1
|
Zeng Z, Shan H, Lin M, Bao S, Mo D, Deng F, Yu Y, Yang Y, Zhou P, Li R. SIRT3 protects endometrial receptivity in patients with polycystic ovary syndrome. Chin Med J (Engl) 2025; 138:1225-1235. [PMID: 38721809 DOI: 10.1097/cm9.0000000000003127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND The sirtuin family is well recognized for its crucial involvement in various cellular processes. Nevertheless, studies on its role in the human endometrium are limited. This study aimed to explore the expression and localization of the sirtuin family in the human endometrium, focusing on sirtuin 3 (SIRT3) and its potential role in the oxidative imbalance of the endometrium in polycystic ovary syndrome (PCOS). METHODS Endometrial specimens were collected from both patients with PCOS and controls undergoing hysteroscopy at the Center for Reproductive Medicine, Peking University Third Hospital, from July to August 2015 and used for cell culture. The protective effects of SIRT3 were investigated, and the mechanism of SIRT3 in improving endometrial receptivity of patients with PCOS was determined using various techniques, including cellular bioenergetic analysis, small interfering ribonucleic acid (siRNA) silencing, real-time quantitative polymerase chain reaction, Western blot, immunofluorescence, immunohistochemistry, and flow cytometry analysis. RESULTS The sirtuin family was widely expressed in the human endometrium, with SIRT3 showing a significant increase in expression in patients with PCOS compared with controls ( P <0.05), as confirmed by protein and gene assays. Concurrently, endometrial antioxidant levels were elevated, while mitochondrial respiratory capacity was reduced, in patients with PCOS ( P <0.05). An endometrial oxidative stress (OS) model revealed that the downregulation of SIRT3 impaired the growth and proliferation status of endometrial cells and reduced their receptivity to day 4 mouse embryos. The results suggested that SIRT3 might be crucial in maintaining normal cellular state by regulating antioxidants, cell proliferation, and apoptosis, thereby contributing to enhanced endometrial receptivity. CONCLUSIONS Our findings proposed a significant role of SIRT3 in improving endometrial receptivity in patients with PCOS by alleviating OS and regulating the balance between cell proliferation and apoptosis. Therefore, SIRT3 could be a promising target for predicting and improving endometrial receptivity in this patient population.
Collapse
Affiliation(s)
- Zhonghong Zeng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongying Shan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Reproductive Medical Center, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Mingmei Lin
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
| | - Siyu Bao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
| | - Dan Mo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Feng Deng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
| | - Yihua Yang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
| | - Rong Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
| |
Collapse
|
2
|
Lee EK, Xiong N, Krasner C, Polak M, Campos S, Wright AA, Liu JF, Shea M, Yeku O, Castro C, Porter R, Stover EH, Koppermann L, Smith J, Sawyer H, Hayes M, Zhou N, Cheng SC, Bouberhan S, Pfaff KL, Rodig SJ, Jones S, Penson RT, Moroney J, Fleming GF, Matulonis UA, Konstantinopoulos PA. Phase 2, two-stage study of avelumab and axitinib in patients with mismatch repair proficient recurrent or persistent endometrial cancer. Gynecol Oncol 2025; 198:1-8. [PMID: 40393272 DOI: 10.1016/j.ygyno.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
OBJECTIVE Combinations of immune checkpoint inhibitors (ICIs) and antiangiogenic agents have demonstrated potent clinical activity across multiple tumor types. We hypothesized that the combination of axitinib, a highly potent inhibitor of VEGFR1-3, with the anti-PD-L1 antibody avelumab would be well tolerated and effective in the treatment of recurrent MMRP EC. METHODS We conducted an investigator-initiated, single-arm phase 2 study of avelumab/axitinib in MMRP EC (NCT02912572). Eligible participants had recurrent EC of any histology that was MMRP, measurable disease, no upper limit of prior therapies and no prior ICI treatment. Co-primary endpoints were objective response rate (ORR) and progression-free survival rate at 6 months (PFS6). Targeted next-generation sequencing and multiplexed immunofluorescence were performed. RESULTS Thirty-five patients initiated protocol therapy. There were 14 objective responses (ORR 40 %, 95 % CI 23.9 %-57.9 %), including 1 confirmed CR, 1 unconfirmed CR, 8 confirmed PRs, and 4 unconfirmed PRs. Thirteen patients (37.1 %) had stable disease (SD), and 6 (17.1 %) patients had progressive disease (PD). The confirmed objective response rate (ORR) was 25.7 % (95 % CI 12.5 % to 43.3 %), estimated median DOR was 13.8 months, PFS at 6 months was 55.8 %, and the estimated median PFS was 7 months. The most common G3+ treatment-related toxicities were hypertension (37.1 %), ALT increased (5.7 %) and AST increased (5.7 %); 5 (14.3 %) patients discontinued protocol therapy because of toxicity. Objective response rate was 48 % in TP53 mutated tumors and 28.6 % in NSMP tumors. CONCLUSIONS Avelumab and axitinib had an acceptable safety profile and demonstrated encouraging activity in recurrent MMRP EC.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Niya Xiong
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Carolyn Krasner
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Madeline Polak
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Susana Campos
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Alexi A Wright
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Joyce F Liu
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Meghan Shea
- Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Oladapo Yeku
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Cesar Castro
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Rebecca Porter
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | | | - Lani Koppermann
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Josephine Smith
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Hannah Sawyer
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Martin Hayes
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Ningxuan Zhou
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Su-Chun Cheng
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Sara Bouberhan
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Kathleen L Pfaff
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Scott J Rodig
- Brigham & Women's Hospital, Boston, MA, United States of America
| | - Stephanie Jones
- Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Richard T Penson
- Massachusetts General Hospital, Boston, MA, United States of America
| | - John Moroney
- The University of Chicago, Chicago, IL, United States of America
| | - Gini F Fleming
- The University of Chicago, Chicago, IL, United States of America
| | | | | |
Collapse
|
3
|
Bignotti E, Simeon V, Ardighieri L, Kuhn E, Marchini S, Califano D, Cecere SC, Bugatti M, Spina A, Scognamiglio G, Paracchini L, Russo D, Arenare L, Tognon G, Lorusso D, Beltrame L, D'Incalci M, Sartori E, De Censi A, Odicino F, Perrone F, Chiodini P, Pignata S. TP53 mutations and survival in ovarian carcinoma patients receiving first-line chemotherapy plus bevacizumab: Results of the MITO16A/MaNGO OV-2 study. Int J Cancer 2025; 156:1085-1096. [PMID: 39415516 DOI: 10.1002/ijc.35203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/18/2024]
Abstract
To date, there are no biomarkers that define a patient subpopulation responsive to bevacizumab (BEV), an effective treatment option for advanced ovarian carcinoma (OC). In the context of the MITO16A/MaNGO OV-2 trial, a Phase IV study of chemotherapy combined with BEV in first-line treatment of advanced OC, we evaluated TP53 mutations by next-generation sequencing and p53 expression by immunohistochemistry (IHC) on 202 and 311 cases, respectively. We further correlated TP53 mutations in terms of type, function, and site, and IHC data with patients' clinicopathological characteristics and survival. TP53 missense mutations of unknown function (named unclassified) represented the majority of variants in our population (44.4%) and were associated with a significantly improved overall survival (OS) both in univariable (hazard ratio [HR] = 0.43, 95% confidence interval [CI] = 0.20-0.92, p = .03) and multivariable analysis (HR = 0.39, 95% CI = 0.18-0.86, p = .02). Concordance between TP53 mutational analysis and IHC was 91%. We observed an HR of 0.70 for OS in patients with p53 IHC overexpression compared to p53 wild-type, which however did not reach statistical significance (p = .31, 95% CI = 0.36-1.38). Our results indicate that the presence of unclassified TP53 mutations has favorable prognostic significance in patients with OC receiving upfront BEV plus chemotherapy. In particular, unclassified missense TP53 mutations characterize a subpopulation of patients with a significant survival advantage, independently of clinicopathological characteristics. Our findings warrant future investigations to confirm the prognostic impact of TP53 mutations in BEV-treated OC patients and deserve to be assessed for their potential predictive role in future randomized clinical studies.
Collapse
Affiliation(s)
- Eliana Bignotti
- 'Angelo Nocivelli' Institute of Molecular Medicine, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Vittorio Simeon
- Department of Mental Health and Public Medicine, Section of Statistics, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy
| | - Laura Ardighieri
- Department of Pathology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Elisabetta Kuhn
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sergio Marchini
- IRCCS Humanitas Research Hospital, Molecular Pharmacology Lab, Rozzano, Italy
| | - Daniela Califano
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Naples, Italy
| | - Sabrina Chiara Cecere
- Uro-Gynecological Medical Oncology, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples, Italy
| | - Mattia Bugatti
- Department of Pathology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Anna Spina
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Naples, Italy
| | | | - Lara Paracchini
- IRCCS Humanitas Research Hospital, Molecular Pharmacology Lab, Rozzano, Italy
| | - Daniela Russo
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Naples, Italy
| | - Laura Arenare
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Naples, Italy
| | - Germana Tognon
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Domenica Lorusso
- Department of Life Science and Public Health, Catholic University of Sacred Heart Largo Agostino Gemelli and Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Luca Beltrame
- IRCCS Humanitas Research Hospital, Molecular Pharmacology Lab, Rozzano, Italy
| | - Maurizio D'Incalci
- IRCCS Humanitas Research Hospital, Molecular Pharmacology Lab, Rozzano, Italy
| | - Enrico Sartori
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea De Censi
- Medical Oncology Unit, National Hospital E.O. Ospedali Galliera, Genoa, Italy
| | - Franco Odicino
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Naples, Italy
| | - Paolo Chiodini
- Department of Mental Health and Public Medicine, Section of Statistics, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy
| | - Sandro Pignata
- Uro-Gynecological Medical Oncology, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples, Italy
| |
Collapse
|
4
|
Xiao G, Huang X, Huang T, Chen Z, Huang Y, Huang R, Wang X. Hepatitis B virus X protein differentially regulates the angiogenesis of Hepatocellular Carcinoma through p53-VEGF axis according to glucose levels. Ann Hepatol 2024; 29:101543. [PMID: 39216627 DOI: 10.1016/j.aohep.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION AND OBJECTIVES Blood glucose fluctuates severely in the diabetes (DM) and tumor microenvironment. Our previous works have found Hepatitis B virus X protein (HBx) differentially regulated metastasis and apoptosis of hepatoma cells depending on glucose concentration. We here aimed to explore whether HBx played dual roles in the angiogenesis of hepatocellular carcinoma varying on different glucose levels. MATERIALS AND METHODS We collected conditioned medium from HBx-overexpressing cells cultured with two solubilities of glucose, and then applied to EA.hy926 cells. Alternatively, a co-culture cell system was established with hepatoma cells and EA.hy926 cells. We analyzed the angiogenesis of EA.hy926 cells with CCK8, wound-healing, transwell-migartion and tube formation experiment. ELISA was conducted to detect the secretion levels of angiogenesis-related factors. siRNAs were used to detect the P53-VEGF axis. RESULTS HBx expressed in hepatoma cells suppressed VEGF secretion, and subsequently inhibited the proliferation, migration and tube formation of EA.hy926 cells in a high glucose condition, while attenuating these in the lower glucose condition. Furthermore, the p53-VEGF axis was required for the dual role of HBx in angiogenesis. Additionally, HBx mainly regulated the nuclear p53. CONCLUSIONS These data suggest that the dual roles of HBx confer hepatoma cells to remain in a glucose-rich environment and escape from the glucose-low milieu through tumor vessels, promoting liver tumor progression overall. We exclusively revealed the dual role of HBx on the angiogenesis of liver tumors, which may shed new light on the mechanism and management strategy of HBV- and DM-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Guitao Xiao
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China; Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, 105, Jiuyibei Road, Xin Luo, Longyan, Fujian 364000, PR China
| | - Xiaoyun Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China; Fujian Medical University Cancer Center, Fujian Medical University, 1, Xuefubei Road, Minhou, Fuzhou, Fujian 350001, PR China
| | - Tingxuan Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China
| | - Zhixin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China
| | - Yuehong Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China
| | - Rongfeng Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China; Fujian Medical University Cancer Center, Fujian Medical University, 1, Xuefubei Road, Minhou, Fuzhou, Fujian 350001, PR China.
| | - Xiaozhong Wang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China; Fujian Medical University Cancer Center, Fujian Medical University, 1, Xuefubei Road, Minhou, Fuzhou, Fujian 350001, PR China.
| |
Collapse
|
5
|
Gazzini S, Cerullo R, Soloperto D. VEGF as a Key Actor in Recurrent Respiratory Papillomatosis: A Narrative Review. Curr Issues Mol Biol 2024; 46:6757-6768. [PMID: 39057045 PMCID: PMC11275356 DOI: 10.3390/cimb46070403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recurrent respiratory papillomatosis (RRP) is a benign disease of the upper aerodigestive tract caused by human papillomavirus (HPV) types 6 and 11. The clinical course is unpredictable and some patients, especially younger children, experience a high rate of recurrence with a significant impact on their quality of life. The molecular mechanisms of HPV infection in keratinocytes have been extensively studied throughout the years, with particular regard to its role in causing malignant tumors, like cervical cancer and head and neck carcinomas. A minor but not negligible amount of the literature has investigated the molecular landscape of RRP patients, and some papers have studied the role of angiogenesis (the growth of blood vessels from pre-existing vasculature) in this disease. A central role in this process is played by vascular endothelial growth factor (VEGF), which activates different signaling cascades on multiple levels. The increased knowledge has led to the introduction of the VEGF inhibitor bevacizumab in recent years as an adjuvant treatment in some patients, with good results. This review summarizes the current evidence about the role of VEGF in the pathophysiology of RRP, the molecular pathways activated by binding with its receptors, and the current and future roles of anti-angiogenic treatment.
Collapse
Affiliation(s)
- Sandra Gazzini
- Division of Otolaryngology, Head and Neck Surgery Department, University Hospital of Verona, 37134 Verona, Italy
| | - Raffaele Cerullo
- Division of Otolaryngology, Hospital of Treviso, 31100 Treviso, Italy
| | - Davide Soloperto
- Department of Otorhinolaryngology, University Hospital of Modena, 41125 Modena, Italy
| |
Collapse
|
6
|
Sawada R, Nishioka N, Kim YH, Kiyomi F, Uchino J, Takayama K. A protocol of a single arm, prospective, open-label, multicenter, phase II study of ramucirumab and erlotinib in treatment-naïve non-small cell lung cancer patients with EGFR mutation and brain metastases (SPIRAL-BRAIN study). Transl Lung Cancer Res 2023; 12:1802-1806. [PMID: 37691860 PMCID: PMC10483078 DOI: 10.21037/tlcr-23-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
Background The combination of erlotinib, a first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), and ramucirumab, an anti-vascular endothelial growth factor receptor (VEGFR) antibody, is one of the most effective treatments for patients with non-small cell lung cancer (NSCLC) and EGFR mutation. However, little is known about the safety and efficacy of this combination treatment for patients with brain metastases. Methods This single arm, prospective, open-label, multicenter, phase II study will recruit 32 NSCLC patients with EGFR mutation (except for T790M mutation) and brain metastases (asymptomatic or mild symptoms). Patients will be treated with erlotinib at a dose of 150 mg/body once daily and ramucirumab at a dose of 10 mg/kg once every 2 weeks. The primary endpoint is intracranial overall response rate (iORR) and the secondary endpoints are intracranial disease control rate, intracranial progression-free survival (iPFS), extracranial ORR, extracranial PFS, ORR, overall PFS, overall survival (OS), and safety. The planned number of enrollments was calculated based on a one-sample binomial test (normal approximation) with a two-sided α level of 5% and 80% power, assuming that the expected iORR is 65% and the iORR threshold is 40%. Discussion A prospective study to confirm the safety and efficacy of the combined erlotinib plus ramucirumab treatment for NSCLC patients with EGFR mutation and brain metastases is ongoing. Trial Registration Japan Registry of Clinical Trials, jRCTs051220059.
Collapse
Affiliation(s)
- Ryo Sawada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Respiratory Medicine, Fukuchiyama City Hospital, Kyoto, Japan
| | - Young Hak Kim
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiaki Kiyomi
- Department of Statistics and Data Center, Clinical Research Support Center Kyushu, Fukuoka, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Internal Medicine, Bannan Central Hospital, Shizuoka, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Tang X, Hu Y. The role of TCGA molecular classification in clear cell endometrial carcinoma. Front Oncol 2023; 13:1147394. [PMID: 37456263 PMCID: PMC10339738 DOI: 10.3389/fonc.2023.1147394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Clear cell endometrial carcinoma (CCEC) represents a relatively rare and heterogeneous entity. Based on The Cancer Genome Atlas (TCGA) molecular classification, the risk stratification and management of endometrial cancer (EC) have been improved. Although the relationship of CCEC with the TCGA classification is less well understood, data has emerged to suggest that molecular classification plays an important role in the prognosis and management of CCEC. Most of patients with CCEC are characterized by p53abn or NSMP type and the prognosis of these patients is poor, whereas those with MMRd or POLEmut seem to have a favorable prognosis. Adjuvant therapy is recommended in CCEC with p53abn and NSMP. Advanced/recurrent CCEC with MMRd benefit much more from immune checkpoint inhibitors after the failure of platinum-based chemotherapy. In addition, bevacizumab plus chemotherapy upfront seems to improve outcomes of advanced/recurrent patients whose tumors harbored mutated TP53, including CCECs with p53abn. Further studies which exclusively recruit CCEC are urgently needed to better understand the role of molecular classification in CCEC. This review will provide an overview of our current understanding of TCGA classification in CCEC.
Collapse
Affiliation(s)
- Xinyue Tang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics & Gynecology, Tianjin, China
| |
Collapse
|
8
|
Chan GHH, Chan E, Kwok CTK, Leung GPH, Lee SMY, Seto SW. The role of p53 in the alternation of vascular functions. Front Pharmacol 2022; 13:981152. [PMID: 36147350 PMCID: PMC9485942 DOI: 10.3389/fphar.2022.981152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ageing is a risk factor for many degenerative diseases. Cardiovascular diseases (CVDs) are usually big burdens for elderly, caregivers and the health system. During the aging process, normal functions of vascular cells and tissue progressively lost and eventually develop vascular diseases. Endothelial dysfunction, reduced bioavailability of endothelium-derived nitric oxide are usual phenomena observed in patients with cardiovascular diseases. Myriad of studies have been done to investigate to delay the vascular dysfunction or improve the vascular function to prolong the aging process. Tumor suppressor gene p53, also a transcription factor, act as a gatekeeper to regulate a number of genes to maintain normal cell function including but not limited to cell proliferation, cell apoptosis. p53 also crosstalk with other key transcription factors like hypoxia-inducible factor 1 alpha that contribute to the progression of cardiovascular diseases. Therefore, in recent three decades, p53 has drawn scientists’ attention on its effects in vascular function. Though the role of tumor suppressor gene p53 is still not clear in vascular function, it is found to play regulatory roles and may involve in vascular remodeling, atherosclerosis or pulmonary hypertension. p53 may have a divergent role in endothelial and vascular muscle cells in those conditions. In this review, we describe the different effects of p53 in cardiovascular physiology. Further studies on the effects of endothelial cell-specific p53 deficiency on atherosclerotic plaque formation in common animal models are required before the therapeutic potential can be realized.
Collapse
Affiliation(s)
- Gabriel Hoi-Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Enoch Chan
- School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Carsten Tsun-Ka Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, China
| | - Sai-Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Sai-Wang Seto,
| |
Collapse
|
9
|
Barakat A, Alshahrani S, Mohammed Al-Majid A, Saleh Alamary A, Haukka M, Abu-Serie MM, Dömling A, Mazyed EA, Badria FA, El-Senduny FF. Novel spirooxindole based benzimidazole scaffold: In vitro, nanoformulation and in vivo studies on anticancer and antimetastatic activity of breast adenocarcinoma. Bioorg Chem 2022; 129:106124. [PMID: 36174446 DOI: 10.1016/j.bioorg.2022.106124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 12/29/2022]
Abstract
The present work provided in vitro anticancer investigation of novel spirooxindole based benzimidazole scaffold SP1 and its nanoformulation with in vivo evaluation of anticancer and antimetastatic activity as potential drug for breast adenocarcinoma. The synthesized compound SP1 exhibited potent growth inhibitory efficacy against four types of human cancer (breast, prostate, colon and lung) cell lines with IC50 = 2.4, 3.4, 7.24 and 7.81 µM and selectivity index 5.79, 4.08, 1.93 and 1.78 respectively. Flow cytometric analysis illustrated that SP1 exhibited high apoptotic effect on all tested cancer cell lines (38.22-52.3 %). The mode of action of this promising compound was declared by its ability to upregulate the gene expression of p21 (2.29-3.91 folds) with suppressing cyclin D (1.9-8.93 folds) and NF-κB (1.26-1.44 fold) in the treated cancer cells. Also, it enhanced the protein expression of apoptotic marker p53 and moderate binding affinity for MDM2 (KD;7.94 μM). Notwithstanding these promising impressive findings, its selectivity against cancer cell lines and safety on normal cells were improved by nanoformulation. Therefore, SP1 was formulated as ultra-flexible niosomal nanovesicles (transethoniosomes). The ultra-deformability is attributable to the synergism between ethanol and edge activators in improving the flexibility of the nanovesicular membrane. F8 exhibited high deformability index (DI) of (23.48 ± 1.4). It was found that % SP1 released from the optimized transethoniosomal formula (F8) after 12 h (Q12h) was 84.17 ± 1.29 % and its entrapment efficiency (%EE) was 76.48 ± 1.44 %. Based upon the very encouraging and promising in vitro results, an in vivo study was carried out in female Balb/c mice weighing (15-25 g). SP1 did halt the proliferation of breast cancer cells as well as suppressed the metastasis in other organs like liver, lung and heart.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Saleh Alamary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Eman A Mazyed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kaferelsheikh University, Kaferelsheikh P.O. Box 33516, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Fardous F El-Senduny
- Department of Chemistry, Faculty of Science, Mansura University, Mansura 35516, Egypt
| |
Collapse
|
10
|
Uppada S, Zou D, Scott EM, Ko G, Pflugfelder S, Kumar MNVR, Ganugula R. Paclitaxel and Urolithin A Prevent Histamine-Induced Neurovascular Breakdown Alike, in an Ex Vivo Rat Eye Model. ACS Chem Neurosci 2022; 13:2092-2098. [PMID: 35574761 PMCID: PMC9928511 DOI: 10.1021/acschemneuro.1c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurovascular eye problems are better prevented than managed or treated. Despite growing concern of occurrence in aging populations and development secondary to diseases such as diabetes and hypertension, we currently have very few options to tackle this global problem. Creating effective and high-throughput screening strategies is as important as the intervention itself. Here, we present for the first time a robust ex vivo rat eye model of histamine-induced vascular damage for investigating the therapeutic potential of paclitaxel (PTX) and urolithin A (UA) as alternatives to dexamethasone for preventing vascular damage in the retina. Extensive loss of vascularization and apoptosis were observed in the histamine-challenged group and successfully prevented in the intervention groups, more significantly in the PTX and UA. These important early results indicate that PTX and UA could be developed as potential preventive strategies for a wide variety of retinal diseases.
Collapse
Affiliation(s)
- Srijayaprakash Uppada
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States; College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Dianxiong Zou
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Erin M. Scott
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Gladys Ko
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Stephen Pflugfelder
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - M. N. V. Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States; College of Community Health Sciences and Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35401, United States; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States; Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States; Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States; College of Community Health Sciences and Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35401, United States; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States; Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
11
|
Context dependent role of p53 during the interaction of hepatocellular carcinoma and endothelial cells. Microvasc Res 2022; 142:104374. [PMID: 35523268 DOI: 10.1016/j.mvr.2022.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND During the progression of hepatocellular carcinoma (HCC), several angiogenic factors are overexpressed in the hepatic microenvironment, which play a critical role in governing the phenotype of the endothelial cells. Mutation in the p53 gene (TP53) is a common event in HCC that may dysregulate the angiogenic signals. However, their functional messages remain largely unexplored at the onset of metastasis. METHODS Role of p53 was studied by siRNA mediated silencing of p53 in HepG2 cells (WTp53), collecting and analyzing their conditioned medium, followed by indirect co-culture with endothelial cells (HUVECs). Gene and protein expression in HCC cells and endothelial cells was studied by RT-qPCR and western blotting respectively. β-catenin protein expression and localization were analyzed by immunocytochemistry. RESULTS We have studied a cell-to-cell interaction model to investigate the crosstalk of endothelial and hepatoma cells by either knocking down p53 or by using p53 null low metastatic HCC cell line. In the absence of p53, the HCC cells influence the migration and vascular network formation of endothelial cells through paracrine signaling of VEGF. Secretory VEGF activated the VEGF receptor-2 along with the survival signaling in endothelial cells. However, the β-catenin signal is upregulated in endothelial cells only during interaction with metastatic set up irrespective of absence and presence of p53, indicating context-dependent participation of p53 during communication between hepatoma cells and endothelial cells. CONCLUSION This study highlights that the role of p53 on cellular responses during interaction of hepatocellular carcinoma and endothelial cells is distinct to cell types and context.
Collapse
|
12
|
Uzun S, Korkmaz Y, Wuerdemann N, Arolt C, Puladi B, Siefer OG, Dönmez HG, Hufbauer M, Akgül B, Klussmann JP, Huebbers CU. Comprehensive Analysis of VEGFR2 Expression in HPV-Positive and -Negative OPSCC Reveals Differing VEGFR2 Expression Patterns. Cancers (Basel) 2021; 13:cancers13205221. [PMID: 34680369 PMCID: PMC8533978 DOI: 10.3390/cancers13205221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
VEGF signaling regulated by the vascular endothelial growth factor receptor 2 (VEGFR2) plays a decisive role in tumor angiogenesis, initiation and progression in several tumors including HNSCC. However, the impact of HPV-status on the expression of VEGFR2 in OPSCC has not yet been investigated, although HPV oncoproteins E6 and E7 induce VEGF-expression. In a series of 56 OPSCC with known HPV-status, VEGFR2 expression patterns were analyzed both in blood vessels from tumor-free and tumor-containing regions and within tumor cells by immunohistochemistry using densitometry. Differences in subcellular colocalization of VEGFR2 with endothelial, tumor and stem cell markers were determined by double-immunofluorescence imaging. Immunohistochemical results were correlated with clinicopathological data. HPV-infection induces significant downregulation of VEGFR2 in cancer cells compared to HPV-negative tumor cells (p = 0.012). However, with respect to blood vessel supply, the intensity of VEGFR2 staining differed only in HPV-positive OPSCC and was upregulated in the blood vessels of tumor-containing regions (p < 0.0001). These results may suggest different routes of VEGFR2 signaling depending on the HPV-status of the OPSCC. While in HPV-positive OPSCC, VEGFR2 might be associated with increased angiogenesis, in HPV-negative tumors, an autocrine loop might regulate tumor cell survival and invasion.
Collapse
Affiliation(s)
- Senem Uzun
- Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, 50937 Cologne, Germany; (S.U.); (O.G.S.)
| | - Yüksel Korkmaz
- Department of Periodontology and Operative and Preventive Dentistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Nora Wuerdemann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Cologne, 50937 Cologne, Germany;
- Centre for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne and University Hospital Cologne, 50931 Cologne, Germany
| | - Christoph Arolt
- Institute for Pathology, University Hospital of Cologne, 50937 Cologne, Germany;
| | - Behrus Puladi
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Oliver G. Siefer
- Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, 50937 Cologne, Germany; (S.U.); (O.G.S.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Cologne, 50937 Cologne, Germany;
| | - Hanife G. Dönmez
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, 50935 Cologne, Germany; (H.G.D.); (M.H.); (B.A.)
- Department of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, 50935 Cologne, Germany; (H.G.D.); (M.H.); (B.A.)
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, 50935 Cologne, Germany; (H.G.D.); (M.H.); (B.A.)
| | - Jens P. Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Cologne, 50937 Cologne, Germany;
- Centre for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne and University Hospital Cologne, 50931 Cologne, Germany
- Correspondence: (J.P.K.); (C.U.H.)
| | - Christian U. Huebbers
- Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, 50937 Cologne, Germany; (S.U.); (O.G.S.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Cologne, 50937 Cologne, Germany;
- Correspondence: (J.P.K.); (C.U.H.)
| |
Collapse
|
13
|
Chen X, Xie J, Cui Y, Zhang L, Yu H, Chen J, He M, Liu S, Huang T, Chen L, Fang D, Zhu Y, Zhang S, Meng Q. Cytoskeleton-associated protein 2 (CKAP2) is regulated by vascular endothelial growth factor and p53 in retinal capillary endothelial cells under high-glucose conditions. Mol Cell Endocrinol 2021; 535:111378. [PMID: 34216644 DOI: 10.1016/j.mce.2021.111378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE We previously found the mutation frequency of cytoskeleton-associated protein 2 (CKAP2) was significantly increased in proliferative diabetic retinopathy (PDR) patients through whole exome sequencing. The present study was conducted to explore the expression and possible mechanism of CKAP2 in PDR patients and human retinal capillary endothelial cells (HRCECs) under high-glucose (HG) conditions. METHODS Expression of CKAP2 and p53 in the vitreous fluid and fibrovascular membrane (FVM) of PDR patients and HRCECs under HG conditions was observed. Cell proliferation, migration and tubule formation were assessed. Ranibizumab and siRNA transfection were used in the inhibition assay. RESULTS CKAP2 and p53 were significantly increased in the ocular tissues of PDR patients. HG combined with VEGF treatment significantly up-regulated expression of CKAP2 and p53 in HRCECs. Inhibition of CKAP2 attenuated the abilities of cell proliferation, migration and tube formation under HG conditions. Blocking VEGF or p53 significantly decreased CKAP2 expression, whereas inhibition of CKAP2 failed to alter the level of VEGF or p53. CONCLUSIONS CKAP2 is involved in the pathogenesis of PDR and regulated by VEGF and p53 under HG conditions.
Collapse
Affiliation(s)
- Xiangting Chen
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Jie Xie
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Cui
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liang Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Chen
- Research Department of Medical Science, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengxia He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tian Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lu Chen
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Dong Fang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Ying Zhu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China.
| | - Qianli Meng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
14
|
Chang H, Zhang X, Li B, Meng X. PARP1 Is Targeted by miR-519a-3p and Promotes the Migration, Invasion, and Tube Formation of Ovarian Cancer Cells. Cancer Biother Radiopharm 2021; 37:824-836. [PMID: 34009012 DOI: 10.1089/cbr.2020.4394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Poly ADP-ribose polymerase 1 (PARP1) has been discovered to be implicated in ovarian cancer (OC), but its interaction with microRNA (miR)-519a-3p remained poorly understood. This study aimed to uncover their roles and interactions in OC. Materials and Methods: Clinical tissue from OC patients and adjacent normal tissue were collected, and the survival rates of OC patients with high or low PARP1 expression were analyzed by Kaplan-Meier curve. After transfection, OC cell viability, migration, and tube formation were detected with cell counting kit-8 (CCK-8) assay, scratch assay, and tube formation assay, respectively. Target gene of miR-519a-3p and potential binding sites between them were predicted with TargetScan and confirmed using dual-luciferase reporter assay. Relative expressions of miR-519a-3p, PARP1, E-cadherin, N-cadherin, SNAIL, vascular endothelial growth factor (VEGF), and p53 were measured by quantitative real-time polymerase chain reaction and Western blot as needed. Results: PARP1 expression was upregulated in OC, which was related to poor prognosis of OC patients. Silencing PARP1 decreased PARP1 expression and suppressed viability, migration, invasion, and tube formation in OC cells, while overexpressed PARP1 did the opposite. PARP1 was the target gene of miR-519a-3p, and it reversed the effects of miR-519a-3p on the migration, invasion, and tube formation of OC cells by upregulating the expressions of PAR, PARP1, N-cadherin, SNAIL, and VEGF and downregulating those of E-cadherin and p53. Conclusion: PARP1, a target gene of miR-519a-3p, promoted the migration, invasion, and tube formation of OC cells, providing a possible therapeutic target for treatment of OC patients.
Collapse
Affiliation(s)
- Hua Chang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Baixue Li
- Department of Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangkai Meng
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Mutated p53 portends improvement in outcomes when bevacizumab is combined with chemotherapy in advanced/recurrent endometrial cancer: An NRG Oncology study. Gynecol Oncol 2021; 161:113-121. [PMID: 33541735 DOI: 10.1016/j.ygyno.2021.01.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Successfully combining targeted agents with chemotherapy is an important future goal for cancer therapy. However, an improvement in patient outcomes requires an enhanced understanding of the tumor biomarkers that predict for drug sensitivity. NRG Oncology/Gynecologic Oncology Group (GOG) Study GOG-86P was one of the first attempts to combine targeted agents (bevacizumab or temsirolimus) with chemotherapy in patients with advanced endometrial cancer. Herein we performed exploratory analyses to examine the relationship between mutations in TP53, the most commonly mutated gene in cancer, with outcomes on GOG-86P. METHODS TP53 mutational status was determined and correlated with progression-free survival (PFS) and overall survival (OS) on GOG-86P. RESULTS Mutations in TP53 were associated with improved PFS and OS for patients that received bevacizumab as compared to temsirolimus (PFS: HR 0.48, 95% CI 0.31, 0.75; OS: HR: 0.61, 95% CI 0.38, 0.98). By contrast, there was no statistically significant difference in PFS or OS between arms for cases with WT TP53. CONCLUSIONS This exploratory study suggests that combining chemotherapy with bevacizumab, but not temsirolimus, may enhance PFS and OS for patients whose tumors harbor mutant p53. These data set the stage for larger clinical studies evaluating the potential of TP53 mutational status as a biomarker to guide choice of treatment for endometrial cancer patients. Clintrials.gov: NCT00977574.
Collapse
|
16
|
Molecular Targeting of VEGF with a Suramin Fragment-DOCA Conjugate by Mimicking the Action of Low Molecular Weight Heparins. Biomolecules 2020; 11:biom11010046. [PMID: 33396366 PMCID: PMC7823656 DOI: 10.3390/biom11010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/01/2023] Open
Abstract
Molecular targeting of growth factors has shown great therapeutic potential in pharmaceutical research due to their roles in pathological conditions. In the present study, we developed a novel suramin fragment and deoxycholic acid conjugate (SFD) that exhibited the potential to bind to the heparin-binding site (HBD) of vascular endothelial growth factor (VEGF) and to inhibit its pathogenic action for the first time. Notably, SFD was optimally designed for binding to the HBD of VEGF using the naphthalenetrisulfonate group, allowing to observe its excellent binding efficacy in a surface plasmon resonance (SPR) study, showing remarkable binding affinity (KD = 3.8 nM) as a small molecule inhibitor. In the tubular formation assay, it was observed that SFD could bind to HBD and exhibit antiangiogenic efficacy by inhibiting VEGF, such as heparins. The cellular treatment of SFD resulted in VEGF-inhibitory effects in human umbilical vein endothelial cells (HUVECs). Therefore, we propose that SFD can be employed as a novel drug candidate to inhibit the pathophysiological action of VEGF in diseases. Consequently, SFD, which has a molecular structure optimized for binding to HBD, is put forward as a new chemical VEGF inhibitor.
Collapse
|
17
|
Rahat MA, Safieh M, Simanovich E, Pasand E, Gazitt T, Haddad A, Elias M, Zisman D. The role of EMMPRIN/CD147 in regulating angiogenesis in patients with psoriatic arthritis. Arthritis Res Ther 2020; 22:240. [PMID: 33054815 PMCID: PMC7557017 DOI: 10.1186/s13075-020-02333-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Angiogenesis plays a central role in the pathophysiology of rheumatic diseases. Patients with psoriatic arthritis (PsA) demonstrate increased vascularity over patients with rheumatoid arthritis (RA), with unknown mechanisms. METHODS We evaluated the serum levels of several pro- and anti-angiogenic factors in 62 PsA patients with active disease, 39 PsA patients in remission, 33 active RA patients, and 33 healthy controls (HC). Additionally, we used an in vitro co-culture system of fibroblast (HT1080) and monocytic-like (MM6) cell lines, to evaluate how their interactions affect the secretion of angiogenic factors and angiogenesis promoting abilities using scratch and tube formation assays. RESULTS PsA patients, regardless of disease activity, exhibited higher levels of EMMPRIN/CD147, IL-17, and TNF-α relative to RA patients or HC. Factors, such as IL-6, and the ratio between CD147 and thrombospondin-1, exhibited elevated levels in active PsA patients relative to PsA patients in remission. Secretion of CD147, VEGF, and MMP-9 was increased in vitro. CD147 neutralization with an antibody reduced these levels and the ability of endothelial cells to form tube-like structures or participate in wound healing. CONCLUSIONS CD147 plays a role in mediating angiogenesis in PsA, and the therapeutic possibilities of neutralizing it merit further investigation.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel.
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.
| | - Mirna Safieh
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel
| | - Eliran Pasand
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Tal Gazitt
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Amir Haddad
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Muna Elias
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Devy Zisman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel.
| |
Collapse
|
18
|
Silveira VS, Borges KS, Santos VS, Ruckert MT, Vieira GM, Vasconcelos EJR, Nagano LFP, Tone LG, Scrideli CA. SHOC2 scaffold protein modulates daunorubicin-induced cell death through p53 modulation in lymphoid leukemia cells. Sci Rep 2020; 10:15193. [PMID: 32938995 PMCID: PMC7495473 DOI: 10.1038/s41598-020-72124-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/20/2020] [Indexed: 11/14/2022] Open
Abstract
SHOC2 scaffold protein has been mainly related to oncogenic ERK signaling through the RAS-SHOC2-PP1 phosphatase complex. In leukemic cells however, SHOC2 upregulation has been previously related to an increased 5-year event-free survival of pediatric pre-B acute lymphoid leukemia, suggesting that SHOC2 could be a potential prognostic marker. To address such paradoxical function, our study investigated how SHOC2 impact leukemic cells drug response. Our transcriptome analysis has shown that SHOC2 can modulate the DNA-damage mediated by p53. Notably, upon genetic inhibition of SHOC2 we observed a significant impairment of p53 expression, which in turn, leads to the blockage of key apoptotic molecules. To confirm the specificity of DNA-damage related modulation, several anti-leukemic drugs has been tested and we did confirm that the proposed mechanism impairs cell death upon daunorubicin-induced DNA damage of human lymphoid cells. In conclusion, our study uncovers new insights into SHOC2 function and reveals that this scaffold protein may be essential to activate a novel mechanism of p53-induced cell death in pre-B lymphoid cells.
Collapse
Affiliation(s)
- Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Kleiton Silva Borges
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela Maciel Vieira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Luis Fernando Peinado Nagano
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Alberto Scrideli
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Maroof H, Irani S, Arianna A, Vider J, Gopalan V, Lam AKY. Interactions of Vascular Endothelial Growth Factor and p53 with miR-195 in Thyroid Carcinoma: Possible Therapeutic Targets in Aggressive Thyroid Cancers. Curr Cancer Drug Targets 2020; 19:561-570. [PMID: 29956628 DOI: 10.2174/1568009618666180628154727] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The clinical pathological features, as well as the cellular mechanisms of miR-195, have not been investigated in thyroid carcinoma. OBJECTIVE The aim of this study is to identify the interactions of vascular endothelial growth factor (VEGF), p53 and miR-195 in thyroid carcinoma. The clinical and pathological features of miR-195 were also investigated. METHODS The expression levels of miR-195 were identified in 123 primary thyroid carcinomas, 40 lymph nodes with metastatic papillary thyroid carcinomas and seven non-neoplastic thyroid tissues (controls) as well as two thyroid carcinoma cell lines, B-CPAP (from metastasizing human papillary thyroid carcinoma) and MB-1 (from anaplastic thyroid carcinoma), by the real-time polymerase chain reaction. Using Western blot and immunofluorescence, the effects of exogenous miR-195 on VEGF-A and p53 protein expression levels were examined. Then, cell cycle and apoptosis assays were performed to evaluate the roles of miR-195 in cell cycle progression and apoptosis. RESULTS The expression of miR-195 was downregulated in majority of the papillary thyroid carcinoma tissue as well as in cells. Introduction of exogenous miR-195 resulted in downregulation of VEGF-A and upregulation of p53 protein expressions. Upregulation of miR-195 in thyroid carcinoma cells resulted in cell cycle arrest. Moreover, we demonstrated that miR-195 inhibits cell cycle progression by induction of apoptosis in the thyroid carcinoma cells. CONCLUSION Our findings showed for the first time that miR-195 acts as a tumour suppressor and regulates cell cycle progression and apoptosis by targeting VEGF-A and p53 in thyroid carcinoma. The current study exhibited that miR-195 might represent a potential therapeutic target for patients with thyroid carcinomas having aggressive clinical behaviour.
Collapse
Affiliation(s)
- Hamidreza Maroof
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Soussan Irani
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Dental Research Centre, Research Centre for Molecular Medicine, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Arianna
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Jelena Vider
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
20
|
Context-dependent AMPK activation distinctly regulates TAp73 stability and transcriptional activity. Signal Transduct Target Ther 2018; 3:20. [PMID: 30057793 PMCID: PMC6062496 DOI: 10.1038/s41392-018-0020-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
TAp73, the homologue of the tumour suppressor p53, has dual roles in tumourigenesis: both as a tumour suppressor and as a promoter of tumour growth. We have recently shown that hypoxia, a condition prevalent in tumours, results in the stabilisation of TAp73 through a mechanism involving HIF-1α-mediated repression of the E3 ligase Siah1. Elevated TAp73 in turn regulates the angiogenic transcriptional programme, exemplified by vegf-A activation, thereby promoting angiogenesis and tumour growth. To further understand hypoxia-mediated TAp73 regulation, we have focused on the Adenosine monophosphate (AMP)-dependent protein kinase (AMPK) signalling pathway induced by hypoxia. We show that hypoxia-mediated AMPK activation is required for efficient TAp73 stabilisation, through multiple means by using AMPK-deficient cells or inhibiting its activity and expression. Conversely, direct AMPK activation using its activator AICAR is also sufficient to induce TAp73 stabilisation but this is independent of putative AMPK phosphorylation sites on TAp73, HIF-1α activation, and transcriptional repression of Siah1. Furthermore, while vegf-A up-regulation upon hypoxia requires AMPK, direct activation of AMPK by AICAR does not activate vegf-A. Consistently, supernatant from cells exposed to hypoxia, but not AICAR, was able to induce tube formation in HUVECs. These data therefore highlight that the processes of TAp73 stabilisation and transcriptional activation of angiogenic target genes by AMPK activation can be decoupled. Collectively, these results suggest that the context of AMPK activation determines the effect on TAp73, and proposes a model in which hypoxia-induced TAp73 stabilisation occurs by parallel pathways converging to mediate its transactivation potential. The stabilisation of an important signalling protein can fuel tumour growth and progression—but only under the right environmental conditions. Paradoxically, the TAp73 protein can both suppress tumorigenesis and stimulate formation of tumour-feeding blood vessels. The latter effect appears to be linked with exposure to oxygen-poor conditions within solid tumours, and researchers led by Kanaga Sabapathy at Singapore’s National Cancer Centre recently explored the mechanisms regulating TAp73 activity. Sabapathy’s team showed that the action of a protein called AMPK helps to prevent TAp73 from being degraded. However, activation of AMPK in isolation is insufficient to promote TAp73-mediated blood vessel growth. Instead, the researchers only observed this effect when AMPK was specifically activated due to oxygen deprivation, revealing the existence of multiple TAp73-regulating pathways that could explain this protein’s seemingly contradictory effects on cell growth.
Collapse
|
21
|
|
22
|
Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia. Int J Mol Sci 2017; 18:ijms18091897. [PMID: 28869535 PMCID: PMC5618546 DOI: 10.3390/ijms18091897] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 01/08/2023] Open
Abstract
Aging is a major factor in the decline of limb blood flow with ischemia. However, the underlying mechanism remains unclear. We investigated the role of mitochondrial reactive oxygen species (ROS) with regard to limb perfusion recovery in aging during ischemia. We performed femoral artery ligation in young and old mice with or without treatment with a scavenger of mitochondrial superoxide, MitoTEMPO (180 μg/kg/day, from pre-operative day 7 to post-operative day (POD) 21) infusion using an implanted mini-pump. The recoveries of cutaneous blood flow in the ischemic hind limb were lower in old mice than in young mice but were improved in MitoTEMPO-treated old mice. Mitochondrial DNA damage appeared in ischemic aged muscles but was eliminated by MitoTEMPO treatment. For POD 2, MitoTEMPO treatment suppressed the expression of p53 and the ratio of Bax/Bcl2 and upregulated the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in ischemic aged skeletal muscles. For POD 21, MitoTEMPO treatment preserved the expression of PGC-1α in ischemic aged skeletal muscle. The ischemic soleus of old mice showed a lower mitochondrial respiratory control ratio in POD 21 compared to young mice, which was recovered in MitoTEMPO-treated old mice. Scavenging of mitochondrial superoxide attenuated mitochondrial DNA damage and preserved the mitochondrial respiration, in addition to suppression of the expression of p53 and preservation of the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) in ischemic skeletal muscles with aging. Resolution of excessive mitochondrial superoxide could be an effective therapy to recover blood flow of skeletal muscle during ischemia in senescence.
Collapse
|
23
|
Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol 2017; 233:2982-2992. [PMID: 28608554 DOI: 10.1002/jcp.26051] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
As a young science, nanotechnology promptly integrated into the current oncology practice. Accordingly, various nanostructure particles were developed to reduce drug toxicity and allow the targeted delivery of various diagnostic and therapeutic compounds to the cancer cells. New sophisticated nanosystems constantly emerge to improve the performance of current anticancer modalities. Targeting tumor vasculature is an attractive strategy to fight cancer. Though the idea was swiftly furthered from basic science to the clinic, targeting tumor vasculature had a limited potential in patients, where tumors relapse due to the development of multiple drug resistance and metastasis. The aim of this review is to discuss the advantages of nanosystem incorporation with various vascular targeting agents, including (i) endogen anti-angiogenic agents; (ii) inhibitors of angiogenesis-related growth factors; (iii) inhibitors of tyrosine kinase receptors; (iv) inhibitors of angiogenesis-related signaling pathways; (v) inhibitors of tumor endothelial cell-associated markers; and (vi) tumor vascular disrupting agents. We also review the efficacy of nanostructures as natural vascular targeting agents. The efficacy of each approach in cancer therapy is further discussed.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran.,Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Molecular Targeting Therapy Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Joshi S, Yang J, Wang Q, Li P, Wang H, Zhang Q, Xiong Y, Pickering BF, Parker-Thornburg J, Behringer RR, Yu D. 14-3-3ζ loss impedes oncogene-induced mammary tumorigenesis and metastasis by attenuating oncogenic signaling. Am J Cancer Res 2017; 7:1654-1664. [PMID: 28861322 PMCID: PMC5574938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 06/07/2023] Open
Abstract
The 14-3-3ζ protein belongs to the 14-3-3 family of regulatory eukaryotic proteins that modulate signaling by binding to wide variety of signaling molecules. 14-3-3ζ expression is amplified in over 40% breast cancer patients and is associated with a poor prognosis. Various in vitro and xenograft models have suggested that attenuating 14-3-3ζ expression may provide therapeutic benefits but there has been no study looking at tumor onset and metastasis in breast cancer mouse models with a targeted deletion of 14-3-3ζ. We generated a 14-3-3ζ knockout mouse model to characterize the role of 14-3-3ζ in breast cancer progression. Crossing 14-3-3ζ-/- mice with MMTV-PyMT and MMTV-Neu transgenic mice revealed that loss of 14-3-3ζ prolonged tumor latency and reduced lung metastasis as compared to MMTV-PyMT and MMTV-Neu mice. Mechanistically, loss of 14-3-3ζ suppressed tumor proliferation and angiogenesis and promoted apoptosis by suppressing the Akt and Erk pathway and upregulated the expression of the tumor suppressor p53. Our results provide evidence showing that attenuating 14-3-3ζ expression/activity in mammary tumors can provide a therapeutic benefit.
Collapse
Affiliation(s)
- Sonali Joshi
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Jun Yang
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- University of Texas Health Science Center Graduate School of Biomedical SciencesHouston, Texas 77030, USA
| | - Qingfei Wang
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Ping Li
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Hai Wang
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Qingling Zhang
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Yan Xiong
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Brian F Pickering
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- University of Texas Health Science Center Graduate School of Biomedical SciencesHouston, Texas 77030, USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- University of Texas Health Science Center Graduate School of Biomedical SciencesHouston, Texas 77030, USA
| | - Dihua Yu
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- University of Texas Health Science Center Graduate School of Biomedical SciencesHouston, Texas 77030, USA
- Center for Molecular Medicine, China Medical UniversityTaichung 40402, Taiwan
| |
Collapse
|
25
|
Qiu MK, Wang SQ, Pan C, Wang Y, Quan ZW, Liu YB, Ou JM. ROCK inhibition as a potential therapeutic target involved in apoptosis in hemangioma. Oncol Rep 2017; 37:2987-2993. [PMID: 28339093 DOI: 10.3892/or.2017.5515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/27/2016] [Indexed: 11/06/2022] Open
Abstract
Gene expression was examined in hemangiomas (HA), benign, birthmark-like tumors occurring in infancy, and confirmed in HA-derived endothelial cells (HDEC), for which cell proliferation and apoptosis were also assessed. Protein and mRNA accumulation of Rho-associated protein kinase (ROCK), vascular endothelial growth factor (VEGF), Ki-67 and proliferating cell nuclear antigen was significantly higher in proliferating phase HAs than in involuting phase HAs. In contrast, p53 and caspase-3 exhibited higher levels of accumulation in involuting than proliferating HAs. Cell apoptotic indexes were low in proliferating phase HAs and increased in involuting phase HAs. HDECs were treated with the ROCK inhibitor Y-27632. Y-27632 induced p53 expression and downregulated VEGF expression, significantly inhibited cell proliferation, and induced cell apoptosis in HA cells. The inhibitor effects were confirmed in HAs from HDEC-injected nude mice. These results indicated that ROCK is involved in p53-mediated apoptosis and VEGF expression in HA cells and suggested that such inhibition may be exploited for future HA therapies.
Collapse
Affiliation(s)
- Ming-Ke Qiu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Shu-Qing Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Chang Pan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yang Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhi-Wei Quan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ying-Bin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jing-Min Ou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
26
|
Abstract
Oncolytic virus (OV) therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53) or another p53 family member (TP63 or TP73) were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.
Collapse
|
27
|
Wheler JJ, Janku F, Naing A, Li Y, Stephen B, Zinner R, Subbiah V, Fu S, Karp D, Falchook GS, Tsimberidou AM, Piha-Paul S, Anderson R, Ke D, Miller V, Yelensky R, Lee JJ, Hong D, Kurzrock R. TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics. Mol Cancer Ther 2016; 15:2475-2485. [PMID: 27466356 DOI: 10.1158/1535-7163.mct-16-0196] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/10/2016] [Indexed: 11/16/2022]
Abstract
TP53 tumor-suppressor gene mutations are among the most frequent abnormalities in cancer, affecting approximately 40% of patients. Yet, there is no accepted way to target these alterations in the clinic. At the same time, antagonists of VEGFR or its ligand are best-selling oncology drugs, with multiple, expensive compounds approved. Although only a subset of patients benefit from these antiangiogenesis agents, no relevant biomarker has been identified. Interestingly, TP53 mutations upregulate VEGF-A and VEGFR2. We prospectively enrolled 500 patients, to be interrogated by comprehensive genomic profiling (CGP) (next-generation sequencing, 236 genes), and to be matched, whenever possible, with targeted agents. Herein, we analyze outcomes based on VEGF/VEGFR inhibitor treatment and presence of TP53 mutations. Of the 500 patients, 188 (37.6%; with ≥1 alteration) were treated; 106 (56% of 188) had tumors that harbored TP53 mutations. VEGF/VEGFR inhibitor therapy was independently associated with improvement in all outcome parameters [rate of stable disease (SD) ≥6 months/partial and complete remission (PR/CR); (31% versus 7%; TP53-mutant patients (who received no other molecular-matched agents) treated with versus without VEGF/VEGFR inhibitors), time-to-treatment failure, and overall survival (multivariate analysis: all P ≤ 0.01)] for the patients harboring TP53-mutant cancers, but improvement was not seen in any of these parameters for patients with TP53 wild-type neoplasms. We conclude that TP53 mutations predict sensitivity to VEGF/VEGFR inhibitors in the clinic. TP53 alterations may therefore be a ready biomarker for treatment with antiangiogenesis agents, a finding of seminal importance across the cancer field. Mol Cancer Ther; 15(10); 2475-85. ©2016 AACR.
Collapse
Affiliation(s)
- Jennifer J Wheler
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yali Li
- Foundation Medicine, Cambridge, Massachusetts
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ralph Zinner
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Karp
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarina Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roosevelt Anderson
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Danxia Ke
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Moores Cancer Center, The University of California, San Diego, La Jolla, California.
| |
Collapse
|
28
|
Hendrix MJC, Seftor EA, Seftor REB, Chao JT, Chien DS, Chu YW. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. Pharmacol Ther 2016; 159:83-92. [PMID: 26808163 PMCID: PMC4779708 DOI: 10.1016/j.pharmthera.2016.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 1999, the American Journal of Pathology published an article, entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry" by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a "citation classic" (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways--each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model.
Collapse
Affiliation(s)
- Mary J C Hendrix
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| | - Elisabeth A Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States
| | - Richard E B Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | | | | | | |
Collapse
|
29
|
Abstract
The role of p73, the homologue of the tumor suppressor p53, in regulating angiogenesis has recently been extensively investigated, resulting in the publication of five articles. Of these, two studies suggested a suppressive role, while the others implied a stimulatory role for the p73 isoforms in regulating angiogenesis. A negative role for TAp73, the full-length form that is often associated with tumor suppression, in blood vessel formation, is consistent with its general attributes and was proposed to be effected indirectly through the degradation of hypoxia-inducible factor 1α (HIF1-α), the master angiogenic regulator. In contrast, a positive role for TAp73 coincides with its recently understood role in supporting cellular survival and thus tumorigenesis, consistent with TAp73 being not-mutated but rather often overexpressed in clinical contexts. In the latter case, TAp73 expression was induced by hypoxia via HIF1-α, and it appears to directly promote angiogenic target gene activation and blood vessel formation independent of HIF1-α. This mini review will provide an overview of these seemingly opposite recent findings as well as earlier data, which collectively establish the definite possibility that TAp73 is indeed capable of both promoting and inhibiting angiogenesis, depending on the cellular context.
Collapse
|
30
|
Braicu O, Pileczki V, Braicu C, Achimas-Cadariu P, Irimie A, Berindan-Neagoe I. p53 siRNA - a therapeutic tool with significant implication in the modulation of apoptosis and angiogenic pathways. ACTA ACUST UNITED AC 2015; 88:333-7. [PMID: 26609266 PMCID: PMC4632892 DOI: 10.15386/cjmed-434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/04/2015] [Accepted: 05/09/2015] [Indexed: 12/28/2022]
Abstract
Background and aims siRNAs represent an encouraging novel alternative in cancer therapy as a result of targeting the mutated tumour suppressor genes or activated oncogenes. Targeting oncogenic signals, as the mutated p53 gene that gains oncogenic role, we observed inhibition of migration, a downregulation of specific genes involved in apoptosis but also in angiogenesis, connected with a reduction in invasion rate in the case of p53siRNA therapy. Methods The study was designed to assess the role of p53 by using RNAi (RNA interference) in Hela in vitro cell culture model. Therefore cell migration rate was assessed by using xCELLigence Systems, gene expression for a panel of genes involved in apoptosis and angiogenesis, and validation of gene expression data at protein level. Results On the selected in vitro model p53 siRNA therapy was correlated with the reduction of cell migration. The downregulation of p53, PTEN, TNFα, NFkB, BCL-2, ICAM-2, VEGF, and FGFb was evidenced as response to p53 inhibition. Conclusion RNAi may be a valuable technology in order to restore the normal cellular phenotype. The results in the current research may also have an important significance outside the context of cervical cancer, by using specific inhibitors for p53 for increasing the therapeutic response in a wide range of tumoral pathology.
Collapse
Affiliation(s)
- Ovidiu Braicu
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Surgical Oncology, The Oncological Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| | - Valentina Pileczki
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patriciu Achimas-Cadariu
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Surgical Oncology, The Oncological Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Surgical Oncology, The Oncological Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Functional Genomics and Experimental Pathology, The Oncological Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| |
Collapse
|
31
|
GUO HUA, LI YANG, GU JUNLIAN, WANG YUE, LIU LIANQIN, ZHANG PING, LIU YANAN. Effect of vascular endothelial growth factor siRNA and wild-type p53 co-expressing plasmid in MDA-MB-231 cells. Mol Med Rep 2015; 13:461-8. [PMID: 26573068 DOI: 10.3892/mmr.2015.4571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 09/22/2015] [Indexed: 11/05/2022] Open
|
32
|
|
33
|
Beyond conventional chemotherapy: Emerging molecular targeted and immunotherapy strategies in urothelial carcinoma. Cancer Treat Rev 2015; 41:699-706. [PMID: 26138514 DOI: 10.1016/j.ctrv.2015.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/17/2015] [Indexed: 01/20/2023]
Abstract
Advanced urothelial carcinoma is frequently lethal, and improvements in cytotoxic chemotherapy have plateaued. Recent technological advances allows for a comprehensive analysis of genomic alterations in a timely manner. The Cancer Genome Atlas (TCGA) study revealed that there are numerous genomic aberrations in muscle-invasive urothelial carcinoma, such as TP53, ARID1A, PIK3CA, ERCC2, FGFR3, and HER2. Molecular targeted therapies against similar genetic alterations are currently available for other malignancies, but their efficacy in urothelial carcinoma has not been established. This review describes the genomic landscape of malignant urothelial carcinomas, with an emphasis on the potential to prosecute these tumours by deploying novel targeted agents and immunotherapy in appropriately selected patient populations.
Collapse
|
34
|
Huang H, Chen AY, Rojanasakul Y, Ye X, Rankin GO, Chen YC. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. J Funct Foods 2015; 15:464-475. [PMID: 26113875 DOI: 10.1016/j.jff.2015.03.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with in vitro (HUVEC) and in vivo (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks.
Collapse
Affiliation(s)
- Haizhi Huang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, China ; College of Science, Technology & Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Allen Y Chen
- Department of Pharmaceutical Science, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Science, West Virginia University, Morgantown, WV 26506, USA
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, China
| | - Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Yi Charlie Chen
- College of Science, Technology & Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| |
Collapse
|
35
|
Rashid A, Kuppa A, Kunwar A, Panda D. Thalidomide (5HPP-33) suppresses microtubule dynamics and depolymerizes the microtubule network by binding at the vinblastine binding site on tubulin. Biochemistry 2015; 54:2149-59. [PMID: 25747795 DOI: 10.1021/bi501429j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thalidomides were initially thought to be broad-range drugs specifically for curing insomnia and relieving morning sickness in pregnant women. However, its use was discontinued because of a major drawback of causing teratogenicity. In this study, we found that a thalidomide derivative, 5-hydroxy-2-(2,6-diisopropylphenyl)-1H-isoindole-1,3-dione (5HPP-33), inhibited the proliferation of MCF-7 with a half-maximal inhibitory concentration of 4.5 ± 0.4 μM. 5HPP-33 depolymerized microtubules and inhibited the reassembly of cold-depolymerized microtubules in MCF-7 cells. Using time-lapse imaging, the effect of 5HPP-33 on the dynamics of individual microtubules in live MCF-7 cells was analyzed. 5HPP-33 (5 μM) decreased the rates of growth and shortening excursions by 34 and 33%, respectively, and increased the time microtubules spent in the pause state by 92% as compared to that of the vehicle-treated MCF-7 cells. 5HPP-33 (5 μM) reduced the dynamicity of microtubules by 62% compared to the control. 5HPP-33 treatment reduced the distance between the two poles of a bipolar spindle, induced multipolarity in some of the treated cells, and blocked cells at mitosis. In vitro, 5HPP-33 bound to tubulin with a weak affinity. Vinblastine inhibited the binding of 5HPP-33 to tubulin, and 5HPP-33 inhibited the binding of BODIPY FL-vinblastine to tubulin. Further, a molecular docking analysis suggested that 5HPP-33 shares its binding site on tubulin with vinblastine. The results provided significant insight into the antimitotic mechanism of action of 5HPP-33 and also suggest a possible mechanism for the teratogenicity of thalidomides.
Collapse
Affiliation(s)
- Aijaz Rashid
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Annapurna Kuppa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
36
|
Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nat Cell Biol 2015; 17:511-23. [PMID: 25774835 DOI: 10.1038/ncb3130] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/06/2015] [Indexed: 12/20/2022]
Abstract
The functional significance of the overexpression of unmutated TAp73, a homologue of the tumour suppressor p53, in multiple human cancers is unclear, but raises the possibility of unidentified roles in promoting tumorigenesis. We show here that TAp73 is stabilized by hypoxia, a condition highly prevalent in tumours, through HIF-1α-mediated repression of the ubiquitin ligase Siah1, which targets TAp73 for degradation. Consequently, TAp73-deficient tumours are less vascular and reduced in size, and conversely, TAp73 overexpression leads to increased vasculature. Moreover, we show that TAp73 is a critical regulator of the angiogenic transcriptome and is sufficient to directly activate the expression of several angiogenic genes. Finally, expression of TAp73 positively correlates with these angiogenic genes in several human tumours, and the angiogenic gene signature is sufficient to segregate the TAp73(Hi)- from TAp73(Low)-expressing tumours. These data demonstrate a pro-angiogenic role for TAp73 in supporting tumorigenesis, providing a rationale for its overexpression in cancers.
Collapse
|
37
|
Schwaederlé M, Lazar V, Validire P, Hansson J, Lacroix L, Soria JC, Pawitan Y, Kurzrock R. VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy. Cancer Res 2015; 75:1187-90. [PMID: 25672981 DOI: 10.1158/0008-5472.can-14-2305] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/26/2014] [Indexed: 12/11/2022]
Abstract
Bevacizumab is one of the most widely used antiangiogenic drugs in oncology, but the overall beneficial effects of this VEGF-A targeting agent are relatively modest, in part due to the lack of a biomarker to select patients most likely to respond favorably. Several molecular aberrations in cancer influence angiogenesis, including mutations in the tumor suppressor gene TP53, which occur frequently in many human malignancies. In this study, we present a multiple regression analysis of transcriptomic data in 123 patients with non-small cell lung cancer (NSCLC) showing that TP53 mutations are associated with higher VEGF-A expression (P = 0.006). This association was interesting given a recent retrospective study showing longer progression-free survival in patients with diverse tumors who receive bevacizumab, if tumors harbor mutant TP53 instead of wild-type TP53. Thus, our current findings linking TP53 mutation with VEGF-A upregulation offered a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53. Overall, this work warrants further evaluation of TP53 as a ready biomarker to predict bevacizumab response in NSCLC and possibly other tumor types.
Collapse
Affiliation(s)
- Maria Schwaederlé
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, La Jolla, California.
| | | | | | | | | | | | | | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, La Jolla, California
| |
Collapse
|
38
|
p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling. Cell Death Differ 2015; 22:1287-99. [PMID: 25571973 DOI: 10.1038/cdd.2014.214] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Vasculogenesis, the establishment of the vascular plexus and angiogenesis, branching of new vessels from the preexisting vasculature, involves coordinated endothelial differentiation, proliferation and migration. Disturbances in these coordinated processes may accompany diseases such as cancer. We hypothesized that the p53 family member p73, which regulates cell differentiation in several contexts, may be important in vascular development. We demonstrate that p73 deficiency perturbed vascular development in the mouse retina, decreasing vascular branching, density and stability. Furthermore, p73 deficiency could affect non endothelial cells (ECs) resulting in reduced in vivo proangiogenic milieu. Moreover, p73 functional inhibition, as well as p73 deficiency, hindered vessel sprouting, tubulogenesis and the assembly of vascular structures in mouse embryonic stem cell and induced pluripotent stem cell cultures. Therefore, p73 is necessary for EC biology and vasculogenesis and, in particular, that DNp73 regulates EC migration and tube formation capacity by regulation of expression of pro-angiogenic factors such as transforming growth factor-β and vascular endothelial growth factors. DNp73 expression is upregulated in the tumor environment, resulting in enhanced angiogenic potential of B16-F10 melanoma cells. Our results demonstrate, by the first time, that differential p73-isoform regulation is necessary for physiological vasculogenesis and angiogenesis and DNp73 overexpression becomes a positive advantage for tumor progression due to its pro-angiogenic capacity.
Collapse
|
39
|
Vagnini LD, Nascimento AM, Canas MDCT, Renzi A, Oliveira-Pelegrin GR, Petersen CG, Mauri AL, Oliveira JBA, Baruffi RL, Cavagna M, Franco JG. The Relationship between Vascular Endothelial Growth Factor 1154G/A Polymorphism and Recurrent Implantation Failure. Med Princ Pract 2015; 24:533-7. [PMID: 26305668 PMCID: PMC5588281 DOI: 10.1159/000437370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/05/2015] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between herpesvirus-associated ubiquitin-specific protease (HAUSP A/G, rs1529916), tumor protein p53 (TP53 Arg/Pro, rs1042522), leukemia inhibitory factor (LIF G/T, rs929271), glycoprotein 130 (gp130 A/T, rs1900173) and vascular endothelial growth factor (VEGF G/A, rs1570360) polymorphisms and recurrent implantation failure (RIF) in Brazilian women. SUBJECTS AND METHODS A total of 120 women with RIF (i.e. those with ≥5 cleaved embryos transferred and a minimum of 2 failed in vitro fertilization/intracytoplasmic sperm injection attempts) were included. The control group involved 89 women who had experienced at least 1 live birth (without any infertility treatment). DNA was extracted from the peripheral blood of all participants, and the abovementioned single-nucleotide polymorphisms (SNPs) were genotyped by real-time polymerase chain reaction. The data were evaluated using Fisher's test. RESULTS A significant difference between the RIF and control groups was found in the VEGF gene where the GG genotype showed a 2.1-fold increased chance of not being included in the RIF group, while the presence of an A allele increased this risk 1.6-fold. No significant differences were found for the other polymorphisms. CONCLUSION This study showed an association between the VEGF -1154G/A polymorphism and RIF in Brazilian women.
Collapse
Affiliation(s)
- Laura D. Vagnini
- Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| | | | | | - Adriana Renzi
- Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| | | | - Claudia G. Petersen
- Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
- Center for Human Reproduction Prof. Franco Jr., Ribeirão Preto, Brazil
| | - Ana L. Mauri
- Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
- Center for Human Reproduction Prof. Franco Jr., Ribeirão Preto, Brazil
| | - João Batista A. Oliveira
- Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
- Center for Human Reproduction Prof. Franco Jr., Ribeirão Preto, Brazil
| | - Ricardo L.R. Baruffi
- Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
- Center for Human Reproduction Prof. Franco Jr., Ribeirão Preto, Brazil
| | - Mario Cavagna
- Center for Human Reproduction Prof. Franco Jr., Ribeirão Preto, Brazil
| | - José G. Franco
- Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
- Center for Human Reproduction Prof. Franco Jr., Ribeirão Preto, Brazil
- *José G. Franco Jr., Center for Human Reproduction Prof. Franco Jr, Avenida Joao Fiusa 689, Ribeirão Preto, Sao Paulo, 14025310 (Brazil), E-Mail
| |
Collapse
|
40
|
Wolter JK, Wolter NE, Blanch A, Partridge T, Cheng L, Morgenstern DA, Podkowa M, Kaplan DR, Irwin MS. Anti-tumor activity of the beta-adrenergic receptor antagonist propranolol in neuroblastoma. Oncotarget 2014; 5:161-72. [PMID: 24389287 PMCID: PMC3960198 DOI: 10.18632/oncotarget.1083] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric tumor of the sympathetic nervous system, which is often associated with elevated catecholamines. More than half of patients with metastatic NB relapse and survival is extremely poor with current therapies. In a high-throughput screen of FDA-approved drugs we identified anti-NB activity for the nonselective β-adrenergic receptor antagonist propranolol hydrochloride. Propranolol inhibited growth of a panel of fifteen NB cell lines irrespective of MYCN status, and treatment induced apoptosis and decreased proliferation. Activity was dependent on inhibition of the β2, and not β1, adrenergic receptor, and treatment resulted in activation of p53 and p73 signaling in vitro. The majority of NB cell lines and primary tumors express β2 adrenergic receptor and higher mRNA levels correlate with improved patient survival, but expression levels did not correlate with in vitro sensitivity to propranolol. Furthermore, propranolol is synergistic with the topoisomerase I inhibitor SN-38 and propranolol inhibits growth of NB xenografts in vivo at doses similar to those used to treat infants with hemangiomas and hypertension. Taken together, our results suggest that propranolol has activity against NB and thus should be considered in combination treatments for patients with relapsed and refractory NB.
Collapse
Affiliation(s)
- Jennifer K Wolter
- Departments of Pediatrics and Medical Biophysics, University of Toronto
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu M, Zhou J, Cheng M, Boriboun C, Biyashev D, Wang H, Mackie A, Thorne T, Chou J, Wu Y, Chen Z, Liu Q, Yan H, Yang Y, Jie C, Tang YL, Zhao TC, Taylor RN, Kishore R, Losordo DW, Qin G. E2F1 suppresses cardiac neovascularization by down-regulating VEGF and PlGF expression. Cardiovasc Res 2014; 104:412-22. [PMID: 25341896 DOI: 10.1093/cvr/cvu222] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS The E2F transcription factors are best characterized for their roles in cell-cycle regulation, cell growth, and cell death. Here we investigated the potential role of E2F1 in cardiac neovascularization. METHODS AND RESULTS We induced myocardial infarction (MI) by ligating the left anterior descending artery in wild-type (WT) and E2F1(-/-) mice. E2F1(-/-) mice demonstrated a significantly better cardiac function and smaller infarct sizes than WT mice. At infarct border zone, capillary density and endothelial cell (EC) proliferation were greater, apoptotic ECs were fewer, levels of VEGF and placental growth factor (PlGF) were higher, and p53 level was lower in E2F1(-/-) than in WT mice. Blockade of VEGF receptor 2 (VEGFR2) signalling with the selective inhibitor SU5416 or with the VEGFR2-blocking antibody DC101 abolished the differences between E2F1(-/-) mice and WT mice in cardiac function, infarct size, capillary density, EC proliferation, and EC apoptosis. In vitro, hypoxia-induced VEGF and PlGF up-regulation was significantly greater in E2F1(-/-) than in WT cardiac fibroblasts, and E2F1 overexpression suppressed PlGF up-regulation in both WT and p53(-/-) cells; however, VEGF up-regulation was suppressed only in WT cells. E2F1 interacted with and stabilized p53 under hypoxic conditions, and both E2F1 : p53 binding and the E2F1-induced suppression of VEGF promoter activity were absent in cells that expressed an N-terminally truncated E2F1 mutant. CONCLUSION E2F1 limits cardiac neovascularization and functional recovery after MI by suppressing VEGF and PlGF up-regulation through p53-dependent and -independent mechanisms, respectively.
Collapse
Affiliation(s)
- Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Junlan Zhou
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chan Boriboun
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Dauren Biyashev
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Hong Wang
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Alexander Mackie
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Tina Thorne
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Jonathan Chou
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhishui Chen
- Organ Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinghua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Hongbin Yan
- Cardiology Department, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya Yang
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Chunfa Jie
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yao-Liang Tang
- Department of Medicine, Vascular Biology Center, Medical College of Georgia/Georgia Regents University, Augusta, GA, USA
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Raj Kishore
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Douglas W Losordo
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Gangjian Qin
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| |
Collapse
|
42
|
Beckmann R, Houben A, Tohidnezhad M, Kweider N, Fragoulis A, Wruck CJ, Brandenburg LO, Hermanns-Sachweh B, Goldring MB, Pufe T, Jahr H. Mechanical forces induce changes in VEGF and VEGFR-1/sFlt-1 expression in human chondrocytes. Int J Mol Sci 2014; 15:15456-74. [PMID: 25257525 PMCID: PMC4200847 DOI: 10.3390/ijms150915456] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 11/21/2022] Open
Abstract
Expression of the pro-angiogenic vascular endothelial growth factor (VEGF) stimulates angiogenesis and correlates with the progression of osteoarthritis. Mechanical joint loading seems to contribute to this cartilage pathology. Cyclic equibiaxial strains of 1% to 16% for 12 h, respectively, induced expression of VEGF in human chondrocytes dose- and frequency-dependently. Stretch-mediated VEGF induction was more prominent in the human chondrocyte cell line C-28/I2 than in primary articular chondrocytes. Twelve hours of 8% stretch induced VEGF expression to 175% of unstrained controls for at least 24 h post stretching, in promoter reporter and enzyme-linked immunosorbent assay (ELISA) studies. High affinity soluble VEGF-receptor, sVEGFR-1/sFlt-1 was less stretch-inducible than its ligand, VEGF-A, in these cells. ELISA assays demonstrated, for the first time, a stretch-mediated suppression of sVEGFR-1 secretion 24 h after stretching. Overall, strained chondrocytes activate their VEGF expression, but in contrast, strain appears to suppress the secretion of the major VEGF decoy receptor (sVEGFR-1/sFlt-1). The latter may deplete a biologically relevant feedback regulation to inhibit destructive angiogenesis in articular cartilage. Our data suggest that mechanical stretch can induce morphological changes in human chondrocytes in vitro. More importantly, it induces disturbed VEGF signaling, providing a molecular mechanism for a stress-induced increase in angiogenesis in cartilage pathologies.
Collapse
Affiliation(s)
- Rainer Beckmann
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany.
| | - Astrid Houben
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany.
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany.
| | - Nisreen Kweider
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany.
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany.
| | - Christoph J Wruck
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany.
| | - Lars O Brandenburg
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany.
| | | | - Mary B Goldring
- Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA.
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany.
| | - Holger Jahr
- Department of Orthopaedic Surgery, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
43
|
Panneerselvam J, Pickering A, Zhang J, Wang H, Tian H, Zheng J, Fei P. A hidden role of the inactivated FANCD2: upregulating ΔNp63. Oncotarget 2014; 4:1416-26. [PMID: 23965832 PMCID: PMC3824532 DOI: 10.18632/oncotarget.1217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A compromised Fanconi Anemia (FA) signaling pathway, often resulting from an inactivated FANCD2, was recently recognized to contribute to the development of non-FA human tumors. However, it is largely unknown as to how an impaired FA pathway or an inactivated FANCD2 promotes tumorigenesis. Here we unexpectedly found that ΔNp63 mRNA was expressed at high levels in human cancer cells carrying an impaired FA pathway compared to the corresponding control cells carrying an intact FA pathway. This observation was recapitulated upon conditionally managing the status of FANCD2 monoubiquitination /activation in 293T cells. Importantly, ΔNp63 elevation upon FANCD2 inactivation was confirmed in human fibroblasts derived from FA patients. Moreover, we have identified a 189 bp DNA fragment downstream of the ΔNp63 promoter (P2) that can mediate the upregulation of ΔNp63 by an inactivated FANCD2, and determined that elevated ΔNp63 is high enough to promote cancer cell proliferation and metastasis. In vivo, the elevation of FAVL, a tumor promotion factor that inhibits FANCD2 activation, was found to be positively associated with ΔNp63 expression in human cancer tissues. Collectively, these results document a novel role of an inactivated FANCD2 in upregulating ΔNp63, advancing our understanding of how an impaired FA pathway contributes to the pathogenesis of human cancer.
Collapse
|
44
|
Expression of VEGF-A, Otx homeobox and p53 family genes in proliferative vitreoretinopathy. Mediators Inflamm 2013; 2013:857380. [PMID: 24227910 PMCID: PMC3818919 DOI: 10.1155/2013/857380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/02/2013] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Proliferative vitreoretinopathy (PVR) is a severe inflammatory complication of retinal detachment. Pathological epiretinal membranes grow on the retina surface leading to contraction, and surgery fails in 5% to 10% of the cases. We evaluated the expression of VEGF-A, Otx1, Otx2, Otx3, and p53 family members from PVR specimens to correlate their role in inducing or preventing the pathology. METHODS Twelve retinal samples were taken from patients affected by PVR during therapeutic retinectomies in vitreoretinal surgery. Gene expression was evaluated using quantitative real-time reverse transcriptase PCR analysis and immunohistochemistry, using four healthy human retinae as control. RESULT Controls showed basal expression of all genes. PVR samples showed little or no expression of Otx1 and variable expression of VEGF-A, Otx2, Otx3, p53, and p63 genes. Significant correlation was found among VEGF-A, Otx2, p53, and p63 and between Otx1 and Otx3. CONCLUSIONS Otx homeobox, p53 family, and VEGF-A genes are expressed in PVR human retina. We individuated two possible pathways (VEGF-A, Otx2, p53, p63 and Otx1 and Otx3) involved in PVR progression that could influence in different manners the course of the pathology. Individuating the genetic pathways of PVR represents a novel approach to PVR therapies.
Collapse
|
45
|
Soldevilla B, Millán CS, Bonilla F, Domínguez G. The TP73 complex network: ready for clinical translation in cancer? Genes Chromosomes Cancer 2013; 52:989-1006. [PMID: 23913810 DOI: 10.1002/gcc.22095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/28/2013] [Indexed: 01/05/2023] Open
Abstract
TP73 is a member of the TP53 family, whose deregulated expression has been reported in a wide variety of cancers and linked to patients' outcome. The fact that TP73 encodes a complex number of isoforms (TAp73 and ΔTAp73) with opposing functions and the cross-talk with other members of the family (TP53 and TP63) make it difficult to determine its clinical relevance. Here, we review the molecular mechanisms driving TAp73 and ΔTAp73 expression and how these variants inhibit or promote carcinogenesis. We also highlight the intricate interplay between TP53 family members. In addition, we comment on current pharmacological approaches targeting the TP73 pathway and those affecting the TAp73/ΔTAp73 ratio. Finally, we discuss the current data available in the literature that provide evidence on the role of TP73 variants in predicting prognosis. To date, most of the studies that evaluate the status levels of TP73 isoforms have been based on limited-size series. Despite this limitation, these publications highlight the correlation between high levels of the oncogenic forms and failure to respond to chemotherapy and/or shorter survival. Finally, we emphasize the need for studies to evaluate the significance of combining the deregulation of various members of the TP53 family in order to define patient outcome or their responsiveness to specific therapies.
Collapse
Affiliation(s)
- Beatriz Soldevilla
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|