1
|
Martino MTD, Tagliaferri P, Tassone P. MicroRNA in cancer therapy: breakthroughs and challenges in early clinical applications. J Exp Clin Cancer Res 2025; 44:126. [PMID: 40259326 PMCID: PMC12010629 DOI: 10.1186/s13046-025-03391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
MicroRNAs (miRNAs) have emerged as pivotal regulators in cancer biology, influencing tumorigenesis, progression, and resistance to therapy. Their ability to modulate multiple oncogenic and tumor-suppressive pathways positions them as promising therapeutic tools or targets. This review examines the dual role of miRNAs in solid and hematological malignancies, starting from their dysregulation in various cancer types. Therapeutic approaches, including miRNA replacement and inhibition strategies, are discussed alongside innovative delivery systems such as lipid nanoparticles and exosomes. Despite their transformative potential, challenges persist, including off-target effects, immune activation, and delivery inefficiencies. Recent clinical trials demonstrate both progress and hurdles, underscoring the need for advanced strategies to optimize specificity and minimize toxicity. This review provides an updated comprehensive overview of the current landscape of miRNA-based therapies under early clinical investigation and explores future directions for integrating these approaches into precision oncology.
Collapse
Affiliation(s)
- Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
2
|
Kwon JY, Vera RE, Fernandez-Zapico ME. The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer. Cell Signal 2025; 127:111584. [PMID: 39756502 PMCID: PMC11807759 DOI: 10.1016/j.cellsig.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.
Collapse
Affiliation(s)
- John Y Kwon
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | | |
Collapse
|
3
|
Veryaskina YA, Titov SE, Skvortsova NV, Kovynev IB, Antonenko OV, Demakov SA, Demenkov PS, Pospelova TI, Ivanov MK, Zhimulev IF. Multiple Myeloma: Genetic and Epigenetic Biomarkers with Clinical Potential. Int J Mol Sci 2024; 25:13404. [PMID: 39769169 PMCID: PMC11679576 DOI: 10.3390/ijms252413404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple myeloma (MM) is characterized by the uncontrolled proliferation of monoclonal plasma cells and accounts for approximately 10% of all hematologic malignancies. The clinical outcomes of MM can exhibit considerable variability. Variability in both the genetic and epigenetic characteristics of MM undeniably contributes to tumor dynamics. The aim of the present study was to identify biomarkers with the potential to improve the accuracy of prognosis assessment in MM. Initially, miRNA sequencing was conducted on bone marrow (BM) samples from patients with MM. Subsequently, the expression levels of 27 microRNAs (miRNA) and the gene expression levels of ASF1B, CD82B, CRISP3, FN1, MEF2B, PD-L1, PPARγ, TERT, TIMP1, TOP2A, and TP53 were evaluated via real-time reverse transcription polymerase chain reaction in BM samples from patients with MM exhibiting favorable and unfavorable prognoses. Additionally, the analysis involved the bone marrow samples from patients undergoing examinations for non-cancerous blood diseases (NCBD). The findings indicate a statistically significant increase in the expression levels of miRNA-124, -138, -10a, -126, -143, -146b, -20a, -21, -29b, and let-7a and a decrease in the expression level of miRNA-96 in the MM group compared with NCBD (p < 0.05). No statistically significant differences were detected in the expression levels of the selected miRNAs between the unfavorable and favorable prognoses in MM groups. The expression levels of ASF1B, CD82B, and CRISP3 were significantly decreased, while those of FN1, MEF2B, PDL1, PPARγ, and TERT were significantly increased in the MM group compared to the NCBD group (p < 0.05). The MM group with a favorable prognosis demonstrated a statistically significant decline in TIMP1 expression and a significant increase in CD82B and CRISP3 expression compared to the MM group with an unfavorable prognosis (p < 0.05). From an empirical point of view, we have established that the complex biomarker encompassing the CRISP3/TIMP1 expression ratio holds promise as a prognostic marker in MM. From a fundamental point of view, we have demonstrated that the development of MM is rooted in a cascade of complex molecular pathways, demonstrating the interplay of genetic and epigenetic factors.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei E. Titov
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
- AO Vector-Best, Novosibirsk 630117, Russia;
| | - Natalia V. Skvortsova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (N.V.S.); (I.B.K.); (T.I.P.)
| | - Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (N.V.S.); (I.B.K.); (T.I.P.)
| | - Oksana V. Antonenko
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| | - Sergei A. Demakov
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| | - Pavel S. Demenkov
- Laboratory of Computer Proteomics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (N.V.S.); (I.B.K.); (T.I.P.)
| | | | - Igor F. Zhimulev
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| |
Collapse
|
4
|
Kulig P, Łuczkowska K, Bakinowska E, Baumert B, Machaliński B. Epigenetic Alterations as Vital Aspects of Bortezomib Molecular Action. Cancers (Basel) 2023; 16:84. [PMID: 38201512 PMCID: PMC10778101 DOI: 10.3390/cancers16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Bortezomib (BTZ) is widely implemented in the treatment of multiple myeloma (MM). Its main mechanism of action is very well established. BTZ selectively and reversibly inhibits the 26S proteasome. More precisely, it interacts with the chymotryptic site of the 20S proteasome and therefore inhibits the degradation of proteins. This results in the intracellular accumulation of misfolded or otherwise defective proteins leading to growth inhibition and apoptosis. As well as interfering with the ubiquitin-proteasome complex, BTZ elicits various epigenetic alterations which contribute to its cytotoxic effects as well as to the development of BTZ resistance. In this review, we summarized the epigenetic alterations elicited by BTZ. We focused on modifications contributing to the mechanism of action, those mediating drug-resistance development, and epigenetic changes promoting the occurrence of peripheral neuropathy. In addition, there are therapeutic strategies which are specifically designed to target epigenetic changes. Herein, we also reviewed epigenetic agents which might enhance BTZ-related cytotoxicity or restore the sensitivity to BTZ of resistant clones. Finally, we highlighted putative future perspectives regarding the role of targeting epigenetic changes in patients exposed to BTZ.
Collapse
Affiliation(s)
- Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
| | - Estera Bakinowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
5
|
Torcasio R, Gallo Cantafio ME, Ikeda RK, Ganino L, Viglietto G, Amodio N. Lipid metabolic vulnerabilities of multiple myeloma. Clin Exp Med 2023; 23:3373-3390. [PMID: 37639069 PMCID: PMC10618328 DOI: 10.1007/s10238-023-01174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy worldwide, characterized by abnormal proliferation of malignant plasma cells within a tumor-permissive bone marrow microenvironment. Metabolic dysfunctions are emerging as key determinants in the pathobiology of MM. In this review, we highlight the metabolic features of MM, showing how alterations in various lipid pathways, mainly involving fatty acids, cholesterol and sphingolipids, affect the growth, survival and drug responsiveness of MM cells, as well as their cross-talk with other cellular components of the tumor microenvironment. These findings will provide a new path to understanding the mechanisms underlying how lipid vulnerabilities may arise and affect the phenotype of malignant plasma cells, highlighting novel druggable pathways with a significant impact on the management of MM.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Heart Sciences, University of Calabria, Arcavacata Di Rende, Cosenza, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Raissa Kaori Ikeda
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Centro Universitário São Camilo, São Paulo, Brazil
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
6
|
Miaomiao S, Xiaoqian W, Yuwei S, Chao C, Chenbo Y, Yinghao L, Yichen H, Jiao S, Kuisheng C. Cancer-associated fibroblast-derived exosome microRNA-21 promotes angiogenesis in multiple myeloma. Sci Rep 2023; 13:9671. [PMID: 37316504 DOI: 10.1038/s41598-023-36092-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, and angiogenesis determines its progression. In the tumor microenvironment, normal fibroblasts (NFs) are transformed into cancer-associated fibroblasts (CAFs), which can promote angiogenesis. Microribonucleic acid-21 (miR-21) is highly expressed in various tumors. However, research on the relationship between tumor angiogenesis and miR-21 is rare. We analyzed the relationship between miR-21, CAFs, and angiogenesis in MM. NFs and CAFs were isolated from the bone marrow fluids of patients with dystrophic anemia and newly-diagnosed MM. Co-culturing of CAF exosomes with multiple myeloma endothelial cells (MMECs) showed that CAF exosomes were able to enter MMECs in a time-dependent manner and initiate angiogenesis by promoting proliferation, migration, and tubulogenesis. We found that miR-21 was abundant in CAF exosomes, entering MMECs and regulating angiogenesis in MM. By transfecting NFs with mimic NC, miR-21 mimic, inhibitor NC, and miR-21 inhibitor, we found that miR-21 significantly increased the expression of alpha-smooth muscle actin and fibroblast activation protein in NFs. Our results showed that miR-21 can transform NFs into CAFs, and that CAF exosomes promote angiogenesis by carrying miR-21 into MMECs. Therefore, CAF-derived exosomal miR-21 may serve as a novel diagnostic biomarker and therapeutic target for MM.
Collapse
Affiliation(s)
- Sun Miaomiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wang Xiaoqian
- BGI College, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shou Yuwei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chen Chao
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yang Chenbo
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Liang Yinghao
- BGI College, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hong Yichen
- BGI College, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shu Jiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chen Kuisheng
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
7
|
Ambrosio FA, Costa G, Gallo Cantafio ME, Torcasio R, Trapasso F, Alcaro S, Viglietto G, Amodio N. Natural Agents as Novel Potential Source of Proteasome Inhibitors with Anti-Tumor Activity: Focus on Multiple Myeloma. Molecules 2023; 28:molecules28031438. [PMID: 36771100 PMCID: PMC9919276 DOI: 10.3390/molecules28031438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is an aggressive and incurable disease for most patients, characterized by periods of treatment, remission and relapse. The introduction of new classes of drugs, such as proteasome inhibitors (PIs), has improved survival outcomes in these patient populations. The proteasome is the core of the ubiquitin-proteasome system (UPS), a complex and conserved pathway involved in the control of multiple cellular processes, including cell cycle control, transcription, DNA damage repair, protein quality control and antigen presentation. To date, PIs represent the gold standard for the treatment of MM. Bortezomib was the first PI approved by the FDA, followed by next generation of PIs, namely carfilzomib and ixazomib. Natural agents play an important role in anti-tumor drug discovery, and many of them have recently been reported to inhibit the proteasome, thus representing a new potential source of anti-MM drugs. Based on the pivotal biological role of the proteasome and on PIs' significance in the management of MM, in this review we aim to briefly summarize recent evidence on natural compounds capable of inhibiting the proteasome, thus triggering anti-MM activity.
Collapse
Affiliation(s)
- Francesca Alessandra Ambrosio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (G.C.); (N.A.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (G.C.); (N.A.)
| |
Collapse
|
8
|
Almouh M, Razmara E, Bitaraf A, Ghazimoradi MH, Hassan ZM, Babashah S. Circular RNAs play roles in regulatory networks of cell signaling pathways in human cancers. Life Sci 2022; 309:120975. [PMID: 36126723 DOI: 10.1016/j.lfs.2022.120975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS Circular RNAs (circRNAs) are endogenous covalently closed non-coding RNAs produced by reverse splicing of linear RNA. These molecules are highly expressed in mammalian cells and show cell/tissue-specific expression patterns. They are also significantly dysregulated in various cancers and function as oncogenes or tumor suppressors. Emerging evidence reveals that circRNAs contribute to cancer progression via modulating different cell signaling pathways. Nevertheless, the functional significance of circRNAs in cell signaling pathways regulation is still largely elusive. Considering this, shedding light on the multi-pathway effects of circRNAs may improve our understanding of targeted cancer therapy. Here, we discuss how circRNAs regulate the major cell signaling pathways in human cancers. MATERIALS AND METHODS We adopted a systematic search in PubMed using the following MeSH terms: circRNAs, non-coding RNAs, lncRNAs, exosomal circRNAs, cancer, and cell signaling. KEY FINDINGS We discussed different roles of circRNAs during tumorigenesis in which circRNAs affect tumor development through activating or inactivating certain cell signaling pathways via molecular interactions using various signaling pathways. We also discussed how crosstalk between circRNAs and lncRNAs modulate tumorigenesis and provides a resource for the identification of cancer therapeutic targets. SIGNIFICANCE We here elucidated how circRNAs can modulate different cell signaling pathways and play roles in cancer. This can broaden our horizons toward introducing promising prognostic, diagnostic, and therapeutic targets.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Szudy-Szczyrek A, Ahern S, Krawczyk J, Szczyrek M, Hus M. MiRNA as a Potential Target for Multiple Myeloma Therapy–Current Knowledge and Perspectives. J Pers Med 2022; 12:jpm12091428. [PMID: 36143213 PMCID: PMC9503263 DOI: 10.3390/jpm12091428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy. Despite the huge therapeutic progress thanks to the introduction of novel therapies, MM remains an incurable disease. Extensive research is currently ongoing to find new options. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at a post-transcriptional level. Aberrant expression of miRNAs in MM is common. Depending on their role in MM development, miRNAs have been reported as oncogenes and tumor suppressors. It was demonstrated that specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways in the microenvironment and MM cells. These properties make miRNAs attractive targets in anti-myeloma therapy. However, only a few miRNA-based drugs have been entered into clinical trials. In this review, we discuss the role of the miRNAs in the pathogenesis of MM, their current status in preclinical/clinical trials, and the mechanisms by which miRNAs can theoretically achieve therapeutic benefit in MM treatment.
Collapse
Affiliation(s)
- Aneta Szudy-Szczyrek
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
- Correspondence: (A.S.-S.); (M.H.)
| | - Sean Ahern
- Department of Haematology, University Hospital Galway, H91 Galway, Ireland
- National University of Ireland, H91 Galway, Ireland
| | - Janusz Krawczyk
- Department of Haematology, University Hospital Galway, H91 Galway, Ireland
- National University of Ireland, H91 Galway, Ireland
| | - Michał Szczyrek
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-950 Lublin, Poland
| | - Marek Hus
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
- Correspondence: (A.S.-S.); (M.H.)
| |
Collapse
|
10
|
Jiang S, Hu Y, Zhou Y, Tang G, Cui W, Wang X, Chen B, Hu Z, Xu B. miRNAs as Biomarkers and Possible Therapeutic Strategies in Synovial Sarcoma. Front Pharmacol 2022; 13:881007. [PMID: 36003502 PMCID: PMC9394702 DOI: 10.3389/fphar.2022.881007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Synovial sarcoma (SS) is an epithelial-differentiated malignant stromal tumor that has the highest incidence in young people and can occur almost anywhere in the body. Many noncoding RNAs are involved in the occurrence, development, or pathogenesis of SS. In particular, the role of MicroRNAs (miRNAs) in SS is receiving increasing attention. MiRNA is a noncoding RNA abundant in cells and extracellular serums. Increasing evidence suggests that miRNA has played a significant role in the incidence and development of tumors in recent years, including sarcomas. Previous studies show that various sarcomas have their unique miRNA expression patterns and that various miRNA expression profiles can illustrate the classes of miRNAs that may elicit cancer-relevant activities in specific sarcoma subtypes. Furthermore, SS has been reported to have the most number of differentially expressed miRNAs, which indicated that miRNA is linked to SS. In fact, according to many publications, miRNAs have been shown to have a role in the development and appearance of SS in recent years, according to many publications. Since many studies showing that various miRNAs have a role in the development and appearance of SS in recent years have not been systematically summarized, we summarize the recent studies on the relationship between miRNA and SS in this review. For example, miR-494 promotes the development of SS via modulating cytokine gene expression. The role of miR-494-3p as a tumor suppressor is most likely linked to the CXCR4 (C-X-C chemokine receptor 4) regulator, although the exact mechanism is unknown. Our review aims to reveal in detail the potential biological value and clinical significance of miRNAs for SS and the potential clinical value brought by the association between SS and miRNAs.
Collapse
Affiliation(s)
- Shaowei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yi Zhou
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Guozheng Tang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
- Department of Orthopedics, Lu’an People’s Hospital, Lu’an, China
| | - Wenxu Cui
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xinyi Wang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Bangjie Chen
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Zuhong Hu
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Bing Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Bing Xu,
| |
Collapse
|
11
|
Rocca C, De Francesco EM, Pasqua T, Granieri MC, De Bartolo A, Gallo Cantafio ME, Muoio MG, Gentile M, Neri A, Angelone T, Viglietto G, Amodio N. Mitochondrial Determinants of Anti-Cancer Drug-Induced Cardiotoxicity. Biomedicines 2022; 10:biomedicines10030520. [PMID: 35327322 PMCID: PMC8945454 DOI: 10.3390/biomedicines10030520] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are key organelles for the maintenance of myocardial tissue homeostasis, playing a pivotal role in adenosine triphosphate (ATP) production, calcium signaling, redox homeostasis, and thermogenesis, as well as in the regulation of crucial pathways involved in cell survival. On this basis, it is not surprising that structural and functional impairments of mitochondria can lead to contractile dysfunction, and have been widely implicated in the onset of diverse cardiovascular diseases, including ischemic cardiomyopathy, heart failure, and stroke. Several studies support mitochondrial targets as major determinants of the cardiotoxic effects triggered by an increasing number of chemotherapeutic agents used for both solid and hematological tumors. Mitochondrial toxicity induced by such anticancer therapeutics is due to different mechanisms, generally altering the mitochondrial respiratory chain, energy production, and mitochondrial dynamics, or inducing mitochondrial oxidative/nitrative stress, eventually culminating in cell death. The present review summarizes key mitochondrial processes mediating the cardiotoxic effects of anti-neoplastic drugs, with a specific focus on anthracyclines (ANTs), receptor tyrosine kinase inhibitors (RTKIs) and proteasome inhibitors (PIs).
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Ernestina Marianna De Francesco
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (E.M.D.F.); (M.G.M.)
| | - Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Maria Grazia Muoio
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (E.M.D.F.); (M.G.M.)
| | - Massimo Gentile
- Hematology Unit, “Annunziata” Hospital of Cosenza, 87100 Cosenza, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Hematology Fondazione Cà Granda, IRCCS Policlinico, 20122 Milan, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
- Correspondence: (T.A.); (N.A.)
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
- Correspondence: (T.A.); (N.A.)
| |
Collapse
|
12
|
Das D, Karthik N, Taneja R. Crosstalk Between Inflammatory Signaling and Methylation in Cancer. Front Cell Dev Biol 2021; 9:756458. [PMID: 34901003 PMCID: PMC8652226 DOI: 10.3389/fcell.2021.756458] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation is an intricate immune response against infection and tissue damage. While the initial immune response is important for preventing tumorigenesis, chronic inflammation is implicated in cancer pathogenesis. It has been linked to various stages of tumor development including transformation, proliferation, angiogenesis, and metastasis. Immune cells, through the production of inflammatory mediators such as cytokines, chemokines, transforming growth factors, and adhesion molecules contribute to the survival, growth, and progression of the tumor in its microenvironment. The aberrant expression and secretion of pro-inflammatory and growth factors by the tumor cells result in the recruitment of immune cells, thus creating a mutual crosstalk. The reciprocal signaling between the tumor cells and the immune cells creates and maintains a successful tumor niche. Many inflammatory factors are regulated by epigenetic mechanisms including DNA methylation and histone modifications. In particular, DNA and histone methylation are crucial forms of transcriptional regulation and aberrant methylation has been associated with deregulated gene expression in oncogenesis. Such deregulations have been reported in both solid tumors and hematological malignancies. With technological advancements to study genome-wide epigenetic landscapes, it is now possible to identify molecular mechanisms underlying altered inflammatory profiles in cancer. In this review, we discuss the role of DNA and histone methylation in regulation of inflammatory pathways in human cancers and review the merits and challenges of targeting inflammatory mediators as well as epigenetic regulators in cancer.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Desantis V, Solimando AG, Saltarella I, Sacco A, Giustini V, Bento M, Lamanuzzi A, Melaccio A, Frassanito MA, Paradiso A, Montagnani M, Vacca A, Roccaro AM. MicroRNAs as a Potential New Preventive Approach in the Transition from Asymptomatic to Symptomatic Multiple Myeloma Disease. Cancers (Basel) 2021; 13:cancers13153650. [PMID: 34359551 PMCID: PMC8344971 DOI: 10.3390/cancers13153650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) is the second most common haematologic malignancy, and it remains an incurable disease despite the advances of novel therapies. It is characterised by a multistep process that arises from a pre-malignant asymptomatic status-defined monoclonal gammopathy of undetermined significance (MGUS), evolves to a middle stage named smouldering myeloma phase (SMM), and culminates in the active disease (MM). Identification of early and non-invasive markers of the disease progression is currently an active field of investigation. In this review, we discuss the role and significance of microRNAs (miRNAs) as potential diagnostic biomarkers to predict the clinical transition from MGUS/SMM status to MM. Abstract Multiple myeloma (MM) is a hematological malignancy characterised by proliferation of clonal plasma cells (PCs) within the bone marrow (BM). Myelomagenesis is a multi-step process which goes from an asymptomatic phase, defined as monoclonal gammopathy of undetermined significance (MGUS), to a smouldering myeloma (SMM) stage, to a final active MM disease, characterised by hypercalcemia, renal failure, bone lesions anemia, and higher risk of infections. Overall, microRNAs (miRNAs) have shown to significantly impact on MM tumorigenesis, as a result of miRNA-dependent modulation of genes involved in pathways known to be crucial for MM pathogenesis and disease progression. We aim to revise the literature related to the role of miRNAs as potential diagnostic and prognostic biomarkers, thus highlighting their key role as novel players within the field of MM and related premalignant conditions.
Collapse
Affiliation(s)
- Vanessa Desantis
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonio Giovanni Solimando
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Ilaria Saltarella
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
| | - Viviana Giustini
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
| | - Marta Bento
- Centro Hospitalar Lisboa Norte, Department of Hematology and Transplantation, Institute of Molecular Medicine, University of Lisbon, 1649-035 Lisbon, Portugal;
| | - Aurelia Lamanuzzi
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Assunta Melaccio
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Maria Antonia Frassanito
- Unit of General Pathology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Paradiso
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Vacca
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- Correspondence: (A.V.); (A.M.R.)
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
- Correspondence: (A.V.); (A.M.R.)
| |
Collapse
|
14
|
Marttila S, Rovio S, Mishra PP, Seppälä I, Lyytikäinen LP, Juonala M, Waldenberger M, Oksala N, Ala-Korpela M, Harville E, Hutri-Kähönen N, Kähönen M, Raitakari O, Lehtimäki T, Raitoharju E. Adulthood blood levels of hsa-miR-29b-3p associate with preterm birth and adult metabolic and cognitive health. Sci Rep 2021; 11:9203. [PMID: 33911114 PMCID: PMC8080838 DOI: 10.1038/s41598-021-88465-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
Preterm birth (PTB) is associated with increased risk of type 2 diabetes and neurocognitive impairment later in life. We analyzed for the first time the associations of PTB with blood miRNA levels in adulthood. We also investigated the relationship of PTB associated miRNAs and adulthood phenotypes previously linked with premature birth. Blood MicroRNA profiling, genome-wide gene expression analysis, computer-based cognitive testing battery (CANTAB) and serum NMR metabolomics were performed for Young Finns Study subjects (aged 34-49 years, full-term n = 682, preterm n = 84). Preterm birth (vs. full-term) was associated with adulthood levels of hsa-miR-29b-3p in a fully adjusted regression model (p = 1.90 × 10-4, FDR = 0.046). The levels of hsa-miR-29b-3p were down-regulated in subjects with PTB with appropriate birthweight for gestational age (p = 0.002, fold change [FC] = - 1.20) and specifically in PTB subjects with small birthweight for gestational age (p = 0.095, FC = - 1.39) in comparison to individuals born full term. Hsa-miR-29b-3p levels correlated with the expressions of its target-mRNAs BCL11A and CS and the gene set analysis results indicated a target-mRNA driven association between hsa-miR-29b-3p levels and Alzheimer's disease, Parkinson's disease, Insulin signaling and Regulation of Actin Cytoskeleton pathway expression. The level of hsa-miR-29b-3p was directly associated with visual processing and sustained attention in CANTAB test and inversely associated with serum levels of VLDL subclass component and triglyceride levels. In conlcusion, adult blood levels of hsa-miR-29b-3p were lower in subjects born preterm. Hsa-miR-29b-3p associated with cognitive function and may be linked with adulthood morbidities in subjects born preterm, possibly through regulation of gene sets related to neurodegenerative diseases and insulin signaling as well as VLDL and triglyceride metabolism.
Collapse
Affiliation(s)
- Saara Marttila
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| | - Suvi Rovio
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Turku University Hospital and Department of Medicine, University of Turku, Turku, Finland
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Vascular Centre, Tampere University Hospital, Tampere, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Emily Harville
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
15
|
Mondal P, Kaur B, Natesh J, Meeran SM. The emerging role of miRNA in the perturbation of tumor immune microenvironment in chemoresistance: Therapeutic implications. Semin Cell Dev Biol 2021; 124:99-113. [PMID: 33865701 DOI: 10.1016/j.semcdb.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Chemoresistance is a major hindrance in cancer chemotherapies, a leading cause of tumor recurrence and cancer-related deaths. Cancer cells develop numerous strategies to elude immune attacks and are regulated by immunological factors. Cancer cells can alter the expression of several immune modulators to upregulate the activities of immune checkpoint pathways. Targeting the immune checkpoint inhibitors is a part of the cancer immunotherapy altered during carcinogenesis. These immune modulators have the capability to reprogram the tumor microenvironment, thereby change the efficacy of chemotherapeutics. In general, the sensitivity of drugs is reduced in the immunosuppressive tumor microenvironment, resulting in chemoresistance and tumor relapse. The regulation of microRNAs (miRNAs) is well established in cancer initiation, progression, and therapy. Intriguingly, miRNA affects cancer immune surveillance and immune response by targeting immune checkpoint inhibitors in the tumor microenvironment. miRNAs alter the gene expression at the post-transcriptional level, which modulates both innate and adaptive immune systems. Alteration of tumor immune microenvironment influences drug sensitivity towards cancer cells. Besides, the expression profile of immune-modulatory miRNAs can be used as a potential biomarker to predict the response and clinical outcomes in cancer immunotherapy and chemotherapy. Recent evidences have revealed that cancer-derived immune-modulatory miRNAs might be promising targets to counteract cancer immune escape, thereby increasing drug efficacy. In this review, we have compiled the role of miRNAs in overcoming the chemoresistance by modulating tumor microenvironment and discussed their preclinical and clinical implications.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavjot Kaur
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Neaga A, Bagacean C, Tempescul A, Jimbu L, Mesaros O, Blag C, Tomuleasa C, Bocsan C, Gaman M, Zdrenghea M. MicroRNAs Associated With a Good Prognosis of Acute Myeloid Leukemia and Their Effect on Macrophage Polarization. Front Immunol 2021; 11:582915. [PMID: 33519805 PMCID: PMC7845488 DOI: 10.3389/fimmu.2020.582915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive myeloid malignancy with poor outcomes despite very intensive therapeutic approaches. For the majority of patients which are unfit and treated less intensively, the prognosis is even worse. There has been unspectacular progress in outcome improvement over the last decades and the development of new approaches is of tremendous interest. The tumor microenvironment is credited with an important role in supporting cancer growth, including leukemogenesis. Macrophages are part of the tumor microenvironment and their contribution in this setting is increasingly being deciphered, these cells being credited with a tumor supporting role. Data on macrophage role and polarization in leukemia is scarce. MicroRNAs (miRNAs) have a role in the post-transcriptional regulation of gene expression, by impending translation and promoting degradation of messenger RNAs. They are important modulators of cellular pathways, playing major roles in normal hematopoietic differentiation. miRNA expression is significantly correlated with the prognosis of hematopoietic malignancies, including AML. Oncogenic miRNAs correlate with poor prognosis, while tumor suppressor miRNAs, which inhibit the expression of proto-oncogenes, are correlated with a favorable prognosis. miRNAs are proposed as biomarkers for diagnosis and prognosis and are regarded as therapeutic approaches in many cancers, including AML. miRNAs with epigenetic or modulatory activity, as well as with synergistic activity with chemotherapeutic agents, proved to be promising therapeutic targets in experimental, pre-clinical approaches. The clinical availability of emerging compounds with mimicking or suppressor activity provides the opportunity for future therapeutic targeting of miRNAs. The present paper is focusing on miRNAs which, according to current knowledge, favorably impact on AML outcomes, being regarded as tumor suppressors, and reviews their role in macrophage polarization. We are focusing on miRNA expression in the setting of AML, but data on correlations between miRNA expression and macrophage polarization is mostly coming from studies involving normal tissue.
Collapse
Affiliation(s)
- Alexandra Neaga
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Bagacean
- Department of Hematology, Brest University Medical School Hospital, Brest, France.,U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Brest, France
| | - Adrian Tempescul
- Department of Hematology, Brest University Medical School Hospital, Brest, France.,U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Brest, France
| | - Laura Jimbu
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Mesaros
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Blag
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| | - Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Gaman
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Soliman AM, Lin TS, Mahakkanukrauh P, Das S. Role of microRNAs in Diagnosis, Prognosis and Management of Multiple Myeloma. Int J Mol Sci 2020; 21:E7539. [PMID: 33066062 PMCID: PMC7589124 DOI: 10.3390/ijms21207539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a cancerous bone disease characterized by malignant transformation of plasma cells in the bone marrow. MM is considered to be the second most common blood malignancy, with 20,000 new cases reported every year in the USA. Extensive research is currently enduring to validate diagnostic and therapeutic means to manage MM. microRNAs (miRNAs) were shown to be dysregulated in MM cases and to have a potential role in either progression or suppression of MM. Therefore, researchers investigated miRNAs levels in MM plasma cells and created tools to test their impact on tumor growth. In the present review, we discuss the most recently discovered miRNAs and their regulation in MM. Furthermore, we emphasized utilizing miRNAs as potential targets in the diagnosis, prognosis and treatment of MM, which can be useful for future clinical management.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences—Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Teoh Seong Lin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy & Excellence in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
18
|
Raimondi L, De Luca A, Giavaresi G, Raimondo S, Gallo A, Taiana E, Alessandro R, Rossi M, Neri A, Viglietto G, Amodio N. Non-Coding RNAs in Multiple Myeloma Bone Disease Pathophysiology. Noncoding RNA 2020; 6:ncrna6030037. [PMID: 32916806 PMCID: PMC7549375 DOI: 10.3390/ncrna6030037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bone remodeling is uncoupled in the multiple myeloma (MM) bone marrow niche, resulting in enhanced osteoclastogenesis responsible of MM-related bone disease (MMBD). Several studies have disclosed the mechanisms underlying increased osteoclast formation and activity triggered by the various cellular components of the MM bone marrow microenvironment, leading to the identification of novel targets for therapeutic intervention. In this regard, recent attention has been given to non-coding RNA (ncRNA) molecules, that finely tune gene expression programs involved in bone homeostasis both in physiological and pathological settings. In this review, we will analyze major signaling pathways involved in MMBD pathophysiology, and report emerging evidence of their regulation by different classes of ncRNAs.
Collapse
Affiliation(s)
- Lavinia Raimondi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
- Correspondence: (L.R.); (N.A.); Tel.: +39-091-6236011 (L.R.); +39-0961-3694159 (N.A.)
| | - Angela De Luca
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (R.A.)
| | - Alessia Gallo
- IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Research Department, 90127 Palermo, Italy;
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
- Correspondence: (L.R.); (N.A.); Tel.: +39-091-6236011 (L.R.); +39-0961-3694159 (N.A.)
| |
Collapse
|
19
|
Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH, Alcaro S, Di Martino MT, Tagliaferri P, Tassone P. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic "dark matter". J Exp Clin Cancer Res 2020; 39:117. [PMID: 32563270 PMCID: PMC7305591 DOI: 10.1186/s13046-020-01622-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
The discovery of the role of non-coding RNAs (ncRNAs) in the onset and progression of malignancies is a promising frontier of cancer genetics. It is clear that ncRNAs are candidates for therapeutic intervention, since they may act as biomarkers or key regulators of cancer gene network. Recently, profiling and sequencing of ncRNAs disclosed deep deregulation in human cancers mostly due to aberrant mechanisms of ncRNAs biogenesis, such as amplification, deletion, abnormal epigenetic or transcriptional regulation. Although dysregulated ncRNAs may promote hallmarks of cancer as oncogenes or antagonize them as tumor suppressors, the mechanisms behind these events remain to be clarified. The development of new bioinformatic tools as well as novel molecular technologies is a challenging opportunity to disclose the role of the "dark matter" of the genome. In this review, we focus on currently available platforms, computational analyses and experimental strategies to investigate ncRNAs in cancer. We highlight the differences among experimental approaches aimed to dissect miRNAs and lncRNAs, which are the most studied ncRNAs. These two classes indeed need different investigation taking into account their intrinsic characteristics, such as length, structures and also the interacting molecules. Finally, we discuss the relevance of ncRNAs in clinical practice by considering promises and challenges behind the bench to bedside translation.
Collapse
Affiliation(s)
- Katia Grillone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Caterina Riillo
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Francesca Scionti
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Roberta Rocca
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Giuseppe Tradigo
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Department of Health Sciences, Magna Græcia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Maria Teresa Di Martino
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierfrancesco Tassone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| |
Collapse
|
20
|
A Comprehensive Biological and Clinical Perspective Can Drive a Patient-Tailored Approach to Multiple Myeloma: Bridging the Gaps between the Plasma Cell and the Neoplastic Niche. JOURNAL OF ONCOLOGY 2020; 2020:6820241. [PMID: 32508920 PMCID: PMC7251466 DOI: 10.1155/2020/6820241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
There is a broad spectrum of diseases labeled as multiple myeloma (MM). This is due not only to the composite prognostic risk factors leading to different clinical outcomes and responses to treatments but also to the composite tumor microenvironment that is involved in a vicious cycle with the MM plasma cells. New therapeutic strategies have improved MM patients' chances of survival. Nevertheless, certain patients' subgroups have a particularly unfavorable prognosis. Biological stratification can be subdivided into patient, disease, or therapy-related factors. Alternatively, the biological signature of aggressive disease and dismal therapeutic response can promote a dynamic, comprehensive strategic approach, better tailoring the clinical management of high-risk profiles and refractoriness to therapy and taking into account the role played by the MM milieu. By means of an extensive literature search, we have reviewed the state-of-the-art pathophysiological insights obtained from translational investigations of the MM-bone marrow microenvironment. A good knowledge of the MM niche pathophysiological dissection is crucial to tailor personalized approaches in a bench-bedside fashion. The discussion in this review pinpoints two main aspects that appear fundamental in order to gain novel and definitive results from the biology of MM. A systematic knowledge of the plasma cell disorder, along with greater efforts to face the unmet needs present in MM evolution, promises to open a new therapeutic window looking out onto the plethora of scientific evidence about the myeloma and the bystander cells.
Collapse
|
21
|
Raimondi L, De Luca A, Giavaresi G, Barone A, Tagliaferri P, Tassone P, Amodio N. Impact of Natural Dietary Agents on Multiple Myeloma Prevention and Treatment: Molecular Insights and Potential for Clinical Translation. Curr Med Chem 2020; 27:187-215. [PMID: 29956610 DOI: 10.2174/0929867325666180629153141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 01/30/2023]
Abstract
Chemoprevention is based on the use of non-toxic, pharmacologically active agents to prevent tumor progression. In this regard, natural dietary agents have been described by the most recent literature as promising tools for controlling onset and progression of malignancies. Extensive research has been so far performed to shed light on the effects of natural products on tumor growth and survival, disclosing the most relevant signal transduction pathways targeted by such compounds. Overall, anti-inflammatory, anti-oxidant and cytotoxic effects of dietary agents on tumor cells are supported either by results from epidemiological or animal studies and even by clinical trials. Multiple myeloma is a hematologic malignancy characterized by abnormal proliferation of bone marrow plasma cells and subsequent hypercalcemia, renal dysfunction, anemia, or bone disease, which remains incurable despite novel emerging therapeutic strategies. Notably, increasing evidence supports the capability of dietary natural compounds to antagonize multiple myeloma growth in preclinical models of the disease, underscoring their potential as candidate anti-cancer agents. In this review, we aim at summarizing findings on the anti-tumor activity of dietary natural products, focusing on their molecular mechanisms, which include inhibition of oncogenic signal transduction pathways and/or epigenetic modulating effects, along with their potential clinical applications against multiple myeloma and its related bone disease.
Collapse
Affiliation(s)
| | | | | | - Agnese Barone
- Hospice Cascina Brandezzata-Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
22
|
The Non-Coding RNA Landscape of Plasma Cell Dyscrasias. Cancers (Basel) 2020; 12:cancers12020320. [PMID: 32019064 PMCID: PMC7072200 DOI: 10.3390/cancers12020320] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Despite substantial advancements have been done in the understanding of the pathogenesis of plasma cell (PC) disorders, these malignancies remain hard-to-treat. The discovery and subsequent characterization of non-coding transcripts, which include several members with diverse length and mode of action, has unraveled novel mechanisms of gene expression regulation often malfunctioning in cancer. Increasing evidence indicates that such non-coding molecules also feature in the pathobiology of PC dyscrasias, where they are endowed with strong therapeutic and/or prognostic potential. In this review, we aim to summarize the most relevant findings on the biological and clinical features of the non-coding RNA landscape of malignant PCs, with major focus on multiple myeloma. The most relevant classes of non-coding RNAs will be examined, along with the mechanisms accounting for their dysregulation and the recent strategies used for their targeting in PC dyscrasias. It is hoped these insights may lead to clinical applications of non-coding RNA molecules as biomarkers or therapeutic targets/agents in the near future.
Collapse
|
23
|
Pourhanifeh MH, Mahjoubin-Tehran M, Shafiee A, Hajighadimi S, Moradizarmehri S, Mirzaei H, Asemi Z. MicroRNAs and exosomes: Small molecules with big actions in multiple myeloma pathogenesis. IUBMB Life 2019; 72:314-333. [PMID: 31828868 DOI: 10.1002/iub.2211] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM), an incurable hematologic malignancy of plasma cells increasing in the bone marrow (BM), has a complex microenvironment made to support proliferation, survival, and drug resistance of tumor cells. MicroRNAs (miRNAs), short non-coding RNAs regulating genes expression at posttranscriptional level, have been indicated to be functionally deregulated or abnormally expressed in MM cells. Moreover, by means of miRNAs, tumor microenvironment also modulates the function of MM cells. Consistently, it has been demonstrated that miRNA levels regulation impairs their interaction with the microenvironment of BM as well as create considerable antitumor feature even capable of overcoming the protective BM milieu. Communication between cancer stromal cells and cancer cells is a key factor in tumor progression. Finding out this interaction is important to develop effective approaches that reverse bone diseases. Exosomes, nano-vehicles having crucial roles in cell-to-cell communication, through targeting their cargos (i.e., miRNAs, mRNAs, DNAs, and proteins), are implicated in MM pathogenesis.
Collapse
Affiliation(s)
- Mohammad H Pourhanifeh
- Halal Research Center of IRI, FDA, Tehran, Iran.,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
24
|
The Role and Function of microRNA in the Pathogenesis of Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11111738. [PMID: 31698726 PMCID: PMC6896016 DOI: 10.3390/cancers11111738] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, attention has been drawn to the role of non-coding regions of the genome in cancer pathogenesis. MicroRNAs (miRNAs) are small non-coding RNAs with 19–25 bases of length that control gene expression by destroying messenger RNA or inhibiting its translation. In multiple myeloma (MM), the expression of several miRNAs, such as miR-15a and miR-16, is markedly decreased and their target genes upregulated, suggesting their role as tumor-suppressing miRNAs. In contrast, miRNAs such as miR-21 and miR-221 are highly expressed and function as oncogenes (oncomiRs). In addition, several miRNAs, such as those belonging to the miR-34 family, are transcriptional targets of p53 and mediate its tumor-suppressive functions. Many miRNAs are associated with drug resistance, and the modulation of their expression or activity might be explored to reverse it. Moreover, miRNA expression patterns in either MM cells or serum exosomes have been shown to be good prognostic markers. miRNA regulation mechanisms have not been fully elucidated. Many miRNAs are epigenetically controlled by DNA methylation and histone modification, and others regulate the expression of epigenetic modifiers, indicating that miRNA and other epigenetic effectors are part of a network. In this review, we outlined the roles of miRNAs in MM and their potential to predict MM prognosis and develop novel therapies.
Collapse
|
25
|
Qi J, Shi LY, Wu Y, Shen XJ, Yuan J, Jin CJ, Cong H, Ju SQ. Epigenetic silencing of miR-335 induces migration by targeting insulin-like growth factor-1 receptor in multiple myeloma. Leuk Lymphoma 2019; 60:3188-3198. [PMID: 31190579 DOI: 10.1080/10428194.2019.1627534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is a common hematological malignancy and remains incurable. MiRNA-335 is a classic tumor suppressor, yet its expression pattern and biological role in MM is unclear. The aim of the present study was to determine the expression pattern, biological role, and mechanism of miR-335 in MM. In this study, we found that miR-335 expression was decreased in MM. The promoter of miR-335 was also hypermethylated in MM. It was found that over-expression of miR-335 or 5-azacytidine treatment suppressed migration of MM cells and down-regulated the expression of IGF-1R. MiR-335 thus acts as a metastatic suppressor by targeting IGF-1R in MM. Moreover, aberrant promoter hyper-methylation is critical for miR-335 silencing in MM. We also found that miR-335 assisted in predicting both the prognosis and progression of disease in MM patients. Observations might offer a new complementary diagnostic and therapeutic target in MM.
Collapse
Affiliation(s)
- Jing Qi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lin-Ying Shi
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Yin Wu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Xian-Juan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Yuan
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chun-Jing Jin
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hui Cong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Shao-Qing Ju
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
26
|
Circulating microRNAs and Their Role in Multiple Myeloma. Noncoding RNA 2019; 5:ncrna5020037. [PMID: 31052608 PMCID: PMC6631121 DOI: 10.3390/ncrna5020037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia characterized by bone marrow infiltration of clonal plasma cells. The recent literature has clearly demonstrated clonal heterogeneity in terms of both the genomic and transcriptomic signature of the tumor. Of note, novel studies have also highlighted the importance of the functional cross-talk between the tumor clone and the surrounding bone marrow milieu, as a relevant player of MM pathogenesis. These findings have certainly enhanced our understanding of the underlying mechanisms supporting MM pathogenesis and disease progression. Within the specific field of small non-coding RNA-research, recent studies have provided evidence for considering microRNAs as a crucial regulator of MM biology and, in this context, circulating microRNAs have been shown to potentially contribute to prognostic stratification of MM patients. The present review will summarize the most recent studies within the specific topic of microRNAs and circulating microRNAs in MM.
Collapse
|
27
|
Li S, Vallet S, Sacco A, Roccaro A, Lentzsch S, Podar K. Targeting transcription factors in multiple myeloma: evolving therapeutic strategies. Expert Opin Investig Drugs 2019; 28:445-462. [DOI: 10.1080/13543784.2019.1605354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shirong Li
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Sonia Vallet
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Aldo Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Suzanne Lentzsch
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
28
|
Wang H, Li Z, Gao J, Liao Q. Circular RNA circPTK2 regulates oxygen-glucose deprivation-activated microglia-induced hippocampal neuronal apoptosis via miR-29b-SOCS-1-JAK2/STAT3-IL-1β signaling. Int J Biol Macromol 2019; 129:488-496. [PMID: 30742923 DOI: 10.1016/j.ijbiomac.2019.02.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022]
Abstract
Oxygen-glucose deprivation (OGD)-activated microglia contribute to neuronal apoptosis via releasing pro-inflammatory cytokines, and some miRNAs have been reported to be involved in this process. Circular RNAs (circRNAs) have been reported to function as miRNA sponges, but it remains unknown whether and how circRNAs contribute to OGD-activated microglia-induced neuronal apoptosis. Here, we investigated the function and relationship of miR-29b and circPTK2 in OGD-activated microglia-induced neuronal apoptosis. We found upregulation of TNF-α and IL-1β, and downregulation of miR-29b in OGD-activated microglia. miR-29b inhibited OGD-activated microglia-induced neuronal apoptosis. Meanwhile, miR-29b promoted SOCS-1 expression, and suppressed JAK2/STAT3 signaling. In addition, inhibition of JAK2/STAT3 signaling downregulated IL-1β expression, while upregulation of miR-29b or SOCS-1 also inhibited IL-1β production. IL-1β was confirmed to be an apoptosis inducer of hippocampal neurons. Moreover, either SOCS-1 upregulation or blockade of JAK2/STAT3 signaling suppressed OGD-activated microglia-induced neuronal apoptosis. These data suggest that miR-29b inhibits OGD-activated microglia-induced neuronal apoptosis via inducing SOCS-1 expression, blocking JNK2/STAT3 signaling, and inhibiting IL-1β production. circPTK2 was confirmed to inhibit miR-29b expression in OGD model by directly binding to miR-29b. Function assay showed that circPTK2 regulated microglia-induced neuronal apoptosis via sponging miR-29b. Collectively, these findings suggest that circPTK2 regulates OGD-activated microglia-induced neuronal apoptosis via miR-29b-SOCS-1-JAK2/STAT3-IL-1β signaling.
Collapse
Affiliation(s)
- Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- Clinical Science Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingyan Gao
- Department of Human Anatomy and Histo-Embryology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qingwu Liao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Interplay between early-life malnutrition, epigenetic modulation of the immune function and liver diseases. Nutr Res Rev 2019; 32:128-145. [PMID: 30707092 DOI: 10.1017/s0954422418000239] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Early-life nutrition plays a critical role in fetal growth and development. Food intake absence and excess are the two main types of energy malnutrition that predispose to the appearance of diseases in adulthood, according to the hypothesis of 'developmental origins of health and disease'. Epidemiological data have shown an association between early-life malnutrition and the metabolic syndrome in later life. Evidence has also demonstrated that nutrition during this period of life can affect the development of the immune system through epigenetic mechanisms. Thus, epigenetics has an essential role in the complex interplay between environmental factors and genetics. Altogether, this leads to the inflammatory response that is commonly seen in non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome. In conjunction, DNA methylation, covalent modification of histones and the expression of non-coding RNA are the epigenetic phenomena that affect inflammatory processes in the context of NAFLD. Here, we highlight current understanding of the mechanisms underlying developmental programming of NAFLD linked to epigenetic modulation of the immune system and environmental factors, such as malnutrition.
Collapse
|
30
|
Yang Q, Shen X, Su Z, Ju S. Emerging roles of noncoding RNAs in multiple myeloma: A review. J Cell Physiol 2018; 234:7957-7969. [PMID: 30370557 DOI: 10.1002/jcp.27547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/13/2018] [Indexed: 01/06/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by unrestricted secretion of monoclonal immunoglobulin and uncontrolled plasma cell proliferation. Extra-medullary infiltration and drug resistance are two major obstacles in the treatment of MM. To solve these problems, it is necessary to elucidate the underlying pathological mechanisms and find new therapeutic targets. Noncoding RNAs (ncRNAs), which were once considered "transcriptional noise," have been recognized as crucial regulators in the process of tumorigenesis including MM. Increasing evidence has shown that ncRNAs participate in MM pathogenesis via a series of complex cellular or extracellular processes. This review article summarizes examples of ncRNAs involved in myelosis and discusses their potential as biomarkers and therapeutic targets in the diagnosis and treatment of myelosis.
Collapse
Affiliation(s)
- Qian Yang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Xianjuan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhangyao Su
- Medical School of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
31
|
Malik DES, David RM, Gooderham NJ. Mechanistic evidence that benzo[a]pyrene promotes an inflammatory microenvironment that drives the metastatic potential of human mammary cells. Arch Toxicol 2018; 92:3223-3239. [PMID: 30155724 PMCID: PMC6132703 DOI: 10.1007/s00204-018-2291-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
Benzo[a]pyrene (B(a)P) is a major cancer-causing contaminant present in food such as cooked meats and cereals, and is ubiquitous in the environment in smoke derived from the combustion of organic material. Exposure to B(a)P is epidemiologically linked with the incidence of breast cancer. Although B(a)P is recognized as a complete genotoxic carcinogen, thought to act primarily via CYP-mediated metabolic activation to DNA-damaging species, there is also evidence that B(a)P exposure elicits other biological responses that promote development of the cancer phenotype. Here in mechanistic studies using human mammary cells MCF-7 and MDA-MB-231, we have explored mechanisms whereby B(a)P (10- 8 to 10- 5M) promotes inflammation pathways via TNF-α and NFκB leading to IL-6 upregulation, microRNA (Let7a, miR21 and miR29b) dysregulation and activation of VEGF. The miRNA dysregulation is associated with altered expression of inflammation mediators and increased migration and invasive potential of human mammary cancer cells. Our data suggest that mammary cell exposure to B(a)P results in perturbation of inflammation mediators and dysregulation of tumorigenic miRNAs, leading to an inflammation microenvironment that facilitates migration and invasion of mammary epithelial cells. These properties of B(a)P, together with its well-established metabolic activation to DNA-damaging species, offer mechanistic insights into its carcinogenic mode of action.
Collapse
Affiliation(s)
- Durr-E-Shahwar Malik
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Rhiannon M David
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK
- Genetic Toxicology, Drug Safety and Metabolism, MSAS Unit, AstraZeneca, Cambridge, UK
| | - Nigel J Gooderham
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
32
|
Wang H, Ding Q, Wang M, Guo M, Zhao Q. miR-29b inhibits the progression of multiple myeloma through downregulating FOXP1. Hematology 2018; 24:32-38. [PMID: 30068241 DOI: 10.1080/10245332.2018.1502961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Hongyan Wang
- Department of Gonarthrosis, Luoyang Orthopedics Hospital of Henan Province, Orthopedics Hospital of Henan Province, Zhengzhou, People’s Republic of China
| | - Qiang Ding
- Department of Osteonecrosis, Luoyang Orthopedics Hospital of Henan Province, Orthopedics Hospital of Henan Province, Zhengzhou, People’s Republic of China
| | - Mingjun Wang
- Department of Gonarthrosis, Luoyang Orthopedics Hospital of Henan Province, Orthopedics Hospital of Henan Province, Zhengzhou, People’s Republic of China
| | - Mingwei Guo
- Department of Gonarthrosis, Luoyang Orthopedics Hospital of Henan Province, Orthopedics Hospital of Henan Province, Zhengzhou, People’s Republic of China
| | - Qi Zhao
- Department Three of Cervical and Lumbar Pain, Luoyang Orthopedics Hospital of Henan Province, Orthopedics Hospital of Henan Province, Zhengzhou, People’s Republic of China
| |
Collapse
|
33
|
Zhu B, Ju S, Chu H, Shen X, Zhang Y, Luo X, Cong H. The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma. Oncol Lett 2018; 15:6094-6106. [PMID: 29731841 PMCID: PMC5920744 DOI: 10.3892/ol.2018.8157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
Multiple myeloma (MM), accounting for ~1% of all types of human cancer and 13% of all hematological malignancies, is characterized by the malignant proliferation of monoclonal plasma cells (PCs) in the bone marrow. MM leads to end stage organ impairment, including bone lesions, renal dysfunction, hypercalcemia and anemia. So far, the specific pathogenesis of MM remains unclear and no early-stage sensitive biomarker of MM has been well characterized. Furthermore, treating MM is difficult, as the majority of patients eventually relapse or become refractory following treatment using presently available methods. To date, a number of studies have demonstrated that microRNAs (miRNAs) may serve crucial functions in the progression of numerous cancers, including MM. During the tumorigenesis and pathogenesis of MM, there are multiple carcinogenic events that involve the pernicious transformation from normal to malignant PCs. miRNAs, as oncogenes or tumor suppressors, regulate MM progression-related signaling pathways. In the present review, the up-to-date preliminary basic studies and associated clinical works on the underlying mechanisms of aberrant miRNA profiling in MM have been summarized, including an evaluation of its value as a potential biomarker and a novel therapeutic strategy for MM.
Collapse
Affiliation(s)
- Bingying Zhu
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Shaoqing Ju
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Haidan Chu
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xianjuan Shen
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Yan Zhang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xi Luo
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Hui Cong
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
34
|
Zhang H, Li H, Ge A, Guo E, Liu S, Zhang L. Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPS-treated H9c2 cells by down-regulation of miR-29b. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
35
|
Zhang MW, Fujiwara K, Che X, Zheng S, Zheng L. DNA methylation in the tumor microenvironment. J Zhejiang Univ Sci B 2018; 18:365-372. [PMID: 28471108 DOI: 10.1631/jzus.b1600579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) plays an important role in supporting cancer progression. The TME is composed of tumor cells, the surrounding tumor-associated stromal cells, and the extracellular matrix (ECM). Crosstalk between the TME components contributes to tumorigenesis. Recently, one of our studies showed that pancreatic ductal adenocarcinoma (PDAC) cells can induce DNA methylation in cancer-associated fibroblasts (CAFs), thereby modifying tumor-stromal interactions in the TME, and subsequently creating a TME that supports tumor growth. Here we summarize recent studies about how DNA methylation affects tumorigenesis through regulating tumor-associated stromal components including fibroblasts and immune cells. We also discuss the potential for targeting DNA methylation for the treatment of cancers.
Collapse
Affiliation(s)
- Meng-Wen Zhang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Kenji Fujiwara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Xu Che
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Shu Zheng
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| |
Collapse
|
36
|
MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells. Leukemia 2017; 32:1003-1015. [PMID: 29158557 PMCID: PMC5886056 DOI: 10.1038/leu.2017.336] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/05/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) have a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their microRNA (miRNA) network. By analyzing six different miRNA-profiling data sets, miR-29b was identified as the only miRNA upregulated in normal mature DCs and significantly downregulated in tumor-associated DCs. This finding was validated in primary DCs co-cultured in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced expression of miR-29b counteracted pro-inflammatory pathways, including signal transducer and activator of transcription 3 and nuclear factor-κB, and cytokine/chemokine signaling networks, which correlated with patients' adverse prognosis and development of bone disease. Moreover, miR-29b downregulated interleukin-23 in vitro and in the SCID-synth-hu in vivo model, and antagonized a Th17 inflammatory response. All together, these effects translated into strong anti-proliferative activity and reduction of genomic instability of MM cells. Our study demonstrates that MM reprograms the DCs functional phenotype by downregulating miR-29b whose reconstitution impairs DCs ability to sustain MM cell growth and survival. These results underscore miR-29b as an innovative and attractive candidate for miRNA-based immune therapy of MM.
Collapse
|
37
|
Stamato MA, Juli G, Romeo E, Ronchetti D, Arbitrio M, Caracciolo D, Neri A, Tagliaferri P, Tassone P, Amodio N. Inhibition of EZH2 triggers the tumor suppressive miR-29b network in multiple myeloma. Oncotarget 2017; 8:106527-106537. [PMID: 29290968 PMCID: PMC5739753 DOI: 10.18632/oncotarget.22507] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022] Open
Abstract
Downregulation of tumor suppressor (TS) microRNAs (miRNAs) commonly occurs in human cancer, including multiple myeloma (MM). We previously demonstrated that miR-29b is a relevant TS miRNA, whose expression in MM cells is inhibited by HDAC4-dependent deacetylation. Here, we provide novel insights into epigenetic mechanisms suppressing miR-29b in MM. In MM patient-derived plasma cells, we found inverse correlation between miR-29b and EZH2 mRNA expression. Both siRNAs and pharmacologic inhibitors of EZH2 led to miR-29b upregulation, and this effect was ascribed to reduced H3K27-trimethylation (H3K27me3) of miR-29a/b-1 promoter regions. Induction of miR-29b upon EZH2 inhibition occurred together with downregulation of major miR-29b pro-survival targets, such as SP1, MCL-1 and CDK6. Knock-down of the EZH2-interacting long non-coding RNA MALAT1 also reduced H3K27me3 of miR-29a/b-1 promoter, along with induction of miR-29b and downregulation of miR-29b targets. Importantly, inhibition of miR-29b by antagomiRs dramatically reduced in vitro anti-MM activity of small molecule EZH2-inhibitors, indicating that functional miR-29b is crucial for the activity of these compounds. Altogether, these results disclose novel epigenetic alterations contributing to the suppression of miR-29b molecular network, which can be instrumental for the development of rationally designed miRNA-based anti-MM therapeutics.
Collapse
Affiliation(s)
- Maria Angelica Stamato
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Enrica Romeo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Domenica Ronchetti
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, US
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
38
|
Li H, Liu G, Pan K, Miao X, Xie Y. Methylation-induced downregulation and tumor suppressive role of microRNA-29b in gastric cancer through targeting LASP1. Oncotarget 2017; 8:95880-95895. [PMID: 29221174 PMCID: PMC5707068 DOI: 10.18632/oncotarget.21431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRs) have been demonstrated to play promoting or tumor suppressive roles in various human cancers, but the regulatory mechanism of miR-29b underlying gastric cancer development and progression still remains largely unclear. In the present study, we found that miR-29b was significantly downregulated in gastric cancer tissues and cell lines. Low expression of miR-29b was significantly associated with DNA methylation, and treatment with DNA methyltransferase inhibitor 5-Aza-20-deoxycytidine upregulated miR-29b in gastric cancer cells. In addition, both reduced miR-29b expression and miR-29b methylation were associated with disease progression and poor prognosis in gastric cancer. Restoration of miR-29b caused a reduction in gastric cancer cell proliferation, migration, and invasion, and inhibited tumor growth in vivo. LASP1 was then identified as a target gene of miR-29b in gastric cancer cells. Moreover, upregulation of LASP1 was significantly associated with gastric cancer progression and poor prognosis. Knockdown of LASP1 also suppressed the proliferation, migration, and invasion of gastric cancer cells. Moreover, overexpression of LASP1 impaired the suppressive effects of miR-29b on the malignant phenotypes of gastric cancer cells, suggesting that miR-29b may inhibit gastric cancer growth and metastasis via targeting LASP1. According to these data, miR-29b may be used as a potential therapeutic candidate for gastric cancer.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesia, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoqing Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Pan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Xie
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Amodio N, D'Aquila P, Passarino G, Tassone P, Bellizzi D. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opin Ther Targets 2017; 21:91-101. [PMID: 27892767 DOI: 10.1080/14728222.2016.1266339] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Multiple Myeloma (MM) is a clonal late B-cell disorder accounting for about 13% of hematological cancers and 1% of all neoplastic diseases. Recent studies on the molecular pathogenesis and biology of MM have highlighted a complex epigenomic landscape contributing to MM onset, prognosis and high individual variability. Areas covered: We describe here the current knowledge on epigenetic events characterizing MM initiation and progression, focusing on the role of DNA and histone methylation and on the most promising epi-therapeutic approaches targeting the methylation pathway. Expert opinion: Data published so far indicate that alterations of the epigenetic framework, which include aberrant global or gene/non-coding RNA specific methylation profiles, feature prominently in the pathobiology of MM. Indeed, the aberrant expression of components of the epigenetic machinery as well as the reversibility of the epigenetic marks make this pathway druggable, providing the basis for the design of epigenetic therapies against this still fatal malignancy.
Collapse
Affiliation(s)
- Nicola Amodio
- a Department of Experimental and Clinical Medicine , Magna Graecia University , Catanzaro , Italy
| | - Patrizia D'Aquila
- b Department of Biology, Ecology and Earth Sciences , University of Calabria , Rende , Italy
| | - Giuseppe Passarino
- b Department of Biology, Ecology and Earth Sciences , University of Calabria , Rende , Italy
| | - Pierfrancesco Tassone
- a Department of Experimental and Clinical Medicine , Magna Graecia University , Catanzaro , Italy.,c Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , US
| | - Dina Bellizzi
- b Department of Biology, Ecology and Earth Sciences , University of Calabria , Rende , Italy
| |
Collapse
|
40
|
Jiang M, Zhang WW, Liu P, Yu W, Liu T, Yu J. Dysregulation of SOCS-Mediated Negative Feedback of Cytokine Signaling in Carcinogenesis and Its Significance in Cancer Treatment. Front Immunol 2017; 8:70. [PMID: 28228755 PMCID: PMC5296614 DOI: 10.3389/fimmu.2017.00070] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/16/2017] [Indexed: 01/30/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins are major negative feedback regulators of cytokine signaling mediated by the Janus kinase (JAK)-signal transducer and activator of transcription signaling pathway. In particular, SOCS1 and SOCS3 are strong inhibitors of JAKs and can play pivotal roles in the development and progression of cancers. The abnormal expression of SOCS1 and SOCS3 in cancer cells is associated with the dysregulation of cell growth, migration, and death induced by multiple cytokines and hormones in human carcinomas. In addition, the mechanisms involved in SOCS1- and SOCS3-regulated abnormal development and activation of immune cells in carcinogenesis, including T cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, are still unclear. Therefore, this study aims to further discuss the molecules and signal pathways regulating the expression and function of SOCS1 and SOCS3 in various types of cancers and elucidate the feasibility and efficiency of SOCS-based target therapeutic strategy in anticancer treatment.
Collapse
Affiliation(s)
- Mengmeng Jiang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wen-Wen Zhang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostic Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin , China
| | - Wenwen Yu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ting Liu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinpu Yu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Cancer Molecular Diagnostic Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
41
|
A gene expression inflammatory signature specifically predicts multiple myeloma evolution and patients survival. Blood Cancer J 2016; 6:e511. [PMID: 27983725 PMCID: PMC5223153 DOI: 10.1038/bcj.2016.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM) is closely dependent on cross-talk between malignant plasma cells and cellular components of the inflammatory/immunosuppressive bone marrow milieu, which promotes disease progression, drug resistance, neo-angiogenesis, bone destruction and immune-impairment. We investigated the relevance of inflammatory genes in predicting disease evolution and patient survival. A bioinformatics study by Ingenuity Pathway Analysis on gene expression profiling dataset of monoclonal gammopathy of undetermined significance, smoldering and symptomatic-MM, identified inflammatory and cytokine/chemokine pathways as the most progressively affected during disease evolution. We then selected 20 candidate genes involved in B-cell inflammation and we investigated their role in predicting clinical outcome, through univariate and multivariate analyses (log-rank test, logistic regression and Cox-regression model). We defined an 8-genes signature (IL8, IL10, IL17A, CCL3, CCL5, VEGFA, EBI3 and NOS2) identifying each condition (MGUS/smoldering/symptomatic-MM) with 84% accuracy. Moreover, six genes (IFNG, IL2, LTA, CCL2, VEGFA, CCL3) were found independently correlated with patients' survival. Patients whose MM cells expressed high levels of Th1 cytokines (IFNG/LTA/IL2/CCL2) and low levels of CCL3 and VEGFA, experienced the longest survival. On these six genes, we built a prognostic risk score that was validated in three additional independent datasets. In this study, we provide proof-of-concept that inflammation has a critical role in MM patient progression and survival. The inflammatory-gene prognostic signature validated in different datasets clearly indicates novel opportunities for personalized anti-MM treatment.
Collapse
|
42
|
Abstract
MicroRNAs (miRNAs) are short non coding RNAs that regulate the gene expression and play a relevant role in physiopathological mechanisms such as development, proliferation, death, and differentiation of normal and cancer cells. Recently, abnormal expression of miRNAs has been reported in most of solid or hematopoietic malignancies, including multiple myeloma (MM), where miRNAs have been found deeply dysregulated and act as oncogenes or tumor suppressors. Presently, the most recognized approach for definition of miRNA portraits is based on microarray profiling analysis. We here describe a workflow based on the identification of dysregulated miRNAs in plasma cells from MM patients based on Affymetrix technology. We describe how it is possible to search miRNA putative targets performing whole gene expression profile on MM cell lines transfected with miRNA mimics or inhibitors followed by luciferase reporter assay to analyze the specific targeting of the 3'untranslated region (UTR) sequence of a mRNA by selected miRNAs. These technological approaches are suitable strategies for the identification of relevant druggable targets in MM.
Collapse
|
43
|
Lycorine induces cell death in MM by suppressing Janus Kinase/signal transducer and activator of transcription via inducing the expression of SOCS1. Biomed Pharmacother 2016; 84:1645-1653. [DOI: 10.1016/j.biopha.2016.10.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/29/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022] Open
|
44
|
Xiao Q, Zhou D, Rucki AA, Williams J, Zhou J, Mo G, Murphy A, Fujiwara K, Kleponis J, Salman B, Wolfgang CL, Anders RA, Zheng S, Jaffee EM, Zheng L. Cancer-Associated Fibroblasts in Pancreatic Cancer Are Reprogrammed by Tumor-Induced Alterations in Genomic DNA Methylation. Cancer Res 2016; 76:5395-404. [PMID: 27496707 DOI: 10.1158/0008-5472.can-15-3264] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
Stromal fibrosis is a prominent histologic characteristic of pancreatic ductal adenocarcinoma (PDAC), but how stromal fibroblasts are regulated in the tumor microenvironment (TME) to support tumor growth is largely unknown. Here we show that PDAC cells can induce DNA methylation in cancer-associated fibroblasts (CAF). Upon direct contact with PDAC cells, DNA methylation of SOCS1 and other genes is induced in mesenchymal stem cells or in CAF that lack SOCS1 methylation at baseline. Silencing or decitabine treatment to block the DNA methylation enzyme DNMT1 inhibited methylation of SOCS1. In contrast, SOCS1 gene methylation and downregulation in CAF activated STAT3 and induced insulin-like growth factor-1 expression to support PDAC cell growth. Moreover, CAF facilitated methylation-dependent growth of PDAC tumor xenografts in mice. The ability of patient-derived CAF with SOCS1 methylation to promote PDAC growth was more robust than CAF without SOCS1 methylation. Overall, our results reveal how PDAC cells can reprogram CAF to modify tumor-stromal interactions in the TME, which promote malignant growth and progression. Cancer Res; 76(18); 5395-404. ©2016 AACR.
Collapse
Affiliation(s)
- Qian Xiao
- The Second Affiliated Hospital of the Zhejiang University School of Medicine, Hangzhou, China. Zhejiang University School of Medicine, Hangzhou, China. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Donger Zhou
- The Second Affiliated Hospital of the Zhejiang University School of Medicine, Hangzhou, China. Zhejiang University School of Medicine, Hangzhou, China. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Agnieszka A Rucki
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jamila Williams
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jiaojiao Zhou
- The Second Affiliated Hospital of the Zhejiang University School of Medicine, Hangzhou, China. Zhejiang University School of Medicine, Hangzhou, China. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guanglan Mo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adrian Murphy
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenji Fujiwara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer Kleponis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bulent Salman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher L Wolfgang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shu Zheng
- Zhejiang University School of Medicine, Hangzhou, China
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
45
|
Integrated analysis of microRNAs, transcription factors and target genes expression discloses a specific molecular architecture of hyperdiploid multiple myeloma. Oncotarget 2016; 6:19132-47. [PMID: 26056083 PMCID: PMC4662480 DOI: 10.18632/oncotarget.4302] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Multiple Myeloma (MM) is a malignancy characterized by the hyperdiploid (HD-MM) and the non-hyperdiploid (nHD-MM) subtypes. To shed light within the molecular architecture of these subtypes, we used a novel integromics approach. By annotated MM patient mRNA/microRNA (miRNA) datasets, we investigated mRNAs and miRNAs profiles with relation to changes in transcriptional regulators expression. We found that HD-MM displays specific gene and miRNA expression profiles, involving the Signal Transducer and Activator of Transcription (STAT)3 pathway as well as the Transforming Growth Factor–beta (TGFβ) and the transcription regulator Nuclear Protein-1 (NUPR1). Our data define specific molecular features of HD-MM that may translate in the identification of novel relevant druggable targets.
Collapse
|
46
|
Gallo Cantafio ME, Nielsen BS, Mignogna C, Arbitrio M, Botta C, Frandsen NM, Rolfo C, Tagliaferri P, Tassone P, Di Martino MT. Pharmacokinetics and Pharmacodynamics of a 13-mer LNA-inhibitor-miR-221 in Mice and Non-human Primates. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:S2162-2531(17)30051-3. [PMID: 27327137 PMCID: PMC5022129 DOI: 10.1038/mtna.2016.36] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023]
Abstract
Locked nucleic acid (LNA) oligonucleotides have been successfully used to efficiently inhibit endogenous small noncoding RNAs in vitro and in vivo. We previously demonstrated that the direct miR-221 inhibition by the novel 13-mer LNA-i-miR-221 induces significant antimyeloma activity and upregulates canonical miR-221 targets in vitro and in vivo. To evaluate the LNA-i-miR-221 pharmacokinetics and pharmacodynamics, novel assays for oligonucleotides quantification in NOD.SCID mice and Cynomolgus monkeys (Macaca fascicularis) plasma, urine and tissues were developed. To this aim, a liquid chromatography/mass spectrometry method, after solid-phase extraction, was used for the detection of LNA-i-miR-221 in plasma and urine, while a specific in situ hybridization assay for tissue uptake analysis was designed. Our analysis revealed short half-life, optimal tissue biovailability and minimal urine excretion of LNA-i-miR-221 in mice and monkeys. Up to 3 weeks, LNA-i-miR-221 was still detectable in mice vital organs and in xenografted tumors, together with p27 target upregulation. Importantly, no toxicity in the pilot monkey study was observed. Overall, our findings indicate the suitability of LNA-i-miR-221 for clinical use and we provide here pilot data for safety analysis and further development of LNA-miRNA-based therapeutics for human cancer.
Collapse
Affiliation(s)
- Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Chiara Mignogna
- Department of Health Sciences, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Christian Rolfo
- Department of Oncology, University Hospital of Antwerp, Edegem, Belgium
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| |
Collapse
|
47
|
Amodio N, Stamato MA, Gullà AM, Morelli E, Romeo E, Raimondi L, Pitari MR, Ferrandino I, Misso G, Caraglia M, Perrotta I, Neri A, Fulciniti M, Rolfo C, Anderson KC, Munshi NC, Tagliaferri P, Tassone P. Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Mol Cancer Ther 2016; 15:1364-75. [PMID: 27196750 DOI: 10.1158/1535-7163.mct-15-0985] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
Epigenetic abnormalities are common in hematologic malignancies, including multiple myeloma, and their effects can be efficiently counteracted by a class of tumor suppressor miRNAs, named epi-miRNAs. Given the oncogenic role of histone deacetylases (HDAC) in multiple myeloma, we investigated whether their activity could be antagonized by miR-29b, a well-established epi-miRNA. We demonstrated here that miR-29b specifically targets HDAC4 and highlighted that both molecules are involved in a functional loop. In fact, silencing of HDAC4 by shRNAs inhibited multiple myeloma cell survival and migration and triggered apoptosis and autophagy, along with the induction of miR-29b expression by promoter hyperacetylation, leading to the downregulation of prosurvival miR-29b targets (SP1, MCL-1). Moreover, treatment with the pan-HDAC inhibitor SAHA upregulated miR-29b, overcoming the negative control exerted by HDAC4. Importantly, overexpression or inhibition of miR-29b, respectively, potentiated or antagonized SAHA activity on multiple myeloma cells, as also shown in vivo by a strong synergism between miR-29b synthetic mimics and SAHA in a murine xenograft model of human multiple myeloma. Altogether, our results shed light on a novel epigenetic circuitry regulating multiple myeloma cell growth and survival and open new avenues for miR-29b-based epi-therapeutic approaches in the treatment of this malignancy. Mol Cancer Ther; 15(6); 1364-75. ©2016 AACR.
Collapse
Affiliation(s)
- Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy.
| | - Maria Angelica Stamato
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Anna Maria Gullà
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Eugenio Morelli
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Enrica Romeo
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Lavinia Raimondi
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Maria Rita Pitari
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Ida Ferrandino
- Department of Biology, University "Federico II" of Naples, Naples, Italy
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Ida Perrotta
- Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), Transmission Electron Microscopy Laboratory, Centre for Microscopy and Microanalysis (CM2), University of Calabria, Rende, Italy
| | - Antonino Neri
- Department of Medical Sciences, University of Milan, Hematology 1, IRCCS Policlinico Foundation, Milan, Italy
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Christian Rolfo
- Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. VA Boston Healthcare System, West Roxbury, Boston, Massachusetts
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy. Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
48
|
Lei K, Du W, Lin S, Yang L, Xu Y, Gao Y, Xu B, Tan S, Xu Y, Qian X, Liang X, Liu J. 3B, a novel photosensitizer, inhibits glycolysis and inflammation via miR-155-5p and breaks the JAK/STAT3/SOCS1 feedback loop in human breast cancer cells. Biomed Pharmacother 2016; 82:141-50. [PMID: 27470349 DOI: 10.1016/j.biopha.2016.04.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Compared to normal cells, most cancer cells produce ATP by glycolysis under aerobic conditions rather than via the tricarboxylic acid cycle (TCA). This study is intended to determine whether 3B, a novel photosensitizer, can inhibit glycolysis and inflammation in breast cancer cells. We showed that 3B had the ability to repress glucose consumption as well as the generation of ATP, lactate and lactate dehydrogenase. 3B-PDT not only inhibited the expression of IL-1β and IL-6 but also affected the JAK-STAT3 inflammatory pathway in vitro. The present study showed that 3B featured a significant inhibitory effect on the expression of microRNA-155-5p and SOCS1 might serve as a target gene. In vivo studies revealed that 3B inhibited tumor growth and exhibited almost no side effects. Therefore, through the anti-glycolytic effect and breakage of the JAK/STAT3/SOCS1 feedback loop via miR-155-5p, 3B may potentially serve as a potential therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Kecheng Lei
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Wenpei Du
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Shengchao Lin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Liyan Yang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yichun Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yuwei Gao
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Shaoying Tan
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
49
|
Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O, Giardino R, Fini M, Tassone P, Santoro A, De Leo G, Giavaresi G, Alessandro R. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget 2016; 6:13772-89. [PMID: 25944696 PMCID: PMC4537049 DOI: 10.18632/oncotarget.3830] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/26/2015] [Indexed: 12/17/2022] Open
Abstract
Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Angela De Luca
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Simona Taverna
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Daniele Bellavia
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Flores Naselli
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Simona Fontana
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Odessa Schillaci
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | | | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Alessandra Santoro
- Divisione di Ematologia A.O. Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Giacomo De Leo
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Gianluca Giavaresi
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy.,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Riccardo Alessandro
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy.,Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council of Italy, Palermo, Italy
| |
Collapse
|
50
|
miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget 2016; 6:12837-61. [PMID: 25968566 PMCID: PMC4536984 DOI: 10.18632/oncotarget.3805] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
A wealth of studies has highlighted the biological complexity of hematologic malignancies and the role of dysregulated signal transduction pathways. Along with the crucial role of genetic abnormalities, epigenetic aberrations are nowadays emerging as relevant players in cancer development, and significant research efforts are currently focusing on mechanisms by which histone post-translational modifications, DNA methylation and noncoding RNAs contribute to the pathobiology of cancer. As a consequence, these studies have provided the rationale for the development of epigenetic drugs, such as histone deacetylase inhibitors and demethylating compounds, some of which are currently in advanced phase of pre-clinical investigation or in clinical trials. In addition, a more recent body of evidence indicates that microRNAs (miRNAs) might target effectors of the epigenetic machinery, which are aberrantly expressed or active in cancers, thus reverting those epigenetic abnormalities driving tumor initiation and progression. This review will focus on the broad epigenetic activity triggered by members of the miR-29 family, which underlines the potential of miR-29s as candidate epi-therapeutics for the treatment of hematologic malignancies.
Collapse
|