1
|
García-Blay Ó, Hu X, Wassermann CL, van Bokhoven T, Struijs FMB, Hansen MMK. Multimodal screen identifies noise-regulatory proteins. Dev Cell 2025; 60:133-151.e12. [PMID: 39406240 DOI: 10.1016/j.devcel.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 01/11/2025]
Abstract
Gene-expression noise can influence cell-fate choices across pathology and physiology. However, a crucial question persists: do regulatory proteins or pathways exist that control noise independently of mean expression levels? Our integrative approach, combining single-cell RNA sequencing with proteomics and regulator enrichment analysis, identifies 32 putative noise regulators. SON, a nuclear speckle-associated protein, alters transcriptional noise without changing mean expression levels. Furthermore, SON's noise control can propagate to the protein level. Long-read and total RNA sequencing shows that SON's noise control does not significantly change isoform usage or splicing efficiency. Moreover, SON depletion reduces state switching in pluripotent mouse embryonic stem cells and impacts their fate choice during differentiation. Collectively, we demonstrate a class of proteins that control noise orthogonally to mean expression levels. This work serves as a proof of concept that can identify other functional noise regulators throughout development and disease progression.
Collapse
Affiliation(s)
- Óscar García-Blay
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Christin L Wassermann
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tom van Bokhoven
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Fréderique M B Struijs
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Rosier M, Krstulović A, Kim HR, Kaur N, Enakireru EM, Symmes D, Dobra K, Chen R, Evans CA, Gad AKB. The Vimentin-Targeting Drug ALD-R491 Partially Reverts the Epithelial-to-Mesenchymal Transition and Vimentin Interactome of Lung Cancer Cells. Cancers (Basel) 2024; 17:81. [PMID: 39796712 PMCID: PMC11720119 DOI: 10.3390/cancers17010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Background: The epithelial-to-mesenchymal transition (EMT) is a common feature in early cancer invasion. Increased vimentin is a canonical marker of the EMT; however, the role of vimentin in EMT remains unknown. Methods: To clarify this, we induced EMT in lung cancer cells with TGF-β1, followed by treatment with the vimentin-targeting drug ALD-R491, live-cell imaging, and quantitative proteomics. Results: We identified 838 proteins in the intermediate filament fraction of cells. TGF-β1 treatment increased the proportion of vimentin in this fraction and the levels of 24 proteins. Variants of fibronectin showed the most pronounced increase (137-fold), followed by regulators of the cytoskeleton, cell motility, and division, such as the mRNA-splicing protein SON. TGF-β1 increased cell spreading and cell migration speed, and changed a positive correlation between cell migration speed and persistence to negative. ALD-R491 reversed these mesenchymal phenotypes to epithelial and the binding of RNA-binding proteins, including SON. Conclusions: These findings present many new interactors of intermediate filaments, describe how EMT and vimentin filament dynamics influence the intermediate filament interactome, and present ALD-R491 as a possible EMT-inhibitor. The observations support the hypothesis that the dynamic turnover of vimentin filaments and their interacting proteins govern mesenchymal cell migration, EMT, cell invasion, and cancer metastasis.
Collapse
Affiliation(s)
- Marieke Rosier
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| | - Anja Krstulović
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| | - Hyejeong Rosemary Kim
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, UK;
| | - Nihardeep Kaur
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| | - Erhumuoghene Mary Enakireru
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| | - Deebie Symmes
- Aluda Pharmaceuticals, Inc., Menlo Park, CA 94025, USA; (D.S.); (R.C.)
| | - Katalin Dobra
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| | - Ruihuan Chen
- Aluda Pharmaceuticals, Inc., Menlo Park, CA 94025, USA; (D.S.); (R.C.)
| | - Caroline A. Evans
- School of Materials, Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK;
| | - Annica K. B. Gad
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| |
Collapse
|
3
|
Shender VO, Anufrieva KS, Shnaider PV, Arapidi GP, Pavlyukov MS, Ivanova OM, Malyants IK, Stepanov GA, Zhuravlev E, Ziganshin RH, Butenko IO, Bukato ON, Klimina KM, Veselovsky VA, Grigorieva TV, Malanin SY, Aleshikova OI, Slonov AV, Babaeva NA, Ashrafyan LA, Khomyakova E, Evtushenko EG, Lukina MM, Wang Z, Silantiev AS, Nushtaeva AA, Kharlampieva DD, Lazarev VN, Lashkin AI, Arzumanyan LK, Petrushanko IY, Makarov AA, Lebedeva OS, Bogomazova AN, Lagarkova MA, Govorun VM. Therapy-induced secretion of spliceosomal components mediates pro-survival crosstalk between ovarian cancer cells. Nat Commun 2024; 15:5237. [PMID: 38898005 PMCID: PMC11187153 DOI: 10.1038/s41467-024-49512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.
Collapse
Affiliation(s)
- Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology; Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Georgij P Arapidi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
| | - Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Irina K Malyants
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Grigory A Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Evgenii Zhuravlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
| | - Ivan O Butenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Olga N Bukato
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Ksenia M Klimina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vladimir A Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | | | | | - Olga I Aleshikova
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | - Andrey V Slonov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Nataliya A Babaeva
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | - Lev A Ashrafyan
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | | | - Evgeniy G Evtushenko
- Faculty of Chemistry; Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Zixiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Jinan, 250012, Shandong, China
| | - Artemiy S Silantiev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anna A Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Daria D Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vassili N Lazarev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Arseniy I Lashkin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Lorine K Arzumanyan
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Olga S Lebedeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Alexandra N Bogomazova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vadim M Govorun
- Research Institute for Systems Biology and Medicine, Moscow, 117246, Russian Federation
| |
Collapse
|
4
|
Vianzon VV, Hanson RM, Garg I, Joseph GJ, Rogers LM. Rank aggregation of independent genetic screen results highlights new strategies for adoptive cellular transfer therapy of cancer. Front Immunol 2023; 14:1235131. [PMID: 38143765 PMCID: PMC10748423 DOI: 10.3389/fimmu.2023.1235131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Efficient intratumoral infiltration of adoptively transferred cells is a significant barrier to effectively treating solid tumors with adoptive cellular transfer (ACT) therapies. Our recent forward genetic, whole-genome screen identified T cell-intrinsic gene candidates that may improve tumor infiltration of T cells. Here, results are combined with five independent genetic screens using rank aggregation to improve rigor. This resulted in a combined total of 1,523 candidate genes - including 1,464 genes not currently being evaluated as therapeutic targets - that may improve tumor infiltration of T cells. Gene set enrichment analysis of a published human dataset shows that these gene candidates are differentially expressed in tumor infiltrating compared to circulating T cells, supporting translational potential. Importantly, adoptive transfer of T cells overexpressing gain-of-function candidates (AAK1ΔN125, SPRR1B, and EHHADH) into tumor-bearing mice resulted in increased T cell infiltration into tumors. These novel gene candidates may be considered as potential therapeutic candidates that can aid adoptive cellular therapy in improving T cell infiltration into solid tumors.
Collapse
Affiliation(s)
| | | | | | | | - Laura M. Rogers
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato C. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation. Front Immunol 2023; 14:1192028. [PMID: 37483631 PMCID: PMC10360199 DOI: 10.3389/fimmu.2023.1192028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Collapse
Affiliation(s)
- Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Paola Dama
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Thomas Stiff
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leandro Castellano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Peter A. Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre, London, United Kingdom
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| |
Collapse
|
6
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Indelicato E, Zech M, Amprosi M, Boesch S. Untangling neurodevelopmental disorders in the adulthood: a movement disorder is the clue. Orphanet J Rare Dis 2022; 17:55. [PMID: 35172867 PMCID: PMC8848801 DOI: 10.1186/s13023-022-02218-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background The genetic landscape of neurodevelopmental disorders is constantly expanding and children with early-onset neurological phenotypes increasingly receive a genetic diagnosis. Nonetheless, the awareness of the chronic course of these conditions, and consequently their recognition and management in the adult population, is still limited. Results Herein, we describe four patients with rare neurodevelopmental disorders (SON, ZMYND11, DNMT1 and YY1-related diseases), who received a genetic assignment only in the adulthood. All these patients had an early developmental delay and displayed a movement disorder (dystonia/ataxia/tremor) which manifested for the first time, or worsened, in the adulthood, prompting the referral to a neurologist. This phenotypic combination led eventually to the genetic testing. We report previously unrecognized features and highlight the peculiarities of the adult presentation of four neurodevelopmental disorders. Conclusions This report expands the current knowledge on four rare neurodevelopmental disorders (SON, ZMYND11, DNMT1 and YY1), which was mainly based on reports from paediatric cases. This case series emphasize the importance of a tight neurological surveillance extending beyond the childhood.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Michael Zech
- Institut for Neurogenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Munich-Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Matthias Amprosi
- Center for Rare Movement Disorders Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
8
|
Stemm-Wolf AJ, O’Toole ET, Sheridan RM, Morgan JT, Pearson CG. The SON RNA splicing factor is required for intracellular trafficking structures that promote centriole assembly and ciliogenesis. Mol Biol Cell 2021; 32:ar4. [PMID: 34406792 PMCID: PMC8684746 DOI: 10.1091/mbc.e21-06-0305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022] Open
Abstract
Control of centrosome assembly is critical for cell division, intracellular trafficking, and cilia. Regulation of centrosome number occurs through the precise duplication of centrioles that reside in centrosomes. Here we explored transcriptional control of centriole assembly and find that the RNA splicing factor SON is specifically required for completing procentriole assembly. Whole genome mRNA sequencing identified genes whose splicing and expression are affected by the reduction of SON, with an enrichment in genes involved in the microtubule (MT) cytoskeleton, centrosome, and centriolar satellites. SON is required for the proper splicing and expression of CEP131, which encodes a major centriolar satellite protein and is required to organize the trafficking and MT network around the centrosomes. This study highlights the importance of the distinct MT trafficking network that is intimately associated with nascent centrioles and is responsible for procentriole development and efficient ciliogenesis.
Collapse
Affiliation(s)
- Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | | | - Ryan M. Sheridan
- RNA Biosciences Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Jacob T. Morgan
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
9
|
Rogers LM, Wang Z, Mott SL, Dupuy AJ, Weiner GJ. A Genetic Screen to Identify Gain- and Loss-of-Function Modifications that Enhance T-cell Infiltration into Tumors. Cancer Immunol Res 2020; 8:1206-1214. [PMID: 32611665 PMCID: PMC7483799 DOI: 10.1158/2326-6066.cir-20-0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022]
Abstract
T-cell-mediated cancer immunotherapies, including anti-PD-1 and T cells expressing chimeric antigen receptors (CAR-T cells), are becoming standard treatments for many cancer types. CAR-T therapy, in particular, has been successful in treating circulating, but not solid, tumors. One challenge limiting immunotherapy success is that tumors lacking T-cell infiltration do not respond to treatment. Therefore, one potential strategy to overcome resistance is to enhance the ability of T cells to traffic into tumors. Here, we describe an unbiased in vivo genetic screen approach utilizing the Sleeping Beauty mutagenesis system to identify candidate genes in T cells that might be modified to drive intratumoral T-cell accumulation. This screen identified over 400 candidate genes in three tumor models. These results indicated substantial variation in gene candidate selection, depending on the tumor model and whether or not mice were treated with anti-PD-1, yet some candidate genes were identified in all tumor models and with anti-PD-1 therapy. Inhibition of the most frequently mutated gene, Aak1, affected chemokine receptor expression and enhanced T-cell trafficking in vitro and in vivo Screen candidates should be further validated as therapeutic targets, with particular relevance to enhancing infiltration of adoptively transferred T cells into solid tumors.
Collapse
Affiliation(s)
- Laura M Rogers
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | - Zhaoming Wang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Sarah L Mott
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Adam J Dupuy
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - George J Weiner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
10
|
Gregory DJ, DeLoid GM, Salmon SL, Metzger DW, Kramnik I, Kobzik L. SON DNA-binding protein mediates macrophage autophagy and responses to intracellular infection. FEBS Lett 2020; 594:2782-2799. [PMID: 32484234 DOI: 10.1002/1873-3468.13851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 12/09/2022]
Abstract
Intracellular pathogens affect diverse host cellular defence and metabolic pathways. Here, we used infection with Francisella tularensis to identify SON DNA-binding protein as a central determinant of macrophage activities. RNAi knockdown of SON increases survival of human macrophages following F. tularensis infection or inflammasome stimulation. SON is required for macrophage autophagy, interferon response factor 3 expression, type I interferon response and inflammasome-associated readouts. SON knockdown has gene- and stimulus-specific effects on inflammatory gene expression. SON is required for accurate splicing and expression of GBF1, a key mediator of cis-Golgi structure and function. Chemical GBF1 inhibition has similar effects to SON knockdown, suggesting that SON controls macrophage functions at least in part by controlling Golgi-associated processes.
Collapse
Affiliation(s)
- David J Gregory
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Pediatric Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Glen M DeLoid
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sharon L Salmon
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, MA, USA
| | - Lester Kobzik
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
11
|
Super-Resolution Localisation of Nuclear PI(4)P and Identification of Its Interacting Proteome. Cells 2020; 9:cells9051191. [PMID: 32403279 PMCID: PMC7291030 DOI: 10.3390/cells9051191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Phosphoinositides are glycerol-based phospholipids, and they play essential roles in cellular signalling, membrane and cytoskeletal dynamics, cell movement, and the modulation of ion channels and transporters. Phosphoinositides are also associated with fundamental nuclear processes through their nuclear protein-binding partners, even though membranes do not exist inside of the nucleus. Phosphatidylinositol 4-phosphate (PI(4)P) is one of the most abundant cellular phosphoinositides; however, its functions in the nucleus are still poorly understood. In this study, we describe PI(4)P localisation in the cell nucleus by super-resolution light and electron microscopy, and employ immunoprecipitation with a specific anti-PI(4)P antibody and subsequent mass spectrometry analysis to determine PI(4)P’s interaction partners. We show that PI(4)P is present at the nuclear envelope, in nuclear lamina, in nuclear speckles and in nucleoli and also forms multiple small foci in the nucleoplasm. Nuclear PI(4)P undergoes re-localisation to the cytoplasm during cell division; it does not localise to chromosomes, nucleolar organising regions or mitotic interchromatin granules. When PI(4)P and PI(4,5)P2 are compared, they have different nuclear localisations during interphase and mitosis, pointing to their functional differences in the cell nucleus. Mass spectrometry identified hundreds of proteins, including 12 potentially novel PI(4)P interactors, most of them functioning in vital nuclear processes such as pre-mRNA splicing, transcription or nuclear transport, thus extending the current knowledge of PI(4)P’s interaction partners. Based on these data, we propose that PI(4)P also plays a role in essential nuclear processes as a part of protein–lipid complexes. Altogether, these observations provide a novel insight into the role of PI(4)P in nuclear functions and provide a direction for further investigation.
Collapse
|
12
|
Tan Y, Duan L, Yang K, Liu Q, Wang J, Dong Z, Li Z, He Y, Yan Y, Lin L. A novel frameshift variant in SON causes Zhu-Tokita-Takenouchi-Kim Syndrome. J Clin Lab Anal 2020; 34:e23326. [PMID: 32291808 PMCID: PMC7439338 DOI: 10.1002/jcla.23326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/08/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022] Open
Abstract
Background Zhu‐Tokita‐Takenouchi‐Kim syndrome is a severe multisystem developmental disorder characterized by intellectual disability, developmental delay, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. This syndrome is caused by heterozygous pathogenic variants in the SON gene at chromosome 21q22.1. Objectives The aim of this study was to investigate the pathogenesis of a 4‐year‐old Chinese child who displayed severe intellectual disability, delayed psychomotor development, and facial dysmorphism. Methods A sequential detection including chromosome karyotyping, chromosome microarray analysis (CMA), and whole‐exome sequencing (WES) was performed on this child. The familial verification of WES result was conducted by Sanger sequencing. Results A de novo frameshift variant SON: c.5230delC (p.Arg1744ValfsTer29) was identified in the proband. The identical variant was not found in his family members. The frequencies of this variant in gnomAD/gnomAD_EAS databases were both none. Conclusions This study substantiates that SON: c.5230delC (p.Arg1744ValfsTer29) is a pathogenic variant of Zhu‐Tokita‐Takenouchi‐Kim syndrome and it is the first time to report Zhu‐Tokita‐Takenouchi‐Kim syndrome in China.
Collapse
Affiliation(s)
- Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Ling Duan
- Mianyang Maternity and Child Health Care Hospital, Sichuan, China
| | - Kai Yang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Qian Liu
- Department of Neurological Rehabilitation, Gansu Provincial Hospital, Gansu, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Zhe Dong
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Zhi Li
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Yiwen He
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Yousheng Yan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China.,National Research Institute for Family Planning, Beijing, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| |
Collapse
|
13
|
Biola-Clier M, Gaillard JC, Rabilloud T, Armengaud J, Carriere M. Titanium Dioxide Nanoparticles Alter the Cellular Phosphoproteome in A549 Cells. NANOMATERIALS 2020; 10:nano10020185. [PMID: 31973118 PMCID: PMC7074930 DOI: 10.3390/nano10020185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/02/2022]
Abstract
TiO2 nanoparticles (NPs) are one of the most produced NPs worldwide and are used in many consumer products. Their impact on human health, especially through inhalation, has been studied for more than two decades. TiO2 is known for its strong affinity towards phosphates, and consequently interaction with cellular phosphates may be one of the mechanisms driving its toxicity. In the present study, we used a phosphoproteomics approach to document the interaction of TiO2-NP with phosphoproteins from A549 human pulmonary alveolar epithelial cells. Cells were exposed to 21 nm anatase/rutile TiO2-NPs, then their phosphopeptides were extracted and analyzed using shotgun proteomics. By comparing the phosphoprotein content, phosphorylation status and phosphorylation sites of exposed cells with that of control cells, our results show that by affecting the phosphoproteome, TiO2-NPs affect cellular processes such as apoptosis, linked with cell cycle and the DNA damage response, TP53 being central to these pathways. Other pathways including inflammation and molecular transport are also affected. These molecular mechanisms of TiO2-NP toxicity have been reported previously, our study shows for the first time that they may derive from phosphoproteome modulation, which could be one of their upstream regulators.
Collapse
Affiliation(s)
| | - Jean-Charles Gaillard
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France;
| | - Thierry Rabilloud
- Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, IRIG-DIESE-LCBM-ProMD, F-38054 Grenoble, France;
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France;
- Correspondence: (J.A.); (M.C.)
| | - Marie Carriere
- Univ. Grenoble-Alpes, IRIG, SyMMES, CIBEST, F-38000 Grenoble, France;
- Correspondence: (J.A.); (M.C.)
| |
Collapse
|
14
|
Lundin E, Wu C, Widmark A, Behm M, Hjerling-Leffler J, Daniel C, Öhman M, Nilsson M. Spatiotemporal mapping of RNA editing in the developing mouse brain using in situ sequencing reveals regional and cell-type-specific regulation. BMC Biol 2020; 18:6. [PMID: 31937309 PMCID: PMC6961268 DOI: 10.1186/s12915-019-0736-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Background Adenosine-to-inosine (A-to-I) RNA editing is a process that contributes to the diversification of proteins that has been shown to be essential for neurotransmission and other neuronal functions. However, the spatiotemporal and diversification properties of RNA editing in the brain are largely unknown. Here, we applied in situ sequencing to distinguish between edited and unedited transcripts in distinct regions of the mouse brain at four developmental stages, and investigate the diversity of the RNA landscape. Results We analyzed RNA editing at codon-altering sites using in situ sequencing at single-cell resolution, in combination with the detection of individual ADAR enzymes and specific cell type marker transcripts. This approach revealed cell-type-specific regulation of RNA editing of a set of transcripts, and developmental and regional variation in editing levels for many of the targeted sites. We found increasing editing diversity throughout development, which arises through regional- and cell type-specific regulation of ADAR enzymes and target transcripts. Conclusions Our single-cell in situ sequencing method has proved useful to study the complex landscape of RNA editing and our results indicate that this complexity arises due to distinct mechanisms of regulating individual RNA editing sites, acting both regionally and in specific cell types. Electronic supplementary material The online version of this article (10.1186/s12915-019-0736-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elin Lundin
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden.
| | - Chenglin Wu
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden
| | - Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mikaela Behm
- German Cancer Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mats Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden.
| |
Collapse
|
15
|
Kim JS, He X, Liu J, Duan Z, Kim T, Gerard J, Kim B, Pillai MM, Lane WS, Noble WS, Budnik B, Waldman T. Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA-binding proteins required for mitotic progression. J Biol Chem 2019; 294:8760-8772. [PMID: 31010829 PMCID: PMC6552432 DOI: 10.1074/jbc.ra119.007832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/18/2019] [Indexed: 12/23/2022] Open
Abstract
The cohesin complex regulates sister chromatid cohesion, chromosome organization, gene expression, and DNA repair. Cohesin is a ring complex composed of four core subunits and seven regulatory subunits. In an effort to comprehensively identify additional cohesin-interacting proteins, we used gene editing to introduce a dual epitope tag into the endogenous allele of each of 11 known components of cohesin in cultured human cells, and we performed MS analyses on dual-affinity purifications. In addition to reciprocally identifying all known components of cohesin, we found that cohesin interacts with a panoply of splicing factors and RNA-binding proteins (RBPs). These included diverse components of the U4/U6.U5 tri-small nuclear ribonucleoprotein complex and several splicing factors that are commonly mutated in cancer. The interaction between cohesin and splicing factors/RBPs was RNA- and DNA-independent, occurred in chromatin, was enhanced during mitosis, and required RAD21. Furthermore, cohesin-interacting splicing factors and RBPs followed the cohesin cycle and prophase pathway of cell cycle-regulated interactions with chromatin. Depletion of cohesin-interacting splicing factors and RBPs resulted in aberrant mitotic progression. These results provide a comprehensive view of the endogenous human cohesin interactome and identify splicing factors and RBPs as functionally significant cohesin-interacting proteins.
Collapse
Affiliation(s)
- Jung-Sik Kim
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Xiaoyuan He
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Jie Liu
- the Department of Genome Sciences
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, and
- Division of Hematology, University of Washington, Seattle, Washington 98195
| | - Taeyeon Kim
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Julia Gerard
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Brian Kim
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Manoj M Pillai
- the Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, and
| | - William S Lane
- the Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts 02138
| | | | - Bogdan Budnik
- the Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts 02138
| | - Todd Waldman
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057,
| |
Collapse
|
16
|
Cao F, Li X, Yang Y, Fang H, Qu H, Chang N, Ma Q, Cao W, Zhou J, Wang W. Toward Candidate Proteomic Biomarkers in Clinical Monitoring of Acute Promyelocytic Leukemia Treatment with Arsenic Trioxide. ACTA ACUST UNITED AC 2019; 23:119-130. [PMID: 30767729 DOI: 10.1089/omi.2018.0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fenglin Cao
- Department of Central Laboratory, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xingang Li
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Yiju Yang
- The Third People's Hospital of Hainan Province, Sanya, China
| | - Honghong Fang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Haixia Qu
- Bioyong (Beijing) Technology Co., Ltd., Beijing, China
| | - Naibai Chang
- Department of Hematology, Beijing Hospital, Beijing, China
| | - Qingwei Ma
- Bioyong (Beijing) Technology Co., Ltd., Beijing, China
| | - Weifan Cao
- College of Life Science, Northeast Forest University, Harbin, China
| | - Jin Zhou
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Public Health, Taishan Medical University, Taishan, China
| |
Collapse
|
17
|
Anufrieva KS, Shender VO, Arapidi GP, Lagarkova MA, Govorun VM. The Diverse Roles of Spliceosomal Proteins in the Regulation of Cell Processes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Anufrieva KS, Shender VО, Arapidi GP, Pavlyukov MS, Shakhparonov MI, Shnaider PV, Butenko IO, Lagarkova MA, Govorun VM. Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells. Genome Med 2018; 10:49. [PMID: 29950180 PMCID: PMC6020472 DOI: 10.1186/s13073-018-0557-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Abnormal pre-mRNA splicing regulation is common in cancer, but the effects of chemotherapy on this process remain unclear. METHODS To evaluate the effect of chemotherapy on slicing regulation, we performed meta-analyses of previously published transcriptomic, proteomic, phosphoproteomic, and secretome datasets. Our findings were verified by LC-MS/MS, western blotting, immunofluorescence, and FACS analyses of multiple cancer cell lines treated with cisplatin and pladienolide B. RESULTS Our results revealed that different types of chemotherapy lead to similar changes in alternative splicing by inducing intron retention in multiple genes. To determine the mechanism underlying this effect, we analyzed gene expression in 101 cell lines affected by ɣ-irradiation, hypoxia, and 10 various chemotherapeutic drugs. Strikingly, оnly genes involved in the cell cycle and pre-mRNA splicing regulation were changed in a similar manner in all 335 tested samples regardless of stress stimuli. We revealed significant downregulation of gene expression levels in these two pathways, which could be explained by the observed decrease in splicing efficiency and global intron retention. We showed that the levels of active spliceosomal proteins might be further post-translationally decreased by phosphorylation and export into the extracellular space. To further explore these bioinformatics findings, we performed proteomic analysis of cisplatin-treated ovarian cancer cells. Finally, we demonstrated that the splicing inhibitor pladienolide B impairs the cellular response to DNA damage and significantly increases the sensitivity of cancer cells to chemotherapy. CONCLUSIONS Decreased splicing efficiency and global intron retention is a novel stress response mechanism that may promote survival of malignant cells following therapy. We found that this mechanism can be inhibited by pladienolide B, which significantly increases the sensitivity of cancer cells to cisplatin which makes it a good candidate drug for improving the efficiency of cancer therapy.
Collapse
Affiliation(s)
- Ksenia S Anufrieva
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
- Systems Biology Lab, Moscow Institute of Physics and Technology (State University), Moscow, Region, 141701, Russia.
| | - Victoria О Shender
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - Georgij P Arapidi
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Systems Biology Lab, Moscow Institute of Physics and Technology (State University), Moscow, Region, 141701, Russia
| | - Marat S Pavlyukov
- Laboratory of Membrane Bioenergetics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Michail I Shakhparonov
- Laboratory of Membrane Bioenergetics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Polina V Shnaider
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ivan O Butenko
- Laboratory of Proteomic Analysis, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vadim M Govorun
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Proteomic Analysis, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
19
|
Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON. Sci Rep 2016; 6:34472. [PMID: 27681590 PMCID: PMC5041083 DOI: 10.1038/srep34472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/14/2016] [Indexed: 11/29/2022] Open
Abstract
In some fibroblasts, casein kinase 1α (CK1α) is localized to nuclear speckles, which are sub-nuclear compartments supplying splicing factors, whereas it is recruited on keratin filaments in colorectal cancer cells such as DLD1 cells. In order to obtain a deeper understanding of why CK1α is localized to these different subcellular sites, we herein elucidated the mechanisms underlying its localization to nuclear speckles. CK1α and FAM83H were localized to nuclear speckles in RKO and WiDr colorectal cancer cells, which do not express simple epithelial keratins, and in DLD1 cells transfected with siRNAs for type I keratins. The localization of FAM83H to nuclear speckles was also detected in colorectal cancer cells with a poorly organized keratin cytoskeleton in colorectal cancer tissues. Using an interactome analysis of FAM83H, we identified SON, a protein present in nuclear speckles, as a scaffold protein to which FAM83H recruits CK1α. This result was supported by the knockdown of FAM83H or SON delocalizing CK1α from nuclear speckles. We also found that CK1δ and ε are localized to nuclear speckles in a FAM83H-dependent manner. These results suggest that CK1 is recruited to nuclear speckles by FAM83H and SON in the absence of an intact keratin cytoskeleton.
Collapse
|
20
|
Tokita M, Braxton A, Shao Y, Lewis A, Vincent M, Küry S, Besnard T, Isidor B, Latypova X, Bézieau S, Liu P, Motter C, Melver C, Robin N, Infante E, McGuire M, El-Gharbawy A, Littlejohn R, McLean S, Bi W, Bacino C, Lalani S, Scott D, Eng C, Yang Y, Schaaf C, Walkiewicz M. De Novo Truncating Variants in SON Cause Intellectual Disability, Congenital Malformations, and Failure to Thrive. Am J Hum Genet 2016; 99:720-727. [PMID: 27545676 DOI: 10.1016/j.ajhg.2016.06.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022] Open
Abstract
SON is a key component of the spliceosomal complex and a critical mediator of constitutive and alternative splicing. Additionally, SON has been shown to influence cell-cycle progression, genomic integrity, and maintenance of pluripotency in stem cell populations. The clear functional relevance of SON in coordinating essential cellular processes and its presence in diverse human tissues suggests that intact SON might be crucial for normal growth and development. However, the phenotypic effects of deleterious germline variants in SON have not been clearly defined. Herein, we describe seven unrelated individuals with de novo variants in SON and propose that deleterious variants in SON are associated with a severe multisystem disorder characterized by developmental delay, persistent feeding difficulties, and congenital malformations, including brain anomalies.
Collapse
|
21
|
Karamysheva Z, Díaz-Martínez LA, Warrington R, Yu H. Graded requirement for the spliceosome in cell cycle progression. Cell Cycle 2016; 14:1873-83. [PMID: 25892155 DOI: 10.1080/15384101.2015.1039209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genome stability is ensured by multiple surveillance mechanisms that monitor the duplication, segregation, and integrity of the genome throughout the cell cycle. Depletion of components of the spliceosome, a macromolecular machine essential for mRNA maturation and gene expression, has been associated with increased DNA damage and cell cycle defects. However, the specific role for the spliceosome in these processes has remained elusive, as different cell cycle defects have been reported depending on the specific spliceosome subunit depleted. Through a detailed cell cycle analysis after spliceosome depletion, we demonstrate that the spliceosome is required for progression through multiple phases of the cell cycle. Strikingly, the specific cell cycle phenotype observed after spliceosome depletion correlates with the extent of depletion. Partial depletion of a core spliceosome component results in defects at later stages of the cell cycle (G2 and mitosis), whereas a more complete depletion of the same component elicits an early cell cycle arrest in G1. We propose a quantitative model in which different functional dosages of the spliceosome are required for different cell cycle transitions.
Collapse
Affiliation(s)
- Zemfira Karamysheva
- a Department of Physiology; University of Texas Southwestern Medical Center ; Dallas , TX , USA
| | | | | | | |
Collapse
|
22
|
Battini VP, Bubulya A, Bubulya PA. Accurate splicing of HDAC6 pre-mRNA requires SON. Int J Mol Sci 2015; 16:5886-99. [PMID: 25782155 PMCID: PMC4394511 DOI: 10.3390/ijms16035886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/19/2015] [Accepted: 03/03/2015] [Indexed: 11/26/2022] Open
Abstract
Pre-mRNA splicing requires proper splice site selection mediated by many factors including snRNPs and serine-arginine rich (SR) splicing factors. Our lab previously reported that the SR-like protein SON maintains organization of pre-mRNA splicing factors in nuclear speckles as well as splicing of many human transcripts including mRNAs coding for the chromatin-modifying enzymes HDAC6, ADA and SETD8. However, the mechanism by which SON maintains accurate splicing is unknown. To build tools for understanding SON-dependent pre-mRNA splicing, we constructed a minigene reporter plasmid driving expression of the genomic sequence spanning exons 26 through 29 of HDAC6. Following SON depletion, we observed altered splicing of HDAC6 reporter transcripts that showed exclusion of exons 27 and 28, reflecting the splicing patterns of endogenous HDAC6 mRNA. Importantly, loss of HDAC6 biological function was also observed, as indicated by truncated HDAC6 protein and corresponding absence of aggresome assembly activities of HDAC6 binding-of-ubiquitin zinc finger (BUZ) domain. We therefore propose that SON-mediated splicing regulation of HDAC6 is essential for supporting protein degradation pathways that prevent human disease.
Collapse
Affiliation(s)
- Vishnu Priya Battini
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA.
| | - Athanasios Bubulya
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA.
| | - Paula A Bubulya
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
23
|
Sundaramoorthy S, Vázquez-Novelle MD, Lekomtsev S, Howell M, Petronczki M. Functional genomics identifies a requirement of pre-mRNA splicing factors for sister chromatid cohesion. EMBO J 2014; 33:2623-42. [PMID: 25257310 PMCID: PMC4282572 DOI: 10.15252/embj.201488244] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/03/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
Sister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation during cell division. Using functional genomic screening, we identify a set of 26 pre-mRNA splicing factors that are required for sister chromatid cohesion in human cells. Loss of spliceosome subunits increases the dissociation rate of cohesin from chromatin and abrogates cohesion after DNA replication, ultimately causing mitotic catastrophe. Depletion of splicing factors causes defective processing of the pre-mRNA encoding sororin, a factor required for the stable association of cohesin with chromatin, and an associated reduction of sororin protein level. Expression of an intronless version of sororin and depletion of the cohesin release protein WAPL suppress the cohesion defect in cells lacking splicing factors. We propose that spliceosome components contribute to sister chromatid cohesion and mitotic chromosome segregation through splicing of sororin pre-mRNA. Our results highlight the loss of cohesion as an early cellular consequence of compromised splicing. This may have clinical implications because SF3B1, a splicing factor that we identify to be essential for cohesion, is recurrently mutated in chronic lymphocytic leukaemia.
Collapse
Affiliation(s)
- Sriramkumar Sundaramoorthy
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms Hertfordshire, UK
| | - María Dolores Vázquez-Novelle
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms Hertfordshire, UK
| | - Sergey Lekomtsev
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms Hertfordshire, UK
| | - Michael Howell
- High-throughput Screening Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms Hertfordshire, UK
| |
Collapse
|
24
|
van der Lelij P, Stocsits RR, Ladurner R, Petzold G, Kreidl E, Koch B, Schmitz J, Neumann B, Ellenberg J, Peters JM. SNW1 enables sister chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs. EMBO J 2014; 33:2643-58. [PMID: 25257309 DOI: 10.15252/embj.201488202] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although splicing is essential for the expression of most eukaryotic genes, inactivation of splicing factors causes specific defects in mitosis. The molecular cause of this defect is unknown. Here, we show that the spliceosome subunits SNW1 and PRPF8 are essential for sister chromatid cohesion in human cells. A transcriptome-wide analysis revealed that SNW1 or PRPF8 depletion affects the splicing of specific introns in a subset of pre-mRNAs, including pre-mRNAs encoding the cohesion protein sororin and the APC/C subunit APC2. SNW1 depletion causes cohesion defects predominantly by reducing sororin levels, which causes destabilisation of cohesin on DNA. SNW1 depletion also reduces APC/C activity and contributes to cohesion defects indirectly by delaying mitosis and causing "cohesion fatigue". Simultaneous expression of sororin and APC2 from intron-less cDNAs restores cohesion in SNW1-depleted cells. These results indicate that the spliceosome is required for mitosis because it enables expression of genes essential for cohesion. Our transcriptome-wide identification of retained introns in SNW1- and PRPF8-depleted cells may help to understand the aetiology of diseases associated with splicing defects, such as retinosa pigmentosum and cancer.
Collapse
Affiliation(s)
| | | | - Rene Ladurner
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Georg Petzold
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Emanuel Kreidl
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Birgit Koch
- IMP Research Institute of Molecular Pathology, Vienna, Austria EMBL Heidelberg, Heidelberg, Germany
| | - Julia Schmitz
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|
25
|
Hickey CJ, Kim JH, Ahn EYE. New discoveries of old SON: a link between RNA splicing and cancer. J Cell Biochem 2014; 115:224-31. [PMID: 24030980 DOI: 10.1002/jcb.24672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/06/2013] [Indexed: 12/11/2022]
Abstract
The SON protein is a ubiquitously expressed DNA- and RNA-binding protein primarily localized to nuclear speckles. Although several early studies implicated SON in DNA-binding, tumorigenesis and apoptosis, functional significance of this protein had not been recognized until recent studies discovered SON as a novel RNA splicing co-factor. During constitutive RNA splicing, SON ensures efficient intron removal from the transcripts containing suboptimal splice sites. Importantly, SON-mediated splicing is required for proper processing of selective transcripts related to cell cycle, microtubules, centrosome maintenance, and genome stability. Moreover, SON regulates alternative splicing of RNAs from the genes involved in apoptosis and epigenetic modification. In addition to the role in RNA splicing, SON has an ability to suppress transcriptional activation at certain promoter/enhancer DNA sequences. Considering the multiple SON target genes which are directly involved in cell proliferation, genome stability and chromatin modifications, SON is an emerging player in gene regulation during cancer development and progression. Here, we summarize available information from several early studies on SON, and highlight recent discoveries describing molecular mechanisms of SON-mediated gene regulation. We propose that our future effort on better understanding of diverse SON functions would reveal novel targets for cancer therapy.
Collapse
|
26
|
Lu X, Ng HH, Bubulya PA. The role of SON in splicing, development, and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:637-46. [PMID: 24789761 DOI: 10.1002/wrna.1235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 12/22/2022]
Abstract
SON is a nuclear protein involved in multiple cellular processes including transcription, pre-messenger RNA (mRNA) splicing, and cell cycle regulation. Although SON was discovered 25 years ago, the importance of SON's function was only realized recently when its roles in nuclear organization and pre-mRNA splicing as well as the influence of these activities in maintaining cellular health were unveiled. Furthermore, SON was implicated to have a key role in stem cells as well as during the onset of various diseases such as cancer, influenza, and hepatitis. Here we review the progress that has been made in studying this multifunctional protein and discuss questions that remain to be answered about SON.
Collapse
Affiliation(s)
- Xinyi Lu
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
27
|
Lu X, Göke J, Sachs F, Jacques PÉ, Liang H, Feng B, Bourque G, Bubulya PA, Ng HH. SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nat Cell Biol 2013; 15:1141-1152. [PMID: 24013217 DOI: 10.1038/ncb2839] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 08/07/2013] [Indexed: 12/18/2022]
Abstract
Human embryonic stem cells (hESCs) harbour the ability to undergo lineage-specific differentiation into clinically relevant cell types. Transcription factors and epigenetic modifiers are known to play important roles in the maintenance of pluripotency of hESCs. However, little is known about regulation of pluripotency through splicing. In this study, we identify the spliceosome-associated factor SON as a factor essential for the maintenance of hESCs. Depletion of SON in hESCs results in the loss of pluripotency and cell death. Using genome-wide RNA profiling, we identified transcripts that are regulated by SON. Importantly, we confirmed that SON regulates the proper splicing of transcripts encoding for pluripotency regulators such as OCT4, PRDM14, E4F1 and MED24. Furthermore, we show that SON is bound to these transcripts in vivo. In summary, we connect a splicing-regulatory network for accurate transcript production to the maintenance of pluripotency and self-renewal of hESCs.
Collapse
Affiliation(s)
- Xinyi Lu
- Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore.,Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Jonathan Göke
- Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore
| | - Friedrich Sachs
- Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore.,Department of Biochemistry, National University of Singapore, 117597, Singapore
| | - Pierre-Étienne Jacques
- Department of Biology, Université de Sherbrooke, 2500 boulevard de l'Université Sherbrooke, Québec J1K 2R1, Canada
| | - Hongqing Liang
- Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore
| | - Bo Feng
- School of Biomedical Sciences, Lo Kwee Seong Integrated Biomedical Sciences Building, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Guillaume Bourque
- McGill University & Genome Quebec Innovation Center, 740 Dr Penfield Avenue, Montréal, Québec H3A 1A4, Canada
| | - Paula A Bubulya
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435, USA
| | - Huck-Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore.,Department of Biological Sciences, National University of Singapore, 117543, Singapore.,Department of Biochemistry, National University of Singapore, 117597, Singapore.,Graduate School for Integrative Sciences & Engineering, National University of Singapore, 117456, Singapore.,School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
28
|
Izumi K, Brooks SS, Feret HA, Zackai EH. 1.9 Mb microdeletion of 21q22.11 within Braddock-Carey contiguous gene deletion syndrome region: dissecting the phenotype. Am J Med Genet A 2012; 158A:1535-41. [PMID: 22614953 DOI: 10.1002/ajmg.a.35368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/04/2012] [Indexed: 11/11/2022]
Abstract
Braddock-Carey syndrome is characterized by Pierre Robin sequence, agenesis of the corpus callosum, facial dysmorphisms, developmental delay, and congenital thrombocytopenia. Recently, Braddock-Carey syndrome was demonstrated to be caused by chromosomal microdeletion in 21q22 including the RUNX1 gene, whose haploinsufficiency is responsible for thrombocytopenia phenotype. Therefore, the syndrome has emerged as a contiguous gene deletion syndrome. Here, we describe an infant with Pierre Robin sequence, facial anomalies, congenital heart defects, hypotonia, and the absence of thrombocytopenia, who was found to have a 1.9 Mb microdeletion within the Braddock-Carey contiguous deletion syndrome region. This deletion spares the RUNX1 gene, narrowing the genomic region responsible for a part of the Braddock-Carey syndrome phenotype. Further studies are awaited to understand the role of the genes located within 21q22 in the pathogenesis of Braddock-Carey syndrome.
Collapse
Affiliation(s)
- Kosuke Izumi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
29
|
Mulligan MK, Wang X, Adler AL, Mozhui K, Lu L, Williams RW. Complex control of GABA(A) receptor subunit mRNA expression: variation, covariation, and genetic regulation. PLoS One 2012; 7:e34586. [PMID: 22506031 PMCID: PMC3323555 DOI: 10.1371/journal.pone.0034586] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/06/2012] [Indexed: 12/13/2022] Open
Abstract
GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly variable and heritable among the large cohort of BXD strains derived from crosses of fully sequenced parents—C57BL/6J and DBA/2J. Genetic control of these subunits is complex and highly dependent on tissue and mRNA region. Remarkably, this high variation is generally not linked to phenotypic differences. The single exception is Gabrb3, a locus that is linked to anxiety. We identified upstream genetic loci that influence subunit expression, including three unlinked regions of chromosome 5 that modulate the expression of nine subunits in hippocampus, and that are also associated with multiple phenotypes. Candidate genes within these loci include, Naaa, Nos1, and Zkscan1. We confirmed a high level of coexpression for subunits comprising the major channel—Gabra1, Gabrb2, and Gabrg2—and identified conserved members of this expression network in mice and humans. Gucy1a3, Gucy1b3, and Lis1 are novel and conserved associates of multiple subunits that are involved in inhibitory signaling. Finally, proximal and distal regions of the 3′ UTRs of single subunits have remarkably independent expression patterns in both species. However, corresponding regions of different subunits often show congruent genetic control and coexpression (proximal-to-proximal or distal-to-distal), even in the absence of sequence homology. Our findings identify novel sources of variation that modulate subunit expression and highlight the extraordinary capacity of biological networks to buffer 4–100 fold differences in mRNA levels.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| | | | | | | | | | | |
Collapse
|
30
|
Sharma A, Markey M, Torres-Muñoz K, Varia S, Kadakia M, Bubulya A, Bubulya PA. Son maintains accurate splicing for a subset of human pre-mRNAs. J Cell Sci 2011; 124:4286-98. [PMID: 22193954 PMCID: PMC3258111 DOI: 10.1242/jcs.092239] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Serine-arginine-rich (SR) proteins play a key role in alternative pre-mRNA splicing in eukaryotes. We recently showed that a large SR protein called Son has unique repeat motifs that are essential for maintaining the subnuclear organization of pre-mRNA processing factors in nuclear speckles. Motif analysis of Son highlights putative RNA interaction domains that suggest a direct role for Son in pre-mRNA splicing. Here, we used in situ approaches to show that Son localizes to a reporter minigene transcription site, and that RNAi-mediated Son depletion causes exon skipping on reporter transcripts at this transcription site. A genome-wide exon microarray analysis was performed to identify human transcription and splicing targets of Son. Our data show that Son-regulated splicing encompasses all known types of alternative splicing, the most common being alternative splicing of cassette exons. We confirmed that knockdown of Son leads to exon skipping in pre-mRNAs for chromatin-modifying enzymes, including ADA, HDAC6 and SetD8. This study reports a comprehensive view of human transcription and splicing targets for Son in fundamental cellular pathways such as integrin-mediated cell adhesion, cell cycle regulation, cholesterol biosynthesis, apoptosis and epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Alok Sharma
- Biomedical Sciences Ph.D. Program, Wright State University, Dayton, OH 45435, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Zong X, Tripathi V, Prasanth KV. RNA splicing control: yet another gene regulatory role for long nuclear noncoding RNAs. RNA Biol 2011; 8:968-77. [PMID: 21941126 DOI: 10.4161/rna.8.6.17606] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian genome harbors a large number of long non-coding RNAs (lncRNAs) that do not code for proteins, but rather they exert their function directly as RNA molecules. LncRNAs are involved in executing several vital cellular functions. They facilitate the recruitment of proteins to specific chromatin sites, ultimately regulating processes like dosage compensation and genome imprinting. LncRNAs are also known to regulate nucleocytoplasmic transport of macromolecules. A large number of the regulatory lncRNAs are retained within the cell nucleus and constitute a subclass termed nuclear-retained RNAs (nrRNAs). NrRNAs are speculated to be involved in crucial gene regulatory networks, acting as structural scaffolds of subnuclear domains. NrRNAs modulate gene expression by influencing chromatin modification, transcription and post-transcriptional gene processing. The cancer-associated Metastasis-associated lung adenocarcinoma transcript1 (MALAT1) is one such long nrRNA that regulates pre-mRNA processing in mammalian cells. Thus far, our understanding about the roles played by nrRNAs and their relevance in disease pathways is only 'a tip of an iceberg'. It will therefore be crucial to unravel the functions for the vast number of long nrRNAs, buried within the complex mine of the human genome.
Collapse
Affiliation(s)
- Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
32
|
Pérez-Losada J, Sanchez-Garcia I. New functions for the Snail family of transcription factors: Two-faced proteins. Cell Cycle 2010; 9:2706-8. [PMID: 20676033 PMCID: PMC3233522 DOI: 10.4161/cc.9.14.12322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|