1
|
Zhu R, An S, Fu J, Liu S, Fu Y, Zhang Y, Wang R, Zhao Y, Wang M. Genome-wide identification and characterization of SLEEPER, a transposon-derived gene family and their expression pattern in Brassica napus L. BMC PLANT BIOLOGY 2024; 24:810. [PMID: 39198734 PMCID: PMC11351766 DOI: 10.1186/s12870-024-05544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND The transposons of the hAT superfamily are the most widespread transposons ever known. SLEEPER genes encode domesticated transposases from the hAT superfamily, which may have lost their transposable functions during long-term evolution and transformed into host proteins that regulate plant growth and development. RESULTS This study identified 162 members of the SLEEPER gene family from Brassica napus. These members are widely distributed on 19 chromosomes, mainly in the Cn subgenome, and have promoters with various cis-acting elements related to hormone regulation, abiotic stress, and growth and development regulation. Most of the genes in this family contain similar conserved domains and motifs, and the closer the genes are distributed on evolutionary branches, the more similar their structures are. Transcriptome sequencing performed on tissues at different growth stages from B. napus line 3529 indicated that these genes had different expression patterns, and nearly half of the genes were not detectably expressed in all samples. CONCLUSIONS This study investigated the gene structure, expression patterns, evolutionary features, and gene localization of the SLEEPER family members to confirm the significance of these genes in the growth of B. napus, providing a reference for the study of transposon domestication and outstanding genetic resources for the genetic improvement of B. napus.
Collapse
Affiliation(s)
- Ruijia Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Shengzhi An
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jingyan Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Sha Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yu Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Ying Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| |
Collapse
|
2
|
Barakat S, Ezen E, Devecioğlu İ, Gezen M, Piepoli S, Erman B. Dimerization choice and alternative functions of ZBTB transcription factors. FEBS J 2024; 291:237-255. [PMID: 37450366 DOI: 10.1111/febs.16905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Zinc Finger DNA-binding domain-containing proteins are the most populous family among eukaryotic transcription factors. Among these, members of the BTB domain-containing ZBTB sub-family are mostly known for their transcriptional repressive functions. In this Viewpoint article, we explore molecular mechanisms that potentially diversify the function of ZBTB proteins based on their homo and heterodimerization, alternative splicing and post-translational modifications. We describe how the BTB domain is as much a scaffold for the assembly of co-repressors, as a domain that regulates protein stability. We highlight another mechanism that regulates ZBTB protein stability: phosphorylation in the zinc finger domain. We explore the non-transcriptional, structural roles of ZBTB proteins and highlight novel findings that describe the ability of ZBTB proteins to associate with poly adenosine ribose in the nucleus during the DNA damage response. Herein, we discuss the contribution of BTB domain scaffolds to the formation of transcriptional repressive complexes, to chromosome compartmentalization and their non-transcriptional, purely structural functions in the nucleus.
Collapse
Affiliation(s)
- Sarah Barakat
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Ege Ezen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - İzem Devecioğlu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Melike Gezen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
3
|
Scherf M, Koy C, Röwer C, Neamtu A, Glocker MO. Characterization of Phosphorylation-Dependent Antibody Binding to Cancer-Mutated Linkers of C 2H 2 Zinc Finger Proteins by Intact Transition Epitope Mapping-Thermodynamic Weak-Force Order Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:171-181. [PMID: 36656134 DOI: 10.1021/jasms.2c00244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With Intact Transition Epitope Mapping-Thermodynamic Weak-force Order (ITEM-TWO) analysis in combination with molecular modeling, the phosphorylation-dependent molecular recognition motif of the anti-HpTGEKP antibody has been investigated with binary and ternary component mixtures consisting of antibody and (phospho-) peptides. Amino acid sequences have been selected to match either the antibody's recognition motif or the cancer-related zinc finger protein mutations and phosphorylations of the respective amino acid residues. Upon electrospraying of all the components of the mixtures, that is, hexapeptides, antibody, and intact immune complexes, the produced ions were subjected to mass spectrometric mass filtering. The antibody ions as well as the immune complex ions traversed into the mass spectrometer's collision chamber, whereas paths of unbound peptide ions were blocked prior to entering the collision cell. After dissociation of the multiply charged immune complexes in the gas phase, the complex-released peptide ions were recorded after having traversed the second mass filter. Complex-released peptides were unambiguously identified by their masses using mass analysis with isotope resolution. From the results of our studies with seven (phospho-) peptides with distinct amino acid sequences, which resembled either the antibody's binding motif or mutations, we conclude the following: (i) A negatively charged phospho group, located near the peptide's N-terminus is mandatory for antibody binding when placed on the peptide surface at a precise distance to the C-terminally located positively charged ε-amino group of a lysinyl residue. (ii) A bulky amino acid residue, such as the tyrosinyl residue at the N-terminal position of the (phospho-) threoninyl residue, abolishes antibody binding. (iii) Two closely spaced phospho groups negatively interfere with the surface polarity pattern and abolish antibody binding as well. (iv) Non-phosphorylated peptides are not binding partners of the anti-HpTGEKP antibody.
Collapse
Affiliation(s)
- Maximilian Scherf
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| | - Cornelia Koy
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| | - Claudia Röwer
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| | - Andrei Neamtu
- TRANSCEND Centre, Regional Institute of Oncology (IRO) Iasi, Str. General Henri Mathias Berthelot Nr. 2-4, 700483 Iasi, Romania
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Str. Universitatii Nr. 16, 700115 Iasi, Romania
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| |
Collapse
|
4
|
Scherf M, Danquah BD, Koy C, Lorenz P, Steinbeck F, Neamtu A, Thiesen H, Glocker MO. Epitope Fine Mapping by Mass Spectrometry: Investigations of Immune Complexes Consisting of Monoclonal Anti-HpTGEKP Antibody and Zinc Finger Protein Linker Phospho-Hexapeptides. Chembiochem 2022; 23:e202200390. [PMID: 35950614 PMCID: PMC9826235 DOI: 10.1002/cbic.202200390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Indexed: 01/11/2023]
Abstract
Accurate formation of antibody-antigen complexes has been relied on in both, multitudes of scientific projects and ample therapeutic and diagnostic applications. Mass spectrometrically determined dissociation behavior of immune complexes with the anti-HpTGEKP antibody revealed that the ten most frequently occurring phospho-hexapeptide linker sequences from C2H2 zinc finger proteins could be divided into two classes: orthodox binders, where strong noncovalent interactions developed as anticipated, and unorthodox binders with deviating structures and weaker binding. Phosphorylation of threonine was compulsory for antibody binding in an orthodox manner. Gas phase dissociation energy determinations of seven C2H2 zinc finger protein linker phospho-hexapeptides with orthodox binding properties revealed a bipolar binding motif of the antibody paratope. Epitope peptides, which in addition to the negatively charged phospho-threonine residue were C-terminally flanked by positively charged residues provided stronger binding, i. e. dissociation was endothermic, than peptides with acidic amino acid residues at these positions, for which dissociation was exothermic.
Collapse
Affiliation(s)
- Maximilian Scherf
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Bright D. Danquah
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Cornelia Koy
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Peter Lorenz
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany
| | - Felix Steinbeck
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany,Gesellschaft für Individualisierte Medizin mbH (IndyMed)Industriestrasse 1518069RostockGermany
| | - Andrei Neamtu
- Department of PhysiologyGr. T. Popa University of Medicine and Pharmacy of IasiStr. Universitatii nr. 16Iasi Jud.Romania
| | - Hans‐Jürgen Thiesen
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany,Gesellschaft für Individualisierte Medizin mbH (IndyMed)Industriestrasse 1518069RostockGermany
| | - Michael O. Glocker
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| |
Collapse
|
5
|
Dibus N, Korinek V, Cermak L. FBXO38 Ubiquitin Ligase Controls Centromere Integrity via ZXDA/B Stability. Front Cell Dev Biol 2022; 10:929288. [PMID: 35813202 PMCID: PMC9260856 DOI: 10.3389/fcell.2022.929288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Alterations in the gene encoding the E3 ubiquitin ligase substrate receptor FBXO38 have been associated with several diseases, including early-onset motor neuronopathy. However, the cellular processes affected by the enzymatic action of FBXO38 are not yet known. Here, we identify the zinc finger proteins ZXDA/B as its interaction partners. FBXO38 controls the stability of ZXDA/B proteins via ubiquitination and proteasome-dependent degradation. We show that ZXDA/B proteins associate with the centromeric protein CENP-B and that the interaction between ZXDA/B and FBXO38 or CENP-B is mutually exclusive. Functionally, ZXDA/B factors control the protein level of chromatin-associated CENP-B. Furthermore, their inappropriate stabilization leads to upregulation of CENP-A and CENP-B positive centromeric chromatin. Thus we demonstrate a previously unknown role of cullin-dependent protein degradation in the control of centromeric chromatin integrity.
Collapse
Affiliation(s)
- Nikol Dibus
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- *Correspondence: Lukas Cermak,
| |
Collapse
|
6
|
Kitzman SC, Duan T, Pufall MA, Geyer PK. Checkpoint activation drives global gene expression changes in Drosophila nuclear lamina mutants. G3 (BETHESDA, MD.) 2022; 12:6459172. [PMID: 34893833 PMCID: PMC9210273 DOI: 10.1093/g3journal/jkab408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
The nuclear lamina (NL) lines the inner nuclear membrane. This extensive protein network organizes chromatin and contributes to the regulation of transcription, DNA replication, and repair. Lap2-emerin-MAN1 domain (LEM-D) proteins are key members of the NL, representing proteins that connect the NL to the genome through shared interactions with the chromatin-binding protein Barrier-to-Autointegration Factor (BAF). Functions of the LEM-D protein emerin and BAF are essential during Drosophila melanogaster oogenesis. Indeed, loss of either emerin or BAF blocks germ cell development and causes loss of germline stem cells, defects linked to the deformation of NL structure, and non-canonical activation of Checkpoint kinase 2 (Chk2). Here, we investigate the contributions of emerin and BAF to gene expression in the ovary. Profiling RNAs from emerin and baf mutant ovaries revealed that nearly all baf misregulated genes were shared with emerin mutants, defining a set of NL-regulated genes. Strikingly, loss of Chk2 restored the expression of most NL-regulated genes, identifying a large class of Chk2-dependent genes (CDGs). Nonetheless, some genes remained misexpressed upon Chk2 loss, identifying a smaller class of emerin-dependent genes (EDGs). Properties of EDGs suggest a shared role for emerin and BAF in the repression of developmental genes. Properties of CDGs demonstrate that Chk2 activation drives global misexpression of genes in the emerin and baf mutant backgrounds. Notably, CDGs were found upregulated in lamin-B mutant backgrounds. These observations predict that Chk2 activation might have a general role in gene expression changes found in NL-associated diseases, such as laminopathies.
Collapse
Affiliation(s)
| | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Miles A Pufall
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Gonzalez I, Molliex A, Navarro P. Mitotic memories of gene activity. Curr Opin Cell Biol 2021; 69:41-47. [PMID: 33454629 DOI: 10.1016/j.ceb.2020.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 11/28/2022]
Abstract
When cells enter mitosis, they undergo series of dramatic changes in their structure and function that severely hamper gene regulatory processes and gene transcription. This raises the question of how daughter cells efficiently recapitulate the gene expression profile of their mother such that cell identity can be preserved. Here, we review recent evidence supporting the view that distinct chromatin-associated mechanisms of gene-regulatory inheritance assist daughter cells in the postmitotic reestablishment of gene activity with increased fidelity.
Collapse
Affiliation(s)
- Inma Gonzalez
- Epigenomics, Proliferation and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, UMR3738, Paris, France
| | - Amandine Molliex
- Epigenomics, Proliferation and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, UMR3738, Paris, France
| | - Pablo Navarro
- Epigenomics, Proliferation and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, UMR3738, Paris, France.
| |
Collapse
|
8
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
9
|
Coux RX, Owens NDL, Navarro P. Chromatin accessibility and transcription factor binding through the perspective of mitosis. Transcription 2020; 11:236-240. [PMID: 33054514 PMCID: PMC7714440 DOI: 10.1080/21541264.2020.1825907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chromatin accessibility is generally perceived as a common property of active regulatory elements where transcription factors are recruited via DNA-specific interactions and other physico-chemical properties to regulate gene transcription. Recent work in the context of mitosis provides less trivial and potentially more interesting relationships than previously anticipated.
Collapse
Affiliation(s)
- Rémi-Xavier Coux
- Epigenomics, Proliferation and the Identity of Cells, Department of Development and Stem Cell Biology, Institut Pasteur , Paris, France
| | - Nick D L Owens
- Institute of Biomedical and Clinical Science, University of Exeter Medical School , Exeter, UK
| | - Pablo Navarro
- Epigenomics, Proliferation and the Identity of Cells, Department of Development and Stem Cell Biology, Institut Pasteur , Paris, France
| |
Collapse
|
10
|
Luo H, Yu Q, Liu Y, Tang M, Liang M, Zhang D, Xiao TS, Wu L, Tan M, Ruan Y, Bungert J, Lu J. LATS kinase-mediated CTCF phosphorylation and selective loss of genomic binding. SCIENCE ADVANCES 2020; 6:eaaw4651. [PMID: 32128389 PMCID: PMC7030924 DOI: 10.1126/sciadv.aaw4651] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Chromatin topological organization is instrumental in gene transcription. Gene-enhancer interactions are accommodated in the same CTCF-mediated insulated neighborhoods. However, it remains poorly understood whether and how the 3D genome architecture is dynamically restructured by external signals. Here, we report that LATS kinases phosphorylated CTCF in the zinc finger (ZF) linkers and disabled its DNA-binding activity. Cellular stress induced LATS nuclear translocation and CTCF ZF linker phosphorylation, and altered the landscape of CTCF genomic binding partly by dissociating it selectively from a small subset of its genomic binding sites. These sites were highly enriched for the boundaries of chromatin domains containing LATS signaling target genes. The stress-induced CTCF phosphorylation and locus-specific dissociation from DNA were LATS-dependent. Loss of CTCF binding disrupted local chromatin domains and down-regulated genes located within them. The study suggests that external signals may rapidly modulate the 3D genome by affecting CTCF genomic binding through ZF linker phosphorylation.
Collapse
Affiliation(s)
- Huacheng Luo
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Qin Yu
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ming Tang
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mingwei Liang
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dingpeng Zhang
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ming Tan
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Elbaz B, Aaker JD, Isaac S, Kolarzyk A, Brugarolas P, Eden A, Popko B. Phosphorylation State of ZFP24 Controls Oligodendrocyte Differentiation. Cell Rep 2019; 23:2254-2263. [PMID: 29791837 PMCID: PMC6002757 DOI: 10.1016/j.celrep.2018.04.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/19/2018] [Accepted: 04/19/2018] [Indexed: 01/08/2023] Open
Abstract
Zinc finger protein ZFP24, formerly known as ZFP191, is essential for oligodendrocyte maturation and CNS myelination. Nevertheless, the mechanism by which ZFP24 controls these processes is unknown. We demonstrate that ZFP24 binds to a consensus DNA sequence in proximity to genes important for oligodendrocyte differentiation and CNS myelination, and we show that this binding enhances target gene expression. We also demonstrate that ZFP24 DNA binding is controlled by phosphorylation. Phosphorylated ZFP24, which does not bind DNA, is the predominant form in oligodendrocyte progenitor cells. As these cells mature into oligodendrocytes, the non-phosphorylated, DNA-binding form accumulates. Interestingly, ZFP24 displays overlapping genomic binding sites with the transcription factors MYRF, SOX10, and OLIG2, which are known to control oligodendrocyte differentiation. Our findings provide a mechanism by which dephosphorylation of ZFP24 mediates its binding to regulatory regions of genes important for oligodendrocyte maturation, controls their expression, and thereby regulates oligodendrocyte differentiation and CNS myelination.
Collapse
Affiliation(s)
- Benayahu Elbaz
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| | - Joshua D Aaker
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| | - Sara Isaac
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna Kolarzyk
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| | - Pedro Brugarolas
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| | - Amir Eden
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brian Popko
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Quantitative proteomics indicate a strong correlation of mitotic phospho-/dephosphorylation with non-structured regions of substrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140295. [PMID: 31676455 DOI: 10.1016/j.bbapap.2019.140295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 01/21/2023]
Abstract
Protein phosphorylation plays a critical role in the regulation and progression of mitosis. >40,000 phosphorylated residues and the associated kinases have been identified to date via proteomic analyses. Although some of these phosphosites are associated with regulation of either protein-protein interactions or the catalytic activity of the substrate protein, the roles of most mitotic phosphosites remain unclear. In this study, we examined structural properties of mitotic phosphosites and neighboring residues to understand the role of heavy phosphorylation in non-structured domains. Quantitative mass spectrometry analysis of mitosis-arrested and non-arrested HeLa cells revealed >4100 and > 2200 residues either significantly phosphorylated or dephosphorylated, respectively, at mitotic entry. The calculated disorder scores of amino acid sequences of neighboring individual phosphosites revealed that >70% of dephosphorylated phosphosites exist in disordered regions, whereas 50% of phosphorylated sites exist in non-structured domains. A clear inverse correlation was observed between probability of phosphorylation in non-structured domain and increment of phosphorylation in mitosis. These results indicate that at entry to mitosis, a significant number of phosphate groups are removed from non-structured domains and transferred to more-structured domains. Gene ontology term analysis revealed that mitosis-related proteins are heavily phosphorylated, whereas RNA-related proteins are both dephosphorylated and phosphorylated, suggesting that heavy phosphorylation/dephosphorylation in non-structured domains of RNA-binding proteins plays a role in dynamic rearrangement of RNA-containing organelles, as well as other intracellular environments.
Collapse
|
13
|
Wu T, Donohoe ME. Yy1 regulates Senp1 contributing to AMPA receptor GluR1 expression following neuronal depolarization. J Biomed Sci 2019; 26:79. [PMID: 31629407 PMCID: PMC6800989 DOI: 10.1186/s12929-019-0582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuronal activity-induced changes in gene expression patterns are important mediators of neuronal plasticity. Many neuronal genes can be activated or inactivated in response to neuronal depolarization. Mechanisms that activate gene transcription are well established, but activity-dependent mechanisms that silence transcription are less understood. It is also not clear what is the significance of inhibiting these genes during neuronal activity. METHODS Quantitative Real Time-PCR, western blot and immunofluorescence staining were performed to examine the expression of Senp1 and GluR1 in mouse cortical neurons. The alterations of Yy1 phosphorylation upon neuronal depolarization and the interaction of Yy1 with Brd4 were studied by protein co-immunoprecipitation. The regulators of Yy1 phosphorylation were identified by phosphatase inhibitors. Chromatin immunoprecipitation, in vitro DNA binding assay, luciferase assay and gene knockdown experiments were used to validate the roles of Yy1 and its phosphorylation as well as Brd4 in regulating Senp1 expression. RESULTS We report that neuronal depolarization deactivates the transcription of the SUMO protease Senp1, an important component regulating synaptic transmission, scaling, and plasticity, through Yy1. In un-stimulated neurons, Senp1 transcription is activated by a Yy1-Brd4 transcription factor protein complex assembled on the Senp1 promoter. Upon membrane depolarization, however, Yy1 is dephosphorylated and the Yy1-Brd4 complex is evicted from the Senp1 promoter, reducing Senp1 transcription levels. Both Yy1 and Senp1 promote the expression of AMPA receptor subunit GluR1, a pivotal component in learning and memory. CONCLUSIONS These results reveal an axis of Yy1/Brd4-Senp1 which regulates the expression of GluR1 during neuronal depolarization. This implicates a regulation mechanism in silencing gene expression upon neuronal activity.
Collapse
Affiliation(s)
- Tao Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China.
- Burke Medical Research Institute, White Plains, NY, 10605, USA.
- Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Mary E Donohoe
- Burke Medical Research Institute, White Plains, NY, 10605, USA.
- Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY, 10065, USA.
- Present address: Department of Medicine, Division of Regenerative Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
14
|
Owens N, Papadopoulou T, Festuccia N, Tachtsidi A, Gonzalez I, Dubois A, Vandormael-Pournin S, Nora EP, Bruneau BG, Cohen-Tannoudji M, Navarro P. CTCF confers local nucleosome resiliency after DNA replication and during mitosis. eLife 2019; 8:e47898. [PMID: 31599722 PMCID: PMC6844645 DOI: 10.7554/elife.47898] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
The access of Transcription Factors (TFs) to their cognate DNA binding motifs requires a precise control over nucleosome positioning. This is especially important following DNA replication and during mitosis, both resulting in profound changes in nucleosome organization over TF binding regions. Using mouse Embryonic Stem (ES) cells, we show that the TF CTCF displaces nucleosomes from its binding site and locally organizes large and phased nucleosomal arrays, not only in interphase steady-state but also immediately after replication and during mitosis. Correlative analyses suggest this is associated with fast gene reactivation following replication and mitosis. While regions bound by other TFs (Oct4/Sox2), display major rearrangement, the post-replication and mitotic nucleosome positioning activity of CTCF is not unique: Esrrb binding regions are also characterized by persistent nucleosome positioning. Therefore, selected TFs such as CTCF and Esrrb act as resilient TFs governing the inheritance of nucleosome positioning at regulatory regions throughout the cell-cycle.
Collapse
Affiliation(s)
- Nick Owens
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| | - Thaleia Papadopoulou
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| | - Nicola Festuccia
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| | - Alexandra Tachtsidi
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
- Sorbonne Université, Collège DoctoralParisFrance
| | - Inma Gonzalez
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| | - Agnes Dubois
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| | - Sandrine Vandormael-Pournin
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR 3738ParisFrance
| | - Elphège P Nora
- Gladstone InstitutesSan FranciscoUnited States
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
| | - Benoit G Bruneau
- Gladstone InstitutesSan FranciscoUnited States
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Michel Cohen-Tannoudji
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR 3738ParisFrance
| | - Pablo Navarro
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| |
Collapse
|
15
|
Large-scale chromatin organisation in interphase, mitosis and meiosis. Biochem J 2019; 476:2141-2156. [DOI: 10.1042/bcj20180512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/17/2023]
Abstract
AbstractThe spatial configuration of chromatin is fundamental to ensure any given cell can fulfil its functional duties, from gene expression to specialised cellular division. Significant technological innovations have facilitated further insights into the structure, function and regulation of three-dimensional chromatin organisation. To date, the vast majority of investigations into chromatin organisation have been conducted in interphase and mitotic cells leaving meiotic chromatin relatively unexplored. In combination, cytological and genome-wide contact frequency analyses in mammalian germ cells have recently demonstrated that large-scale chromatin structures in meiotic prophase I are reminiscent of the sequential loop arrays found in mitotic cells, although interphase-like segmentation of transcriptionally active and inactive regions are also evident along the length of chromosomes. Here, we discuss the similarities and differences of such large-scale chromatin architecture, between interphase, mitotic and meiotic cells, as well as their functional relevance and the proposed modulatory mechanisms which underlie them.
Collapse
|
16
|
Goto S, Takahashi M, Yasutsune N, Inayama S, Kato D, Fukuoka M, Kashiwaba SI, Murakami Y. Identification of GA-Binding Protein Transcription Factor Alpha Subunit (GABPA) as a Novel Bookmarking Factor. Int J Mol Sci 2019; 20:E1093. [PMID: 30836589 PMCID: PMC6429373 DOI: 10.3390/ijms20051093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Mitotic bookmarking constitutes a mechanism for transmitting transcriptional patterns through cell division. Bookmarking factors, comprising a subset of transcription factors (TFs), and multiple histone modifications retained in mitotic chromatin facilitate reactivation of transcription in the early G1 phase. However, the specific TFs that act as bookmarking factors remain largely unknown. Previously, we identified the "early G1 genes" and screened TFs that were predicted to bind to the upstream region of these genes, then identified GA-binding protein transcription factor alpha subunit (GABPA) and Sp1 transcription factor (SP1) as candidate bookmarking factors. Here we show that GABPA and multiple histone acetylation marks such as H3K9/14AC, H3K27AC, and H4K5AC are maintained at specific genomic sites in mitosis. During the M/G1 transition, the levels of these histone acetylations at the upstream regions of genes bound by GABPA in mitosis are decreased. Upon depletion of GABPA, levels of histone acetylation, especially H4K5AC, at several gene regions are increased, along with transcriptional induction at 1 h after release. Therefore, we proposed that GABPA cooperates with the states of histone acetylation to act as a novel bookmarking factor which, may negatively regulate transcription during the early G1 phase.
Collapse
Affiliation(s)
- Shunya Goto
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Masashi Takahashi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Narumi Yasutsune
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Sumiki Inayama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Dai Kato
- Order-MadeMedical Research Inc., 208Todai-Kashiwa VP, 5-4-19 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-0882, Japan.
| | - Masashi Fukuoka
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
| | - Shu-Ichiro Kashiwaba
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Yasufumi Murakami
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
- Order-MadeMedical Research Inc., 208Todai-Kashiwa VP, 5-4-19 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-0882, Japan.
| |
Collapse
|
17
|
Raccaud M, Friman ET, Alber AB, Agarwal H, Deluz C, Kuhn T, Gebhardt JCM, Suter DM. Mitotic chromosome binding predicts transcription factor properties in interphase. Nat Commun 2019; 10:487. [PMID: 30700703 PMCID: PMC6353955 DOI: 10.1038/s41467-019-08417-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022] Open
Abstract
Mammalian transcription factors (TFs) differ broadly in their nuclear mobility and sequence-specific/non-specific DNA binding. How these properties affect their ability to occupy specific genomic sites and modify the epigenetic landscape is unclear. The association of TFs with mitotic chromosomes observed by fluorescence microscopy is largely mediated by non-specific DNA interactions and differs broadly between TFs. Here we combine quantitative measurements of mitotic chromosome binding (MCB) of 501 TFs, TF mobility measurements by fluorescence recovery after photobleaching, single molecule imaging of DNA binding, and mapping of TF binding and chromatin accessibility. TFs associating to mitotic chromosomes are enriched in DNA-rich compartments in interphase and display slower mobility in interphase and mitosis. Remarkably, MCB correlates with relative TF on-rates and genome-wide specific site occupancy, but not with TF residence times. This suggests that non-specific DNA binding properties of TFs regulate their search efficiency and occupancy of specific genomic sites.
Collapse
Affiliation(s)
- Mahé Raccaud
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Elias T Friman
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Andrea B Alber
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Harsha Agarwal
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Cédric Deluz
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Timo Kuhn
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - David M Suter
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
18
|
Festuccia N, Owens N, Papadopoulou T, Gonzalez I, Tachtsidi A, Vandoermel-Pournin S, Gallego E, Gutierrez N, Dubois A, Cohen-Tannoudji M, Navarro P. Transcription factor activity and nucleosome organization in mitosis. Genome Res 2019; 29:250-260. [PMID: 30655337 PMCID: PMC6360816 DOI: 10.1101/gr.243048.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
Mitotic bookmarking transcription factors (BFs) maintain the capacity to bind to their targets during mitosis, despite major rearrangements of the chromatin. While they were thought to propagate gene regulatory information through mitosis by statically occupying their DNA targets, it has recently become clear that BFs are highly dynamic in mitotic cells. This represents both a technical and a conceptual challenge to study and understand the function of BFs: First, formaldehyde has been suggested to be unable to efficiently capture these transient interactions, leading to profound contradictions in the literature; and second, if BFs are not permanently bound to their targets during mitosis, it becomes unclear how they convey regulatory information to daughter cells. Here, comparing formaldehyde to alternative fixatives we clarify the nature of the chromosomal association of previously proposed BFs in embryonic stem cells: While ESRRB can be considered as a canonical BF that binds at selected regulatory regions in mitosis, SOX2 and POU5F1 (also known as OCT4) establish DNA sequence-independent interactions with the mitotic chromosomes, either throughout the chromosomal arms (SOX2) or at pericentromeric regions (POU5F1). Moreover, we show that ordered nucleosomal arrays are retained during mitosis at ESRRB bookmarked sites, whereas regions losing transcription factor binding display a profound loss of order. By maintaining nucleosome positioning during mitosis, ESRRB might ensure the rapid post-mitotic re-establishment of functional regulatory complexes at selected enhancers and promoters. Our results provide a mechanistic framework that reconciles dynamic mitotic binding with the transmission of gene regulatory information across cell division.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Nick Owens
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Thaleia Papadopoulou
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Alexandra Tachtsidi
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer.,Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Sandrine Vandoermel-Pournin
- Mouse Functional Genetics, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France
| | - Elena Gallego
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Nancy Gutierrez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Agnès Dubois
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Michel Cohen-Tannoudji
- Mouse Functional Genetics, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| |
Collapse
|
19
|
Sequences encoding C2H2 zinc fingers inhibit polyadenylation and mRNA export in human cells. Sci Rep 2018; 8:16995. [PMID: 30451889 PMCID: PMC6242934 DOI: 10.1038/s41598-018-35138-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
The large C2H2-Zinc Finger (C2H2-ZNF) gene family has rapidly expanded in primates through gene duplication. There is consequently considerable sequence homology between family members at both the nucleotide and amino acid level, allowing for coordinated regulation and shared functions. Here we show that multiple C2H2-ZNF mRNAs experience differential polyadenylation resulting in populations with short and long poly(A) tails. Furthermore, a significant proportion of C2H2-ZNF mRNAs are retained in the nucleus. Intriguingly, both short poly(A) tails and nuclear retention can be specified by the repeated elements that encode zinc finger motifs. These Zinc finger Coding Regions (ZCRs) appear to restrict polyadenylation of nascent RNAs and at the same time impede their export. However, the polyadenylation process is not necessary for nuclear retention of ZNF mRNAs. We propose that inefficient polyadenylation and export may allow C2H2-ZNF mRNAs to moonlight as non-coding RNAs or to be stored for later use.
Collapse
|
20
|
Herbert KJ, Ashton TM, Prevo R, Pirovano G, Higgins GS. T-LAK cell-originated protein kinase (TOPK): an emerging target for cancer-specific therapeutics. Cell Death Dis 2018; 9:1089. [PMID: 30356039 PMCID: PMC6200809 DOI: 10.1038/s41419-018-1131-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
Abstract
'Targeted' or 'biological' cancer treatments rely on differential gene expression between normal tissue and cancer, and genetic changes that render tumour cells especially sensitive to the agent being applied. Problems exist with the application of many agents as a result of damage to local tissues, tumour evolution and treatment resistance, or through systemic toxicity. Hence, there is a therapeutic need to uncover specific clinical targets which enhance the efficacy of cancer treatment whilst minimising the risk to healthy tissues. T-LAK cell-originated protein kinase (TOPK) is a MAPKK-like kinase which plays a role in cell cycle regulation and mitotic progression. As a consequence, TOPK expression is minimal in differentiated cells, although its overexpression is a pathophysiological feature of many tumours. Hence, TOPK has garnered interest as a cancer-specific biomarker and biochemical target with the potential to enhance cancer therapy whilst causing minimal harm to normal tissues. Small molecule inhibitors of TOPK have produced encouraging results as a stand-alone treatment in vitro and in vivo, and are expected to advance into clinical trials in the near future. In this review, we present the current literature pertaining to TOPK as a potential clinical target and describe the progress made in uncovering its role in tumour development. Firstly, we describe the functional role of TOPK as a pro-oncogenic kinase, followed by a discussion of its potential as a target for the treatment of cancers with high-TOPK expression. Next, we provide an overview of the current preclinical progress in TOPK inhibitor discovery and development, with respect to future adaptation for clinical use.
Collapse
Affiliation(s)
- Katharine J Herbert
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Thomas M Ashton
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Remko Prevo
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Giacomo Pirovano
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Geoff S Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
21
|
Gil RS, Vagnarelli P. Protein phosphatases in chromatin structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:90-101. [PMID: 30036566 PMCID: PMC6227384 DOI: 10.1016/j.bbamcr.2018.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
Chromatin structure and dynamics are highly controlled and regulated processes that play an essential role in many aspects of cell biology. The chromatin transition stages and the factors that control this process are regulated by post-translation modifications, including phosphorylation. While the role of protein kinases in chromatin dynamics has been quite well studied, the nature and regulation of the counteracting phosphatases represent an emerging field but are still at their infancy. In this review we summarize the current literature on phosphatases involved in the regulation of chromatin structure and dynamics, with emphases on the major knowledge gaps that should require attention and more investigation.
Collapse
Affiliation(s)
- Raquel Sales Gil
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK.
| |
Collapse
|
22
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Role of Zic Family Proteins in Transcriptional Regulation and Chromatin Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:353-380. [DOI: 10.1007/978-981-10-7311-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Velappan Y, Signorelli S, Considine MJ. Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? ANNALS OF BOTANY 2017; 120:495-509. [PMID: 28981580 PMCID: PMC5737280 DOI: 10.1093/aob/mcx082] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/29/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Quiescence is a fundamental feature of plant life, which enables plasticity, renewal and fidelity of the somatic cell line. Cellular quiescence is defined by arrest in a particular phase of the cell cycle, typically G1 or G2; however, the regulation of quiescence and proliferation can also be considered across wider scales in space and time. As such, quiescence is a defining feature of plant development and phenology, from meristematic stem cell progenitors to terminally differentiated cells, as well as dormant or suppressed seeds and buds. While the physiology of each of these states differs considerably, each is referred to as 'cell cycle arrest' or 'G1 arrest'. SCOPE Here the physiology and molecular regulation of (1) meristematic quiescence, (2) dormancy and (3) terminal differentiation (cell cycle exit) are considered in order to determine whether and how the molecular decisions guiding these nuclear states are distinct. A brief overview of the canonical cell cycle regulators is provided, and the genetic and genomic, as well as physiological, evidence is considered regarding two primary questions: (1) Are the canonical cell cycle regulators superior or subordinate in the regulation of quiescence? (2) Are these three modes of quiescence governed by distinct molecular controls? CONCLUSION Meristematic quiescence, dormancy and terminal differentiation are each predominantly characterized by G1 arrest but regulated distinctly, at a level largely superior to the canonical cell cycle. Meristematic quiescence is intrinsically linked to non-cell-autonomous regulation of meristem cell identity, and particularly through the influence of ubiquitin-dependent proteolysis, in partnership with reactive oxygen species, abscisic acid and auxin. The regulation of terminal differentiation shares analogous features with meristematic quiescence, albeit with specific activators and a greater role for cytokinin signalling. Dormancy meanwhile appears to be regulated at the level of chromatin accessibility, by Polycomb group-type histone modifications of particular dormancy genes.
Collapse
Affiliation(s)
- Yazhini Velappan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- The School of Molecular Sciences, and The UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Santiago Signorelli
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- The School of Molecular Sciences, and The UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- The School of Molecular Sciences, and The UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
- For correspondence. Email
| |
Collapse
|
25
|
Festuccia N, Gonzalez I, Owens N, Navarro P. Mitotic bookmarking in development and stem cells. Development 2017; 144:3633-3645. [DOI: 10.1242/dev.146522] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The changes imposed on the nucleus, chromatin and its regulators during mitosis lead to the dismantlement of most gene regulatory processes. However, an increasing number of transcriptional regulators are being identified as capable of binding their genomic targets during mitosis. These so-called ‘mitotic bookmarking factors’ encompass transcription factors and chromatin modifiers that are believed to convey gene regulatory information from mother to daughter cells. In this Primer, we review mitotic bookmarking processes in development and stem cells and discuss the interest and potential importance of this concept with regard to epigenetic regulation and cell fate transitions involving cellular proliferation.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Nick Owens
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
26
|
Raccaud M, Suter DM. Transcription factor retention on mitotic chromosomes: regulatory mechanisms and impact on cell fate decisions. FEBS Lett 2017; 592:878-887. [PMID: 28862742 DOI: 10.1002/1873-3468.12828] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
Abstract
During mitosis, gene transcription stops, and the bulk of DNA-binding proteins are excluded from condensed chromosomes. While most gene-specific transcription factors are largely evicted from mitotic chromosomes, a subset remains bound to specific and non-specific DNA sites. Here, we review the current knowledge on the mechanisms leading to the retention of a subset of transcription factors on mitotic chromosomes and discuss the implications in gene expression regulation and their potential as an epigenetic mechanism controlling stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Mahé Raccaud
- UPSUTER, Institute of Bioengineering (IBI), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - David M Suter
- UPSUTER, Institute of Bioengineering (IBI), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| |
Collapse
|
27
|
Alexander KE, Rizkallah R. Aurora A Phosphorylation of YY1 during Mitosis Inactivates its DNA Binding Activity. Sci Rep 2017; 7:10084. [PMID: 28855673 PMCID: PMC5577188 DOI: 10.1038/s41598-017-10935-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Successful execution of mitotic cell division requires the tight synchronisation of numerous biochemical pathways. The underlying mechanisms that govern chromosome segregation have been thoroughly investigated. However, the mechanisms that regulate transcription factors in coordination with mitotic progression remain poorly understood. In this report, we identify the transcription factor YY1 as a novel mitotic substrate for the Aurora A kinase, a key regulator of critical mitotic events, like centrosome maturation and spindle formation. Using in vitro kinase assays, we show that Aurora A directly phosphorylates YY1 at serine 365 in the DNA-binding domain. Using a new phospho-specific antibody, we show that YY1 phosphorylation at serine 365 occurs during mitosis, and that this phosphorylation is significantly reduced upon inhibition of Aurora A. Furthermore, we show, using electrophoretic mobility shift and chromatin immunoprecipitation assays, that phosphorylation of YY1 at this site abolishes its DNA binding activity in vitro and in vivo. In conformity with this loss of binding activity, phosphorylated YY1 also loses its transctivation ability as demonstrated by a luciferase reporter assay. These results uncover a novel mechanism that implicates Aurora A in the mitotic inactivation of transcription factors.
Collapse
Affiliation(s)
- Karen E Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America.
| |
Collapse
|
28
|
Hsiung CCS, Bartman CR, Huang P, Ginart P, Stonestrom AJ, Keller CA, Face C, Jahn KS, Evans P, Sankaranarayanan L, Giardine B, Hardison RC, Raj A, Blobel GA. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition. Genes Dev 2017; 30:1423-39. [PMID: 27340175 PMCID: PMC4926865 DOI: 10.1101/gad.280859.116] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023]
Abstract
Hsiung et al. tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. During the earliest rounds of transcription at the mitosis–G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis–G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis–G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer–promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis–G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis–G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis–G1 transition might predispose cells to diverge in gene expression states.
Collapse
Affiliation(s)
- Chris C-S Hsiung
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caroline R Bartman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Paul Ginart
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA, Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aaron J Stonestrom
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Carolyne Face
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Kristen S Jahn
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Perry Evans
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Laavanya Sankaranarayanan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Arjun Raj
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
29
|
Sekiya T, Murano K, Kato K, Kawaguchi A, Nagata K. Mitotic phosphorylation of CCCTC-binding factor (CTCF) reduces its DNA binding activity. FEBS Open Bio 2017; 7:397-404. [PMID: 28286735 PMCID: PMC5337899 DOI: 10.1002/2211-5463.12189] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/30/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022] Open
Abstract
During mitosis, higher order chromatin structures are disrupted and chromosomes are condensed to achieve accurate chromosome segregation. CCCTC‐binding factor (CTCF) is a highly conserved and ubiquitously expressed C2H2‐type zinc finger protein which is considered to be involved in epigenetic memory through regulation of higher order chromatin architecture. However, the regulatory mechanism of CTCF in mitosis is still unclear. Here we found that the DNA‐binding activity of CTCF is regulated in a phosphorylation‐dependent manner during mitosis. The linker domains of the CTCF zinc finger domain were found to be phosphorylated during mitosis. The phosphorylation of linker domains impaired the DNA‐binding activity in vitro. Mutation analyses showed that amino acid residues (Thr289, Thr317, Thr346, Thr374, Ser402, Ser461, and Thr518) located in the linker domains were phosphorylated during mitosis. Based on these results, we propose that the mitotic phosphorylation of the linker domains of CTCF is important for the dissociation of CTCF from mitotic chromatin.
Collapse
Affiliation(s)
- Takeshi Sekiya
- Department of Infection Biology Faculty of Medicine and Graduate School of Comprehensive Human Science University of Tsukuba Japan
| | - Kensaku Murano
- Department of Molecular Biology Keio University School of Medicine Tokyo Japan
| | - Kohsuke Kato
- Department of Infection BiologyFaculty of Medicine and Graduate School of Comprehensive Human ScienceUniversity of TsukubaJapan; Faculty of MedicineUniversity of TsukubaJapan
| | - Atsushi Kawaguchi
- Department of Infection BiologyFaculty of Medicine and Graduate School of Comprehensive Human ScienceUniversity of TsukubaJapan; Faculty of MedicineUniversity of TsukubaJapan
| | | |
Collapse
|
30
|
Abstract
Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.
Collapse
Affiliation(s)
- Jayu Jen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|
31
|
Ichida Y, Utsunomiya Y, Onodera M. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization. Biochem Biophys Res Commun 2016; 471:533-8. [PMID: 26879141 DOI: 10.1016/j.bbrc.2016.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers.
Collapse
Affiliation(s)
- Yu Ichida
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Yuko Utsunomiya
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
32
|
Rizkallah R, Batsomboon P, Dudley GB, Hurt MM. Identification of the oncogenic kinase TOPK/PBK as a master mitotic regulator of C2H2 zinc finger proteins. Oncotarget 2015; 6:1446-61. [PMID: 25575812 PMCID: PMC4359306 DOI: 10.18632/oncotarget.2735] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/08/2014] [Indexed: 11/25/2022] Open
Abstract
TOPK/PBK is an oncogenic kinase upregulated in most human cancers and its high expression correlates with poor prognosis. TOPK is known to be activated by Cdk1 and needed for mitotic cell division; however, its mitotic functions are not yet fully understood. In this study, we show that TOPK plays a global mitotic role by simultaneously regulating hundreds of DNA binding proteins. C2H2 zinc finger proteins (ZFPs) constitute the largest family of human proteins. All C2H2 ZFPs contain a highly conserved linker sequence joining their multi-zinc finger domains. We have previously shown that phosphorylation of this conserved motif serves as a global mechanism for the coordinate dissociation of C2H2 ZFPs from condensing chromatin, during mitosis. Here, using a panel of kinase inhibitors, we identified K252a as a potent inhibitor of mitotic ZFP linker phosphorylation. We generated a biotinylated form of K252a and used it to purify candidate kinases. From these candidates we identified TOPK/PBK, in vitro and in vivo, as the master ZFP linker kinase. Furthermore, we show precise temporal correlation between TOPK activating phosphorylation by Cdk1 and linker phosphorylation in mitosis. The identification of this fundamental role of TOPK underscores its significance as a promising novel target of cancer therapeutics.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, 32306, United States of America
| | - Paratchata Batsomboon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, United States of America
| | - Gregory B Dudley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, United States of America
| | - Myra M Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, 32306, United States of America
| |
Collapse
|
33
|
Zheng X, Cheng M, Xiang L, Su J, Zhou Y, Xie L, Zhang R. Cloning and identification of a YY-1 homolog as a potential transcription factor from Pinctada fucata. Gene 2015; 572:108-115. [PMID: 26151893 DOI: 10.1016/j.gene.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 05/22/2015] [Accepted: 07/01/2015] [Indexed: 01/02/2023]
Abstract
Biomineralization is an important and ubiquitous process in organisms. The shell formation of mollusks is a typical biomineral physical activity and is used as a canonical model in biomineralization research. Most recent studies focused on the identification of matrix proteins involved in shell formation; however, little is known about their transcriptional regulation mechanism, especially the transcription factors involved in shell formation. In this study, we identified a homolog of the YY-1 transcriptional factor from Pinctada fucata, named Pf-YY-1, and characterized its expression pattern and biological functions. Pf-YY-1 has a typical zinc finger motif highly similar to those in humans, mice, and other higher organisms, which indicated its DNA-binding capability and its function as a transcription factor. Pf-YY-1 is ubiquitously expressed in many tissues, but at a higher level in the mantle, which suggested a role in biomineralization. The expression pattern of Pf-YY-1 during pearl sac development was quite similar to, and was synchronized with, those of Prisilkin-39, ACCBP, and other genes involved in biomineralization, which also suggested its function in biomineralization.
Collapse
Affiliation(s)
- Xiangnan Zheng
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Minzhang Cheng
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Xiang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingtan Su
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yujuan Zhou
- Chinese National Human Genome Center, Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Rongqing Zhang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Abstract
Yin Yang 1 (YY1) is a member of the GLI-Krüppel class of DNA and RNA binding transcription factors that can either activate or repress gene expression during cell growth, differentiation, and embryogenesis. Although much is known about YY1 interacting proteins and the target promoters regulated by YY1, much less is known about YY1 regulation through post-translational modifications. In this study we show that YY1 is tyrosine-phosphorylated in multiple cell types. Using a combination of pharmacological inhibition, kinase overexpression, and kinase knock-out studies, we demonstrate that YY1 is a target of multiple Src family kinases in vitro and in vivo. Moreover, we have identified multiple sites of YY1 phosphorylation and analyzed the effect of phosphorylation on the activity of YY1-responsive retroviral and cellular promoters. Phosphorylation of tyrosine 383 interferes with DNA and RNA binding, leading to the down-regulation of YY1 activity. Finally, we provide the first evidence that YY1 is a downstream target of epidermal growth factor receptor signaling in vivo. Taken together, the identification of YY1 as a target of Src family kinases provide key insights into the inhibitory role of tyrosine kinases in modulating YY1 activity.
Collapse
Affiliation(s)
- Gary Z Wang
- From the Integrated Program in Cellular, Molecular, and Biophysical Studies, Medical Scientist Training Program, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, Columbia University, New York, New York 10032 and
| |
Collapse
|
35
|
Ma Y, Kanakousaki K, Buttitta L. How the cell cycle impacts chromatin architecture and influences cell fate. Front Genet 2015; 6:19. [PMID: 25691891 PMCID: PMC4315090 DOI: 10.3389/fgene.2015.00019] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 01/17/2023] Open
Abstract
Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate reprogramming.
Collapse
Affiliation(s)
- Yiqin Ma
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Kiriaki Kanakousaki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
36
|
Suzuki K, Sako K, Akiyama K, Isoda M, Senoo C, Nakajo N, Sagata N. Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2. Sci Rep 2015; 5:7929. [PMID: 25604483 PMCID: PMC4300507 DOI: 10.1038/srep07929] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/22/2014] [Indexed: 11/09/2022] Open
Abstract
The cyclin B-dependent protein kinase Cdk1 is a master regulator of mitosis and phosphorylates numerous proteins on the minimal consensus motif Ser/Thr-Pro (S/T-P). At least in several proteins, however, not well-defined motifs lacking a Pro in the +1 position, referred herein to as non-S/T-P motifs, have been shown to be phosphorylated by Cdk1. Here we show that non-S/T-P motifs in fact form consensus sequences for Cdk1 and probably play roles in mitotic regulation of physiologically important proteins. First, we show, by in vitro kinase assays, that previously identified non-S/T-P motifs all harbour one or more C-terminal Arg/Lys residues essential for their phosphorylation by Cdk1. Second, using Arg/Lys-scanning oriented peptide libraries, we demonstrate that Cdk1 phosphorylates a minimal sequence S/T-X-X-R/K and more favorable sequences (P)-X-S/T-X-[R/K]2–5 as its non-S/T-P consensus motifs. Third, on the basis of these results, we find that highly conserved linkers (typically, T-G-E-K-P) of C2H2 zinc finger proteins and a nuclear localization signal-containing sequence (matching P-X-S-X-[R/K]5) of the cytokinesis regulator Ect2 are inhibitorily phosphorylated by Cdk1, well accounting for the known mitotic regulation and function of the respective proteins. We suggest that non-S/T-P Cdk1 consensus motifs identified here may function to regulate many other proteins during mitosis.
Collapse
Affiliation(s)
- Kazuhiro Suzuki
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Kosuke Sako
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Kazuhiro Akiyama
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Michitaka Isoda
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Chiharu Senoo
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Nobushige Nakajo
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Noriyuki Sagata
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
37
|
Addison JB, Koontz C, Fugett JH, Creighton CJ, Chen D, Farrugia MK, Padon RR, Voronkova MA, McLaughlin SL, Livengood RH, Lin CC, Ruppert JM, Pugacheva EN, Ivanov AV. KAP1 promotes proliferation and metastatic progression of breast cancer cells. Cancer Res 2014; 75:344-55. [PMID: 25421577 DOI: 10.1158/0008-5472.can-14-1561] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
KAP1 (TRIM28) is a transcriptional regulator in embryonic development that controls stem cell self-renewal, chromatin organization, and the DNA damage response, acting as an essential corepressor for KRAB family zinc finger proteins (KRAB-ZNF). To gain insight into the function of this large gene family, we developed an antibody that recognizes the conserved zinc fingers linker region (ZnFL) in multiple KRAB-ZNF. Here, we report that the expression of many KRAB-ZNF along with active SUMOlyated KAP1 is elevated widely in human breast cancers. KAP1 silencing in breast cancer cells reduced proliferation and inhibited the growth and metastasis of tumor xenografts. Conversely, KAP1 overexpression stimulated cell proliferation and tumor growth. In cells where KAP1 was silenced, we identified multiple downregulated genes linked to tumor progression and metastasis, including EREG/epiregulin, PTGS2/COX2, MMP1, MMP2, and CD44, along with downregulation of multiple KRAB-ZNF proteins. KAP1-dependent stabilization of KRAB-ZNF required direct interactions with KAP1. Together, our results show that KAP1-mediated stimulation of multiple KRAB-ZNF contributes to the growth and metastasis of breast cancer.
Collapse
Affiliation(s)
- Joseph B Addison
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Colton Koontz
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - James H Fugett
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Dongquan Chen
- Division of Preventive Medicine and UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mark K Farrugia
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Renata R Padon
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Maria A Voronkova
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Sarah L McLaughlin
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Ryan H Livengood
- Department of Pathology, West Virginia University, Morgantown, West Virginia
| | - Chen-Chung Lin
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - J Michael Ruppert
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Elena N Pugacheva
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Alexey V Ivanov
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
38
|
Hsiung CCS, Morrissey CS, Udugama M, Frank CL, Keller CA, Baek S, Giardine B, Crawford GE, Sung MH, Hardison RC, Blobel GA. Genome accessibility is widely preserved and locally modulated during mitosis. Genome Res 2014; 25:213-25. [PMID: 25373146 PMCID: PMC4315295 DOI: 10.1101/gr.180646.114] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitosis entails global alterations to chromosome structure and nuclear architecture, concomitant with transient silencing of transcription. How cells transmit transcriptional states through mitosis remains incompletely understood. While many nuclear factors dissociate from mitotic chromosomes, the observation that certain nuclear factors and chromatin features remain associated with individual loci during mitosis originated the hypothesis that such mitotically retained molecular signatures could provide transcriptional memory through mitosis. To understand the role of chromatin structure in mitotic memory, we performed the first genome-wide comparison of DNase I sensitivity of chromatin in mitosis and interphase, using a murine erythroblast model. Despite chromosome condensation during mitosis visible by microscopy, the landscape of chromatin accessibility at the macromolecular level is largely unaltered. However, mitotic chromatin accessibility is locally dynamic, with individual loci maintaining none, some, or all of their interphase accessibility. Mitotic reduction in accessibility occurs primarily within narrow, highly DNase hypersensitive sites that frequently coincide with transcription factor binding sites, whereas broader domains of moderate accessibility tend to be more stable. In mitosis, proximal promoters generally maintain their accessibility more strongly, whereas distal regulatory elements tend to lose accessibility. Large domains of DNA hypomethylation mark a subset of promoters that retain accessibility during mitosis and across many cell types in interphase. Erythroid transcription factor GATA1 exerts site-specific changes in interphase accessibility that are most pronounced at distal regulatory elements, but has little influence on mitotic accessibility. We conclude that features of open chromatin are remarkably stable through mitosis, but are modulated at the level of individual genes and regulatory elements.
Collapse
Affiliation(s)
- Chris C-S Hsiung
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christapher S Morrissey
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maheshi Udugama
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Christopher L Frank
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina 27708, USA
| | - Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
39
|
Yoshizaki H, Okuda S. Elucidation of the evolutionary expansion of phosphorylation signaling networks using comparative phosphomotif analysis. BMC Genomics 2014; 15:546. [PMID: 24981518 PMCID: PMC4117960 DOI: 10.1186/1471-2164-15-546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background Protein phosphorylation is catalyzed by kinases and is involved in the regulation of a wide range of processes. The phosphosites in protein sequence motifs determine the types of kinases involved. The development of phosphoproteomics has allowed the identification of huge numbers of phosphosites, some of which are not involved in physiological functions. Results We developed a method for extracting phosphosites with important roles in cellular functions and determined 178 phosphomotifs based on the analysis of 34,366 phosphosites. We compared the conservation of serine/threonine/tyrosine residues observed in humans and seven other species. Consequently, we identified 16 phosphomotifs, where the level of conservation increased among species. The highly conserved phosphomotifs in humans and the worm were kinase regulatory sites. The motifs present in the fly were novel phosphomotifs, including zinc finger motifs involved in the regulation of gene expression. Subsequently, we found that this zinc finger motif contributed to subcellular protein localization. The motifs identified in fish allowed us to detect the expansion of phosphorylation signals related to alternative splicing. We also showed that the motifs present in specific species functioned in an additional network that interacted directly with the core signaling network conserved from yeast to humans. Conclusions Our method may facilitate the efficient extraction of novel phosphomotifs with physiological functions, thereby contributing greatly to the analysis of complex phosphorylation signaling cascades. Our study suggests that the phosphorylation networks acquired during evolution have added signaling network modules to the core signaling networks. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-546) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hisayoshi Yoshizaki
- Department of Pathology I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | | |
Collapse
|
40
|
Abstract
The remarkable ability of oocytes to reinstate the totipotent state from a unipotent somatic cell, allowing the cloning of animals and the generation of human stem cells, has fascinated scientists for decades. Due to the complexity of oocytes, it has remained challenging to understand the rapid reprogramming following nuclear transfer at a molecular level. Conversely, the detailed characterization of molecular mechanisms is also often insufficient to comprehend the functional relevance of a complex molecular process, such as the dissociation of transcription factors from chromatin during cell division, the role of chromatin modifications in cellular memory, or of cell type-specific DNA replication. This review attempts to bridge the gap between nuclear transfer and molecular biology by focusing on the role of the cell cycle in reprogramming.
Collapse
Affiliation(s)
- Gloryn Chia
- 1 Department of Pediatrics, Naomi Berric Diabetes Center, Columbia University , New York, NY 10032
| | | |
Collapse
|
41
|
Comparative analysis of mitosis-specific antibodies for bulk purification of mitotic populations by fluorescence-activated cell sorting. Biotechniques 2014; 56:90-94. [PMID: 24502799 DOI: 10.2144/000114137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022] Open
Abstract
Mitosis entails complex chromatin changes that have garnered increasing interest from biologists who study genome structure and regulation-fields that are being advanced by high-throughput sequencing (Seq) technologies. The application of these technologies to study the mitotic genome requires large numbers of highly pure mitotic cells, with minimal contamination from interphase cells, to ensure accurate measurement of phenomena specific to mitosis. Here, we optimized a fluorescence-activated cell sorting (FACS)-based method for isolating formaldehyde-fixed mitotic cells--at virtually 100% mitotic purity and in quantities sufficient for high-throughput genomic studies. We compared several commercially available antibodies that react with mitosis-specific epitopes over a range of concentrations and cell numbers, finding antibody MPM2 to be the most robust and cost-effective.
Collapse
|
42
|
He S, Khan DH, Winter S, Seiser C, Davie JR. Dynamic distribution of HDAC1 and HDAC2 during mitosis: association with F-actin. J Cell Physiol 2013; 228:1525-35. [PMID: 23280436 DOI: 10.1002/jcp.24311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 11/05/2022]
Abstract
During mitosis, histone deacetylase 2 (HDAC2) becomes highly phosphorylated through the action of CK2, and HDAC1 and 2 are displaced from mitotic chromosomes. HDAC1 and 2 are components of corepressor complexes, which function with lysine acetyltransferases to catalyze dynamic protein acetylation and regulate gene expression. In this study, we show that HDAC1 and 2 associate with F-actin in mitotic cells. Inhibition of Aurora B or protein kinase CK2 did not prevent the displacement of HDAC1 and 2 from mitotic chromosomes in HeLa cells. Further, proteins of the HDAC1 and 2 corepressor complexes and transcription factors recruiting these corepressors to chromatin were dissociated from mitotic chromosomes independent of Aurora B activity. HDAC1 and 2 returned to the nuclei of daughter cells during lamin A/C reassembly and before Sp1, Sp3, and RNA polymerase II. Our results show that HDAC1 and 2 corepressor complexes are removed from the mitotic chromosomes and are available early in the events leading to the re-establishment of the gene expression program in daughter cells.
Collapse
Affiliation(s)
- Shihua He
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
43
|
Kassardjian A, Rizkallah R, Riman S, Renfro SH, Alexander KE, Hurt MM. The transcription factor YY1 is a novel substrate for Aurora B kinase at G2/M transition of the cell cycle. PLoS One 2012; 7:e50645. [PMID: 23226345 PMCID: PMC3511337 DOI: 10.1371/journal.pone.0050645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/22/2012] [Indexed: 01/01/2023] Open
Abstract
Yin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and Casein kinase 2α (CK2 α) were the first two kinases identified to phosphorylate YY1. In this study, we identify a third kinase. We report that YY1 is a novel substrate of the Aurora B kinase both in vitro and in vivo. Serine 184 phosphorylation of YY1 by Aurora B is cell cycle regulated and peaks at G2/M and is rapidly dephosphorylated, likely by protein phosphatase 1 (PP1) as the cells enter G1. Aurora A and Aurora C can also phosphorylate YY1 in vitro, but at serine/threonine residues other than serine 184. We present evidence that phosphorylation of YY1 in the central glycine/alanine (G/A)-rich region is important for DNA binding activity, with a potential phosphorylation/acetylation interplay regulating YY1 function. Given their importance in mitosis and overexpression in human cancers, Aurora kinases have been identified as promising therapeutic targets. Increasing our understanding of Aurora substrates will add to the understanding of their signaling pathways.
Collapse
Affiliation(s)
- Ari Kassardjian
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Sarah Riman
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States of America
| | - Samuel H. Renfro
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Myra M. Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
44
|
Ren CM, Liang Y, Wei F, Zhang YN, Zhong SQ, Gu H, Dong XS, Huang YY, Ke H, Son XM, Tang D, Chen Z. Balanced translocation t(3;18)(p13;q22.3) and points mutation in the ZNF407 gene detected in patients with both moderate non-syndromic intellectual disability and autism. Biochim Biophys Acta Mol Basis Dis 2012. [PMID: 23195952 DOI: 10.1016/j.bbadis.2012.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intellectual disability (ID) is a common disease. While the etiology remains incompletely understood, genetic defects are a major contributor, which include mutations in genes encoding zinc finger proteins. These proteins modulate gene expression via binding to DNA. Consistent with this knowledge, we report here the identification of mutations in the ZNF407 gene in ID/autistic patients. In our study of an ID patient with autism, a reciprocal translocation 46,XY,t(3;18)(p13;q22.3) was detected. By using FISH and long-range PCR approaches, we have precisely mapped the breakpoints associated with this translocation in a gene-free region in chromosome 3 and in the third intron of the ZNF407 gene in chromosome18. The latter reduces ZNF407 expression. Consistent with this observation, in our subsequent investigation of 105 ID/autism patients with similar clinical presentations, two missense mutations Y460C and P1195A were identified. These mutations cause non-conservative amino acid substitutions in the linker regions between individual finger structures. In line with the linker regions being critical for the integrity of zinc finger motifs, both mutations may result in loss of ZNF407 function. Taken together, we demonstrate that mutations in the ZNF407 gene contribute to the pathogenesis of a group of ID patients with autism.
Collapse
Affiliation(s)
- Cong-mian Ren
- Department of Medical Genetics, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|