1
|
Cascio P. PA28γ, the ring that makes tumors invisible to the immune system? Biochimie 2024; 226:136-147. [PMID: 38631454 DOI: 10.1016/j.biochi.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
PA28γ is a proteasomal interactor whose main and most known function is to stimulate the hydrolytic activity of the 20 S proteasome independently of ubiquitin and ATP. Unlike its two paralogues, PA28α and PA28β, PA28γ is largely present in the nuclear compartment and plays pivotal functions in important pathways such as cellular division, apoptosis, neoplastic transformation, chromatin structure and organization, fertility, lipid metabolism, and DNA repair mechanisms. Although it is known that a substantial fraction of PA28γ is found in the cell in a free form (i.e. not associated with 20 S), almost all of the studies so far have focused on its ability to modulate proteasomal enzymatic activities. In this respect, the ability of PA28γ to strongly stimulate degradation of proteins, especially if intrinsically disordered and therefore devoid of three-dimensional tightly folded structure, appears to be the main molecular mechanism underlying its multiple biological effects. Initial studies, conducted more than 20 years ago, came to the conclusion that among the many biological functions of PA28γ, the immunological ones were rather limited and circumscribed. In this review, we focus on recent evidence showing that PA28γ fulfills significant functions in cell-mediated acquired immunity, with a particular role in attenuating MHC class I antigen presentation, especially in relation to neoplastic transformation and autoimmune diseases.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
2
|
Gnugnoli M, Rinaldi C, Casari E, Pizzul P, Bonetti D, Longhese MP. Proteasome-mediated degradation of long-range nucleases negatively regulates resection of DNA double-strand breaks. iScience 2024; 27:110373. [PMID: 39071887 PMCID: PMC11277358 DOI: 10.1016/j.isci.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Homologous recombination is initiated by the nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection is a two-step process. In the short-range step, the MRX (Mre11-Rad50-Xrs2) complex, together with Sae2, incises the 5'-terminated strand at the DSB end and resects back toward the DNA end. Then, the long-range resection nucleases Exo1 and Dna2 further elongate the resected DNA tracts. We found that mutations lowering proteasome functionality bypass the need for Sae2 in DSB resection. In particular, the dysfunction of the proteasome subunit Rpn11 leads to hyper-resection and increases the levels of both Exo1 and Dna2 to such an extent that it allows the bypass of the requirement for either Exo1 or Dna2, but not for both. These observations, along with the finding that Exo1 and Dna2 are ubiquitylated, indicate a role of the proteasome in restraining DSB resection by negatively controlling the abundance of the long-range resection nucleases.
Collapse
Affiliation(s)
- Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
3
|
Wen P, Sun Y, Jiang TX, Qiu XB. PA200-Mediated Proteasomal Protein Degradation and Regulation of Cellular Senescence. Int J Mol Sci 2024; 25:5637. [PMID: 38891826 PMCID: PMC11171664 DOI: 10.3390/ijms25115637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Cellular senescence is closely related to DNA damage, proteasome inactivity, histone loss, epigenetic alterations, and tumorigenesis. The mammalian proteasome activator PA200 (also referred to as PSME4) or its yeast ortholog Blm10 promotes the acetylation-dependent degradation of the core histones during transcription, DNA repair, and spermatogenesis. According to recent studies, PA200 plays an important role in senescence, probably because of its role in promoting the degradation of the core histones. Loss of PA200 or Blm10 is a major cause of the decrease in proteasome activity during senescence. In this paper, recent research progress on the association of PA200 with cellular senescence is summarized, and the potential of PA200 to serve as a therapeutic target in age-related diseases is discussed.
Collapse
Affiliation(s)
- Pei Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
| | - Tian-Xia Jiang
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| |
Collapse
|
4
|
Guo B, Huo X, Xie X, Zhang X, Lian J, Zhang X, Gong Y, Dou H, Fan Y, Mao Y, Wang J, Hu H. Dynamic role of CUL4B in radiation-induced intestinal injury-regeneration. Sci Rep 2024; 14:9906. [PMID: 38689033 PMCID: PMC11061312 DOI: 10.1038/s41598-024-60704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
CUL4B, a crucial scaffolding protein in the largest E3 ubiquitin ligase complex CRL4B, is involved in a broad range of physiological and pathological processes. While previous research has shown that CUL4B participates in maintaining intestinal homeostasis and function, its involvement in facilitating intestinal recovery following ionizing radiation (IR) damage has not been fully elucidated. Here, we utilized in vivo and in vitro models to decipher the role of CUL4B in intestinal repair after IR-injury. Our findings demonstrated that prior to radiation exposure, CUL4B inhibited the ubiquitination modification of PSME3, which led to the accumulation of PSME3 and subsequent negative regulation of p53-mediated apoptosis. In contrast, after radiation, CUL4B dissociated from PSME3 and translocated into the nucleus at phosphorylated histones H2A (γH2AX) foci, thereby impeding DNA damage repair and augmenting p53-mediated apoptosis through inhibition of BRCA1 phosphorylation and RAD51. Our study elucidated the dynamic role of CUL4B in the repair of radiation-induced intestinal damage and uncovered novel molecular mechanisms underlying the repair process, suggesting a potential therapeutic strategy of intestinal damage after radiation therapy for cancers.
Collapse
Affiliation(s)
- Beibei Guo
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Xiaohan Huo
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Xueyong Xie
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Xiaohui Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Jiabei Lian
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Xiyu Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Yujia Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Yunuo Mao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Iriki T, Iio H, Yasuda S, Masuta S, Kato M, Kosako H, Hirayama S, Endo A, Ohtake F, Kamiya M, Urano Y, Saeki Y, Hamazaki J, Murata S. Senescent cells form nuclear foci that contain the 26S proteasome. Cell Rep 2023; 42:112880. [PMID: 37541257 DOI: 10.1016/j.celrep.2023.112880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023] Open
Abstract
The proteasome plays a central role in intracellular protein degradation. Age-dependent decline in proteasome activity is associated with cellular senescence and organismal aging; however, the mechanism by which the proteasome plays a role in senescent cells remains elusive. Here, we show that nuclear foci that contain the proteasome and exhibit liquid-like properties are formed in senescent cells. The formation of senescence-associated nuclear proteasome foci (SANPs) is dependent on ubiquitination and RAD23B, similar to previously known nuclear proteasome foci, but also requires proteasome activity. RAD23B knockdown suppresses SANP formation and increases mitochondrial activity, leading to reactive oxygen species production without affecting other senescence traits such as cell-cycle arrest and cell morphology. These findings suggest that SANPs are an important feature of senescent cells and uncover a mechanism by which the proteasome plays a role in senescent cells.
Collapse
Affiliation(s)
- Tomohiro Iriki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Hiroaki Iio
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shu Yasuda
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 1088641, Japan
| | - Shun Masuta
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Masakazu Kato
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo 1648530, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Kuramoto-cho, Tokushima 7708503, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Akinori Endo
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 1568506, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo 1428501, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 2268501, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan; Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Yasushi Saeki
- Division of Protein Metabolism, the Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo 1088639, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan.
| |
Collapse
|
6
|
Thomas T, Salcedo-Tacuma D, Smith DM. Structure, Function, and Allosteric Regulation of the 20S Proteasome by the 11S/PA28 Family of Proteasome Activators. Biomolecules 2023; 13:1326. [PMID: 37759726 PMCID: PMC10526260 DOI: 10.3390/biom13091326] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The proteasome, a complex multi-catalytic protease machinery, orchestrates the protein degradation essential for maintaining cellular homeostasis, and its dysregulation also underlies many different types of diseases. Its function is regulated by many different mechanisms that encompass various factors such as proteasome activators (PAs), adaptor proteins, and post-translational modifications. This review highlights the unique characteristics of proteasomal regulation through the lens of a distinct family of regulators, the 11S, REGs, or PA26/PA28. This ATP-independent family, spanning from amoebas to mammals, exhibits a common architectural structure; yet, their cellular biology and criteria for protein degradation remain mostly elusive. We delve into their evolution and cellular biology, and contrast their structure and function comprehensively, emphasizing the unanswered questions regarding their regulatory mechanisms and broader roles in proteostasis. A deeper understanding of these processes will illuminate the roles of this regulatory family in biology and disease, thus contributing to the advancement of therapeutic strategies.
Collapse
Affiliation(s)
- Taylor Thomas
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
7
|
Wei X, Sun K, Li S, Lin C, Wei Z. PSME3 induces radioresistance and enhances aerobic glycolysis in cervical cancer by regulating PARP1. Tissue Cell 2023; 83:102151. [PMID: 37467687 DOI: 10.1016/j.tice.2023.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/04/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
Cervical cancer (CC) ranks the fourth in gynecologic cancers. The incidence and mortality of CC has been decreased due to the cancer screening and early treatments in recent years, but the prognosis of CC patients at advanced stage is still sorrowful. Whether PSME3 exerted a role in the radioresistance of CC cells remains to be investigated. In this study, the expression of PSME3 in mRNA and protein levels was measured by RT-qPCR and western blot analysis, and increased expression of PSME3 in CC tissues and cells was observed. CCK-8 and colony formation assay revealed that the cell viability and proliferation of Hela and CaSki cells treated with different doses of X-ray was reduced due to the depletion of PSME3, indicating that silencing of PSME3 enhanced the radiosensitivity of CC cells. In addition, repair on DNA damage in CC cells was enhanced by PSME3 and the damage was attenuated by PSME3. Besides, the expression of glycolysis-related proteins (GLUT1, PGC-1α, LDHA and HK2) were enhanced by PSME3 but reduced by silencing PSME3 in CC cells. PSME3 restraint attenuated the levels of glucose consumption and lactate production, suggesting PSME3 depletion suppressed abnormal glycolysis of CC cells. Mechanically, PSME3 increased the PARP1 expression via elevating c-myc. Finally, we observed PSME3 attenuation inhibited CC growth in vivo. In conclusion, PSME3 enhanced radioresistance and aerobic glycolysis in CC by regulating PARP1, which might shed a light into the function of PSME3 in CC treatment.
Collapse
Affiliation(s)
- Xing Wei
- Department of Biochemistry and Cell Biology, YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China.
| | - Ke Sun
- Department of Biochemistry and Cell Biology, YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China
| | - Shubo Li
- Department of Biochemistry and Cell Biology, YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China
| | - Cheng Lin
- Department of Oncology, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China
| | - Zhongheng Wei
- Department of Oncology, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China
| |
Collapse
|
8
|
Boon L, Belmondo T, Vulsteke JB, Wuyts G, Derua R, Hüe S, Bossuyt X. Anti-Ki/anti-PA28γ autoantibodies contribute to the HEp-2 indirect immunofluorescence nuclear speckled pattern. Clin Chem Lab Med 2023; 61:435-441. [PMID: 36445291 DOI: 10.1515/cclm-2022-0858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
OBJECTIVES Antinuclear antibodies (ANAs) are associated with several autoimmune diseases. Indirect immunofluorescence (IIF) on human epithelial type 2 (HEp-2) cells is the golden standard for ANA detection in the clinic. In case of a positive HEp-2 IIF test result, follow-up tests are done to determine autoantibody specificity. For a fraction of the HEp-2 IIF-positive samples, the nature of the autoantigens remains uncharacterized. Our objective was to characterize autoantigens in such samples. METHODS To characterize autoantigens in an unbiased way, we combined protein immunoprecipitation with liquid chromatography (LC) tandem mass spectrometry (MS/MS) sequencing. RESULTS Using such approach we detected the Ki antigen, also referred to as PA28γ, in the immunoprecipitate of serum samples of three individuals with an autoimmune disease. The HEp-2 nuclear speckled IIF fluorescent signal of all three serum samples was abolished after pre-absorption of the serum with recombinant Ki antigen, confirming that autoantibodies against Ki underlie the HEp-2 IIF signal. CONCLUSIONS Our data suggest that anti-Ki autoantibodies can underlie a nuclear speckled HEp-2 IIF pattern.
Collapse
Affiliation(s)
- Lise Boon
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Thibaut Belmondo
- Department of Laboratory Medicine, Henri Mondor Hospital, Créteil, France
| | - Jean-Baptiste Vulsteke
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Greet Wuyts
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sophie Hüe
- Department of Laboratory Medicine, Henri Mondor Hospital, Créteil, France
| | - Xavier Bossuyt
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Thomas TA, Smith DM. Proteasome activator 28γ (PA28γ) allosterically activates trypsin-like proteolysis by binding to the α-ring of the 20S proteasome. J Biol Chem 2022; 298:102140. [PMID: 35714770 PMCID: PMC9287138 DOI: 10.1016/j.jbc.2022.102140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Proteasome activator 28γ (PA28γ/REGγ) is a member of the 11S family of proteasomal regulators that is constitutively expressed in the nucleus and implicated in various diseases, including certain cancers and systemic lupus erythematosus. Despite years of investigation, how PA28γ functions to stimulate proteasomal protein degradation remains unclear. Alternative hypotheses have been proposed for the molecular mechanism of PA28γ, including the following: (1) substrate selection, (2) allosteric upregulation of the trypsin-like (T-L) site, (3) allosteric inhibition of the chymotrypsin-like (CT-L) and caspase-like (C-L) sites, (4) conversion of the CT-L or C-L sites to new T-L sites, and (5) gate opening alone or in combination with a previous hypothesis. Here, by mechanistically decoupling gating effects from active site effects, we unambiguously demonstrate that WT PA28γ allosterically activates the T-L site. We show PA28γ binding increases the Kcat/Km by 13-fold for T-L peptide substrates while having little-to-no effect on hydrolysis kinetics for CT-L or C-L substrates. Furthermore, mutagenesis and domain swaps of PA28γ reveal that it does not select for T-L peptide substrates through either the substrate entry pore or the distal intrinsically disordered region. We also show that a previously reported point mutation can functionally switch PA28γ from a T-L activating to a gate-opening activator in a mutually exclusive fashion. Finally, using cryogenic electron microscopy, we visualized the PA28γ-proteasome complex at 4.3 Å and confirmed its expected quaternary structure. The results of this study provide unambiguous evidence that PA28γ can function by binding the 20S proteasome to allosterically activate the T-L proteolytic site.
Collapse
Affiliation(s)
- Taylor A Thomas
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - David M Smith
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA; Department of Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA; WVU Rockefeller Neuroscience Institute, Morgantown, West Virginia, USA; WVU Cancer Institute, Morgantown, West Virginia, USA.
| |
Collapse
|
10
|
Regulation of Life & Death by REGγ. Cells 2022; 11:cells11152281. [PMID: 35892577 PMCID: PMC9330691 DOI: 10.3390/cells11152281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
REGγ, a proteasome activator belonging to the 11S (otherwise known as REG, PA28, or PSME) proteasome activator family, is widely present in many eukaryotes. By binding to the 20S catalytic core particle, REGγ acts as a molecular sieve to selectively target proteins for degradation in an ATP- and ubiquitin-independent manner. This non-canonical proteasome pathway directly regulates seemingly unrelated cellular processes including cell growth and proliferation, apoptosis, DNA damage response, immune response, and metabolism. By affecting different pathways, REGγ plays a vital role in the regulation of cellular life and death through the maintenance of protein homeostasis. As a promoter of cellular growth and a key regulator of several tumor suppressors, many recent studies have linked REGγ overexpression with tumor formation and suggested the REGγ-proteasome as a potential target of new cancer-drug development. This review will present an overview of the major functions of REGγ as it relates to the regulation of cellular life and death, along with new mechanistic insights into the regulation of REGγ.
Collapse
|
11
|
Swift ML, Azizkhan-Clifford J. DNA damage-induced sumoylation of Sp1 induces its interaction with RNF4 and degradation in S phase to remove 53BP1 from DSBs and permit HR. DNA Repair (Amst) 2022; 111:103289. [DOI: 10.1016/j.dnarep.2022.103289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/06/2023]
|
12
|
Frayssinhes JYA, Cerruti F, Laulin J, Cattaneo A, Bachi A, Apcher S, Coux O, Cascio P. PA28γ-20S proteasome is a proteolytic complex committed to degrade unfolded proteins. Cell Mol Life Sci 2021; 79:45. [PMID: 34913092 PMCID: PMC11071804 DOI: 10.1007/s00018-021-04045-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
PA28γ is a nuclear activator of the 20S proteasome that, unlike the 19S regulatory particle, stimulates hydrolysis of several substrates in an ATP- and ubiquitin-independent manner and whose exact biological functions and molecular mechanism of action still remain elusive. In an effort to shed light on these important issues, we investigated the stimulatory effect of PA28γ on the hydrolysis of different fluorogenic peptides and folded or denatured full-length proteins by the 20S proteasome. Importantly, PA28γ was found to dramatically enhance breakdown rates by 20S proteasomes of several naturally or artificially unstructured proteins, but not of their native, folded counterparts. Furthermore, these data were corroborated by experiments in cell lines with a nucleus-tagged myelin basic protein. Finally, mass spectrometry analysis of the products generated during proteasomal degradation of two proteins demonstrated that PA28γ does not increase, but rather decreases, the variability of peptides that are potentially suitable for MHC class I antigen presentation. These unexpected findings indicate that global stimulation of the degradation of unfolded proteins may represent a more general feature of PA28γ and suggests that this proteasomal activator might play a broader role in the pathway of protein degradation than previously believed.
Collapse
Affiliation(s)
| | - Fulvia Cerruti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Justine Laulin
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie Des Tumeurs et Immunothérapie, Villejuif, France
| | | | - Angela Bachi
- The FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Sebastien Apcher
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie Des Tumeurs et Immunothérapie, Villejuif, France
| | - Olivier Coux
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
13
|
LEDGF/p75 Is Required for an Efficient DNA Damage Response. Int J Mol Sci 2021; 22:ijms22115866. [PMID: 34070855 PMCID: PMC8198318 DOI: 10.3390/ijms22115866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Lens epithelium-derived growth factor splice variant of 75 kDa (LEDGF/p75) plays an important role in cancer, but its DNA-damage repair (DDR)-related implications are still not completely understood. Different LEDGF model cell lines were generated: a complete knock-out of LEDGF (KO) and re-expression of LEDGF/p75 or LEDGF/p52 using CRISPR/Cas9 technology. Their proliferation and migration capacity as well as their chemosensitivity were determined, which was followed by investigation of the DDR signaling pathways by Western blot and immunofluorescence. LEDGF-deficient cells exhibited a decreased proliferation and migration as well as an increased sensitivity toward etoposide. Moreover, LEDGF-depleted cells showed a significant reduction in the recruitment of downstream DDR-related proteins such as replication protein A 32 kDa subunit (RPA32) after exposure to etoposide. The re-expression of LEDGF/p75 rescued all knock-out effects. Surprisingly, untreated LEDGF KO cells showed an increased amount of DNA fragmentation combined with an increased formation of γH2AX and BRCA1. In contrast, the protein levels of ubiquitin-conjugating enzyme UBC13 and nuclear proteasome activator PA28γ were substantially reduced upon LEDGF KO. This study provides for the first time an insight that LEDGF is not only involved in the recruitment of CtIP but has also an effect on the ubiquitin-dependent regulation of DDR signaling molecules and highlights the role of LEDGF/p75 in homology-directed DNA repair.
Collapse
|
14
|
Shmueli MD, Sheban D, Eisenberg-Lerner A, Merbl Y. Histone degradation by the proteasome regulates chromatin and cellular plasticity. FEBS J 2021; 289:3304-3316. [PMID: 33914417 PMCID: PMC9292675 DOI: 10.1111/febs.15903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
Histones constitute the primary protein building blocks of the chromatin and play key roles in the dynamic control of chromatin compaction and epigenetic regulation. Histones are regulated by intricate mechanisms that alter their functionality and stability, thereby expanding the regulation of chromatin‐transacting processes. As such, histone degradation is tightly regulated to provide spatiotemporal control of cellular histone abundance. While several mechanisms have been implicated in controlling histone stability, here, we discuss proteasome‐dependent degradation of histones and the protein modifications that are associated with it. We then highlight specific cellular and physiological states that are associated with altered histone degradation by cellular proteasomes.
Collapse
Affiliation(s)
- Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Cascio P. PA28γ: New Insights on an Ancient Proteasome Activator. Biomolecules 2021; 11:228. [PMID: 33562807 PMCID: PMC7915322 DOI: 10.3390/biom11020228] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
PA28 (also known as 11S, REG or PSME) is a family of proteasome regulators whose members are widely present in many of the eukaryotic supergroups. In jawed vertebrates they are represented by three paralogs, PA28α, PA28β, and PA28γ, which assemble as heptameric hetero (PA28αβ) or homo (PA28γ) rings on one or both extremities of the 20S proteasome cylindrical structure. While they share high sequence and structural similarities, the three isoforms significantly differ in terms of their biochemical and biological properties. In fact, PA28α and PA28β seem to have appeared more recently and to have evolved very rapidly to perform new functions that are specifically aimed at optimizing the process of MHC class I antigen presentation. In line with this, PA28αβ favors release of peptide products by proteasomes and is particularly suited to support adaptive immune responses without, however, affecting hydrolysis rates of protein substrates. On the contrary, PA28γ seems to be a slow-evolving gene that is most similar to the common ancestor of the PA28 activators family, and very likely retains its original functions. Notably, PA28γ has a prevalent nuclear localization and is involved in the regulation of several essential cellular processes including cell growth and proliferation, apoptosis, chromatin structure and organization, and response to DNA damage. In striking contrast with the activity of PA28αβ, most of these diverse biological functions of PA28γ seem to depend on its ability to markedly enhance degradation rates of regulatory protein by 20S proteasome. The present review will focus on the molecular mechanisms and biochemical properties of PA28γ, which are likely to account for its various and complex biological functions and highlight the common features with the PA28αβ paralog.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
16
|
Fesquet D, Llères D, Grimaud C, Viganò C, Méchali F, Boulon S, Coux O, Bonne-Andrea C, Baldin V. The 20S proteasome activator PA28γ controls the compaction of chromatin. J Cell Sci 2021; 134:134/3/jcs257717. [PMID: 33526472 DOI: 10.1242/jcs.257717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
PA28γ (also known as PSME3), a nuclear activator of the 20S proteasome, is involved in the degradation of several proteins regulating cell growth and proliferation and in the dynamics of various nuclear bodies, but its precise cellular functions remain unclear. Here, using a quantitative FLIM-FRET based microscopy assay monitoring close proximity between nucleosomes in living human cells, we show that PA28γ controls chromatin compaction. We find that its depletion induces a decompaction of pericentromeric heterochromatin, which is similar to what is observed upon the knockdown of HP1β (also known as CBX1), a key factor of the heterochromatin structure. We show that PA28γ is present at HP1β-containing repetitive DNA sequences abundant in heterochromatin and, importantly, that HP1β on its own is unable to drive chromatin compaction without the presence of PA28γ. At the molecular level, we show that this novel function of PA28γ is independent of its stable interaction with the 20S proteasome, and most likely depends on its ability to maintain appropriate levels of H3K9me3 and H4K20me3, histone modifications that are involved in heterochromatin formation. Overall, our results implicate PA28γ as a key factor involved in the regulation of the higher order structure of chromatin.
Collapse
Affiliation(s)
- Didier Fesquet
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - David Llères
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Charlotte Grimaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Université de Montpellier, CNRS Route de Mende, 34293 Montpellier, France
| | - Cristina Viganò
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Francisca Méchali
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Séverine Boulon
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Olivier Coux
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Catherine Bonne-Andrea
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Véronique Baldin
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| |
Collapse
|
17
|
The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing. Ageing Res Rev 2020; 64:101203. [PMID: 33130248 DOI: 10.1016/j.arr.2020.101203] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Dysregulated proteostasis is one of the hallmarks of ageing. Damaged proteins may impair cellular function and their accumulation may lead to tissue dysfunction and disease. This is why protective mechanisms to safeguard the cell proteome have evolved. These mechanisms consist of cellular machineries involved in protein quality control, including regulators of protein translation, folding, trafficking and degradation. In eukaryotic cells, protein degradation occurs via two main pathways: the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. Although distinct pathways, they are not isolated systems and have a complementary nature, as evidenced by recent studies. These findings raise the question of how autophagy and the proteasome crosstalk. In this review we address how the two degradation pathways impact each other, thereby adding a new layer of regulation to protein degradation. We also analyze the implications of the UPS and autophagy in ageing.
Collapse
|
18
|
Lei K, Bai H, Sun S, Xin C, Li J, Chen Q. PA28γ, an Accomplice to Malignant Cancer. Front Oncol 2020; 10:584778. [PMID: 33194729 PMCID: PMC7662426 DOI: 10.3389/fonc.2020.584778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023] Open
Abstract
PA28γ is a nuclear activator of the 20S proteasome, which is involved in the regulation of several essential cellular processes and angiogenesis. Over the past 20 years, many amino acid sites and motifs have been proven to play important roles in the characteristic functions of PA28γ. The number of binding partners and validated cellular functions of PA28γ have increased, which has facilitated the clarification of its involvement in different biological events. PA28γ is involved in the progression of various diseases, and its aberrant overexpression in cancer is remarkable. Patients with low levels of PA28γ expression have a higher survival rate than those with high levels of PA28γ expression, as has been shown for a wide variety of tumors. The functions of PA28γ in cancer can be divided into five main categories: cell proliferation, cell apoptosis, metastasis and invasion, cell nuclear dynamics that have relevance to angiogenesis, and viral infection. In this review, we focus on the role of PA28γ in cancer, summarizing its aberrant expression, prooncogenic effects and underlying mechanisms in various cancers, and we highlight the possible cancer-related applications of PA28γ, such as its potential use in the diagnosis, targeted treatment and prognostic assessment of cancer.
Collapse
Affiliation(s)
- Kexin Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Silu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuan Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Moertl S, Buschmann D, Azimzadeh O, Schneider M, Kell R, Winkler K, Tapio S, Hornhardt S, Merl-Pham J, Pfaffl MW, Atkinson MJ. Radiation Exposure of Peripheral Mononuclear Blood Cells Alters the Composition and Function of Secreted Extracellular Vesicles. Int J Mol Sci 2020; 21:ijms21072336. [PMID: 32230970 PMCID: PMC7178185 DOI: 10.3390/ijms21072336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Normal tissue toxicity is a dose-limiting factor in radiation therapy. Therefore, a detailed understanding of the normal tissue response to radiation is necessary to predict the risk of normal tissue toxicity and to development strategies for tissue protection. One component of normal tissue that is continuously exposed during therapeutic irradiation is the circulating population of peripheral blood mononuclear cells (PBMC). PBMCs are highly sensitive to ionizing radiation (IR); however, little is known about how IR affects the PBMC response on a systemic level. It was the aim of this study to investigate whether IR was capable to induce changes in the composition and function of extracellular vesicles (EVs) secreted from PBMCs after radiation exposure to different doses. Therefore, whole blood samples from healthy donors were exposed to X-ray radiation in the clinically relevant doses of 0, 0.1, 2 or 6 Gy and PBMC-secreted EVs were isolated 72 h later. Proteome and miRNome analysis of EVs as well as functional studies were performed. Secreted EVs showed a dose-dependent increase in the number of significantly deregulated proteins and microRNAs. For both, proteome and microRNA data, principal component analysis showed a dose-dependent separation of control and exposed groups. Integrated pathway analysis of the radiation-regulated EV proteins and microRNAs consistently predicted an association of deregulated molecules with apoptosis, cell death and survival. Functional studies identified endothelial cells as an efficient EV recipient system, in which irradiation of recipient cells further increased the uptake. Furthermore an apoptosis suppressive effect of EVs from irradiated PBMCs in endothelial recipient cells was detected. In summary, this study demonstrates that IR modifies the communication between PBMCs and endothelial cells. EVs from irradiated PBMC donors were identified as transmitters of protective signals to irradiated endothelial cells. Thus, these data may lead to the discovery of biomarker candidates for radiation dosimetry and even more importantly, they suggest EVs as a novel systemic communication pathway between irradiated normal, non-cancer tissues.
Collapse
Affiliation(s)
- Simone Moertl
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
- Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (S.H.); (M.W.P.)
- Correspondence:
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany;
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
| | - Michael Schneider
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
| | - Rosemarie Kell
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
| | - Klaudia Winkler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
| | - Sabine Hornhardt
- Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (S.H.); (M.W.P.)
| | - Juliane Merl-Pham
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Protein Science, 80939 München, Germany;
| | - Michael W. Pfaffl
- Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (S.H.); (M.W.P.)
| | - Michael J. Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
- Chair of Radiation Biology, Technical University of Munich, 80333 Munich, Germany
| |
Collapse
|
20
|
Wang X, Meul T, Meiners S. Exploring the proteasome system: A novel concept of proteasome inhibition and regulation. Pharmacol Ther 2020; 211:107526. [PMID: 32173559 DOI: 10.1016/j.pharmthera.2020.107526] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
The proteasome is a well-identified therapeutic target for cancer treatment. It acts as the main protein degradation system in the cell and degrades key mediators of cell growth, survival and function. The term "proteasome" embraces a whole family of distinct complexes, which share a common proteolytic core, the 20S proteasome, but differ by their attached proteasome activators. Each of these proteasome complexes plays specific roles in the control of cellular function. In addition, distinct proteasome interacting proteins regulate proteasome activity in subcellular compartments and in response to cellular signals. Proteasome activators and regulators may thus serve as building blocks to fine-tune proteasome function in the cell according to cellular needs. Inhibitors of the proteasome, e.g. the FDA approved drugs Velcade™, Kyprolis™, Ninlaro™, inactivate the catalytic 20S core and effectively block protein degradation of all proteasome complexes in the cell resulting in inhibition of cell growth and induction of apoptosis. Efficacy of these inhibitors, however, is hampered by their pronounced cytotoxic side-effects as well as by the emerging development of resistance to catalytic proteasome inhibitors. Targeted inhibition of distinct buiding blocks of the proteasome system, i.e. proteasome activators or regulators, represents an alternative strategy to overcome these limitations. In this review, we stress the importance of the diversity of the proteasome complexes constituting an entire proteasome system. Our building block concept provides a rationale for the defined targeting of distinct proteasome super-complexes in disease. We thereby aim to stimulate the development of innovative therapeutic approaches beyond broad catalytic proteasome inhibition.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany.
| |
Collapse
|
21
|
Yasuda S, Tsuchiya H, Kaiho A, Guo Q, Ikeuchi K, Endo A, Arai N, Ohtake F, Murata S, Inada T, Baumeister W, Fernández-Busnadiego R, Tanaka K, Saeki Y. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 2020; 578:296-300. [DOI: 10.1038/s41586-020-1982-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
|
22
|
Xin C, Wang JK, Li J, Zeng X. [Construction of an oral squamous cell carcinoma cell line for stable PA28γ overexpression]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:6-10. [PMID: 32037759 DOI: 10.7518/hxkq.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To construct a PA28γ overexpression cell line and determine its effects after infecting an oral squa-mous cell carcinoma (OSCC) cell line. METHODS The PA28γ gene was cloned into the pLOV.CMV.cherry.2A.EF1a.PuroR lentiviral vector by polymerase chain reaction (PCR), and PCR and DNA sequencing alignment analysis were used for identification. Then, 293T cells were used to package viral diseases. Infected OSCC cells were used to construct a cell line with stable PA28γ overexpression. Finally, the level of PA28γ expression in the OSCC cell line was detected through Western blot. RESULTS The successful construction of PA28γ recombinant lentiviral vectors was confirmed by DNA sequencing. The results of immunofluorescence showed that the PA28γ overexpression lentivirus successfully infected the OSCC cells and showed cherry red fluorescence. The results of Western blot demonstrated that the constructed cells with stable PA28γ overexpression significantly increased the expression of PA28γ. CONCLUSIONS The PA28γ overexpression lentiviral vector can significantly increase its protein expression in OSCC cells. We provide a stable OSCC cell line for further study on the effect of PA28γ in OSCC.
Collapse
Affiliation(s)
- Chuan Xin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiong-Ke Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Coux O, Zieba BA, Meiners S. The Proteasome System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:55-100. [DOI: 10.1007/978-3-030-38266-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Song W, Guo C, Chen J, Duan S, Hu Y, Zou Y, Chi H, Geng J, Zhou J. Silencing PSME3 induces colorectal cancer radiosensitivity by downregulating the expression of cyclin B1 and CKD1. Exp Biol Med (Maywood) 2019; 244:1409-1418. [PMID: 31630568 DOI: 10.1177/1535370219883408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Resistance to radiotherapy remains a severe obstacle in the treatment of high-risk colorectal cancer patients. Recent studies have indicated that proteasome activator complex subunit 3 (PSME3) participates in the development and progression of various human malignancies and is proposed to play a role in tumor radioresistance. However, the impact of PSME3 on radioresistance of colorectal cancer has been largely unknown. In the present study, the enhanced expression of PSME3 was observed in colorectal cancer cells and tissue. Upregulation of PSME3 was significantly implicated in lymph node state, lymphovascular invasion, and Dukes' stage. Furthermore, high PSME3 expression was closely linked to poorer overall and progression-free survival in patients with colorectal cancer. The study further demonstrated that the proliferative, invasive and migratory potential of colorectal cancer cells was effectively inhibited in vitro after silencing PSME3. Our results verified that knockdown of PSME3 probably triggered cell cycle arrest at the G2/M phase by downregulation of cyclinB1 and CDK1, thereby enhancing the radiosensitivity of colorectal cancer cells. These data illustrated that PSME3 is a promising biomarker predictive of colorectal cancer prognosis and silencing of PSME3 may provide with a new approach for sensitizing the radiotherapy in colorectal cancer. Impact statement It is reported that colorectal cancer (CRC) is the third most common cancer worldwide and the fourth leading cause of cancer-related death. At present, the main treatment method of colorectal cancer is surgery, supplemented by radiotherapy and chemotherapy. Among them, radiotherapy plays an important role in the treatment of locally advanced colorectal cancer, surgery, and chemotherapy. Our study found that down-regulation of PSME3 may enhance the radiosensitivity of CRC cells by triggering cell cycle arrest, which suggests that silence PSME3 may provide a new method for improving the radiosensitivity of CRC. What’more, our research also demonstrated that PSME3 may promote proliferation, invasive and migratory potential of CRC cells, which implies that PSME3 might be a biomarker of CRC for early diagnosis and treatment.
Collapse
Affiliation(s)
- Wen Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Guo
- Department of Emergency, Zhumadian Second Hospital of Traditional Chinese Medicine, Zhumadian 463000, China
| | - Jianxiong Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yukun Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Zou
- Department of Traditional Chinese Medicine, Scientific Research Platform, The Second School of Clinical Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Honggang Chi
- Department of Traditional Chinese Medicine, Scientific Research Platform, The Second School of Clinical Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
25
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Kors S, Geijtenbeek K, Reits E, Schipper-Krom S. Regulation of Proteasome Activity by (Post-)transcriptional Mechanisms. Front Mol Biosci 2019; 6:48. [PMID: 31380390 PMCID: PMC6646590 DOI: 10.3389/fmolb.2019.00048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Intracellular protein synthesis, folding, and degradation are tightly controlled processes to ensure proper protein homeostasis. The proteasome is responsible for the degradation of the majority of intracellular proteins, which are often targeted for degradation via polyubiquitination. However, the degradation rate of proteins is also affected by the capacity of proteasomes to recognize and degrade these substrate proteins. This capacity is regulated by a variety of proteasome modulations including (1) changes in complex composition, (2) post-translational modifications, and (3) altered transcription of proteasomal subunits and activators. Various diseases are linked to proteasome modulation and altered proteasome function. A better understanding of these modulations may offer new perspectives for therapeutic intervention. Here we present an overview of these three proteasome modulating mechanisms to give better insight into the diversity of proteasomes.
Collapse
Affiliation(s)
- Suzan Kors
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond. Int J Mol Sci 2019; 20:ijms20143379. [PMID: 31295808 PMCID: PMC6678303 DOI: 10.3390/ijms20143379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Proteasome inhibitors have been actively tested as potential anticancer drugs and in the treatment of inflammatory and autoimmune diseases. Unfortunately, cells adapt to survive in the presence of proteasome inhibitors activating a variety of cell responses that explain why these therapies have not fulfilled their expected results. In addition, all proteasome inhibitors tested and approved by the FDA have caused a variety of side effects in humans. Here, we describe the different types of proteasome complexes found within cells and the variety of regulators proteins that can modulate their activities, including those that are upregulated in the context of inflammatory processes. We also summarize the adaptive cellular responses activated during proteasome inhibition with special emphasis on the activation of the Autophagic-Lysosomal Pathway (ALP), proteaphagy, p62/SQSTM1 enriched-inclusion bodies, and proteasome biogenesis dependent on Nrf1 and Nrf2 transcription factors. Moreover, we discuss the role of IRE1 and PERK sensors in ALP activation during ER stress and the involvement of two deubiquitinases, Rpn11 and USP14, in these processes. Finally, we discuss the aspects that should be currently considered in the development of novel strategies that use proteasome activity as a therapeutic target for the treatment of human diseases.
Collapse
|
28
|
Jachimowicz RD, Beleggia F, Isensee J, Velpula BB, Goergens J, Bustos MA, Doll MA, Shenoy A, Checa-Rodriguez C, Wiederstein JL, Baranes-Bachar K, Bartenhagen C, Hertwig F, Teper N, Nishi T, Schmitt A, Distelmaier F, Lüdecke HJ, Albrecht B, Krüger M, Schumacher B, Geiger T, Hoon DSB, Huertas P, Fischer M, Hucho T, Peifer M, Ziv Y, Reinhardt HC, Wieczorek D, Shiloh Y. UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors. Cell 2019; 176:505-519.e22. [PMID: 30612738 DOI: 10.1016/j.cell.2018.11.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 01/17/2023]
Abstract
Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.
Collapse
Affiliation(s)
- Ron D Jachimowicz
- The David and Inez Myers Laboratory for Cancer Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Clinic I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany.
| | - Filippo Beleggia
- Clinic I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany; Institute of Human Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital Cologne, Cologne 50931, Germany
| | - Bhagya Bhavana Velpula
- The David and Inez Myers Laboratory for Cancer Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonas Goergens
- Clinic I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Markus A Doll
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany; Institute for Genome Stability in Aging, Cologne, Germany
| | - Anjana Shenoy
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Cintia Checa-Rodriguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide and Department of Genetics, University of Sevilla, Sevilla 41092, Spain
| | - Janica Lea Wiederstein
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Keren Baranes-Bachar
- The David and Inez Myers Laboratory for Cancer Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, Charité, Berlin, Germany; German Cancer Consortium, Germany; Berlin Institute of Health, Germany
| | - Nizan Teper
- The David and Inez Myers Laboratory for Cancer Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tomohiko Nishi
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Anna Schmitt
- Clinic I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Hermann-Josef Lüdecke
- Institute of Human Genetics, Heinrich-Heine-University, Düsseldorf, Germany; Institute of Human Genetics, University Clinic Duisburg-Essen, Essen, Germany
| | - Beate Albrecht
- Institute of Human Genetics, University Clinic Duisburg-Essen, Essen, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany; Institute for Genome Stability in Aging, Cologne, Germany
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide and Department of Genetics, University of Sevilla, Sevilla 41092, Spain
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital Cologne, Cologne 50931, Germany
| | - Martin Peifer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - H Christian Reinhardt
- Clinic I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | - Dagmar Wieczorek
- Institute of Human Genetics, Heinrich-Heine-University, Düsseldorf, Germany; Institute of Human Genetics, University Clinic Duisburg-Essen, Essen, Germany.
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
29
|
Liu S, Liu D, Zeng X, Wang J, Liu J, Cheng J, Lei K, Bai H, Ji N, Zhou M, Jiang L, Dan H, Li J, Chen Q. PA28γ acts as a dual regulator of IL-6 and CCL2 and contributes to tumor angiogenesis in oral squamous cell carcinoma. Cancer Lett 2018; 428:192-200. [PMID: 29702196 DOI: 10.1016/j.canlet.2018.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
PA28γ promotes tumor development and progression and is suggested to play a role in tumor angiogenesis, but the molecular mechanisms have not been investigated. Here, we found that PA28γ enhanced the ability of OSCC cells to promote the migration, invasion, and tube formation of HUVECs and promoted tumor-induced angiogenesis in xenograft mice models in vivo. Then, a mechanism study revealed that the expression and secretion of IL-6 and CCL2 were dependent on PA28γ expression. Furthermore, blocking IL-6 or CCL2 or the transcription factor NF-κB induced the inhibition of tube formation in HUVECs co-cultured with PA28γ-overexpression OSCC cell supernatants. Moreover, we revealed that p-STAT3 and p-AKT, which are downstream of the IL-6 and CCL2 signaling axis, were downregulated in HUVECs co-cultured with the PA28γ-silenced supernatant and were upregulated with the PA28γ-overexpressing supernatant. In addition, IL-6, CCL2 and PA28γ expressions were correlated in a clinical OSCC cohort. Collectively, our study indicates that PA28γ contributes to tumor angiogenesis by regulating IL-6 and CCL2. PA28γ may be a novel therapeutic target as a dual regulator of IL-6 and CCL2 for treating PA28γ-positive OSCC.
Collapse
Affiliation(s)
- Sai Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, The School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Liaoning Province Key Laboratory of Oral Diseases, Liaoning Province Translational Medicine Research Center of Oral Diseases, Shenyang, Liaoning, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junxin Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kexin Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
30
|
Jonik-Nowak B, Menneteau T, Fesquet D, Baldin V, Bonne-Andrea C, Méchali F, Fabre B, Boisguerin P, de Rossi S, Henriquet C, Pugnière M, Ducoux-Petit M, Burlet-Schiltz O, Lamond AI, Fort P, Boulon S, Bousquet MP, Coux O. PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ. Proc Natl Acad Sci U S A 2018; 115:E6477-E6486. [PMID: 29934401 PMCID: PMC6048556 DOI: 10.1073/pnas.1722299115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics, and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However, its exact mechanisms of action are unclear and likely involve additional partners that remain to be identified. Here we report the identification of a cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal bodies by inhibition of its association with the key Cajal body component coilin. Taken together, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including the 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.
Collapse
Affiliation(s)
- Beata Jonik-Nowak
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Thomas Menneteau
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Didier Fesquet
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Véronique Baldin
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Catherine Bonne-Andrea
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Francisca Méchali
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Bertrand Fabre
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Prisca Boisguerin
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Sylvain de Rossi
- Montpellier Ressources Imagerie (MRI) Facility, Biocampus UMS3426, CNRS, 34090 Montpellier, France
| | - Corinne Henriquet
- Institut de Recherche en Cancérologie de Montpellier (IRCM) - INSERM U1194, Institut Régional du Cancer de Montpellier, Université de Montpellier, F-34298 Montpellier, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier (IRCM) - INSERM U1194, Institut Régional du Cancer de Montpellier, Université de Montpellier, F-34298 Montpellier, France
| | - Manuelle Ducoux-Petit
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, DD1 5HL Dundee, United Kingdom
| | - Philippe Fort
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Séverine Boulon
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France;
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France;
| | - Olivier Coux
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France;
| |
Collapse
|
31
|
Zhao XM, Hu WX, Wu ZF, Chen YX, Zeng ZC. Tetrandrine Enhances Radiosensitization in Human Hepatocellular Carcinoma Cell Lines. Radiat Res 2018; 190:385-395. [PMID: 29979637 DOI: 10.1667/rr14981.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xiao-mei Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei-xu Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Feng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-xing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Gavish-Izakson M, Velpula BB, Elkon R, Prados-Carvajal R, Barnabas GD, Ugalde AP, Agami R, Geiger T, Huertas P, Ziv Y, Shiloh Y. Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair. Nucleic Acids Res 2018; 46:730-747. [PMID: 29253183 PMCID: PMC5778506 DOI: 10.1093/nar/gkx1240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) is an extensive signaling network that is robustly mobilized by DNA double-strand breaks (DSBs). The primary transducer of the DSB response is the protein kinase, ataxia-telangiectasia, mutated (ATM). Here, we establish nuclear poly(A)-binding protein 1 (PABPN1) as a novel target of ATM and a crucial player in the DSB response. PABPN1 usually functions in regulation of RNA processing and stability. We establish that PABPN1 is recruited to the DDR as a critical regulator of DSB repair. A portion of PABPN1 relocalizes to DSB sites and is phosphorylated on Ser95 in an ATM-dependent manner. PABPN1 depletion sensitizes cells to DSB-inducing agents and prolongs the DSB-induced G2/M cell-cycle arrest, and DSB repair is hampered by PABPN1 depletion or elimination of its phosphorylation site. PABPN1 is required for optimal DSB repair via both nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR), and specifically is essential for efficient DNA-end resection, an initial, key step in HRR. Using mass spectrometry analysis, we capture DNA damage-induced interactions of phospho-PABPN1, including well-established DDR players as well as other RNA metabolizing proteins. Our results uncover a novel ATM-dependent axis in the rapidly growing interface between RNA metabolism and the DDR.
Collapse
Affiliation(s)
- Michal Gavish-Izakson
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bhagya Bhavana Velpula
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rosario Prados-Carvajal
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Pineiro Ugalde
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Poletto M, Yang D, Fletcher SC, Vendrell I, Fischer R, Legrand AJ, Dianov GL. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells. Nucleic Acids Res 2017; 45:10042-10055. [PMID: 28973444 PMCID: PMC5622344 DOI: 10.1093/nar/gkx635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/07/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function.
Collapse
Affiliation(s)
- Mattia Poletto
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, Oxford OX37DQ, UK
| | - Di Yang
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, Oxford OX37DQ, UK
| | - Sally C. Fletcher
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, Oxford OX37DQ, UK
| | - Iolanda Vendrell
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, Oxford OX37DQ, UK
- TDI Mass Spectrometry Laboratory, Target Discovery Institute University of Oxford, Nuffield Department of Medicine, Oxford OX37FZ, UK
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute University of Oxford, Nuffield Department of Medicine, Oxford OX37FZ, UK
| | - Arnaud J. Legrand
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, Oxford OX37DQ, UK
| | - Grigory L. Dianov
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, Oxford OX37DQ, UK
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10, Novosibirsk 630090, Russian Federation
| |
Collapse
|
34
|
Lee BL, Singh A, Mark Glover JN, Hendzel MJ, Spyracopoulos L. Molecular Basis for K63-Linked Ubiquitination Processes in Double-Strand DNA Break Repair: A Focus on Kinetics and Dynamics. J Mol Biol 2017; 429:3409-3429. [PMID: 28587922 DOI: 10.1016/j.jmb.2017.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/20/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022]
Abstract
Cells are exposed to thousands of DNA damage events on a daily basis. This damage must be repaired to preserve genetic information and prevent development of disease. The most deleterious damage is a double-strand break (DSB), which is detected and repaired by mechanisms known as non-homologous end-joining (NHEJ) and homologous recombination (HR), which are components of the DNA damage response system. NHEJ is an error-prone first line of defense, whereas HR invokes error-free repair and is the focus of this review. The functions of the protein components of HR-driven DNA repair are regulated by the coordinated action of post-translational modifications including lysine acetylation, phosphorylation, ubiquitination, and SUMOylation. The latter two mechanisms are fundamental for recognition of DSBs and reorganizing chromatin to facilitate repair. We focus on the structures and molecular mechanisms for the protein components underlying synthesis, recognition, and cleavage of K63-linked ubiquitin chains, which are abundant at damage sites and obligatory for DSB repair. The forward flux of the K63-linked ubiquitination cascade is driven by the combined activity of E1 enzyme, the heterodimeric E2 Mms2-Ubc13, and its cognate E3 ligases RNF8 and RNF168, which is balanced through the binding and cleavage of chains by the deubiquitinase BRCC36, and the proteasome, and through the binding of chains by recognition modules on repair proteins such as RAP80. We highlight a number of aspects regarding our current understanding for the role of kinetics and dynamics in determining the function of the enzymes and chain recognition modules that drive K63 ubiquitination.
Collapse
Affiliation(s)
- Brian L Lee
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Anamika Singh
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - J N Mark Glover
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
35
|
Mian E, Wiesmüller L. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair. Methods Mol Biol 2017; 1599:317-334. [PMID: 28477129 DOI: 10.1007/978-1-4939-6955-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells treated with and without pharmacological kinase inhibitors revealed ATM-dependent chromatin remodeling at the MLL break site giving access to DNA repair proteins but also nucleases triggering MLL rearrangements. This chapter summarizes these methods for functional characterization of ATM in patient LCLs and human cell lines.
Collapse
Affiliation(s)
- Elisabeth Mian
- Department of Obstetrics and Gynaecology, The University of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, The University of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany.
| |
Collapse
|
36
|
Next-generation proteasome inhibitor MLN9708 sensitizes breast cancer cells to doxorubicin-induced apoptosis. Sci Rep 2016; 6:26456. [PMID: 27217076 PMCID: PMC4877646 DOI: 10.1038/srep26456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/29/2016] [Indexed: 12/26/2022] Open
Abstract
Doxorubicin (Dox), one of the most effective chemotherapy drug for cancer treatment, is limited by its severe side effects and chemoresistance. Dox induces DNA damage and leads to significant proteomic changes in the cancer cells, which makes the ubiquitin-proteasome system a potential target to enhance the efficacy of Dox therapy. The unsuccessful clinical trials of proteasome inhibitor PS-341 (bortezomib) in solid tumors led to the invention of MLN9708 (ixazomib), an orally bioavailable next-generation proteasome inhibitor with improved pharmacokinetic and pharmacodynamic features. In this preclinical study, we used eight human breast cancer cell lines, which represent the major molecular subtypes of breast cancer, to validate the cytotoxic effects of MLN9708, alone and in combination with Dox. We found that MLN9708 had cytotoxic effects, induced autophagy and MKP-1 expression, and enhanced Dox-induced apoptosis in these cell lines. MLN9708 also enhanced Dox-induced JNK and p38 phosphorylation and inhibited Dox-induced IκBα degradation. Our in vitro results suggest that MLN9708 has antitumor effects in breast cancer and can sensitize breast cancer cells to Dox treatment. This promising combination may be an effective and feasible therapeutic option for treating breast cancer and warrants clinical validation.
Collapse
|
37
|
Cristini A, Park JH, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res 2016; 44:1161-78. [PMID: 26578593 PMCID: PMC4756817 DOI: 10.1093/nar/gkv1196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Joon-Hyung Park
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Gaëlle Legube
- Université de Toulouse, UPS, LBCMCP, 31062 Toulouse, France CNRS, LBCMCP, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| |
Collapse
|
38
|
Moncsek A, Gruner M, Meyer H, Lehmann A, Kloetzel PM, Stohwasser R. Evidence for anti-apoptotic roles of proteasome activator 28γ via inhibiting caspase activity. Apoptosis 2016. [PMID: 26201457 DOI: 10.1007/s10495-015-1149-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteasome activator PA28γ (REGγ, Ki antigen) has recently been demonstrated to display anti-apoptotic properties via enhancing Mdm2-p53 interaction, thereby facilitating ubiquitination and down-regulation of the tumor suppressor p53. In this study we demonstrate a correlation between cellular PA28γ levels and the sensitivity of cells towards apoptosis in different cellular contexts thereby confirming a role of proteasome activator PA28γ as an anti-apoptotic regulator. We investigated the anti-apoptotic role of PA28γ upon UV-C stimulation in B8 mouse fibroblasts stably overexpressing the PA28γ-encoding PSME3 gene and upon butyrate-induced apoptosis in human HT29 adenocarcinoma cells with silenced PSME3 gene. Interestingly, our results demonstrate that PA28γ has a strong influence on different apoptotic hallmarks, especially p53 phosphorylation and caspase activation. In detail, PA28γ and effector caspases mutually restrict each other. PA28γ is a caspase substrate, if PA28γ levels are low. In contrast, PA28γ overexpression reduces caspase activities, including the caspase-dependent processing of PA28γ. Furthermore, overexpression of PA28γ resulted in a nuclear accumulation of transcriptional active p53. In summary, our findings indicate that even in a p53-dominated cellular context, pro-apoptotic signaling might be overcome by PA28γ-mediated caspase inhibition.
Collapse
Affiliation(s)
- Anja Moncsek
- Department of Biochemistry, Faculty of Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg (BTU C-S), Großenhainer Str. 57, 01968, Senftenberg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Meir M, Galanty Y, Kashani L, Blank M, Khosravi R, Fernández-Ávila MJ, Cruz-García A, Star A, Shochot L, Thomas Y, Garrett LJ, Chamovitz DA, Bodine DM, Kurz T, Huertas P, Ziv Y, Shiloh Y. The COP9 signalosome is vital for timely repair of DNA double-strand breaks. Nucleic Acids Res 2015; 43:4517-30. [PMID: 25855810 PMCID: PMC4482063 DOI: 10.1093/nar/gkv270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 01/07/2023] Open
Abstract
The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection-the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.
Collapse
Affiliation(s)
- Michal Meir
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Yaron Galanty
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Lior Kashani
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Michael Blank
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Rami Khosravi
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - María Jesús Fernández-Ávila
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, 41092, Spain
| | - Andrés Cruz-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, 41092, Spain
| | - Ayelet Star
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Lea Shochot
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Yann Thomas
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Lisa J Garrett
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel A Chamovitz
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - David M Bodine
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thimo Kurz
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, 41092, Spain
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
40
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
41
|
Magni M, Ruscica V, Buscemi G, Kim JE, Nachimuthu BT, Fontanella E, Delia D, Zannini L. Chk2 and REGγ-dependent DBC1 regulation in DNA damage induced apoptosis. Nucleic Acids Res 2014; 42:13150-60. [PMID: 25361978 PMCID: PMC4245943 DOI: 10.1093/nar/gku1065] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
Abstract
Human DBC1 (Deleted in Breast Cancer 1; KIAA1967; CCAR2) is a protein implicated in the regulation of apoptosis, transcription and histone modifications. Upon DNA damage, DBC1 is phosphorylated by ATM/ATR on Thr454 and this modification increases its inhibitory interaction with SIRT1, leading to p53 acetylation and p53-dependent apoptosis. Here, we report that the inhibition of SIRT1 by DBC1 in the DNA damage response (DDR) also depends on Chk2, the transducer kinase that is activated by ATM upon DNA lesions and contributes to the spreading of DNA damage signal. Indeed we found that inactivation of Chk2 reduces DBC1-SIRT1 binding, thus preventing p53 acetylation and DBC1-induced apoptosis. These events are mediated by Chk2 phosphorylation of the 11S proteasome activator REGγ on Ser247, which increases REGγ-DBC1 interaction and SIRT1 inhibition. Overall our results clarify the mechanisms underlying the DBC1-dependent SIRT1 inhibition and link, for the first time, Chk2 and REGγ to the ATM-DBC1-SIRT1 axis.
Collapse
Affiliation(s)
- Martina Magni
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Vincenzo Ruscica
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Ja-Eun Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | - Enrico Fontanella
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
42
|
Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 2014; 4:994-1025. [PMID: 25412285 PMCID: PMC4279167 DOI: 10.3390/biom4040994] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/02/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides.
Collapse
|
43
|
Wan ZX, Yuan DM, Zhuo YM, Yi X, Zhou J, Xu ZX, Zhou JL. The proteasome activator PA28γ, a negative regulator of p53, is transcriptionally up-regulated by p53. Int J Mol Sci 2014; 15:2573-84. [PMID: 24531141 PMCID: PMC3958868 DOI: 10.3390/ijms15022573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/08/2014] [Accepted: 02/08/2014] [Indexed: 11/30/2022] Open
Abstract
PA28γ (also called REGγ, 11Sγ or PSME3) negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence -193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells.
Collapse
Affiliation(s)
- Zhen-Xing Wan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Dong-Mei Yuan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Yi-Ming Zhuo
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Xin Yi
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Ji Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Zao-Xu Xu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Jian-Lin Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
44
|
Nakajima S, Lan L, Wei L, Hsieh CL, Rapić-Otrin V, Yasui A, Levine AS. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks. PLoS One 2014; 9:e84899. [PMID: 24454762 PMCID: PMC3891734 DOI: 10.1371/journal.pone.0084899] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023] Open
Abstract
During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.
Collapse
Affiliation(s)
- Satoshi Nakajima
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SN); (LL)
| | - Li Lan
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SN); (LL)
| | - Leizhen Wei
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ching-Lung Hsieh
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Vesna Rapić-Otrin
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Akira Yasui
- Division of the Dynamic Proteome, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Arthur S. Levine
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
45
|
Wei L, Nakajima S, Hsieh CL, Kanno S, Masutani M, Levine AS, Yasui A, Lan L. Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose). J Cell Sci 2013; 126:4414-23. [PMID: 23868975 PMCID: PMC3784821 DOI: 10.1242/jcs.128272] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Single-strand breaks (SSBs) are the most common type of oxidative DNA damage and they are related to aging and many genetic diseases. The scaffold protein for repair of SSBs, XRCC1, accumulates at sites of poly(ADP-ribose) (pAR) synthesized by PARP, but it is retained at sites of SSBs after pAR degradation. How XRCC1 responds to SSBs after pAR degradation and how this affects repair progression are not well understood. We found that XRCC1 dissociates from pAR and is translocated to sites of SSBs dependent on its BRCTII domain and the function of PARG. In addition, phosphorylation of XRCC1 is also required for the proper dissociation kinetics of XRCC1 because (1) phosphorylation sites mutated in XRCC1 (X1 pm) cause retention of XRCC1 at sites of SSB for a longer time compared to wild type XRCC1; and (2) phosphorylation of XRCC1 is required for efficient polyubiquitylation of XRCC1. Interestingly, a mutant of XRCC1, LL360/361DD, which abolishes pAR binding, shows significant upregulation of ubiquitylation, indicating that pARylation of XRCC1 prevents the poly-ubiquitylation. We also found that the dynamics of the repair proteins DNA polymerase beta, PNK, APTX, PCNA and ligase I are regulated by domains of XRCC1. In summary, the dynamic damage response of XRCC1 is regulated in a manner that depends on modifications of polyADP-ribosylation, phosphorylation and ubiquitylation in live cells.
Collapse
Affiliation(s)
- Leizhen Wei
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Vaz B, Halder S, Ramadan K. Role of p97/VCP (Cdc48) in genome stability. Front Genet 2013; 4:60. [PMID: 23641252 PMCID: PMC3639377 DOI: 10.3389/fgene.2013.00060] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-dependent molecular chaperone p97, also known as valosin-containing protein (VCP) or Cdc48, is an AAA ATPase involved in protein turnover and degradation. p97 converts its own ATPase hydrolysis into remodeling activity on a myriad of ubiquitinated substrates from different cellular locations and pathways. In this way, p97 mediates extraction of targeted protein from cellular compartments or protein complexes. p97-dependent protein extraction from various cellular environments maintains cellular protein homeostasis. In recent years, p97-dependent protein extraction from chromatin has emerged as an essential evolutionarily conserved process for maintaining genome stability. Inactivation of p97 segregase activity leads to accumulation of ubiquitinated substrates on chromatin, consequently leading to protein-induced chromatin stress (PICHROS). PICHROS directly and negatively affects multiple DNA metabolic processes, including replication, damage responses, mitosis, and transcription, leading to genotoxic stress and genome instability. By summarizing and critically evaluating recent data on p97 function in various chromatin-associated protein degradation processes, we propose establishing p97 as a genome caretaker.
Collapse
Affiliation(s)
- Bruno Vaz
- Institute of Pharmacology and Toxicology, University Zürich-Vetsuisse Zürich, Switzerland ; Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford Oxford, UK
| | | | | |
Collapse
|
47
|
Stone HR, Morris JR. DNA damage emergency: cellular garbage disposal to the rescue? Oncogene 2013; 33:805-13. [PMID: 23503465 DOI: 10.1038/onc.2013.60] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/18/2012] [Accepted: 12/22/2012] [Indexed: 12/19/2022]
Abstract
The proteasome is a cellular machine found in the cytosol, nucleus and on chromatin that performs much of the proteolysis in eukaryotic cells. Recent reports show it is enriched at sites of double-stranded DNA breaks (DSBs) in mammalian cells. What is it doing there? This review will address three possibilities suggested by recent reports: in degrading proteins after their ubiquitination at and eviction from chromatin; as a deubiquitinase, specific to the antagonism of ubiquitin conjugates generated as part of the signalling of a DSB; and as a functional component of DNA repair mechanism itself. These findings add complexity to the proteasome as a potential therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- H R Stone
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - J R Morris
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
48
|
Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14:197-210. [DOI: 10.1038/nrm3546] [Citation(s) in RCA: 1219] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Mulvey CM, Tudzarova S, Crawford M, Williams GH, Stoeber K, Godovac-Zimmermann J. Subcellular proteomics reveals a role for nucleo-cytoplasmic trafficking at the DNA replication origin activation checkpoint. J Proteome Res 2013; 12:1436-53. [PMID: 23320540 PMCID: PMC4261602 DOI: 10.1021/pr3010919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depletion of DNA replication initiation factors such as CDC7 kinase triggers the origin activation checkpoint in healthy cells and leads to a protective cell cycle arrest at the G1 phase of the mitotic cell division cycle. This protective mechanism is thought to be defective in cancer cells. To investigate how this checkpoint is activated and maintained in healthy cells, we conducted a quantitative SILAC analysis of the nuclear- and cytoplasmic-enriched compartments of CDC7-depleted fibroblasts and compared them to a total cell lysate preparation. Substantial changes in total abundance and/or subcellular location were detected for 124 proteins, including many essential proteins associated with DNA replication/cell cycle. Similar changes in protein abundance and subcellular distribution were observed for various metabolic processes, including oxidative stress, iron metabolism, protein translation and the tricarboxylic acid cycle. This is accompanied by reduced abundance of two karyopherin proteins, suggestive of reduced nuclear import. We propose that altered nucleo-cytoplasmic trafficking plays a key role in the regulation of cell cycle arrest. The results increase understanding of the mechanisms underlying maintenance of the DNA replication origin activation checkpoint and are consistent with our proposal that cell cycle arrest is an actively maintained process that appears to be distributed over various subcellular locations.
Collapse
Affiliation(s)
- Claire M. Mulvey
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Slavica Tudzarova
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Mark Crawford
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Gareth H. Williams
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
50
|
Morris JR. Attenuation of the ubiquitin conjugate DNA damage signal by the proteasomal DUB POH1. Cell Cycle 2012; 11:4103-4. [PMID: 23075493 PMCID: PMC3524197 DOI: 10.4161/cc.22395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|