; HDAC, histone deacetylase; HK2, hexokinase 2; HNF4α, and hepatocyte nuclear factor 4α; HR, homologous recombination; IR, ionizing radiation; KIP, kinase inhibitory protein; MCL, mantle cell lymphoma; NHEJ, non-homologous end-joining; PCAF, p300/CREB binding-associated protein; PGC1α, PPARγ co-activator 1α; PEST, proline-glutamic acid-serine-threonine, PK, pyruvate kinase; PPAR, peroxisome proliferator-activated receptor; RB1, retinoblastoma protein; ROS, reactive oxygen species; SRC, steroid receptor coactivator; STAT, signal transducer and activator of transcription; TGFβ, transforming growth factor β; UPS, ubiquitin-proteasome system; USP22, ubiquitin-specific peptidase 22; XPO1 (or CRM1) exportin 1.
Collapse
Affiliation(s)
- Guergana Tchakarska
- Department of Human Genetics, McGill University Health Centre, McGill University, Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
16
|
Cemeli T, Guasch-Vallés M, Nàger M, Felip I, Cambray S, Santacana M, Gatius S, Pedraza N, Dolcet X, Ferrezuelo F, Schuhmacher AJ, Herreros J, Garí E. Cytoplasmic cyclin D1 regulates glioblastoma dissemination. J Pathol 2019; 248:501-513. [PMID: 30957234 DOI: 10.1002/path.5277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is a highly invasive brain neoplasia with an elevated recurrence rate after surgical resection. The cyclin D1 (Ccnd1)/Cdk4-retinoblastoma 1 (RB1) axis is frequently altered in GBM, leading to overproliferation by RB1 deletion or by Ccnd1-Cdk4 overactivation. High levels of Ccnd1-Cdk4 also promote GBM cell invasion by mechanisms that are not so well understood. The purpose of this work is to elucidate the in vivo role of cytoplasmic Ccnd1-Cdk4 activity in the dissemination of GBM. We show that Ccnd1 activates the invasion of primary human GBM cells through cytoplasmic RB1-independent mechanisms. By using GBM mouse models, we observed that evaded GBM cells showed cytoplasmic Ccnd1 colocalizing with regulators of cell invasion such as RalA and paxillin. Our genetic data strongly suggest that, in GBM cells, the Ccnd1-Cdk4 complex is acting upstream of those regulators. Accordingly, expression of Ccnd1 induces focal adhesion kinase, RalA and Rac1 activities. Finally, in vivo experiments demonstrated increased GBM dissemination after expression of membrane-targeted Ccnd1. We conclude that Ccnd1-Cdk4 activity promotes GBM dissemination through cytoplasmic and RB1-independent mechanisms. Therefore, inhibition of Ccnd1-Cdk4 activity may be useful to hinder the dissemination of recurrent GBM. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tània Cemeli
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Marta Guasch-Vallés
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Mireia Nàger
- Calcium Signaling, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Isidre Felip
- Oncological Pathology, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Serafí Cambray
- Vascular and Renal Translational Group, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova (HUAV), Lleida, Spain
| | - Sònia Gatius
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova (HUAV), Lleida, Spain
| | - Neus Pedraza
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Xavier Dolcet
- Oncological Pathology, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Francisco Ferrezuelo
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Alberto J Schuhmacher
- Biomedical Research Center of Aragon, Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Judit Herreros
- Calcium Signaling, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Eloi Garí
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| |
Collapse
|
17
|
Zhang X, Zhang L, Tan X, Lin Y, Han X, Wang H, Ming H, Li Q, Liu K, Feng G. Systematic analysis of genes involved in oral cancer metastasis to lymph nodes. Cell Mol Biol Lett 2018; 23:53. [PMID: 30459815 PMCID: PMC6237046 DOI: 10.1186/s11658-018-0120-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/02/2018] [Indexed: 01/12/2023] Open
Abstract
Oral cancer remains a deadly disease worldwide. Lymph node metastasis and invasion is one of the causes of death from oral cancer. Elucidating the mechanism of oral cancer lymph node metastasis and identifying critical regulatory genes are important for the treatment of this disease. This study aimed to identify differentially expressed genes (gene signature) and pathways that contribute to oral cancer metastasis to lymph nodes. The GSE70604-associated study compared gene profiles in lymph nodes with metastasis of oral cancer to those of normal lymph nodes. The GSE2280-associated study compared gene profiles in primary tumor of oral cancer with lymph node metastasis to those in tumors without lymph node metastasis. There are 28 common differentially expressed genes (DEGs) showing consistent changes in both datasets in overlapping analysis. GO biological process and KEGG pathway analysis of these 28 DEGs identified the gene signature CCND1, JUN and SPP1, which are categorized as key regulatory genes involved in the focal adhesion pathway. Silencing expression of CCND1, JUN and SPP1 in the human oral cancer cell line OECM-1 confirmed that those genes play essential roles in oral cancer cell invasion. Analysis of clinical samples of oral cancer found a strong correlation of these genes with short survival, especially JUN expression associated with metastasis. Our study identified a unique gene signature - CCND1, JUN and SPP1 - which may be involved in oral cancer lymph node metastasis.
Collapse
Affiliation(s)
- Xing'an Zhang
- 1Department of Stomatology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China.,2Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, No. 95, People's south Road, Shunqing District, Nanchong, Sichuan 637000 People's Republic of China
| | - Lanfang Zhang
- 3Department of Burn and Plastic Surgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Xiaoyao Tan
- 1Department of Stomatology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Ying Lin
- 4Department of Science and Education, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Xinsheng Han
- 1Department of Stomatology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Huadong Wang
- 1Department of Stomatology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Huawei Ming
- 1Department of Stomatology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Qiujiang Li
- 2Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, No. 95, People's south Road, Shunqing District, Nanchong, Sichuan 637000 People's Republic of China
| | - Kang Liu
- 2Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, No. 95, People's south Road, Shunqing District, Nanchong, Sichuan 637000 People's Republic of China
| | - Gang Feng
- 2Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, No. 95, People's south Road, Shunqing District, Nanchong, Sichuan 637000 People's Republic of China
| |
Collapse
|
18
|
Caruso JA, Duong MT, Carey JPW, Hunt KK, Keyomarsi K. Low-Molecular-Weight Cyclin E in Human Cancer: Cellular Consequences and Opportunities for Targeted Therapies. Cancer Res 2018; 78:5481-5491. [PMID: 30194068 PMCID: PMC6168358 DOI: 10.1158/0008-5472.can-18-1235] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023]
Abstract
Cyclin E, a regulatory subunit of cyclin-dependent kinase 2 (CDK2), is central to the initiation of DNA replication at the G1/S checkpoint. Tight temporal control of cyclin E is essential to the coordination of cell-cycle processes and the maintenance of genome integrity. Overexpression of cyclin E in human tumors was first observed in the 1990s and led to the identification of oncogenic roles for deregulated cyclin E in experimental models. A decade later, low-molecular-weight cyclin E (LMW-E) isoforms were observed in aggressive tumor subtypes. Compared with full-length cyclin E, LMW-E hyperactivates CDK2 through increased complex stability and resistance to the endogenous inhibitors p21CIP1 and p27KIP1 LMW-E is predominantly generated by neutrophil elastase-mediated proteolytic cleavage, which eliminates the N-terminal cyclin E nuclear localization signal and promotes cyclin E's accumulation in the cytoplasm. Compared with full-length cyclin E, the aberrant localization and unique stereochemistry of LMW-E dramatically alters the substrate specificity and selectivity of CDK2, increasing tumorigenicity in experimental models. Cytoplasmic LMW-E, which can be assessed by IHC, is prognostic of poor survival and predicts resistance to standard therapies in patients with cancer. These patients may benefit from therapeutic modalities targeting the altered biochemistry of LMW-E or its associated vulnerabilities. Cancer Res; 78(19); 5481-91. ©2018 AACR.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, San Francisco, California.
| | | | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
19
|
Bustany S, Bourgeais J, Tchakarska G, Body S, Hérault O, Gouilleux F, Sola B. Cyclin D1 unbalances the redox status controlling cell adhesion, migration, and drug resistance in myeloma cells. Oncotarget 2018; 7:45214-45224. [PMID: 27286258 PMCID: PMC5216717 DOI: 10.18632/oncotarget.9901] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/28/2016] [Indexed: 01/05/2023] Open
Abstract
The interactions of multiple myeloma (MM) cells with their microenvironment are crucial for pathogenesis. MM cells could interact differentially with their microenvironment depending on the type of cyclin D they express. We established several clones that constitutively express cyclin D1 from the parental RPMI8226 MM cell line and analyzed the impact of cyclin D1 expression on cell behavior. We performed a gene expression profiling study on cyclin D1-expressing vs. control cells and validated the results by semi-quantitative RT-PCR. The expression of cyclin D1 altered the transcription of genes that control adhesion and migration. We confirmed that cyclin D1 increases cell adhesion to stromal cells and fibronectin, stabilizes F-actin fibers, and enhances chemotaxis and inflammatory chemokine secretion. Both control and cyclin D1-expressing cells were more resistant to acute carfilzomib treatment when cultured on stromal cells than in suspension. However, this resistance was specifically reduced in cyclin D1-expressing cells after pomalidomide pre-treatment that modifies tumor cell/microenvironment interactions. Transcriptomic analysis revealed that cyclin D1 expression was also associated with changes in the expression of genes controlling metabolism. We also found that cyclin D1 expression disrupted the redox balance by producing reactive oxygen species. The resulting oxidative stress activated the p44/42 mitogen-activated protein kinase (or ERK1/2) signaling pathway, increased cell adhesion to fibronectin or stromal cells, and controlled drug sensitivity. Our results have uncovered a new function for cyclin D1 in the control of redox metabolism and interactions of cyclin D1-expressing MM cells with their bone marrow microenvironment.
Collapse
Affiliation(s)
- Sophie Bustany
- Université de Caen Normandie, EA4652 (MILPAT), MICAH Team, Caen, France
| | - Jérôme Bourgeais
- Université François Rabelais, CNRS UMR 7292 (GICC), LNOx Team, Tours, France
| | - Guergana Tchakarska
- Université de Caen Normandie, EA4652 (MILPAT), MICAH Team, Caen, France.,Present address: Cytogenetics Laboratory, Research Institute, McGill University Health Centre, Montréal, Canada
| | - Simon Body
- Université de Caen Normandie, EA4652 (MILPAT), MICAH Team, Caen, France
| | - Olivier Hérault
- Université François Rabelais, CNRS UMR 7292 (GICC), LNOx Team, Tours, France.,Service d'Hématologie Biologique, CHRU Tours, Tours, France
| | - Fabrice Gouilleux
- Université François Rabelais, CNRS UMR 7292 (GICC), LNOx Team, Tours, France
| | - Brigitte Sola
- Université de Caen Normandie, EA4652 (MILPAT), MICAH Team, Caen, France
| |
Collapse
|
20
|
Fusté NP, Castelblanco E, Felip I, Santacana M, Fernández-Hernández R, Gatius S, Pedraza N, Pallarés J, Cemeli T, Valls J, Tarres M, Ferrezuelo F, Dolcet X, Matias-Guiu X, Garí E. Characterization of cytoplasmic cyclin D1 as a marker of invasiveness in cancer. Oncotarget 2017; 7:26979-91. [PMID: 27105504 PMCID: PMC5053626 DOI: 10.18632/oncotarget.8876] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/07/2016] [Indexed: 12/05/2022] Open
Abstract
Cyclin D1 (Ccnd1) is a proto-oncogen amplified in many different cancers and nuclear accumulation of Ccnd1 is a characteristic of tumor cells. Ccnd1 activates the transcription of a large set of genes involved in cell cycle progress and proliferation. However, Ccnd1 also targets cytoplasmic proteins involved in the regulation of cell migration and invasion. In this work, we have analyzed by immunohistochemistry the localization of Ccnd1 in endometrial, breast, prostate and colon carcinomas with different types of invasion. The number of cells displaying membranous or cytoplasmic Ccnd1 was significantly higher in peripheral cells than in inner cells in both collective and pushing invasion patterns of endometrial carcinoma, and in collective invasion pattern of colon carcinoma. Also, the cytoplasmic localization of Ccnd1 was higher when tumors infiltrated as single cells, budding or small clusters of cells. To evaluate cytoplasmic function of cyclin D1, we have built a variant (Ccnd1-CAAX) that remains attached to the cell membrane therefore sequestering this cyclin in the cytoplasm. Tumor cells harboring Ccnd1-CAAX showed high levels of invasiveness and metastatic potential compared to those containing the wild type allele of Ccnd1. However, Ccnd1-CAAX expression did not alter proliferative rates of tumor cells. We hypothesize that the role of Ccnd1 in the cytoplasm is mainly associated with the invasive capability of tumor cells. Moreover, we propose that subcellular localization of Ccnd1 is an interesting guideline to measure cancer outcome.
Collapse
Affiliation(s)
- Noel P Fusté
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Esmeralda Castelblanco
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Pathology and Molecular Genetics at Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | - Isidre Felip
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Maria Santacana
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Pathology and Molecular Genetics at Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | - Rita Fernández-Hernández
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Sònia Gatius
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Pathology and Molecular Genetics at Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | - Neus Pedraza
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Judit Pallarés
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Pathology and Molecular Genetics at Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | - Tània Cemeli
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Joan Valls
- Department of Biostatistics and Epidemiology Unit of The Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Marc Tarres
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Francisco Ferrezuelo
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Xavier Dolcet
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Xavier Matias-Guiu
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain.,Department of Pathology and Molecular Genetics at Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | - Eloi Garí
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| |
Collapse
|
21
|
Semmler J, Kormann J, Srinivasan SP, Köster A, Sälzer D, Reppel M, Hescheler J, Plomann M, Nguemo F. Pacsin 2 is required for the maintenance of a normal cardiac function in the developing mouse heart. Pharmacol Res 2017; 128:200-210. [PMID: 29107716 DOI: 10.1016/j.phrs.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/26/2017] [Accepted: 10/15/2017] [Indexed: 11/27/2022]
Abstract
The Pacsin proteins (Pacsin 1, 2 and 3) play an important role in intracellular trafficking and thereby signal transduction in many cells types. This study was designed to examine the role of Pacsin 2 in cardiac development and function. We investigated the development and electrophysiological properties of Pacsin 2 knockout (P2KO) hearts and single cardiomyocytes isolated from 11.5 and 15.5days old fetal mice. Immunofluorescence experiments confirmed the lack of Pacsin 2 protein expression in P2KO cardiac myocytes in comparison to wildtype (WT). Western blotting demonstrates low expression levels of connexin 43 and T-box 3 proteins in P2KO compared to wildtype (WT). Electrophysiology measurements including online Multi-Electrode Array (MEA) based field potential (FP) recordings on isolated whole heart of P2KO mice showed a prolonged AV-conduction time. Patch clamp measurements of P2KO cardiomyocytes revealed differences in action potential (AP) parameters and decreased pacemaker funny channel (If), as well as L-type Ca2+ channel (ICaL), and sodium channel (INa). These findings demonstrate that Pacsin 2 is necessary for cardiac development and function in mouse embryos, which will enhance our knowledge to better understand the genesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Judith Semmler
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Jan Kormann
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | | | - Annette Köster
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Daniel Sälzer
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Michael Reppel
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany; Department of Cardiology, University of Lübeck, Lübeck, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Markus Plomann
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Filomain Nguemo
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
22
|
Cytoplasmic cyclin D1 controls the migration and invasiveness of mantle lymphoma cells. Sci Rep 2017; 7:13946. [PMID: 29066743 PMCID: PMC5654982 DOI: 10.1038/s41598-017-14222-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a hematologic neoplasm characterised by the t(11;14)(q13;q32) translocation leading to aberrant cyclin D1 expression. The cell functions of cyclin D1 depend on its partners and/or subcellular distribution, resulting in different oncogenic properties. We observed the accumulation of cyclin D1 in the cytoplasm of a subset of MCL cell lines and primary cells. In primary cells, this cytoplasmic distribution was correlated with a more frequent blastoid phenotype. We performed immunoprecipitation assays and mass spectrometry on enriched cytosolic fractions from two cell lines. The cyclin D1 interactome was found to include several factors involved in adhesion, migration and invasion. We found that the accumulation of cyclin D1 in the cytoplasm was associated with higher levels of migration and invasiveness. We also showed that MCL cells with high cytoplasmic levels of cyclin D1 engrafted more rapidly into the bone marrow, spleen, and brain in immunodeficient mice. Both migration and invasion processes, both in vivo and in vitro, were counteracted by the exportin 1 inhibitor KPT-330, which retains cyclin D1 in the nucleus. Our data reveal a role of cytoplasmic cyclin D1 in the control of MCL cell migration and invasion, and as a true operator of MCL pathogenesis.
Collapse
|
23
|
Di Sante G, Di Rocco A, Pupo C, Casimiro MC, Pestell RG. Hormone-induced DNA damage response and repair mediated by cyclin D1 in breast and prostate cancer. Oncotarget 2017; 8:81803-81812. [PMID: 29137223 PMCID: PMC5669849 DOI: 10.18632/oncotarget.19413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Cell cycle control proteins govern events that leads to the production of two identical daughter cells. Distinct sequential temporal phases, Gap 1 (G1), Gap 0 (G0), Synthesis (S), Gap 2 (G2) and Mitosis (M) are negotiated through a series of check points during which the favorability of the local cellular environment is assessed, prior to replicating DNA [1]. Cyclin D1 has been characterized as a key regulatory subunit of the holoenzyme that promotes the G1/S-phase transition through phosphorylating the pRB protein. Cyclin D1 overexpression is considered a driving force in several types of cancers and cdk inhibitors are being used effectively in the clinic for treatment of ERα+ breast cancer [1, 2]. Genomic DNA is assaulted by damaging ionizing radiation, chemical carcinogens, and reactive oxygen species (ROS) which are generated by cellular metabolism. Furthermore, specific hormones including estrogens [3, 4] and androgens [5] govern pathways that damage DNA. Defects in the DNA Damage Response (DDR) pathway can lead to genomic instability and cancer. Evidence is emerging that cyclin D1 bind proteins involved in DNA repair including BRCA1 [6], RAD51 [7], BRCA2 [8] and is involved in the DNA damage and DNA repair processes [7, 8]. Because the repair of damaged DNA appears to be an important and unexpected role for cyclin D1, and inhibitors of cyclin D1-dependent kinase activity are being used in the clinic, the latest findings on the role of cyclin D1 in mediating the DDR including the DDR induced by the hormones estrogen [9] and androgen [10, 11] is reviewed.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, PA, USA
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, PA, USA
| | - Claudia Pupo
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, PA, USA
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, PA, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, PA, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
24
|
Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage. Oncotarget 2016; 7:5383-400. [PMID: 26689991 PMCID: PMC4868693 DOI: 10.18632/oncotarget.6579] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022] Open
Abstract
Patients with hormone-resistant prostate cancer (PCa) have higher biochemical failure rates following radiation therapy (RT). Cyclin D1 deregulated expression in PCa is associated with a more aggressive disease: however its role in radioresistance has not been determined. Cyclin D1 levels in the androgen-independent PC3 and 22Rv1 PCa cells were stably inhibited by infecting with cyclin D1-shRNA. Tumorigenicity and radiosensitivity were investigated using in vitro and in vivo experimental assays. Cyclin D1 silencing interfered with PCa oncogenic phenotype by inducing growth arrest in the G1 phase of cell cycle and reducing soft agar colony formation, migration, invasion in vitro and tumor formation and neo-angiogenesis in vivo. Depletion of cyclin D1 significantly radiosensitizes PCa cells by increasing the RT-induced DNA damages by affecting the NHEJ and HR pathways responsible of the DNA double-strand break repair. Following treatment of cells with RT the abundance of a biomarker of DNA damage, γ-H2AX, was dramatically increased in sh-cyclin D1 treated cells compared to shRNA control. Concordant with these observations DNA-PKcs-activation and RAD51-accumulation, part of the DNA double-strand break repair machinery, were reduced in shRNA-cyclin D1 treated cells compared to shRNA control. We further demonstrate the physical interaction between CCND1 with activated-ATM, -DNA-PKcs and RAD51 is enhanced by RT. Finally, siRNA-mediated silencing experiments indicated DNA-PKcs and RAD51 are downstream targets of CCND1-mediated PCa cells radioresistance. In summary, these observations suggest that CCND1 is a key mediator of PCa radioresistance and could represent a potential target for radioresistant hormone-resistant PCa.
Collapse
|
25
|
Gleason AM, Nguyen KCQ, Hall DH, Grant BD. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the C. elegans intestine. Mol Biol Cell 2016; 27:mbc.E16-02-0116. [PMID: 27630264 PMCID: PMC5170557 DOI: 10.1091/mbc.e16-02-0116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/18/2016] [Accepted: 09/08/2016] [Indexed: 11/11/2022] Open
Abstract
Syndapin/Pascin family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports have also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of syndapin effects on the earlier step of endocytic uptake, and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only C. elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact, and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together our results provide strong evidence for an in vivo function of syndapin in endocytic recycling, and suggest that syndapin promotes transport via endosomal fission.
Collapse
Affiliation(s)
- Adenrele M Gleason
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
26
|
Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell 2016; 166:755-765. [PMID: 27372738 PMCID: PMC4967013 DOI: 10.1016/j.cell.2016.05.069] [Citation(s) in RCA: 730] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/05/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022]
Abstract
To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.
Collapse
|
27
|
Fusté NP, Fernández-Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, Torres-Rosell J, Colomina N, Ferrezuelo F, Dolcet X, Garí E. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun 2016; 7:11581. [PMID: 27181366 PMCID: PMC4873647 DOI: 10.1038/ncomms11581] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/11/2016] [Indexed: 02/08/2023] Open
Abstract
Cyclin D1 (Ccnd1) together with its binding partner Cdk4 act as a transcriptional regulator to control cell proliferation and migration, and abnormal Ccnd1·Cdk4 expression promotes tumour growth and metastasis. While different nuclear Ccnd1·Cdk4 targets participating in cell proliferation and tissue development have been identified, little is known about how Ccnd1·Cdk4 controls cell adherence and invasion. Here, we show that the focal adhesion component paxillin is a cytoplasmic substrate of Ccnd1·Cdk4. This complex phosphorylates a fraction of paxillin specifically associated to the cell membrane, and promotes Rac1 activation, thereby triggering membrane ruffling and cell invasion in both normal fibroblasts and tumour cells. Our results demonstrate that localization of Ccnd1·Cdk4 to the cytoplasm does not simply act to restrain cell proliferation, but constitutes a functionally relevant mechanism operating under normal and pathological conditions to control cell adhesion, migration and metastasis through activation of a Ccnd1·Cdk4-paxillin-Rac1 axis.
Collapse
Affiliation(s)
- Noel P Fusté
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Rita Fernández-Hernández
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Tània Cemeli
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Cristina Mirantes
- Oncopathology Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Neus Pedraza
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Marta Rafel
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Jordi Torres-Rosell
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Neus Colomina
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Francisco Ferrezuelo
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Xavier Dolcet
- Oncopathology Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Eloi Garí
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| |
Collapse
|
28
|
Di Sante G, Wang L, Wang C, Jiao X, Casimiro MC, Chen K, Pestell TG, Yaman I, Di Rocco A, Sun X, Horio Y, Powell MJ, He X, McBurney MW, Pestell RG. Sirt1-deficient mice have hypogonadotropic hypogonadism due to defective GnRH neuronal migration. Mol Endocrinol 2014; 29:200-12. [PMID: 25545407 DOI: 10.1210/me.2014-1228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypogonadatropic hypogonadism (HH) can be acquired through energy restriction or may be inherited as congenital hypogonadotropic hypogonadism and its anosmia-associated form, Kallmann's syndrome. Congenital hypogonadotropic hypogonadism is associated with mutations in a group of genes that impact fibroblast growth factor 8 (FGF8) function. The Sirt1 gene encodes a nicotinamide adenine dinucleotide-dependent histone deacetylase that links intracellular metabolic stress to gene expression. Herein Sirt1(-/-) mice are shown to have HH due to failed GnRH neuronal migration. Sirtuin-1 (Sirt1) catalytic function induces GnRH neuronal migration via binding and deacetylating cortactin. Sirt1 colocalized with cortactin in GnRH neurons in vitro. Sirt1 colocalization with cortactin was regulated in an FGF8/fibroblast growth factor receptor-1 dependent manner. The profound effect of Sirt1 on the hormonal status of Sirt1(-/-) mice, mediated via defective GnRH neuronal migration, links energy metabolism directly to the hypogonadal state. Sirt1-cortactin may serve as the distal transducer of neuronal migration mediated by the FGF8 synexpression group of genes that govern HH.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Department of Cancer Biology (G.D.S., L.W., C.W., X.J., M.C.C., K.C., T.G.P., I.Y., X.S., M.J.P., R.G.P.) and Sidney Kimmel Cancer Center (G.D.S., L.W., C.W., X.J., M.C.C., K.C., T.G.P., I.Y., X.S., M.J.P., R.G.P.), Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Translational Research Program in Pediatric Orthopedics (A.D.R.), The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104; Department of Pharmacology (Y.H.), Sapporo Medical University, Sapporo 060-8556, Japan; and Departments of Medicine and Biochemistry (X.H., M.W.M.) and Microbiology and Immunology (X.H., M.W.M.), Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yao G, Su X, Nguyen V, Roberts K, Li X, Takakura A, Plomann M, Zhou J. Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-Wasp complex. Hum Mol Genet 2014; 23:2769-79. [PMID: 24385601 DOI: 10.1093/hmg/ddt672] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
How epithelial cells form a tubule with defined length and lumen diameter remains a fundamental question in cell and developmental biology. Loss of control of tubule lumen size in multiple organs including the kidney, liver and pancreas features polycystic kidney disease (PKD). To gain insights into autosomal dominant polycystic kidney disease, we performed yeast two-hybrid screens using the C-terminus of polycystin-1 (PC1) as bait. Here, we report that PC1 interacts with Pacsin 2, a cytoplasmic phosphoprotein that has been implicated in cytoskeletal organization, vesicle trafficking and more recently in cell intercalation during gastrulation. PC1 binds to a 107-residue fragment containing the α3 helix of the F-BAR domain of Pacsin 2 via a coiled-coil domain in its C-tail. PC1 and Pacsin 2 co-localize on the lamellipodia of migrating kidney epithelial cells. PC1 and Pacsin 2-deficient kidney epithelial cells migrate at a slower speed with reduced directional persistency. We further demonstrate that PC1, Pacsin 2 and N-Wasp are in the same protein complex, and both PC1 and Pacsin 2 are required for N-Wasp/Arp2/3-dependent actin remodeling. We propose that PC1 modulates actin cytoskeleton rearrangements and directional cell migration through the Pacsin 2/N-Wasp/Arp2/3 complex, which consequently contributes to the establishment and maintenance of the sophisticated tubular architecture. Disruption of this complex contributes to cyst formation in PKD.
Collapse
Affiliation(s)
- Gang Yao
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pestell RG. New roles of cyclin D1. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:3-9. [PMID: 23790801 DOI: 10.1016/j.ajpath.2013.03.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/26/2013] [Accepted: 03/07/2013] [Indexed: 12/11/2022]
Abstract
Cyclins encode regulatory subunits of holoenzymes that phosphorylate a variety of cellular substrates. Although the classic role of cyclins in cell cycle progression and tumorigenesis has been well characterized, new functions have been identified, including the induction of cellular migration and invasion, enhancement of angiogenesis, inhibition of mitochondrial metabolism, regulation of transcription factor signaling via a DNA-bound form, the induction of chromosomal instability, enhancement of DNA damage sensing and DNA damage repair, and feedback governing expression of the noncoding genome. This review describes the mechanisms of these new functions of cyclin D1.
Collapse
Affiliation(s)
- Richard G Pestell
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
31
|
Fang Y, Cao Z, Hou Q, Ma C, Yao C, Li J, Wu XR, Huang C. Cyclin d1 downregulation contributes to anticancer effect of isorhapontigenin on human bladder cancer cells. Mol Cancer Ther 2013; 12:1492-503. [PMID: 23723126 DOI: 10.1158/1535-7163.mct-12-0922] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Isorhapontigenin (ISO) is a new derivative of stilbene compound that was isolated from the Chinese herb Gnetum Cleistostachyum and has been used for treatment of bladder cancers for centuries. In our current studies, we have explored the potential inhibitory effect and molecular mechanisms underlying isorhapontigenin anticancer effects on anchorage-independent growth of human bladder cancer cell lines. We found that isorhapontigenin showed a significant inhibitory effect on human bladder cancer cell growth and was accompanied with related cell cycle G(0)-G(1) arrest as well as downregulation of cyclin D1 expression at the transcriptional level in UMUC3 and RT112 cells. Further studies identified that isorhapontigenin downregulated cyclin D1 gene transcription via inhibition of specific protein 1 (SP1) transactivation. Moreover, ectopic expression of GFP-cyclin D1 rendered UMUC3 cells resistant to induction of cell-cycle G(0)-G(1) arrest and inhibition of cancer cell anchorage-independent growth by isorhapontigenin treatment. Together, our studies show that isorhapontigenin is an active compound that mediates Gnetum Cleistostachyum's induction of cell-cycle G(0)-G(1) arrest and inhibition of cancer cell anchorage-independent growth through downregulating SP1/cyclin D1 axis in bladder cancer cells. Our studies provide a novel insight into understanding the anticancer activity of the Chinese herb Gnetum Cleistostachyum and its isolate isorhapontigenin.
Collapse
Affiliation(s)
- Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, ZheJiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yao G, Luyten A, Takakura A, Plomann M, Zhou J. The cytoplasmic protein Pacsin 2 in kidney development and injury repair. Kidney Int 2012; 83:426-37. [PMID: 23235565 DOI: 10.1038/ki.2012.379] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The protein kinase C and casein kinase 2 substrate in neurons (Pacsin) is a subfamily of membrane-binding proteins that participates in vesicle trafficking and cytoskeleton organization. Here, we studied Pacsin 2 in kidney development and repair following injury. In the postnatal developing kidneys, Pacsin 2 was found to be expressed in both ureteric bud- and mesenchyme-derived structures including proximal and distal tubules, Bowman's capsule, and the glomerular tuft. In the adult kidney, its expression was decreased in proximal tubules but increased in glomerular tuft when compared to that in the developing kidneys. Interestingly, Pacsin 2 expression was significantly upregulated during the repair phase after ischemia-reperfusion injury, especially on the apical brush border of proximal tubules that experienced massive damage. Pacsin 2 localized to the primary cilia of renal epithelial cells. Knockdown of Pacsin 2 by shRNA did not affect the cell cycle or cell polarity; however, it increased the length of primary cilia, and resulted in significant tubulogenic defects in three-dimensional cell culture. Thus, we propose that Pacsin 2 contributes to kidney development and repair in a nephron-specific manner.
Collapse
Affiliation(s)
- Gang Yao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
33
|
Stocco G, Yang W, Crews KR, Thierfelder WE, Decorti G, Londero M, Franca R, Rabusin M, Valsecchi MG, Pei D, Cheng C, Paugh SW, Ramsey LB, Diouf B, McCorkle JR, Jones TS, Pui CH, Relling MV, Evans WE. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity. Hum Mol Genet 2012; 21:4793-804. [PMID: 22846425 PMCID: PMC3471396 DOI: 10.1093/hmg/dds302] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/29/2012] [Accepted: 07/19/2012] [Indexed: 12/14/2022] Open
Abstract
Treatment-related toxicity can be life-threatening and is the primary cause of interruption or discontinuation of chemotherapy for acute lymphoblastic leukemia (ALL), leading to an increased risk of relapse. Mercaptopurine is an essential component of continuation therapy in all ALL treatment protocols worldwide. Genetic polymorphisms in thiopurine S-methyltransferase (TPMT) are known to have a marked effect on mercaptopurine metabolism and toxicity; however, some patients with wild-type TPMT develop toxicity during mercaptopurine treatment for reasons that are not well understood. To identify additional genetic determinants of mercaptopurine toxicity, a genome-wide analysis was performed in a panel of human HapMap cell lines to identify trans-acting genes whose expression and/or single-nucleotide polymorphisms (SNPs) are related to TPMT activity, then validated in patients with ALL. The highest ranking gene with both mRNA expression and SNPs associated with TPMT activity in HapMap cell lines was protein kinase C and casein kinase substrate in neurons 2 (PACSIN2). The association of a PACSIN2 SNP (rs2413739) with TPMT activity was confirmed in patients and knock-down of PACSIN2 mRNA in human leukemia cells (NALM6) resulted in significantly lower TPMT activity. Moreover, this PACSIN2 SNP was significantly associated with the incidence of severe gastrointestinal (GI) toxicity during consolidation therapy containing mercaptopurine, and remained significant in a multivariate analysis including TPMT and SLCO1B1 as covariates, consistent with its influence on TPMT activity. The association with GI toxicity was also validated in a separate cohort of pediatric patients with ALL. These data indicate that polymorphism in PACSIN2 significantly modulates TPMT activity and influences the risk of GI toxicity associated with mercaptopurine therapy.
Collapse
Affiliation(s)
- Gabriele Stocco
- Department of Pharmaceutical Sciences
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | | - Giuliana Decorti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Margherita Londero
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Trieste, Italy
| | - Raffaella Franca
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Trieste, Italy
| | - Marco Rabusin
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Trieste, Italy
| | | | | | | | | | | | | | | | - Terreia S. Jones
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mary V. Relling
- Department of Pharmaceutical Sciences
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - William E. Evans
- Department of Pharmaceutical Sciences
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| |
Collapse
|