1
|
Casanova-Sepúlveda G, Boggon TJ. Regulation and signaling of the LIM domain kinases. Bioessays 2025; 47:e2400184. [PMID: 39361252 DOI: 10.1002/bies.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
The LIM domain kinases (LIMKs) are important actin cytoskeleton regulators. These proteins, LIMK1 and LIMK2, are nodes downstream of Rho GTPases and are the key enzymes that phosphorylate cofilin/actin depolymerization factors to regulate filament severing. They therefore perform an essential role in cascades that control actin depolymerization. Signaling of the LIMKs is carefully regulated by numerous inter- and intra-molecular mechanisms. In this review, we discuss recent findings that improve the understanding of LIM domain kinase regulation mechanisms. We also provide an up-to-date review of the role of the LIM domain kinases, their architectural features, how activity is impacted by other proteins, and the implications of these findings for human health and disease.
Collapse
Affiliation(s)
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
- Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Baltzer S, Bulatov T, Schmied C, Krämer A, Berger BT, Oder A, Walker-Gray R, Kuschke C, Zühlke K, Eichhorst J, Lehmann M, Knapp S, Weston J, von Kries JP, Süssmuth RD, Klussmann E. Aurora Kinase A Is Involved in Controlling the Localization of Aquaporin-2 in Renal Principal Cells. Int J Mol Sci 2022; 23:ijms23020763. [PMID: 35054947 PMCID: PMC8776063 DOI: 10.3390/ijms23020763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
The cAMP-dependent aquaporin-2 (AQP2) redistribution from intracellular vesicles into the plasma membrane of renal collecting duct principal cells induces water reabsorption and fine-tunes body water homeostasis. However, the mechanisms controlling the localization of AQP2 are not understood in detail. Using immortalized mouse medullary collecting duct (MCD4) and primary rat inner medullary collecting duct (IMCD) cells as model systems, we here discovered a key regulatory role of Aurora kinase A (AURKA) in the control of AQP2. The AURKA-selective inhibitor Aurora-A inhibitor I and novel derivatives as well as a structurally different inhibitor, Alisertib, prevented the cAMP-induced redistribution of AQP2. Aurora-A inhibitor I led to a depolymerization of actin stress fibers, which serve as tracks for the translocation of AQP2-bearing vesicles to the plasma membrane. The phosphorylation of cofilin-1 (CFL1) inactivates the actin-depolymerizing function of CFL1. Aurora-A inhibitor I decreased the CFL1 phosphorylation, accounting for the removal of the actin stress fibers and the inhibition of the redistribution of AQP2. Surprisingly, Alisertib caused an increase in actin stress fibers and did not affect CFL1 phosphorylation, indicating that AURKA exerts its control over AQP2 through different mechanisms. An involvement of AURKA and CFL1 in the control of the localization of AQP2 was hitherto unknown.
Collapse
Affiliation(s)
- Sandrine Baltzer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Timur Bulatov
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
- DKTK (German Translational Research Network), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Andreas Oder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Ryan Walker-Gray
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Christin Kuschke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
- DKTK (German Translational Research Network), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
| | - John Weston
- JQuest Consulting, Carl-Orff-Weg 25, 65779 Kelkheim, Germany;
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Roderich D. Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-9406-2596
| |
Collapse
|
3
|
Chatterjee D, Preuss F, Dederer V, Knapp S, Mathea S. Structural Aspects of LIMK Regulation and Pharmacology. Cells 2022; 11:cells11010142. [PMID: 35011704 PMCID: PMC8750758 DOI: 10.3390/cells11010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Malfunction of the actin cytoskeleton is linked to numerous human diseases including neurological disorders and cancer. LIMK1 (LIM domain kinase 1) and its paralogue LIMK2 are two closely related kinases that control actin cytoskeleton dynamics. Consequently, they are potential therapeutic targets for the treatment of such diseases. In the present review, we describe the LIMK conformational space and its dependence on ligand binding. Furthermore, we explain the unique catalytic mechanism of the kinase, shedding light on substrate recognition and how LIMK activity is regulated. The structural features are evaluated for implications on the drug discovery process. Finally, potential future directions for targeting LIMKs pharmacologically, also beyond just inhibiting the kinase domain, are discussed.
Collapse
Affiliation(s)
- Deep Chatterjee
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Franziska Preuss
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Verena Dederer
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
4
|
LIM Kinases in Osteosarcoma Development. Cells 2021; 10:cells10123542. [PMID: 34944050 PMCID: PMC8699892 DOI: 10.3390/cells10123542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Tumorigenesis is a long-term and multistage process that often leads to the formation of metastases. During this pathological course, two major events appear to be crucial: primary tumour growth and metastatic expansion. In this context, despite research and clinical advances during the past decades, bone cancers remain a leading cause of death worldwide among paediatric cancer patients. Osteosarcomas are the most common malignant bone tumours in children and adolescents. Notwithstanding advances in therapeutic treatments, many patients succumb to these diseases. In particular, less than 30% of patients who demonstrate metastases at diagnosis or are poor responders to chemotherapy survive 5 years after initial diagnosis. LIM kinases (LIMKs), comprising LIMK1 and LIMK2, are common downstream effectors of several signalization pathways, and function as a signalling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. In recent decades, several reports have indicated that the functions of LIMKs are mainly implicated in the regulation of actin microfilament and the control of microtubule dynamics. Previous studies have thus identified LIMKs as cancer-promoting regulators in multiple organ cancers, such as breast cancer or prostate cancer. This review updates the current understanding of LIMK involvement in osteosarcoma progression.
Collapse
|
5
|
Berglund A, Amankwah EK, Kim YC, Spiess PE, Sexton WJ, Manley B, Park HY, Wang L, Chahoud J, Chakrabarti R, Yeo CD, Luu HN, Pietro GD, Parker A, Park JY. Influence of gene expression on survival of clear cell renal cell carcinoma. Cancer Med 2020; 9:8662-8675. [PMID: 32986937 PMCID: PMC7666730 DOI: 10.1002/cam4.3475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022] Open
Abstract
Approximately 10%‐20% of patients with clinically localized clear cell renal cell carcinoma (ccRCC) at time of surgery will subsequently experience metastatic progression. Although considerable progression was seen in the systemic treatment of metastatic ccRCC in last 20 years, once ccRCC spreads beyond the confines of the kidney, 5‐year survival is less than 10%. Therefore, significant clinical advances are urgently needed to improve overall survival and patient care to manage the growing number of patients with localized ccRCC. We comprehensively evaluated expression of 388 candidate genes related with survival of ccRCC by using TCGA RNAseq (n = 515), Total Cancer Care (TCC) expression array data (n = 298), and a well characterized Moffitt RCC cohort (n = 248). We initially evaluated all 388 genes for association with overall survival using TCGA and TCC data. Eighty‐one genes were selected for further analysis and tested on Moffitt RCC cohort using NanoString expression analysis. Expression of nine genes (AURKA, AURKB, BIRC5, CCNE1, MK167, MMP9, PLOD2, SAA1, and TOP2A) was validated as being associated with poor survival. Survival prognostic models showed that expression of the nine genes and clinical factors predicted the survival in ccRCC patients with AUC value: 0.776, 0.821 and 0.873 for TCGA, TCC and Moffitt data set, respectively. Some of these genes have not been previously implicated in ccRCC survival and thus potentially offer insight into novel therapeutic targets. Future studies are warranted to validate these identified genes, determine their biological mechanisms and evaluate their therapeutic potential in preclinical studies.
Collapse
Affiliation(s)
- Anders Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ernest K Amankwah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA
| | - Young-Chul Kim
- Department of Biostatistics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brandon Manley
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Integrated Mathematical Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hyun Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Chang D Yeo
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hung N Luu
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giuliano D Pietro
- Department of Pharmacy, Universidade Federal de Sergipe, Sao Cristovao, Brazil
| | - Alexander Parker
- University of Florida College of Medicine, Jacksonville, FL, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
6
|
Ou S, Tan MH, Weng T, Li H, Koh CG. LIM kinase1 regulates mitotic centrosome integrity via its activity on dynein light intermediate chains. Open Biol 2018; 8:rsob.170202. [PMID: 29925632 PMCID: PMC6030115 DOI: 10.1098/rsob.170202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/29/2018] [Indexed: 01/10/2023] Open
Abstract
Abnormal centrosome number and function have been implicated in tumour development. LIM kinase1 (LIMK1), a regulator of actin cytoskeleton dynamics, is found to localize at the mitotic centrosome. However, its role at the centrosome is not fully explored. Here, we report that LIMK1 depletion resulted in multi-polar spindles and defocusing of centrosomes, implicating its involvement in the regulation of mitotic centrosome integrity. LIMK1 could influence centrosome integrity by modulating centrosomal protein localization at the spindle pole. Interestingly, dynein light intermediate chains (LICs) are able to rescue the defects observed in LIMK1-depleted cells. We found that LICs are potential novel interacting partners and substrates of LIMK1 and that LIMK1 phosphorylation regulates cytoplasmic dynein function in centrosomal protein transport, which in turn impacts mitotic spindle pole integrity.
Collapse
Affiliation(s)
- Sirong Ou
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Mei-Hua Tan
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ting Weng
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - HoiYeung Li
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore .,Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, 117411, Singapore
| |
Collapse
|
7
|
Prunier C, Prudent R, Kapur R, Sadoul K, Lafanechère L. LIM kinases: cofilin and beyond. Oncotarget 2018; 8:41749-41763. [PMID: 28445157 PMCID: PMC5522193 DOI: 10.18632/oncotarget.16978] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
LIM kinases are common downstream effectors of several signalization pathways and function as a signaling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. These last 10 years, several reports indicate that the functions of LIM kinases are more extended than initially described and, specifically, that LIM kinases also control microtubule dynamics, independently of their regulation of actin microfilament. In this review we analyze the data supporting these conclusions and the possible mechanisms that could be involved in the control of microtubules by LIM kinases. The demonstration that LIM kinases also control microtubule dynamics has pointed to new therapeutic opportunities. Consistently, several new LIM kinase inhibitors have been recently developed. We provide a comprehensive comparison of these inhibitors, of their chemical structure, their specificity, their cellular effects as well as their effects in animal models of various diseases including cancer.
Collapse
Affiliation(s)
- Chloé Prunier
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France.,Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karin Sadoul
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
Ottman R, Levy J, Grizzle WE, Chakrabarti R. The other face of miR-17-92a cluster, exhibiting tumor suppressor effects in prostate cancer. Oncotarget 2018; 7:73739-73753. [PMID: 27650539 PMCID: PMC5340125 DOI: 10.18632/oncotarget.12061] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
miR-17-92a cluster miRNAs are transcribed from a polycistronic transcription unit C13orf25 that generates six mature miRNAs, miR-17, miR-18a, miR-19a, miR-19b, miR-20a and miR-92a that are overexpressed in lung and colon cancers. Here we show that the expression of miR-17-92a miRNAs are reduced in cancerous prostate tissues compared to uninvolved areas and also in aggressive prostate cancer cells. Restoration of expression of all members of miR-17-92a cluster showed, decreased expression of cell cycle regulatory proteins cyclin D1 and SSH1; and LIMK1 and FGD4 of RhoGTPase signaling pathway. Expression of miR-17-92a miRNAs caused decreased cell proliferation, reduced activation of AKT and MAP kinases, delayed tumorigenicity and reduced tumor growth in animals. Expression of miR-17-92a miRNAs inhibited EMT via reduced cell migration and expression of mesenchymal markers while elevating expression and surface localization of the epithelial marker E-Cadherin. Expression of miR-17-92a miRNAs improved sensitivity of androgen dependent LNCaP 104-S prostate cancer cells to anti-androgen drug Casodex, AKT inhibitor MK-2206 2HCl, and docetaxel. The androgen refractory PC-3 cells also showed increased sensitivity to docetaxel, MK-2206 2HCl and Aurora kinase inhibitor VX680 upon ectopic expression of miR-17-92a cluster miRNAs. Our data demonstrate a tumor suppressor effect of miR-17-92a cluster miRNAs in prostate cancer cells and restoration of expression of these miRNAs has a therapeutic benefit for both androgen-dependent and -independent prostate cancer cells.
Collapse
Affiliation(s)
- Richard Ottman
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Jenna Levy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
9
|
Zhao X, Toyooka T, Ibuki Y. Silver nanoparticle-induced phosphorylation of histone H3 at serine 10 is due to dynamic changes in actin filaments and the activation of Aurora kinases. Toxicol Lett 2017; 276:39-47. [PMID: 28499611 DOI: 10.1016/j.toxlet.2017.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/08/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022]
Abstract
The phosphorylation of histone H3 at serine 10 (p-H3S10) has been closely correlated with mitotic chromosome condensation. We previously reported that silver nanoparticles (AgNPs) significantly induced p-H3S10 independent of mitosis. In the present study, we examined the mechanisms underlying the induction of p-H3S10 by AgNPs. A treatment with AgNPs markedly induced p-H3S10 in a dose-dependent manner in three types of cell lines, and this was dependent on the cellular incorporation of AgNPs. The immunofluorescent staining of AgNP-induced p-H3S10 was thin and solid throughout the nucleus, and differed from that normally associated with mitosis. AgNPs induced the formation of globular actin in a dose-dependent manner. Latrunculin B (LatB) and phalloidin, inhibitors of actin polymerization and depolymerization, respectively, inhibited p-H3S10, suggesting that dynamic changes in actin filaments are related to AgNP-induced p-H3S10. Furthermore, p-H3S10 was mediated by Aurora kinase (AURK) pathways, which were suppressed by LatB and siRNA for cofilin 1, an actin-depolymerizing protein. AgNO3 (Ag ions) exerted similar effects to those of AgNPs. These results suggest that Ag ions released from AgNPs incorporated into inner cells changed the dynamics of actin filaments, and this was followed by the activation of AURKs, leading to the induction of p-H3S10.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tatsushi Toyooka
- Industrial Toxicology and Health Effects Research Group, National Institute of Occupational Safety and Health, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
10
|
Cicenas J. The Aurora kinase inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 2016; 142:1995-2012. [PMID: 26932147 DOI: 10.1007/s00432-016-2136-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Compounds that affect enzymatic function of kinases are valuable for the understanding of the complex biochemical processes in cells. Aurora kinases (AURKs) play a key role in the control of the mitosis. These kinases are frequently deregulated in different human cancers: overexpression, amplifications, translocations and deletions were reported in many cancer cell lines as well as patient tissues. These findings steered a rigorous hunt for small-molecule AURK inhibitors not only for research purposes as well as for therapeutic uses. In this review, we describe a number of AURK inhibitors and their use in cancer research and/or therapy. We hope to assist researchers and clinicians in deciding which inhibitor is most appropriate for their specific purpose. The review will also provide a broad overview of the clinical studies performed with some of these inhibitors (if such studies have been performed).
Collapse
Affiliation(s)
- Jonas Cicenas
- CALIPHO Group, Swiss Institute of Bioinformatics, CMU-1, rue Michel Servet, 1211, Geneva 4, Switzerland.
- MAP Kinase Resource, Melchiorstrasse 9, 3027, Bern, Switzerland.
- Proteomics Centre, Vilnius University Institute of Biochemistry, 08662, Vilnius, Lithuania.
| |
Collapse
|
11
|
Blas-Rus N, Bustos-Morán E, Pérez de Castro I, de Cárcer G, Borroto A, Camafeita E, Jorge I, Vázquez J, Alarcón B, Malumbres M, Martín-Cófreces NB, Sánchez-Madrid F. Aurora A drives early signalling and vesicle dynamics during T-cell activation. Nat Commun 2016; 7:11389. [PMID: 27091106 PMCID: PMC4838898 DOI: 10.1038/ncomms11389] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/21/2016] [Indexed: 01/09/2023] Open
Abstract
Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the dynamics of microtubules and CD3ζ-bearing vesicles at the IS. The absence of Aurora A activity also impairs the activation of early signalling molecules downstream of the TCR and the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the propagation of the TCR activation signal. Aurora A is a protein kinase that contributes to the progression of mitosis by stimulating microtubule nucleation. Here the authors show that Aurora A also functions during T cell activation by maintaining TCR signaling through Lck activation.
Collapse
Affiliation(s)
- Noelia Blas-Rus
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, C/ Diego de León 62, Madrid 28006, Spain
| | - Eugenio Bustos-Morán
- Cell-cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Ignacio Pérez de Castro
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/ Nicolás cabrera 1, Madrid 28049, Spain
| | - Emilio Camafeita
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/ Nicolás cabrera 1, Madrid 28049, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Noa B Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, C/ Diego de León 62, Madrid 28006, Spain.,Cell-cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, C/ Diego de León 62, Madrid 28006, Spain.,Cell-cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| |
Collapse
|
12
|
Maimaiti Y, Jie T, Jing Z, Changwen W, Pan Y, Chen C, Tao H. Aurora kinase A induces papillary thyroid cancer lymph node metastasis by promoting cofilin-1 activity. Biochem Biophys Res Commun 2016; 473:212-218. [PMID: 27003257 DOI: 10.1016/j.bbrc.2016.03.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/18/2016] [Indexed: 11/30/2022]
Abstract
Aurora-A (Aur-A), a member of the serine/threonine Aurora kinase family, plays an important role in ensuring genetic stability during cell division. Previous studies indicated that Aur-A possesses oncogenic activity and may be a valuable therapeutic target in cancer therapy. However, the role of Aur-A in the most common thyroid cancer, papillary thyroid cancer (PTC), remains largely unknown. In patients with PTC, cancer cell migration and invasion account for most of the metastasis, recurrence, and cancer-related deaths. Cofilin-1 (CFL-1) is the most important effector of actin polymerization and depolymerization, determining the direction of cell migration. Here, we assessed the correlation between Aur-A and CFL-1 in PTC with lymph node metastasis. Tissue microarray data showed that simultaneous overexpression of Aur-A and CFL-1 correlated with lymph node metastasis in thyroid cancer tissue. Inhibition of Aur-A suppressed thyroid cancer cell migration in vitro and decreased lymph node metastasis in nude mice. Importantly, Aur-A increased the non-phosphorylated, active form of CFL-1 in TPC-1 cells, thus promoting cancer cell migration and thyroid cancer lymph node metastasis. Our findings indicate that the combination of Aur-A and CFL-1 may be useful as a molecular prediction model for lymph node metastasis in thyroid cancer and raise the possibility of targeting Aur-A and CFL-1 for more effective treatment of thyroid cancer.
Collapse
Affiliation(s)
- Yusufu Maimaiti
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tan Jie
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Jing
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Changwen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Pan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Laboratory of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Tao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Okamoto A, Yabuta N, Mukai S, Torigata K, Nojima H. Phosphorylation of CHO1 by Lats1/2 regulates the centrosomal activation of LIMK1 during cytokinesis. Cell Cycle 2016; 14:1568-82. [PMID: 25786116 DOI: 10.1080/15384101.2015.1026489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Large tumor suppressor 1 and 2 (Lats1/2) regulate centrosomal integrity, chromosome segregation and cytokinesis. As components of the centralspindlin complex, the kinesin-like protein CHO1 and its splicing variant MKLP1 colocalize with chromosome passenger proteins and GTPases and regulate the formation of the contractile ring and cytokinesis; however, the regulatory mechanisms of CHO1/MKLP1 remain elusive. Here, we show that Lats1/2 phosphorylate Ser716 in the F-actin-interacting region of CHO1, which is absent in MKLP1. Phosphorylated CHO1 localized to the centrosomes and midbody, and the actin polymerization factor LIM-kinase 1 (LIMK1) was identified as its binding partner. Overexpression of constitutively phosphorylated and non-phosphorylated CHO1 altered the mitotic localization and activation of LIMK1 at the centrosomes in HeLa cells, leading to the inhibition of cytokinesis through excessive phosphorylation of Cofilin and mislocalization of Ect2. These results suggest that Lats1/2 stringently control cytokinesis by regulating CHO1 phosphorylation and the mitotic activation of LIMK1 on centrosomes.
Collapse
Affiliation(s)
- Ayumi Okamoto
- a Department of Molecular Genetics ; Research Institute for Microbial Diseases; Osaka University ; Suita City , Osaka , Japan
| | | | | | | | | |
Collapse
|
14
|
Farina F, Gaillard J, Guérin C, Couté Y, Sillibourne J, Blanchoin L, Théry M. The centrosome is an actin-organizing centre. Nat Cell Biol 2016; 18:65-75. [PMID: 26655833 PMCID: PMC4880044 DOI: 10.1038/ncb3285] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022]
Abstract
Microtubules and actin filaments are the two main cytoskeleton networks supporting intracellular architecture and cell polarity. The centrosome nucleates and anchors microtubules and is therefore considered to be the main microtubule-organizing centre. However, recurring, yet unexplained, observations have pointed towards a connection between the centrosome and actin filaments. Here we have used isolated centrosomes to demonstrate that the centrosome can directly promote actin-filament assembly. A cloud of centrosome-associated actin filaments could be identified in living cells as well. Actin-filament nucleation at the centrosome was mediated by the nucleation-promoting factor WASH in combination with the Arp2/3 complex. Pericentriolar material 1 (PCM1) seemed to modulate the centrosomal actin network by regulating Arp2/3 complex and WASH recruitment to the centrosome. Hence, our results reveal an additional facet of the centrosome as an intracellular organizer and provide mechanistic insights into how the centrosome can function as an actin-filament-organizing centre.
Collapse
Affiliation(s)
- Francesca Farina
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
| | - Jérémie Gaillard
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
| | - Christophe Guérin
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- Laboratoire Biologie à Grande Echelle, Institut de Recherche en Technologie et Science pour le Vivant, UMRS1038, INSERM/CEA/ Université Grenoble Alpes, Grenoble, France
| | - James Sillibourne
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
- Unité de Thérapie Cellulaire, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, INSERM/AP-HP/Université Paris Diderot, Paris, France
| | - Laurent Blanchoin
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
| | - Manuel Théry
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
- Unité de Thérapie Cellulaire, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, INSERM/AP-HP/Université Paris Diderot, Paris, France
| |
Collapse
|
15
|
Shagisultanova E, Dunbrack RL, Golemis EA. Issues in interpreting the in vivo activity of Aurora-A. Expert Opin Ther Targets 2014; 19:187-200. [PMID: 25384454 DOI: 10.1517/14728222.2014.981154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Based on its role as a mitotic regulatory kinase, overexpressed and associated with aneuploidy in cancer, small-molecule inhibitors have been developed for Aurora-A (AURKA) kinase. In preclinical and clinical assessments, these agents have shown efficacy in inducing stable disease or therapeutic response. In optimizing the use of Aurora-A inhibitors, it is critical to have robust capacity to measure the kinase activity of Aurora-A in tumors. AREAS COVERED We provide an overview of molecular mechanisms of mitotic and non-mitotic activation of Aurora-A kinase, and interaction of Aurora-A with its regulatory partners. Typically, Aurora-A activity is measured by use of phospho-antibodies targeting an autophosphorylated T288 epitope. However, recent studies have identified alternative means of Aurora-A activation control, including allosteric regulation by partners, phosphorylation on alternative activating residues (S51, S98), dephosphorylation on inhibitory sites (S342) and T288 phosphorylation by alternative kinases such as Pak enzymes. Additional work has shown that the relative abundance of Aurora-A partners can affect the activity of Aurora-A inhibitors, and that Aurora-A activation also occurs in interphase cells. EXPERT OPINION Taken together, this work suggests the need for comprehensive analysis of Aurora-A activity and expression of Aurora-A partners in order to stratify patients for likely therapeutic response.
Collapse
Affiliation(s)
- Elena Shagisultanova
- Fox Chase Cancer Center, Department of Medical Oncology , Philadelphia, PA 19111 , USA
| | | | | |
Collapse
|
16
|
Aurora A kinase modulates actin cytoskeleton through phosphorylation of Cofilin: Implication in the mitotic process. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2719-29. [PMID: 25090971 DOI: 10.1016/j.bbamcr.2014.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/22/2022]
Abstract
Aurora A kinase regulates early mitotic events through phosphorylation and activation of a variety of proteins. Specifically, Aur-A is involved in centrosomal separation and formation of mitotic spindles in early prophase. The effect of Aur-A on mitotic spindles is mediated by the modulation of microtubule dynamics and association with microtubule binding proteins. In this study we show that Aur-A exerts its effects on spindle organization through the regulation of the actin cytoskeleton. Aurora A phosphorylates Cofilin at multiple sites including S(3) resulting in the inactivation of its actin depolymerizing function. Aur-A interacts with Cofilin in early mitotic phases and regulates its phosphorylation status. Cofilin phosphorylation follows a dynamic pattern during the progression of prophase to metaphase. Inhibition of Aur-A activity induced a delay in the progression of prophase to metaphase. Aur-A inhibitor also disturbed the pattern of Cofilin phosphorylation, which correlated with the mitotic delay. Our results establish a novel function of Aur-A in the regulation of actin cytoskeleton reorganization, through Cofilin phosphorylation during early mitotic stages.
Collapse
|
17
|
Petrilli A, Copik A, Posadas M, Chang LS, Welling DB, Giovannini M, Fernández-Valle C. LIM domain kinases as potential therapeutic targets for neurofibromatosis type 2. Oncogene 2014; 33:3571-82. [PMID: 23934191 PMCID: PMC4016185 DOI: 10.1038/onc.2013.320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
Neurofibromatosis type 2 (NF2) is caused by mutations in the NF2 gene that encodes a tumor-suppressor protein called merlin. NF2 is characterized by formation of multiple schwannomas, meningiomas and ependymomas. Merlin loss-of-function is associated with increased activity of Rac and p21-activated kinases (PAKs) and deregulation of cytoskeletal organization. LIM domain kinases (LIMK1 and 2) are substrate for Cdc42/Rac-PAK and modulate actin dynamics by phosphorylating cofilin at serine-3. This modification inactivates the actin severing and depolymerizing activity of cofilin. LIMKs also translocate into the nucleus and regulate cell cycle progression. Significantly, LIMKs are overexpressed in several tumor types, including skin, breast, lung, liver and prostate. Here we report that mouse Schwann cells (MSCs) in which merlin function is lost as a result of Nf2 exon2 deletion (Nf2(ΔEx2)) exhibited increased levels of LIMK1, LIMK2 and active phospho-Thr508/505-LIMK1/2, as well as phospho-Ser3-cofilin, compared with wild-type normal MSCs. Similarly, levels of LIMK1 and 2 total protein and active phosphorylated forms were elevated in human vestibular schwannomas compared with normal human Schwann cells (SCs). Reintroduction of wild-type NF2 into Nf2(ΔEx2) MSC reduced LIMK1 and LIMK2 levels. We show that pharmacological inhibition of LIMK with BMS-5 decreased the viability of Nf2(ΔEx2) MSCs in a dose-dependent manner, but did not affect viability of control MSCs. Similarly, LIMK knockdown decreased viability of Nf2(ΔEx2) MSCs. The decreased viability of Nf2(ΔEx2) MSCs was not due to caspase-dependent or -independent apoptosis, but rather due to inhibition of cell cycle progression as evidenced by accumulation of cells in G2/M phase. Inhibition of LIMKs arrests cells in early mitosis by decreasing aurora A activation. Our results suggest that LIMKs are potential drug targets for NF2 and tumors associated with merlin deficiency.
Collapse
Affiliation(s)
- Alejandra Petrilli
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Alicja Copik
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Michelle Posadas
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - D. Bradley Welling
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Marco Giovannini
- House Research Institute, Division of Clinical and Translational Research, Los Angeles, CA 90057, USA
| | - Cristina Fernández-Valle
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
18
|
Oku Y, Tareyanagi C, Takaya S, Osaka S, Ujiie H, Yoshida K, Nishiya N, Uehara Y. Multimodal effects of small molecule ROCK and LIMK inhibitors on mitosis, and their implication as anti-leukemia agents. PLoS One 2014; 9:e92402. [PMID: 24642638 PMCID: PMC3958508 DOI: 10.1371/journal.pone.0092402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/22/2014] [Indexed: 11/18/2022] Open
Abstract
Accurate chromosome segregation is vital for cell viability. Many cancer cells show chromosome instability (CIN) due to aberrant expression of the genes involved in chromosome segregation. The induction of massive chromosome segregation errors in such cancer cells by small molecule inhibitors is an emerging strategy to kill these cells selectively. Here we screened and characterized small molecule inhibitors which cause mitotic chromosome segregation errors to target cancer cell growth. We screened about 300 chemicals with known targets, and found that Rho-associated coiled-coil kinase (ROCK) inhibitors bypassed the spindle assembly checkpoint (SAC), which delays anaphase onset until proper kinetochore-microtubule interactions are established. We investigated how ROCK inhibitors affect chromosome segregation, and found that they induced microtubule-dependent centrosome fragmentation. Knockdown of ROCK1 and ROCK2 revealed their additive roles in centrosome integrity. Pharmacological inhibition of LIMK also induced centrosome fragmentation similar to that by ROCK inhibitors. Inhibition of ROCK or LIMK hyper-stabilized mitotic spindles and impaired Aurora-A activation. These results suggested that ROCK and LIMK are directly or indirectly involved in microtubule dynamics and activation of Aurora-A. Furthermore, inhibition of ROCK or LIMK suppressed T cell leukemia growth in vitro, but not peripheral blood mononuclear cells. They induced centrosome fragmentation and apoptosis in T cell leukemia cells. These results suggested that ROCK and LIMK can be a potential target for anti-cancer drugs.
Collapse
Affiliation(s)
- Yusuke Oku
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Chiaki Tareyanagi
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Shinichi Takaya
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Sayaka Osaka
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Haruki Ujiie
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Kentaro Yoshida
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Naoyuki Nishiya
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Yoshimasa Uehara
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
- * E-mail:
| |
Collapse
|
19
|
Abstract
Here we discuss the latest progress in development of some kinase inhibitors such as inhibitors of c-MET, LIM and Bcr-Abl kinases. Importantly, many oncogenic kinases signal via the mTOR pathway, suggesting a common target for drug combinations.
Collapse
|
20
|
Maternal high-fat diet alters expression of pathways of growth, blood supply and arachidonic acid in rat placenta. J Nutr Sci 2014; 2:e41. [PMID: 25191597 PMCID: PMC4153320 DOI: 10.1017/jns.2013.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/10/2013] [Accepted: 09/20/2013] [Indexed: 01/14/2023] Open
Abstract
The high fat content in Western diets probably affects placental function during
pregnancy with potential consequences for the offspring in the short and long term. The
aim of the present study was to compare genome-wide placental gene expression between rat
dams fed a high-fat diet (HFD) and those fed a control diet for 3 weeks before conception
and during gestation. Gene expression was measured by microarray and pathway analysis was
performed. Gene expression differences were replicated by real-time PCR and protein
expression was assessed by Western blot analysis. Placental and fetal weights at E17.25
were not altered by exposure to the maternal HFD. Gene pathways targeting placental
growth, blood supply and chemokine signalling were up-regulated in the placentae of dams
fed the HFD. The up-regulation in messenger RNA expression for five genes
Ptgs2 (fatty acid cyclo-oxidase 2; COX2), Limk1 (LIM
domain kinase 1), Pla2g2a (phospholipase A2), Itga1
(integrin α-1) and Serpine1 was confirmed by real-time PCR. Placental
protein expression for COX2 and LIMK was also increased in HFD-fed dams. In conclusion,
maternal HFD feeding alters placental gene expression patterns of placental growth and
blood supply and specifically increases the expression of genes involved in arachidonic
acid and PG metabolism. These changes indicate a placental response to the altered
maternal metabolic environment.
Collapse
|
21
|
Nikonova AS, Astsaturov I, Serebriiskii IG, Dunbrack RL, Golemis EA. Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci 2013; 70:661-87. [PMID: 22864622 PMCID: PMC3607959 DOI: 10.1007/s00018-012-1073-7] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 12/20/2022]
Abstract
Temporally and spatially controlled activation of the Aurora A kinase (AURKA) regulates centrosome maturation, entry into mitosis, formation and function of the bipolar spindle, and cytokinesis. Genetic amplification and mRNA and protein overexpression of Aurora A are common in many types of solid tumor, and associated with aneuploidy, supernumerary centrosomes, defective mitotic spindles, and resistance to apoptosis. These properties have led Aurora A to be considered a high-value target for development of cancer therapeutics, with multiple agents currently in early-phase clinical trials. More recently, identification of additional, non-mitotic functions and means of activation of Aurora A during interphase neurite elongation and ciliary resorption have significantly expanded our understanding of its function, and may offer insights into the clinical performance of Aurora A inhibitors. Here we review the mitotic and non-mitotic functions of Aurora A, discuss Aurora A regulation in the context of protein structural information, and evaluate progress in understanding and inhibiting Aurora A in cancer.
Collapse
Affiliation(s)
- Anna S. Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Igor Astsaturov
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Ilya G. Serebriiskii
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Roland L. Dunbrack
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Erica A. Golemis
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| |
Collapse
|