1
|
Zhu P, Wu Y, Sun Y, Yan Y, Wang Y, Yu Y, Yang J, Wang Y, Guo Z, Wang S, Zhang C, Su Z. SAA1 Promotes Ulcerative Colitis and Activating Colonic TLR4/NF-κB/NLRP3 Signaling Pathway. Inflammation 2025:10.1007/s10753-025-02299-0. [PMID: 40526227 DOI: 10.1007/s10753-025-02299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 06/19/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colorectal characterized by dysregulation of cytokine production resulting from abnormal innate and adaptive immune responses, which promote inflammation. Serum amyloid A (SAA) proteins are key components of the acute inflammatory response and have been found to be positively associated with UC disease activity in clinical studies. In this study, we employed a well-established DSS-induced UC model and conducted non-targeted proteomic detection to identify significantly differentially expressed proteins and related biological processes. Among these proteins, SAA1 was found to be significantly upregulated, showing functional enrichment in acute inflammatory pathways. Further investigation at both animal and cellular levels revealed that increased expression of SAA1 protein further enhanced the expression of pro-inflammatory cytokines such as IL-1β, TNF-α, IFN-γ, IL-6, IL-9, IL-17A, IL-17F and IL-22 while promoting the formation of an inflammatory microenvironment in the colon. Importantly, inhibition of SAA1 effectively alleviated pathological manifestations and tissue damage in UC by down-regulating cytokine expression. Mechanistically, our findings confirmed that SAA1 activates the TLR4/NF-kB signaling pathway and promotes NLRP3 inflammasome activation along with secretion of pro-inflammatory cytokines including TNF-a, IFN-γ, and IL-6. This ultimately leads to colonic microenvironment formation and progression of UC. Overall, our results highlight the critical involvement of SAA1 in UC progression as well as its potential utility as an inflammatory marker or therapeutic target.
Collapse
Affiliation(s)
- Peixuan Zhu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yujie Wu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yateng Sun
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghuang Yan
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanmin Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuling Yu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiusi Yang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zishuo Guo
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siqi Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cai Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Zeqi Su
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Khodasevich D, Holland N, van der Laan L, Cardenas A. A SuperLearner-based pipeline for the development of DNA methylation-derived predictors of phenotypic traits. PLoS Comput Biol 2025; 21:e1012768. [PMID: 39913632 PMCID: PMC11801726 DOI: 10.1371/journal.pcbi.1012768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND DNA methylation (DNAm) provides a window to characterize the impacts of environmental exposures and the biological aging process. Epigenetic clocks are often trained on DNAm using penalized regression of CpG sites, but recent evidence suggests potential benefits of training epigenetic predictors on principal components. METHODOLOGY/FINDINGS We developed a pipeline to simultaneously train three epigenetic predictors; a traditional CpG Clock, a PCA Clock, and a SuperLearner PCA Clock (SL PCA). We gathered publicly available DNAm datasets to generate i) a novel childhood epigenetic clock, ii) a reconstructed Hannum adult blood clock, and iii) as a proof of concept, a predictor of polybrominated biphenyl exposure using the three developmental methodologies. We used correlation coefficients and median absolute error to assess fit between predicted and observed measures, as well as agreement between duplicates. The SL PCA clocks improved fit with observed phenotypes relative to the PCA clocks or CpG clocks across several datasets. We found evidence for higher agreement between duplicate samples run on alternate DNAm arrays when using SL PCA clocks relative to traditional methods. Analyses examining associations between relevant exposures and epigenetic age acceleration (EAA) produced more precise effect estimates when using predictions derived from SL PCA clocks. CONCLUSIONS We introduce a novel method for the development of DNAm-based predictors that combines the improved reliability conferred by training on principal components with advanced ensemble-based machine learning. Coupling SuperLearner with PCA in the predictor development process may be especially relevant for studies with longitudinal designs utilizing multiple array types, as well as for the development of predictors of more complex phenotypic traits.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), University of California Berkeley School of Public Health, Berkeley, California, United States of America
| | - Lars van der Laan
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
3
|
Premadasa LS, McDew-White M, Romero L, Gondo B, Drawec JA, Ling B, Okeoma CM, Mohan M. Epigenetic modulation of NLRP6 inflammasome sensor as a therapeutic modality to reduce necroptosis-driven gastrointestinal mucosal dysfunction in HIV/SIV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623322. [PMID: 39605466 PMCID: PMC11601347 DOI: 10.1101/2024.11.13.623322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The epigenetic mechanisms driving persistent gastrointestinal mucosal dysfunction in HIV/SIV infection is an understudied topic. Using reduced-representation bisulfite sequencing, we identified HIV/SIV infection in combination anti-retroviral therapy (cART)-naive rhesus macaques (RMs) to induce marked hypomethylation throughout promoter-associated CpG islands (paCGIs) in genes related to inflammatory response ( NLRP6, cGAS ), cellular adhesion and proliferation in colonic epithelial cells (CEs). Moreover, low-dose delta-9-tetrahydrocannabinol (THC) administration reduced NLRP6 protein expression in CE by hypermethylating the NLRP6 paCGI and blocked polyI:C induced NLRP6 upregulation in vitro. In cART suppressed SIV-infected RMs, NLRP6 protein upregulation associated with significantly increased expression of necroptosis-driving proteins; phosphorylated-RIPK3(Ser199), phosphorylated-MLKL(Thr357/Ser358), and HMGB1. Most strikingly, supplementing cART with THC effectively reduced NLRP6 and necroptosis-driving protein expression to pre-infection levels. These findings for the first time demonstrate that NLRP6 upregulation and ensuing activation of necroptosis promote HIV/SIV-induced gastrointestinal mucosal dysfunction and that epigenetic modulation using phytocannabinoids represents a feasible therapeutic modality for alleviating HIV/SIV-induced gastrointestinal inflammation and associated comorbidities.
Collapse
|
4
|
Minea H, Singeap AM, Minea M, Juncu S, Muzica C, Sfarti CV, Girleanu I, Chiriac S, Miftode ID, Stanciu C, Trifan A. The Contribution of Genetic and Epigenetic Factors: An Emerging Concept in the Assessment and Prognosis of Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:8420. [PMID: 39125988 PMCID: PMC11313574 DOI: 10.3390/ijms25158420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents heterogeneous and relapsing intestinal conditions with a severe impact on the quality of life of individuals and a continuously increasing prevalence. In recent years, the development of sequencing technology has provided new means of exploring the complex pathogenesis of IBD. An ideal solution is represented by the approach of precision medicine that investigates multiple cellular and molecular interactions, which are tools that perform a holistic, systematic, and impartial analysis of the genomic, transcriptomic, proteomic, metabolomic, and microbiomics sets. Hence, it has led to the orientation of current research towards the identification of new biomarkers that could be successfully used in the management of IBD patients. Multi-omics explores the dimension of variation in the characteristics of these diseases, offering the advantage of understanding the cellular and molecular mechanisms that affect intestinal homeostasis for a much better prediction of disease development and choice of treatment. This review focuses on the progress made in the field of prognostic and predictive biomarkers, highlighting the limitations, challenges, and also the opportunities associated with the application of genomics and epigenomics technologies in clinical practice.
Collapse
Affiliation(s)
- Horia Minea
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Manuela Minea
- Department of Microbiology, The National Institute of Public Health, 700464 Iasi, Romania;
| | - Simona Juncu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Catalin Victor Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ioana Diandra Miftode
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Radiology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
5
|
Levic DS, Niedzwiecki D, Kandakatla A, Karlovich NS, Juneja A, Park J, Stolarchuk C, Adams S, Willer JR, Schaner MR, Lian G, Beasley C, Marjoram L, Flynn AD, Valentine JF, Onken JE, Sheikh SZ, Davis EE, Evason KJ, Garman KS, Bagnat M. TNF Promoter Hypomethylation Is Associated With Mucosal Inflammation in IBD and Anti-TNF Response. GASTRO HEP ADVANCES 2024; 3:888-898. [PMID: 39286616 PMCID: PMC11402298 DOI: 10.1016/j.gastha.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024]
Abstract
Background and Aims Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions influenced heavily by environmental factors. DNA methylation is a form of epigenetic regulation linking environmental stimuli to gene expression changes and inflammation. Here, we investigated how DNA methylation of the tumor necrosis factor (TNF) promoter differs between inflamed and uninflamed mucosa of IBD patients, including anti-TNF responders and nonresponders. Methods We obtained mucosal biopsies from 200 participants (133 IBDs and 67 controls) and analyzed TNF promoter methylation using bisulfite sequencing, comparing inflamed with uninflamed segments, in addition to paired inflamed/uninflamed samples from individual patients. We conducted similar analyses on purified intestinal epithelial cells from bowel resections. We also compared TNF methylation levels of inflamed and uninflamed mucosa from a separate cohort of 15 anti-TNF responders and 17 nonresponders. Finally, we sequenced DNA methyltransferase genes to identify rare variants in IBD patients and functionally tested them using rescue experiments in a zebrafish genetic model of DNA methylation deficiency. Results TNF promoter methylation levels were decreased in inflamed mucosa of IBD patients and correlated with disease severity. Isolated intestinal epithelial cells from inflamed tissue showed proportional decreases in TNF methylation. Anti-TNF nonresponders showed lower levels of TNF methylation than responders in uninflamed mucosa. Our sequencing analysis revealed 2 missense variants in DNA methyltransferase 1, 1 of which had reduced function in vivo. Conclusion Our study reveals an association of TNF promoter hypomethylation with mucosal inflammation, suggesting that IBD patients may be particularly sensitive to inflammatory environmental insults affecting DNA methylation. Together, our analyses indicate that TNF promoter methylation analysis may aid in the characterization of IBD status and evaluation of anti-TNF therapy response.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Apoorva Kandakatla
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Norah S. Karlovich
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Arjun Juneja
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Jieun Park
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Christina Stolarchuk
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Shanté Adams
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Matthew R. Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lindsay Marjoram
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Ann D. Flynn
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - John F. Valentine
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - Jane E. Onken
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erica E. Davis
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Kimberley J. Evason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina
| |
Collapse
|
6
|
Akanyibah FA, Zhu Y, Wan A, Ocansey DKW, Xia Y, Fang AN, Mao F. Effects of DNA methylation and its application in inflammatory bowel disease (Review). Int J Mol Med 2024; 53:55. [PMID: 38695222 DOI: 10.3892/ijmm.2024.5379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is marked by persistent inflammation, and its development and progression are linked to environmental, genetic, immune system and gut microbial factors. DNA methylation (DNAm), as one of the protein modifications, is a crucial epigenetic process used by cells to control gene transcription. DNAm is one of the most common areas that has drawn increasing attention recently, with studies revealing that the interleukin (IL)‑23/IL‑12, wingless‑related integration site, IL‑6‑associated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3 and apoptosis signaling pathways are involved in DNAm and in the pathogenesis of IBD. It has emerged that DNAm‑associated genes are involved in perpetuating the persistent inflammation that characterizes a number of diseases, including IBD, providing a novel therapeutic strategy for exploring their treatment. The present review discusses DNAm‑associated genes in the pathogenesis of IBD and summarizes their application as possible diagnostic, prognostic and therapeutic biomarkers in IBD. This may provide a reference for the particular form of IBD and its related methylation genes, aiding in clinical decision‑making and encouraging therapeutic alternatives.
Collapse
Affiliation(s)
- Francis Atim Akanyibah
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, P.R. China
| | - Yi Zhu
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, P.R. China
| | - Aijun Wan
- Zhenjiang College, Zhenjiang, Jiangsu 212028, P.R. China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - An-Ning Fang
- Basic Medical School, Anhui Medical College, Hefei, Anhui 230061, P.R. China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, P.R. China
| |
Collapse
|
7
|
Holmes CM, Babasyan S, Wagner B. Neonatal and maternal upregulation of antileukoproteinase in horses. Front Immunol 2024; 15:1395030. [PMID: 38736885 PMCID: PMC11082313 DOI: 10.3389/fimmu.2024.1395030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction The end of gestation, ensuing parturition, and the neonatal period represent highly dynamic phases for immunological changes in both mother and offspring. The regulation of innate immune cells at the maternal-fetal interface during late term pregnancy, after birth, and during microbial colonization of the neonatal gut and other mucosal surfaces, is crucial for controlling inflammation and maintaining homeostasis. Innate immune cells and mucosal epithelial cells express antileukoproteinase (SLPI), which has anti-inflammatory and anti-protease activity that can regulate cellular activation. Methods Here, we developed and validated new monoclonal antibodies (mAbs) to characterize SLPI for the first time in horses. Peripheral blood and mucosal samples were collected from healthy adults horses and a cohort of mares and their foals directly following parturition to assess this crucial stage. Results First, we defined the cell types producing SLPI in peripheral blood by flow cytometry, highlighting the neutrophils and a subset of the CD14+ monocytes as SLPI secreting immune cells. A fluorescent bead-based assay was developed with the new SLPI mAbs and used to establish baseline concentrations for secreted SLPI in serum and secretion samples from mucosal surfaces, including saliva, nasal secretion, colostrum, and milk. This demonstrated constitutive secretion of SLPI in a variety of equine tissues, including high colostrum concentrations. Using immunofluorescence, we identified production of SLPI in mucosal tissue. Finally, longitudinal sampling of clinically healthy mares and foals allowed monitoring of serum SLPI concentrations. In neonates and postpartum mares, SLPI peaked on the day of parturition, with mares returning to the adult normal within a week and foals maintaining significantly higher SLPI secretion until three months of age. Conclusion This demonstrated a physiological systemic change in SLPI in both mares and their foals, particularly at the time around birth, likely contributing to the regulation of innate immune responses during this critical period.
Collapse
Affiliation(s)
| | | | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Meng W, Fenton CG, Johnsen KM, Taman H, Florholmen J, Paulssen RH. DNA methylation fine-tunes pro-and anti-inflammatory signalling pathways in inactive ulcerative colitis tissue biopsies. Sci Rep 2024; 14:6789. [PMID: 38514698 PMCID: PMC10957912 DOI: 10.1038/s41598-024-57440-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
DNA methylation has been implied to play a role in the immune dysfunction associated with inflammatory bowel disease (IBD) and the disease development of ulcerative colitis (UC). Changes of the DNA methylation and correlated gene expression in patient samples with inactive UC might reveal possible regulatory features important for further treatment options for UC. Targeted bisulfite sequencing and whole transcriptome sequencing were performed on mucosal biopsies from patients with active UC (UC, n = 14), inactive UC (RM, n = 20), and non-IBD patients which served as controls (NN, n = 11). The differentially methylated regions (DMRs) were identified by DMRseq. Correlation analysis was performed between DMRs and their nearest differentially expressed genes (DEGs). Principal component analysis (PCA) was performed based on correlated DMR regulated genes. DMR regulated genes then were functional annotated. Cell-type deconvolutions were performed based on methylation levels. The comparisons revealed a total of 38 methylation-regulated genes in inactive UC that are potentially regulated by DMRs (correlation p value < 0.1). Several methylation-regulated genes could be identified in inactive UC participating in IL-10 and cytokine signalling pathways such as IL1B and STAT3. DNA methylation events in inactive UC seem to be fine-tuned by the balancing pro- and anti- inflammatory pathways to maintain a prevailed healing process to restore dynamic epithelium homeostasis.
Collapse
Affiliation(s)
- Wei Meng
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Christopher G Fenton
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Genomics Support Centre Tromsø, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Sykehusveien 44, 9037, Tromsø, Norway
| | - Kay-Martin Johnsen
- Gastroenterology and Nutrition Research Group, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Department of Medical Gastroenterology, University Hospital of North Norway, Tromsø, Norway
| | - Hagar Taman
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Genomics Support Centre Tromsø, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Sykehusveien 44, 9037, Tromsø, Norway
| | - Jon Florholmen
- Gastroenterology and Nutrition Research Group, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Department of Medical Gastroenterology, University Hospital of North Norway, Tromsø, Norway
| | - Ruth H Paulssen
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway.
- Genomics Support Centre Tromsø, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Sykehusveien 44, 9037, Tromsø, Norway.
| |
Collapse
|
9
|
Levic DS, Niedzwiecki D, Kandakatla A, Karlovich NS, Juneja A, Park J, Stolarchuk C, Adams S, Willer JR, Schaner MR, Lian G, Beasley C, Marjoram L, Flynn AD, Valentine JF, Onken JE, Sheikh SZ, Davis EE, Evason KJ, Garman KS, Bagnat M. TNF promoter hypomethylation is associated with mucosal inflammation in IBD and anti-TNF response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24302343. [PMID: 38370739 PMCID: PMC10871362 DOI: 10.1101/2024.02.05.24302343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background and aims Inflammatory Bowel Diseases (IBD) are chronic inflammatory conditions influenced heavily by environmental factors. DNA methylation is a form of epigenetic regulation linking environmental stimuli to gene expression changes and inflammation. Here, we investigated how DNA methylation of the TNF promoter differs between inflamed and uninflamed mucosa of IBD patients, including anti-TNF responders and non-responders. Methods We obtained mucosal biopsies from 200 participants (133 IBD and 67 controls) and analyzed TNF promoter methylation using bisulfite sequencing, comparing inflamed with uninflamed segments, in addition to paired inflamed/uninflamed samples from individual patients. We conducted similar analyses on purified intestinal epithelial cells from bowel resections. We also compared TNF methylation levels of inflamed and uninflamed mucosa from a separate cohort of 15 anti-TNF responders and 17 non-responders. Finally, we sequenced DNA methyltransferase genes to identify rare variants in IBD patients and functionally tested them using rescue experiments in a zebrafish genetic model of DNA methylation deficiency. Results TNF promoter methylation levels were decreased in inflamed mucosa of IBD patients and correlated with disease severity. Isolated IECs from inflamed tissue showed proportional decreases in TNF methylation. Anti-TNF non-responders showed lower levels of TNF methylation than responders in uninflamed mucosa. Our sequencing analysis revealed two missense variants in DNMT1, one of which had reduced function in vivo. Conclusions Our study reveals an association of TNF promoter hypomethylation with mucosal inflammation, suggesting that IBD patients may be particularly sensitive to inflammatory environmental insults affecting DNA methylation. Together, our analyses indicate that TNF promoter methylation analysis may aid in the characterization of IBD status and evaluation of anti-TNF therapy response.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Apoorva Kandakatla
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Norah S. Karlovich
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Arjun Juneja
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Jieun Park
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Christina Stolarchuk
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Shanté Adams
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Matthew R. Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Ann D. Flynn
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - John F. Valentine
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - Jane E. Onken
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica E. Davis
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Kimberley J. Evason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC, USA
| |
Collapse
|
10
|
Yuan S, Wang KS, Meng H, Hou XT, Xue JC, Liu BH, Cheng WW, Li J, Zhang HM, Nan JX, Zhang QG. The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomed Pharmacother 2023; 165:114893. [PMID: 37352702 DOI: 10.1016/j.biopha.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/25/2023] Open
Abstract
Gut microbes constitute the main microbiota in the human body, which can regulate biological processes such as immunity, cell proliferation, and differentiation, hence playing a specific function in intestinal diseases. In recent years, gut microbes have become a research hotspot in the pharmaceutical field. Because of their enormous number, diversity, and functional complexity, gut microbes have essential functions in the development of many digestive diseases. Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease with a complex etiology, the exact cause and pathogenesis are unclear. There are no medicines that can cure IBD, and more research on therapeutic drugs is urgently needed. It has been reported that gut microbes play a critical role in pathogenesis, and there is a tight and complex association between gut microbes and IBD. The dysregulation of gut microbes may be a predisposing factor for IBD, and at the same time, IBD may exacerbate gut microbes' disorders, but the mechanism of interaction between the two is still not well defined. The study of the relationship between gut microbes and IBD is not only important to elucidate the pathogenesis but also has a positive effect on the treatment based on the regimen of regulating gut microbes. This review describes the latest research progress on the functions of gut microbes and their relationship with IBD, which can provide reference and assistance for further research. It may provide a theoretical basis for the application of probiotics, fecal microbiota transplantation, and other therapeutic methods to regulate gut microbes in IBD.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ke-Si Wang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Huan Meng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Xiao-Ting Hou
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jia-Chen Xue
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Bao-Hong Liu
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Wen-Wen Cheng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jiao Li
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Hua-Min Zhang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China.
| |
Collapse
|
11
|
Venkateswaran S, Somineni HK, Matthews JD, Kilaru V, Hyams JS, Denson LA, Kellamayer R, Gibson G, Cutler DJ, Conneely KN, Smith AK, Kugathasan S. Longitudinal DNA methylation profiling of the rectal mucosa identifies cell-specific signatures of disease status, severity and clinical outcomes in ulcerative colitis cell-specific DNA methylation signatures of UC. Clin Epigenetics 2023; 15:50. [PMID: 36964596 PMCID: PMC10039532 DOI: 10.1186/s13148-023-01462-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND In peripheral blood, DNA methylation (DNAm) patterns in inflammatory bowel disease patients reflect inflammatory status rather than disease status. Here, we examined DNAm in diseased rectal mucosa from ulcerative colitis (UC) patients, focusing on constituent cell types with the goal of identifying therapeutic targets for UC other than the immune system. We profiled DNAm of rectal mucosal biopsies of pediatric UC at diagnosis (n = 211) and non-IBD control (n = 85) patients and performed epigenome-wide association studies (EWAS) of specific cell types to understand DNAm changes in epithelial, immune and fibroblast cells across disease states, course, and clinical outcomes. We also examined longitudinal analysis on follow-up samples (n = 73), and comparisons were made among patients with clinical outcomes including those undergoing colectomy versus those who did not. Additionally, we included RNA-seq from the same subjects to assess the impact of CpG sites on the transcription of nearby genes during the disease course. RESULTS At diagnosis, UC rectal mucosa exhibited a lower proportion of epithelial cells and fibroblasts, and higher proportion of immune cells, in conjunction with variation in the DNAm pattern. While treatment had significant effects on the methylation signature of immune cells, its effects on fibroblasts and epithelial cells were attenuated. Individuals who required colectomy exhibited cell composition and DNAm patterns at follow-up more similar to disease onset than patients who did not require colectomy. Combining these results with gene expression profiles, we identify CpG sites whose methylation patterns are most consistent with a contribution to poor disease outcomes and could thus be potential therapeutic targets. CONCLUSIONS Cell-specific epigenetic changes in the rectal mucosa in UC are associated with disease severity and outcome. Current therapeutics may more effectively target the immune than the epithelial and fibroblast compartments.
Collapse
Affiliation(s)
- Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA
| | - Hari K Somineni
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA
| | - Jason D Matthews
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA
| | - Varun Kilaru
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, CT, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Richard Kellamayer
- Section of Pediatric Gastroenterology, Texas Children's Hospital Baylor College of Medicine, Houston, TX, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University, Atlanta, GA, USA
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Joustra V, Hageman IL, Satsangi J, Adams A, Ventham NT, de Jonge WJ, Henneman P, D’Haens GR, Li Yim AYF. Systematic Review and Meta-analysis of Peripheral Blood DNA Methylation Studies in Inflammatory Bowel Disease. J Crohns Colitis 2023; 17:185-198. [PMID: 35998097 PMCID: PMC10024549 DOI: 10.1093/ecco-jcc/jjac119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Over the past decade, the DNA methylome has been increasingly studied in peripheral blood of inflammatory bowel disease [IBD] patients. However, a comprehensive summary and meta-analysis of peripheral blood leukocyte [PBL] DNA methylation studies has thus far not been conducted. Here, we systematically reviewed all available literature up to February 2022 and summarized the observations by means of meta-analysis. METHODS We conducted a systematic search and critical appraisal of IBD-associated DNA methylation studies in PBL using the biomarker-based cross-sectional studies [BIOCROSS] tool. Subsequently, we performed meta-analyses on the summary statistics obtained from epigenome-wide association studies [EWAS] that included patients with Crohn's disease [CD], ulcerative colitis [UC] and/or healthy controls [HC]. RESULTS Altogether, we included 15 studies for systematic review. Critical appraisal revealed large methodological and outcome heterogeneity between studies. Summary statistics were obtained from four studies based on a cumulative 552 samples [177 CD, 132 UC and 243 HC]. Consistent differential methylation was identified for 256 differentially methylated probes [DMPs; Bonferroni-adjusted p ≤ 0.05] when comparing CD with HC and 103 when comparing UC with HC. Comparing IBD [CD + UC] with HC resulted in 224 DMPs. Importantly, several of the previously identified DMPs, such as VMP1/TMEM49/MIR21 and RPS6KA2, were consistently differentially methylated across all studies. CONCLUSION Methodological homogenization of IBD epigenetic studies is needed to allow for easier aggregation and independent validation. Nonetheless, we were able to confirm previous observations. Our results can serve as the basis for future IBD epigenetic biomarker research in PBL.
Collapse
Affiliation(s)
| | | | - Jack Satsangi
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Alex Adams
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | - Wouter J de Jonge
- Amsterdam UMC location University of Amsterdam, Department of Gastroenterology and Hepatology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, Netherlands
| | - Peter Henneman
- Amsterdam UMC location University of Amsterdam, Department of Human Genetics, Genome Diagnostics Laboratory, Amsterdam, Netherlands
- Amsterdam Reproduction & Development, Amsterdam, Netherlands
| | - Geert R D’Haens
- Amsterdam UMC location University of Amsterdam, Department of Gastroenterology and Hepatology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - Andrew Y F Li Yim
- Corresponding author: Andrew Y. F. Li Yim, Amsterdam UMC location University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, Netherlands.
| |
Collapse
|
13
|
The Therapeutic Role of Short-Chain Fatty Acids Mediated Very Low-Calorie Ketogenic Diet-Gut Microbiota Relationships in Paediatric Inflammatory Bowel Diseases. Nutrients 2022; 14:nu14194113. [PMID: 36235765 PMCID: PMC9572225 DOI: 10.3390/nu14194113] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
The very low-calorie ketogenic diet (VLCKD) has been recognized as a promising dietary regimen for the treatment of several diseases. Short-chain fatty acids (SCFAs) produced by anaerobic bacterial fermentation of indigestible dietary fibre in the gut have potential value for their underlying epigenetic role in the treatment of obesity and asthma-related inflammation through mediating the relationships between VLCKD and the infant gut microbiota. However, it is still unclear how VLCKD might influence gut microbiota composition in children, and how SCFAs could play a role in the treatment of inflammatory bowel disease (IBD). To overcome this knowledge gap, this review aims to investigate the role of SCFAs as key epigenetic metabolites that mediate VLCKD-gut microbiota relationships in children, and their therapeutic potential in IBD.
Collapse
|
14
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
15
|
Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds. Biomed Pharmacother 2022; 151:113158. [PMID: 35644116 DOI: 10.1016/j.biopha.2022.113158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Autoimmune diseases are caused by the overactivity of the immune system towards self-constituents. Risk factors of autoimmune diseases are multiple and include genetic, epigenetic, environmental, and psychological. Autoimmune chronic inflammatory bowel diseases, including celiac and inflammatory diseases (Crohn's disease and ulcerative colitis), constitute a significant health problem worldwide. Besides the complexity of the symptoms of these diseases, their treatments have only been palliative. Numerous investigations showed that natural phytochemicals could be promising strategies to fight against these autoimmune diseases. In this respect, plant-derived natural compounds such as flavonoids, phenolic acids, and terpenoids exhibited significant effects against three autoimmune diseases affecting the intestine, particularly bowel diseases. This review focuses on the role of natural compounds obtained from medicinal plants in modulating inflammatory auto-immune diseases of the intestine. It covers the most recent literature related to the effect of these natural compounds in the treatment and prevention of auto-immune diseases of the intestine.
Collapse
|
16
|
Manu DM, Mwinyi J, Schiöth HB. Challenges in Analyzing Functional Epigenetic Data in Perspective of Adolescent Psychiatric Health. Int J Mol Sci 2022; 23:5856. [PMID: 35628666 PMCID: PMC9147258 DOI: 10.3390/ijms23105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The formative period of adolescence plays a crucial role in the development of skills and abilities for adulthood. Adolescents who are affected by mental health conditions are at risk of suicide and social and academic impairments. Gene-environment complementary contributions to the molecular mechanisms involved in psychiatric disorders have emphasized the need to analyze epigenetic marks such as DNA methylation (DNAm) and non-coding RNAs. However, the large and diverse bioinformatic and statistical methods, referring to the confounders of the statistical models, application of multiple-testing adjustment methods, questions regarding the correlation of DNAm across tissues, and sex-dependent differences in results, have raised challenges regarding the interpretation of the results. Based on the example of generalized anxiety disorder (GAD) and depressive disorder (MDD), we shed light on the current knowledge and usage of methodological tools in analyzing epigenetics. Statistical robustness is an essential prerequisite for a better understanding and interpretation of epigenetic modifications and helps to find novel targets for personalized therapeutics in psychiatric diseases.
Collapse
Affiliation(s)
- Diana M. Manu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (J.M.); (H.B.S.)
| | | | | |
Collapse
|
17
|
Boye TL, Steenholdt C, Jensen KB, Nielsen OH. Molecular manipulations and intestinal stem cell-derived organoids in inflammatory bowel disease. Stem Cells 2022; 40:447-457. [DOI: 10.1093/stmcls/sxac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Abstract
The pathogenesis of inflammatory bowel diseases (IBD) involves genetic predisposition, environmental factors, and a broadly dysregulated intestinal immune response to the commensal intestinal microflora. The interface between genetic predisposition and environmental factors is reflected in the epigenetic regulation at the transcriptional level. Treatment targets now involve mucosal and histological healing, but the future might additionally include normalization of intestinal cellular functions also at the molecular level, for example comprising complete restoration of phenotypic, genotypic, and epigenetic states. Recent developments in patient-derived epithelial intestinal stem cell (ISC) organoid technologies have opened exciting new therapeutic opportunities to potentially attain molecular healing by combining stem cell therapy with molecular manipulations using (epi)drugs and/or CRISPR/Cas9 genome editing. Here, we are the first to discuss the possibility for phenotypic, genotypic, and epigenetic restoration via molecular manipulations and stem cell therapy in IBD from a clinical perspective.
Collapse
Affiliation(s)
- Theresa Louise Boye
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Casper Steenholdt
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
18
|
Xu J, Xu HM, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Wang LS, Yao J, Nie YQ, Li DF. New Insights Into the Epigenetic Regulation of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:813659. [PMID: 35173618 PMCID: PMC8841592 DOI: 10.3389/fphar.2022.813659] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the colonic mucosa. Environmental factors, genetics, intestinal microbiota, and the immune system are all involved in the pathophysiology of IBD. Lately, accumulating evidence has shown that abnormal epigenetic changes in DNA methylation, histone markers, and non-coding RNA expression greatly contribute to the development of the entire disease. Epigenetics regulates many functions, such as maintaining the homeostasis of the intestinal epithelium and regulating the immune system of the immune cells. In the present study, we systematically summarized the latest advances in epigenetic modification of IBD and how epigenetics reveals new mechanisms of IBD. Our present review provided new insights into the pathophysiology of IBD. Moreover, exploring the patterns of DNA methylation and histone modification through epigenetics can not only be used as biomarkers of IBD but also as a new target for therapeutic intervention in IBD patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mei-feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, China
| | | | - Quan-zhou Peng
- Department of Pathology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, China
| | - Cheng-mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
19
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Abstract
The intestinal tract is the entry gate for nutrients and symbiotic organisms, being in constant contact with external environment. DNA methylation is one of the keys to how environmental conditions, diet and nutritional status included, shape functionality in the gut and systemically. This review aims to summarise findings on the importance of methylation to gut development, differentiation and function. Evidence to date on how external factors such as diet, dietary supplements, nutritional status and microbiota modifications modulate intestinal function through DNA methylation is also presented.
Collapse
|
21
|
The role of epigenetic modifications for the pathogenesis of Crohn's disease. Clin Epigenetics 2021; 13:108. [PMID: 33980294 PMCID: PMC8117638 DOI: 10.1186/s13148-021-01089-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetics has become a promising field for finding new biomarkers and improving diagnosis, prognosis, and drug response in inflammatory bowel disease. The number of people suffering from inflammatory bowel diseases, especially Crohn's disease, has increased remarkably. Crohn's disease is assumed to be the result of a complex interplay between genetic susceptibility, environmental factors, and altered intestinal microbiota, leading to dysregulation of the innate and adaptive immune response. While many genetic variants have been identified to be associated with Crohn's disease, less is known about the influence of epigenetics in the pathogenesis of this disease. In this review, we provide an overview of current epigenetic studies in Crohn's disease. In particular, we enable a deeper insight into applied bioanalytical and computational tools, as well as a comprehensive update toward the cell-specific evaluation of DNA methylation and histone modifications.
Collapse
|
22
|
Integrated analysis of DNA methylation and gene expression profiles identified S100A9 as a potential biomarker in ulcerative colitis. Biosci Rep 2021; 40:226940. [PMID: 33185247 PMCID: PMC7711060 DOI: 10.1042/bsr20202384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a prevalent relapsing-remitting inflammatory bowel disease whose pathogenetic mechanisms remain elusive. In the present study, colonic biopsies samples from three UC patients treated in the Traditional Chinese Medicine Hospital and three healthy controls were obtained. The genome-wide mRNA and lncRNA expression of the samples were profiled through Agilent gene expression microarray. Moreover, the genome-wide DNA methylation dataset of normal and UC colon tissues was also downloaded from GEO for a collaborative analysis. Differential expression of lncRNA (DELs) and mRNAs (DEMs) in UC samples compared with healthy samples were identified by using limma Bioconductor package. Differentially methylated promoters (DMPs) in UC samples compared with controls were obtained through comparing the average methylation level of CpGs located at promoters by using t-test. Functional enrichment analysis was performed by the DAVID. STRING database was applied to the construction of gene functional interaction network. As a result, 2090 DEMs and 1242 DELs were screened out in UC samples that were closely associated with processes related to complement and coagulation cascades, osteoclast differentiation vaccinia, and hemorrhagic diseases. A total of 90 DEMs and 72 DELs were retained for the construction of functional network for the promoters of their corresponding genes were identified as DMPs. S100A9, HECW2, SOD3 and HIX0114733 showed high interaction degrees in the functional network, and expression of S100A9 was confirmed to be significantly elevated in colon tissues of UC patients compared with that of controls by qRT-PCR that was consistent with gene microarray analysis. These indicate that S100A9 could potentially be used as predictive biomarkers in UC.
Collapse
|
23
|
Assessing ZNF154 methylation in patient plasma as a multicancer marker in liquid biopsies from colon, liver, ovarian and pancreatic cancer patients. Sci Rep 2021; 11:221. [PMID: 33420235 PMCID: PMC7794477 DOI: 10.1038/s41598-020-80345-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
One epigenetic hallmark of many cancer types is differential DNA methylation occurring at multiple loci compared to normal tissue. Detection and assessment of the methylation state at a specific locus could be an effective cancer diagnostic. We assessed the effectiveness of hypermethylation at the CpG island of ZNF154, a previously reported multi-cancer specific signature for use in a blood-based cancer detection assay. To predict its effectiveness, we compared methylation levels of 3698 primary tumors encompassing 11 solid cancers, 724 controls, 2711 peripheral blood cell samples, and 350 noncancer disease tissues from publicly available methylation array datasets. We performed a single-molecule high-resolution DNA melt analysis on 71 plasma samples from cancer patients and 20 noncancer individuals to assess ZNF154 methylation as a candidate diagnostic metric in liquid biopsy and compared results to KRAS mutation frequency in the case of pancreatic carcinoma. We documented ZNF154 hypermethylation in early stage tumors, which did not increase in most noncancer disease or with respect to age or sex in peripheral blood cells, suggesting it is a promising target in liquid biopsy. ZNF154 cfDNA methylation discriminated cases from healthy donor plasma samples in minimal plasma volumes and outperformed KRAS mutation frequency in pancreatic cancer.
Collapse
|
24
|
FitzPatrick MEB, Provine NM, Garner LC, Powell K, Amini A, Irwin SL, Ferry H, Ambrose T, Friend P, Vrakas G, Reddy S, Soilleux E, Klenerman P, Allan PJ. Human intestinal tissue-resident memory T cells comprise transcriptionally and functionally distinct subsets. Cell Rep 2021; 34:108661. [PMID: 33472060 PMCID: PMC7816164 DOI: 10.1016/j.celrep.2020.108661] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/14/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Tissue-resident memory T (TRM) cells provide key adaptive immune responses in infection, cancer, and autoimmunity. However, transcriptional heterogeneity of human intestinal TRM cells remains undefined. Here, we investigate transcriptional and functional heterogeneity of human TRM cells through study of donor-derived TRM cells from intestinal transplant recipients. Single-cell transcriptional profiling identifies two transcriptional states of CD8+ TRM cells, delineated by ITGAE and ITGB2 expression. We define a transcriptional signature discriminating these populations, including differential expression of cytotoxicity- and residency-associated genes. Flow cytometry of recipient-derived cells infiltrating the graft, and lymphocytes from healthy gut, confirm these CD8+ TRM phenotypes. CD8+ CD69+CD103+ TRM cells produce interleukin-2 (IL-2) and demonstrate greater polyfunctional cytokine production, whereas β2-integrin+CD69+CD103− TRM cells have higher granzyme expression. Analysis of intestinal CD4+ T cells identifies several parallels, including a β2-integrin+ population. Together, these results describe the transcriptional, phenotypic, and functional heterogeneity of human intestinal CD4+ and CD8+ TRM cells. Human intestinal transplants were used to identify bona fide TRM cells Single-cell RNA sequencing identifies two distinct CD8+ TRM subsets CD103+CD69+ and CD103−CD69+ TRM cell subsets show distinct localization and function β2-integrin is highly expressed on CD103− TRM cells
Collapse
Affiliation(s)
- Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Kate Powell
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Sophie L Irwin
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Helen Ferry
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Tim Ambrose
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; Oxford Transplant Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Georgios Vrakas
- Oxford Transplant Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Srikanth Reddy
- Oxford Transplant Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Elizabeth Soilleux
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK; NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK.
| | - Philip J Allan
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; Oxford Transplant Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK; NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
25
|
Samarani S, Dupont-Lucas C, Marcil V, Mack D, Israel D, Deslandres C, Jantchou P, Ahmad A, Amre D. CpG Methylation in TGFβ1 and IL-6 Genes as Surrogate Biomarkers for Diagnosis of IBD in Children. Inflamm Bowel Dis 2020; 26:1572-1578. [PMID: 32407484 DOI: 10.1093/ibd/izaa074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diagnostic markers for distinguishing between Crohn disease (CD) and ulcerative colitis (UC) remain elusive. We studied whether methylation marks across the promoters of the transforming growth factor beta 1 (TGFβ1) and interleukin-6 genes have diagnostic utility. METHODS A case-control study was carried out. Cases were treatment-naïve, diagnosed before age 20, and recruited from 3 pediatric gastroenterology clinics across Canada. Control patients did not have inflammatory bowel disease and were recruited from orthopedic clinics within the same hospitals as the gastroenterology clinics. Patient DNA from peripheral blood was processed to identify methylation sites (CpG) across the promoter regions of the TGFβ1 and interleukin-6 genes. After initial nonparametric univariate analyses, multivariate logistic regression models were fit. Models with the best fit (Akaike information criteria) and strongest discriminatory capabilities (area under the curve [AUC]) were identified, and P values were adjusted for multiple comparisons using the false discovery rate method. RESULTS A total of 67 CD, 31 UC, and 43 control patients were included. The age distribution of the 3 groups was similar. Most CD patients had ileocolonic disease (44.8%) and inflammatory disease (88.1%). Most UC patients had extensive (71%) and moderate disease (51.6%). Logistic regression analysis revealed the following: 14 TGFβ1 CpG sites discriminated between CD and control patients (AUC = 0.94), 9 TGFβ1 CpG sites discriminated between UC and control patients (AUC = 0.99), 3 TGFβ1 CpG sites discriminated between CD and UC (AUC = 0.81), and 6 TGFβ1 CpG sites distinguished colonic CD from UC (AUC = 0.91). CONCLUSIONS We found that CpG methylation in the promoter of the TGFβ1 gene has high discriminative power for identifying CD and UC and could serve as an important diagnostic marker.
Collapse
Affiliation(s)
- Suzanne Samarani
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | | | - Valerie Marcil
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - David Mack
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - David Israel
- Division of Gastroenterology & Hepatology, BCCH, Vancouver, British Columbia, Canada
| | - Colette Deslandres
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Prevost Jantchou
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Ali Ahmad
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Devendra Amre
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| |
Collapse
|
26
|
Systemic Investigation of Promoter-wide Methylome and Genome Variations in Gout. Int J Mol Sci 2020; 21:ijms21134702. [PMID: 32630231 PMCID: PMC7369819 DOI: 10.3390/ijms21134702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Current knowledge of gout centers on hyperuricemia. Relatively little is known regarding the pathogenesis of gouty inflammation. To investigate the epigenetic background of gouty inflammation independent of hyperuricemia and its relationship to genetics, 69 gout patients and 1455 non-gout controls were included. Promoter-wide methylation was profiled with EPIC array. Whole-genome sequencing data were included for genetic and methylation quantitative trait loci (meQTL) analyses and causal inference tests. Identified loci were subjected to co-methylation analysis and functional localization with DNase hypersensitivity and histone marks analysis. An expression database was queried to clarify biologic functions of identified loci. A transcription factor dataset was integrated to identify transcription factors coordinating respective expression. In total, seven CpG loci involved in interleukin-1β production survived genetic/meQTL analyses, or causal inference tests. None had a significant relationship with various metabolic traits. Additional analysis suggested gouty inflammation, instead of hyperuricemia, provides the link between these CpG sites and gout. Six (PGGT1B, INSIG1, ANGPTL2, JNK1, UBAP1, and RAPTOR) were novel genes in the field of gout. One (CNTN5) was previously associated with gouty inflammation. Transcription factor mapping identified several potential transcription factors implicated in the link between differential methylation, interleukin-1β production, and gouty inflammation. In conclusion, this study revealed several novel genes specific to gouty inflammation and provided enhanced insight into the biological basis of gouty inflammation.
Collapse
|
27
|
Su C, Liu S, Ma X, Yang X, Liu J, Zheng P, Cao Y. Decitabine attenuates dextran sodium sulfate‑induced ulcerative colitis through regulation of immune regulatory cells and intestinal barrier. Int J Mol Med 2020; 46:583-594. [PMID: 32468024 PMCID: PMC7307821 DOI: 10.3892/ijmm.2020.4605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
To investigate the effect of decitabine on the regulation of intestinal barrier function in mice with inflammatory bowel disease, an experimental model of colitis was established via drinking water with dextran sulfate sodium (DSS). Hematoxylin and eosin staining was used to observe the pathological changes of the colon. Cytokine production was measured by an ELISA assay. Flow cytometry was used to measure the level of regulatory T cells. Immunofluorescence, immunohistochemistry and western blot analyses detected the protein expression and distribution in colon tissue. Following the administration of decitabine, the symptoms of intestinal inflammation in the mice were significantly relieved; the expression of IL-17 was decreased, and the levels of TGF-β and IL-10 were increased. In addition, the induction of forkhead box P3 (Foxp3) in naive T cells increased the proportion of CD4+ Foxp3+ T cells in CD4+ T cells. Furthermore, decitabine increased the levels of zonular occludens-1 and occludin, and inhibited the phosphorylation of ERK1/2, JNK and p38. In conclusion, the present study suggested that decitabine could alleviate DSS-induced impaired colon barrier and the weight loss, mucus and bloody stools in mice by releasing the inhibitory factor IL-10, reducing the pro-inflammatory factor IL-17, activating CD4+ Foxp3+ T cells and inhibiting the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Chang Su
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Shaoqun Liu
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xiaotong Yang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yiou Cao
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
28
|
Kim TO, Park DI, Han YK, Kang K, Park SG, Park HR, Yi JM. Genome-Wide Analysis of the DNA Methylation Profile Identifies the Fragile Histidine Triad ( FHIT) Gene as a New Promising Biomarker of Crohn's Disease. J Clin Med 2020; 9:jcm9051338. [PMID: 32375395 PMCID: PMC7291297 DOI: 10.3390/jcm9051338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease is known to be associated with a genetic predisposition involving multiple genes; however, there is growing evidence that abnormal interactions with environmental factors, particularly epigenetic factors, can also significantly contribute to the development of inflammatory bowel disease (IBD). Although many genome-wide association studies have been performed to identify the genetic changes underlying the pathogenesis of Crohn’s disease, the role of epigenetic alterations based on molecular complications arising from Crohn’s disease (CD) is poorly understood. We employed an unbiased approach to define DNA methylation alterations in colonoscopy samples from patients with CD using the HumanMethylation450K BeadChip platform. Technical and functional validation was performed by methylation-specific PCR (MSP) and bisulfite sequencing of a validation set of 207 patients with CD samples. Immunohistochemistry (IHC) analysis was performed in the representative sample sets. DNA methylation profile in CD revealed that 135 probes (24 hypermethylated and 111 hypomethylated probes) were differentially methylated. We validated the methylation levels of 19 genes that showed hypermethylation in patients with CD compared with normal controls. We uniquely identified that the fragile histidine triad (FHIT) gene was hypermethylated in a disease-specific manner and its protein level was downregulated in patients with CD. Pathway analysis of the hypermethylated candidates further suggested putative molecular interactions relevant to IBD pathology. Our data provide information on the biological and clinical implications of DNA hypermethylated genes in CD, identifying FHIT methylation as a promising new biomarker for CD. Further study of the role of FHIT in IBD pathogenesis may lead to the development of new therapeutic targets.
Collapse
Affiliation(s)
- Tae-Oh Kim
- Department of Internal Medicine, Inje University, Haeundae Paik Hospital, Busan 48108, Korea;
| | - Dong-Il Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea;
| | - Yu Kyeong Han
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea; (Y.K.H.); (S.-G.P.)
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
| | - Sae-Gwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea; (Y.K.H.); (S.-G.P.)
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam do 50612, Korea;
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea; (Y.K.H.); (S.-G.P.)
- Correspondence: ; Tel.: +82-51-890-6734
| |
Collapse
|
29
|
Kim SH, In Choi H, Choi MR, An GY, Binas B, Jung KH, Chai YG. Epigenetic regulation of IFITM1 expression in lipopolysaccharide-stimulated human mesenchymal stromal cells. Stem Cell Res Ther 2020; 11:16. [PMID: 31910882 PMCID: PMC6945778 DOI: 10.1186/s13287-019-1531-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background Toll-like receptor 4 (TLR4) ligands such as lipopolysaccharide (LPS) activate immunomodulatory functions and the migration of human mesenchymal stromal cells (hMSCs). Here, we study the migration-related gene expression of LPS-stimulated hMSCs and the role and regulation of one of the upregulated genes, encoding the interferon-induced transmembrane protein 1 (IFITM1). Methods Gene expression profiles were determined by whole-transcriptome analysis (RNA-seq) and quantitative real-time PCR (qRT-PCR). Bioinformatics approaches were used to perform network and pathway analyses. The cell migration-related genes were identified with an in vitro wound healing assay. RNA interference (RNAi) was used to suppress the IFITM1 gene expression. The IFITM1 gene enhancer was analyzed by chromatin immunoprecipitation (ChIP) sequencing, ChIP-to-PCR, luciferase reporter assays, and qRT-PCR for enhancer RNAs (eRNAs). Results RNA-seq confirmed IFITM1 as an LPS-stimulated gene, and RNAi demonstrated its importance for the LPS-stimulated migration. LPS treatment increased the eRNA expression in enhancer region R2 (2 kb upstream) of the IFITM1 gene and enriched R2 for H3K27ac. Bioinformatics implicated the transcription factors NF-κB and IRF1, ChIP assays revealed their binding to R2, and chemical inhibition of NF-κB and RNAi directed against IRF1 prevented R2 eRNA and IFITM1 gene expression. Conclusions Increased expression of the IFITM1 gene is required for LPS-stimulated hMSC migration. We described several underlying changes in the IFITM1 gene enhancer, most notably the NF-κB-mediated activation of enhancer region R2.
Collapse
Affiliation(s)
- Sun Hwa Kim
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Mi Ran Choi
- Department of Psychiatry, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Ga Yeong An
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Bert Binas
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Kyoung Hwa Jung
- Convergence Technology Campus of Korea Polytechnic II, Incheon, 21417, Republic of Korea.
| | - Young Gyu Chai
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, Republic of Korea. .,Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea.
| |
Collapse
|
30
|
Kalla R, Adams AT, Satsangi J. Blood-based DNA methylation in Crohn's disease and severity of intestinal inflammation. Transl Gastroenterol Hepatol 2019; 4:76. [PMID: 31872140 DOI: 10.21037/tgh.2019.10.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/08/2019] [Indexed: 01/19/2023] Open
Affiliation(s)
- Rahul Kalla
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
31
|
Yan P, Wang Y, Meng X, Yang H, Liu Z, Qian J, Zhou W, Li J. Whole Exome Sequencing of Ulcerative Colitis-associated Colorectal Cancer Based on Novel Somatic Mutations Identified in Chinese Patients. Inflamm Bowel Dis 2019; 25:1293-1301. [PMID: 30794281 DOI: 10.1093/ibd/izz020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Carcinogenesis is a severe consequence of chronic ulcerative colitis. We investigated the somatic mutations and pathway alterations in ulcerative colitis-associated colorectal cancer (CRC) in Chinese patients compared with sporadic CRCs to reveal potential therapeutic targets in ulcerative colitis-associated CRC. METHODS Whole exome sequencing was performed on archival tumor tissues and paired adjacent nondysplastic mucosa from 10 ulcerative colitis-associated CRC patients at a high risk of carcinogenesis. Genomic alteration profiles from 223 primary CRCs from The Cancer Genome Atlas served as sporadic CRC controls. A meta-analysis was performed to investigate differences in major genetic mutations between ulcerative colitis-associated and Crohn's disease-associated CRCs. RESULTS We identified 44 nonsilent recurrent somatic mutations via whole exome sequencing, including 25 deleterious mutations involved in apoptosis and the PI3K-Akt pathway (COL6A3, FN1), autophagy (ULK1), cell adhesion (PODXL, PTPRT, ZFHX4), and epigenetic regulation (ARID1A, NCOR2, KMT2D, NCOA6, MECP2, SUPT6H). In total, 11 of the 25 mutated genes significantly differed between ulcerative colitis-associated CRC and sporadic CRC (APC, APOB, MECP2, NCOR2, NTRK2, PODXL, RABGAP1, SIK3, SUPT6H, ULK1, USP48). Somatic TP53 mutations occurred in 33% of ulcerative colitis-associated CRCs. Subsequent meta-analysis revealed distinct mutation profiles for Crohn's disease- and ulcerative colitis-associated CRCs. Mutations involving the NF-kB pathway and epigenetic regulation were more common in ulcerative colitis-associated CRCs than in sporadic CRCs. CONCLUSION Distinct genomic alteration profiles of deleterious somatic mutations were found in ulcerative colitis-associated and sporadic CRCs. Mutations of epigenetic regulators, such as KMT2D and NCOA6, were common, suggesting an epigenetic pathomechanism for colitis-associated carcinoma in Chinese patients.
Collapse
Affiliation(s)
- Pengguang Yan
- Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China.,Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Yanan Wang
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Xiangchen Meng
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jiaming Qian
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Weixun Zhou
- Department of pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| |
Collapse
|
32
|
Jorgensen BG, Ro S. Role of DNA Methylation in the Development and Differentiation of Intestinal Epithelial Cells and Smooth Muscle Cells. J Neurogastroenterol Motil 2019; 25:377-386. [PMID: 31327220 PMCID: PMC6657918 DOI: 10.5056/jnm19077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
The mammalian intestine contains many different cell types but is comprised of 2 main cell types: epithelial cells and smooth muscle cells. Recent in vivo and in vitro evidence has revealed that various alterations to the DNA methylation apparatus within both of these cell types can result in a variety of cellular phenotypes including modified differentiation status, apoptosis, and uncontrolled growth. Methyl groups added to cytosines in regulatory genomic regions typically act to repress associated gene transcription. Aberrant DNA methylation patterns are often found in cells with abnormal growth/differentiation patterns, including those cells involved in burdensome intestinal pathologies including inflammatory bowel diseases and intestinal pseudo-obstructions. The altered methylation patterns being observed in various cell cultures and DNA methyltransferase knockout models indicate an influential connection between DNA methylation and gastrointestinal cells' development and their response to environmental signaling. As these modified DNA methylation levels are found in a number of pathological gastrointestinal conditions, further investigations into uncovering the causative nature, and controlled regulation, of this epigenetic modification is of great interest.
Collapse
Affiliation(s)
- Brian G Jorgensen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno,
USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno,
USA
| |
Collapse
|
33
|
Whyte JM, Ellis JJ, Brown MA, Kenna TJ. Best practices in DNA methylation: lessons from inflammatory bowel disease, psoriasis and ankylosing spondylitis. Arthritis Res Ther 2019; 21:133. [PMID: 31159831 PMCID: PMC6547594 DOI: 10.1186/s13075-019-1922-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in genomic technology have enabled a greater understanding of the genetics of common immune-mediated diseases such as ankylosing spondylitis (AS), inflammatory bowel disease (IBD) and psoriasis. The substantial overlap in genetically identified pathogenic pathways has been demonstrated between these diseases. However, to date, gene discovery approaches have only mapped a minority of the heritability of these common diseases, and most disease-associated variants have been found to be non-coding, suggesting mechanisms of disease-association through transcriptional regulatory effects. Epigenetics is a major interface between genetic and environmental modifiers of disease and strongly influence transcription. DNA methylation is a well-characterised epigenetic mechanism, and a highly stable epigenetic marker, that is implicated in disease pathogenesis. DNA methylation is an under-investigated area in immune-mediated diseases, and many studies in the field are affected by experimental design limitations, related to study design, technical limitations of the methylation typing methods employed, and statistical issues. This has resulted in both sparsity of investigations into disease-related changes in DNA methylation, a paucity of robust findings, and difficulties comparing studies in the same disease. In this review, we cover the basics of DNA methylation establishment and control, and the methods used to examine it. We examine the current state of DNA methylation studies in AS, IBD and psoriasis; the limitations of previous studies; and the best practices for DNA methylation studies. The purpose of this review is to assist with proper experimental design and consistency of approach in future studies to enable a better understanding of the functional role of DNA methylation in immune-mediated disease.
Collapse
Affiliation(s)
- Jessica M Whyte
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Jonathan J Ellis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia. .,Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| | - Tony J Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| |
Collapse
|
34
|
Somineni HK, Venkateswaran S, Kilaru V, Marigorta UM, Mo A, Okou DT, Kellermayer R, Mondal K, Cobb D, Walters TD, Griffiths A, Noe JD, Crandall WV, Rosh JR, Mack DR, Heyman MB, Baker SS, Stephens MC, Baldassano RN, Markowitz JF, Dubinsky MC, Cho J, Hyams JS, Denson LA, Gibson G, Cutler DJ, Conneely KN, Smith AK, Kugathasan S. Blood-Derived DNA Methylation Signatures of Crohn's Disease and Severity of Intestinal Inflammation. Gastroenterology 2019; 156:2254-2265.e3. [PMID: 30779925 PMCID: PMC6529254 DOI: 10.1053/j.gastro.2019.01.270] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/18/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Crohn's disease is a relapsing and remitting inflammatory disorder with a variable clinical course. Although most patients present with an inflammatory phenotype (B1), approximately 20% of patients rapidly progress to complicated disease, which includes stricturing (B2), within 5 years. We analyzed DNA methylation patterns in blood samples of pediatric patients with Crohn's disease at diagnosis and later time points to identify changes that associate with and might contribute to disease development and progression. METHODS We obtained blood samples from 164 pediatric patients (1-17 years old) with Crohn's disease (B1 or B2) who participated in a North American study and were followed for 5 years. Participants without intestinal inflammation or symptoms served as controls (n = 74). DNA methylation patterns were analyzed in samples collected at time of diagnosis and 1-3 years later at approximately 850,000 sites. We used genetic association and the concept of Mendelian randomization to identify changes in DNA methylation patterns that might contribute to the development of or result from Crohn's disease. RESULTS We identified 1189 5'-cytosine-phosphate-guanosine-3' (CpG) sites that were differentially methylated between patients with Crohn's disease (at diagnosis) and controls. Methylation changes at these sites correlated with plasma levels of C-reactive protein. A comparison of methylation profiles of DNA collected at diagnosis of Crohn's disease vs during the follow-up period showed that, during treatment, alterations identified in methylation profiles at the time of diagnosis of Crohn's disease more closely resembled patterns observed in controls, irrespective of disease progression to B2. We identified methylation changes at 3 CpG sites that might contribute to the development of Crohn's disease. Most CpG methylation changes associated with Crohn's disease disappeared with treatment of inflammation and might be a result of Crohn's disease. CONCLUSIONS Methylation patterns observed in blood samples from patients with Crohn's disease accompany acute inflammation; with treatment, these change to resemble methylation patterns observed in patients without intestinal inflammation. These findings indicate that Crohn's disease-associated patterns of DNA methylation observed in blood samples are a result of the inflammatory features of the disease and are less likely to contribute to disease development or progression.
Collapse
Affiliation(s)
- Hari K Somineni
- Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia; Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Varun Kilaru
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Urko M Marigorta
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, Georgia
| | - Angela Mo
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, Georgia
| | - David T Okou
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Kajari Mondal
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Dawayland Cobb
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Thomas D Walters
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Anne Griffiths
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joshua D Noe
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Wallace V Crandall
- Division of Pediatric Gastroenterology, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio
| | - Joel R Rosh
- Department of Pediatrics, Goryeb Children's Hospital, Morristown, New Jersey
| | - David R Mack
- Department of Pediatrics, Children's Hospital of Eastern Ontario IBD Centre and University of Ottawa, Ottawa, Ontario, Canada
| | - Melvin B Heyman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Susan S Baker
- Department of Digestive Diseases and Nutrition Center, University at Buffalo, Buffalo, New York
| | - Michael C Stephens
- Department of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Robert N Baldassano
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Marla C Dubinsky
- Department of Pediatrics, Mount Sinai Hospital, New York, New York
| | - Judy Cho
- Department of Pediatrics, Mount Sinai Hospital, New York, New York
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, Georgia
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Karen N Conneely
- Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia; Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Alicia K Smith
- Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia; Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Subra Kugathasan
- Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia; Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia; Department of Human Genetics, Emory University, Atlanta, Georgia.
| |
Collapse
|
35
|
Yan J, Jiang Y, Lu J, Wu J, Zhang M. Inhibiting of Proliferation, Migration, and Invasion in Lung Cancer Induced by Silencing Interferon-Induced Transmembrane Protein 1 (IFITM1). BIOMED RESEARCH INTERNATIONAL 2019; 2019:9085435. [PMID: 31205947 PMCID: PMC6530206 DOI: 10.1155/2019/9085435] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023]
Abstract
Interferon-induced transmembrane protein 1 (IFITM1), a 17-kDa membrane protein, is generally known as a modulator in many cellular functions. Recent studies showed overexpression of IFITM1 in cancers and relationship between IFITM1 overexpression and tumor progression. However, the role of IFITM1 in lung cancer remains unclear. Here, we presented the overexpression of IFITM1 in lung cancer tissues and cell lines A549 and H460 using quantitative Real-Time RT-PCR. In vitro assay indicated IFITM1 silencing inhibited lung cancer cell proliferation, migration, and invasion. Further, in vivo assay showed that IFITM1 silencing markedly suppressed cell growth and metastasis of lung cancer in tumor-bearing BALB/c nude mice. Mechanistically, we found that IFITM1 silencing significantly alleviated the protein levels of β-catenin, cyclin D1, and c-Mycin lung cancer cells and tumor samples. Taken together, our study revealed the role of IFITM1 as a tumor promoter during lung cancer development and the possible molecular mechanism.
Collapse
Affiliation(s)
- Jun Yan
- Department of Pathology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Ying Jiang
- Department of Pathology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jianfeng Lu
- Department of Pathology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jianhui Wu
- Department of Pathology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Mingfang Zhang
- Department of Pathology, Tianjin First Center Hospital, Tianjin 300192, China
| |
Collapse
|
36
|
Intestinal Epithelial Organoids as Tools to Study Epigenetics in Gut Health and Disease. Stem Cells Int 2019; 2019:7242415. [PMID: 30809264 PMCID: PMC6369455 DOI: 10.1155/2019/7242415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
The intestinal epithelium forms the inner layer of the human intestine and serves a wide range of diverse functions. Its constant exposure to a vast amount of complex microbiota highlights the critical interface that this single-cell layer forms between the host and our environment. Importantly, the well-documented contribution of environmental factors towards the functional development of the human intestinal epithelium directly implies epigenetic mechanisms in orchestrating this complex interplay. The development of intestinal epithelial organoid culture systems that can be generated from human tissue provides researchers with unpresented opportunities to study functional aspects of human intestinal epithelial pathophysiology. In this brief review, we summarise existing evidence for the role of epigenetics in regulating intestinal epithelial cell function and highlight the great potential for human gut organoids as translational research tools to investigate these mechanisms in vitro.
Collapse
|
37
|
Li Yim AYF, de Bruyn JR, Duijvis NW, Sharp C, Ferrero E, de Jonge WJ, Wildenberg ME, Mannens MMAM, Buskens CJ, D’Haens GR, Henneman P, te Velde AA. A distinct epigenetic profile distinguishes stenotic from non-inflamed fibroblasts in the ileal mucosa of Crohn's disease patients. PLoS One 2018; 13:e0209656. [PMID: 30589872 PMCID: PMC6307755 DOI: 10.1371/journal.pone.0209656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The chronic remitting and relapsing intestinal inflammation characteristic of Crohn's disease frequently leads to fibrosis and subsequent stenosis of the inflamed region. Approximately a third of all Crohn's disease patients require resection at some stage in their disease course. As the pathogenesis of Crohn's disease associated fibrosis is largely unknown, a strong necessity exists to better understand the pathophysiology thereof. METHODS In this study, we investigated changes of the DNA methylome and transcriptome of ileum-derived fibroblasts associated to the occurrence of Crohn's disease associated fibrosis. Eighteen samples were included in a DNA methylation array and twenty-one samples were used for RNA sequencing. RESULTS Most differentially methylated regions and differentially expressed genes were observed when comparing stenotic with non-inflamed samples. By contrast, few differences were observed when comparing Crohn's disease with non-Crohn's disease, or inflamed with non-inflamed tissue. Integrative methylation and gene expression analyses revealed dysregulation of genes associated to the PRKACA and E2F1 network, which is involved in cell cycle progression, angiogenesis, epithelial to mesenchymal transition, and bile metabolism. CONCLUSION Our research provides evidence that the methylome and the transcriptome are systematically dysregulated in stenosis-associated fibroblasts.
Collapse
Affiliation(s)
- Andrew Y. F. Li Yim
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Jessica R. de Bruyn
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Gastroenterology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicolette W. Duijvis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Catriona Sharp
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Enrico Ferrero
- Computational Biology, Target Sciences, GlaxoSmithKline, Stevenage, United Kingdom
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel M. A. M. Mannens
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Christianne J. Buskens
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anje A. te Velde
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
38
|
Taman H, Fenton CG, Hensel IV, Anderssen E, Florholmen J, Paulssen RH. Genome-wide DNA Methylation in Treatment-naïve Ulcerative Colitis. J Crohns Colitis 2018; 12:1338-1347. [PMID: 30137272 PMCID: PMC6236200 DOI: 10.1093/ecco-jcc/jjy117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The aim of this study was to investigate the genome-wide DNA methylation status in treatment-naïve ulcerative colitis [UC], and to explore the relationship between DNA methylation patterns and gene expression levels in tissue biopsies from a well-stratified treatment-naïve UC patient group. METHODS Mucosal biopsies from treatment-naïve patients [n = 10], and a healthy control group [n = 11] underwent genome-wide DNA bisulfite sequencing. Principal component analysis [PCA] and diverse statistical methods were applied to obtain a dataset of differentially methylated genes. DNA methylation annotation was investigated using the UCSC Genome Browser. Gene set enrichments were obtained using the Kyoto Encyclopaedia of Genes and Genomes [KEGG] and PANTHER. RESULTS Of all significantly differentially expressed genes [DEGs], 25% correlated with DNA methylation patterns; 30% of these genes were methylated at CpG sites near their transcription start site [TSS]. Hyper-methylation was observed for genes involved in homeostasis and defence, whereas hypo-methylation was observed for genes playing a role in immune response [i.e. chemokines and interleukins]. Of the differentially DNA methylated genes, 25 were identified as inflammatory bowel disease [IBD] susceptibility genes. Four genes [DEFFA6, REG1B, BTNL3, OLFM4] showed DNA methylation in the absence of known CpG islands. CONCLUSIONS Genome-wide DNA methylation analysis revealed distinctive functional patterns for hyper-and hypo-methylation in treatment-naïve UC. These distinct patterns could be of importance in the development and pathogenesis of UC. Further investigation of DNA methylation patterns may be useful in the development of the targeting of epigenetic processes, and may allow new treatment and target strategies for UC patients.
Collapse
Affiliation(s)
- Hagar Taman
- Genomics Support Centre Tromsø [GSCT], Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway
| | - Christopher G Fenton
- Genomics Support Centre Tromsø [GSCT], Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway
| | - Inga V Hensel
- Genomics Support Centre Tromsø [GSCT], Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway,Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway
| | - Endre Anderssen
- Genomics Support Centre Tromsø [GSCT], Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway
| | - Jon Florholmen
- Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway,Department of Gastroenterology, University Hospital of North Norway, Tromsø, Norway
| | - Ruth H Paulssen
- Genomics Support Centre Tromsø [GSCT], Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway,Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway,Corresponding author: Ruth H. Paulssen, PhD, Department of Clinical Medicine, Gastroenterology and Nutrition Research Group, UiT The Arctic University of Norway, Faculty of Health, Sykehusveien 38, N-9038 Tromsø, Norway/ Tel.: +47 77 64 54 80;
| |
Collapse
|
39
|
Dmitrijeva M, Ossowski S, Serrano L, Schaefer MH. Tissue-specific DNA methylation loss during ageing and carcinogenesis is linked to chromosome structure, replication timing and cell division rates. Nucleic Acids Res 2018; 46:7022-7039. [PMID: 29893918 PMCID: PMC6101545 DOI: 10.1093/nar/gky498] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic mechanism known to affect gene expression and aberrant DNA methylation patterns have been described in cancer. However, only a small fraction of differential methylation events target genes with a defined role in cancer, raising the question of how aberrant DNA methylation contributes to carcinogenesis. As recently a link has been suggested between methylation patterns arising in ageing and those arising in cancer, we asked which aberrations are unique to cancer and which are the product of normal ageing processes. We therefore compared the methylation patterns between ageing and cancer in multiple tissues. We observed that hypermethylation preferentially occurs in regulatory elements, while hypomethylation is associated with structural features of the chromatin. Specifically, we observed consistent hypomethylation of late-replicating, lamina-associated domains. The extent of hypomethylation was stronger in cancer, but in both ageing and cancer it was proportional to the replication timing of the region and the cell division rate of the tissue. Moreover, cancer patients who displayed more hypomethylation in late-replicating, lamina-associated domains had higher expression of cell division genes. These findings suggest that different cell division rates contribute to tissue- and cancer type-specific DNA methylation profiles.
Collapse
Affiliation(s)
- Marija Dmitrijeva
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Stephan Ossowski
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Martin H Schaefer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
40
|
Klasić M, Markulin D, Vojta A, Samaržija I, Biruš I, Dobrinić P, Ventham NT, Trbojević-Akmačić I, Šimurina M, Štambuk J, Razdorov G, Kennedy NA, Satsangi J, Dias AM, Pinho S, Annese V, Latiano A, D’Inca R, Lauc G, Zoldoš V. Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease. Clin Epigenetics 2018; 10:75. [PMID: 29991969 PMCID: PMC5987481 DOI: 10.1186/s13148-018-0507-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Many genome- and epigenome-wide association studies (GWAS and EWAS) and studies of promoter methylation of candidate genes for inflammatory bowel disease (IBD) have demonstrated significant associations between genetic and epigenetic changes and IBD. Independent GWA studies have identified genetic variants in the BACH2, IL6ST, LAMB1, IKZF1, and MGAT3 loci to be associated with both IBD and immunoglobulin G (IgG) glycosylation. METHODS Using bisulfite pyrosequencing, we analyzed CpG methylation in promoter regions of these five genes from peripheral blood of several hundred IBD patients and healthy controls (HCs) from two independent cohorts, respectively. RESULTS We found significant differences in the methylation levels in the MGAT3 and BACH2 genes between both Crohn's disease and ulcerative colitis when compared to HC. The same pattern of methylation changes was identified for both genes in CD19+ B cells isolated from the whole blood of a subset of the IBD patients. A correlation analysis was performed between the MGAT3 and BACH2 promoter methylation and individual IgG glycans, measured in the same individuals of the two large cohorts. MGAT3 promoter methylation correlated significantly with galactosylation, sialylation, and bisecting GlcNAc on IgG of the same patients, suggesting that activity of the GnT-III enzyme, encoded by this gene, might be altered in IBD. The correlations between the BACH2 promoter methylation and IgG glycans were less obvious, since BACH2 is not a glycosyltransferase and therefore may affect IgG glycosylation only indirectly. CONCLUSIONS Our results suggest that epigenetic deregulation of key glycosylation genes might lead to an increase in pro-inflammatory properties of IgG in IBD through a decrease in galactosylation and sialylation and an increase of bisecting GlcNAc on digalactosylated glycan structures. Finally, we showed that CpG methylation in the promoter of the MGAT3 gene is altered in CD3+ T cells isolated from inflamed mucosa of patients with ulcerative colitis from a third smaller cohort, for which biopsies were available, suggesting a functional role of this glyco-gene in IBD pathogenesis.
Collapse
Affiliation(s)
- Marija Klasić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Dora Markulin
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Aleksandar Vojta
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ivana Samaržija
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ivan Biruš
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Paula Dobrinić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nicholas T. Ventham
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 6XU UK
| | | | - Mirna Šimurina
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Genadij Razdorov
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Nicholas A. Kennedy
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 6XU UK
- IBD Pharmacogenetics, University of Exeter, Exeter, UK
| | - Jack Satsangi
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 6XU UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ana M. Dias
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Salome Pinho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Vito Annese
- Department of Medical and Surgical Sciences, Division of Gastroenterology, University Hospital Careggi, Florence, Italy
| | - Anna Latiano
- Department of Medical Sciences, Division of Gastroenterology, IRCCS-CSS Hospital, Viale Cappuccini, Rotondo, Italy
| | - Renata D’Inca
- Gastrointestinal Unit, University of Padua, Padua, Italy
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Vlatka Zoldoš
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
41
|
Schlüter A, Sandoval J, Fourcade S, Díaz-Lagares A, Ruiz M, Casaccia P, Esteller M, Pujol A. Epigenomic signature of adrenoleukodystrophy predicts compromised oligodendrocyte differentiation. Brain Pathol 2018; 28:902-919. [PMID: 29476661 PMCID: PMC6857458 DOI: 10.1111/bpa.12595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
Abstract
Epigenomic changes may either cause disease or modulate its expressivity, adding a layer of complexity to mendelian diseases. X‐linked adrenoleukodystrophy (X‐ALD) is a rare neurometabolic condition exhibiting discordant phenotypes, ranging from a childhood cerebral inflammatory demyelination (cALD) to an adult‐onset mild axonopathy in spinal cords (AMN). The AMN form may occur with superimposed inflammatory brain demyelination (cAMN). All patients harbor loss of function mutations in the ABCD1 peroxisomal transporter of very‐long chain fatty acids. The factors that account for the lack of genotype‐phenotype correlation, even within the same family, remain largely unknown. To gain insight into this matter, here we compared the genome‐wide DNA methylation profiles of morphologically intact frontal white matter areas of children affected by cALD with adult cAMN patients, including male controls in the same age group. We identified a common methylomic signature between the two phenotypes, comprising (i) hypermethylation of genes harboring the H3K27me3 mark at promoter regions, (ii) hypermethylation of genes with major roles in oligodendrocyte differentiation such as MBP, CNP, MOG and PLP1 and (iii) hypomethylation of immune‐associated genes such as IFITM1 and CD59. Moreover, we found increased hypermethylation in CpGs of genes involved in oligodendrocyte differentiation, and also in genes with H3K27me3 marks in their promoter regions in cALD compared with cAMN, correlating with transcriptional and translational changes. Further, using a penalized logistic regression model, we identified the combined methylation levels of SPG20, UNC45A and COL9A3 and also, the combined expression levels of ID4 and MYRF to be good markers capable of discriminating childhood from adult inflammatory phenotypes. We thus propose the hypothesis that an epigenetically controlled, altered transcriptional program may drive an impaired oligodendrocyte differentiation and aberrant immune activation in X‐ALD patients. These results shed light into disease pathomechanisms and uncover putative biomarkers of interest for prognosis and phenotypic stratification.
Collapse
Affiliation(s)
- Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Juan Sandoval
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Angel Díaz-Lagares
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Patrizia Casaccia
- Department of Neuroscience and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Neuroscience Initiative ASRC CUNY, 85 St Nicholas Terrace, New York, NY 10031
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
42
|
Chiba H, Kakuta Y, Kinouchi Y, Kawai Y, Watanabe K, Nagao M, Naito T, Onodera M, Moroi R, Kuroha M, Kanazawa Y, Kimura T, Shiga H, Endo K, Negoro K, Nagasaki M, Unno M, Shimosegawa T. Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease. PLoS One 2018; 13:e0194036. [PMID: 29547621 PMCID: PMC5856270 DOI: 10.1371/journal.pone.0194036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 02/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. METHODS CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score ([Formula: see text]) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing [Formula: see text] >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. RESULTS We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of [Formula: see text] (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 ([Formula: see text] = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). CONCLUSIONS We confirmed the existence of cis-regulated ASM around IBD susceptibility genes and the association between ASM SNP (rs36221701) genotype and SMAD3 expression, a susceptibility gene for IBD. These results give us supporting evidence that DNA methylation mediates genetic effects on disease susceptibility.
Collapse
Affiliation(s)
- Hirofumi Chiba
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Kinouchi
- Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
| | - Yosuke Kawai
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuhiro Watanabe
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Munenori Nagao
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Motoyuki Onodera
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatake Kuroha
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitake Kanazawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoya Kimura
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuya Endo
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kenichi Negoro
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masao Nagasaki
- Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
43
|
Feng J, Gao Q, Liu Q, Wang F, Lin X, Zhao Q, Liu J, Li J. Integrated strategy of differentially expressed genes associated with ulcerative colitis. Mol Med Rep 2017; 16:7479-7489. [PMID: 28944823 PMCID: PMC5865879 DOI: 10.3892/mmr.2017.7509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 07/11/2017] [Indexed: 12/23/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease that is associated with both genetic and environmental factors; however, the underlying pathogenesis of UC remains unclear. The present study aimed to further explore 12 microarray datasets from patients with UC obtained from the Gene Expression Omnibus repository, for potential genetic pathogenesis of UC through a global bioinformatics view, which included identification of differentially expressed genes (DEGs), functional enrichments, protein-protein interactions, transcriptional and post-transcriptional regulation and drug-gene associations. This integrated analysis screened 233 DEGs that were compared between UC and normal control tissue samples; these included 173 upregulated and 60 downregulated DEGs. Subsequently, transcription factors, such as TATA-binding protein 1 (TBP1; hsa_TATAAA_V$TATA_01) and nuclear factor-κB (NF-κB; hsa_V$NFKAPPAB_01) and microRNAs (miRNAs; such as miR-516-3p and miR-23a) were revealed to be associated with 233 DEGs. Notably, further analysis indicated that these DEGs were enriched in certain diseases, including inflammation, fibrosis and immune system diseases, and were also associated with some drugs, including prednisone, collagenase and mycophenolate mofetil, which may provide choice for treatment of UC. In conclusion, this study may provide novel insights into discovering potential molecular targets involved in the pathogenesis and treatment of UC.
Collapse
Affiliation(s)
- Juerong Feng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, Hubei 430071, P.R. China
| | - Qian Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, Hubei 430071, P.R. China
| | - Qing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, Hubei 430071, P.R. China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, Hubei 430071, P.R. China
| | - Xue Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, Hubei 430071, P.R. China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, Hubei 430071, P.R. China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, Hubei 430071, P.R. China
| | - Jin Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
44
|
Recent Advances in the Etiopathogenesis of Inflammatory Bowel Disease: The Role of Omics. Mol Diagn Ther 2017; 22:11-23. [DOI: 10.1007/s40291-017-0298-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Abstract
The human epigenome may link environmental exposures and commensal microbiota changes to host pathology in respect to the developmental origins of inflammatory bowel diseases (ulcerative colitis [UC] and Crohn's disease [more appropriately Crohn disease, CD]). Genetic predisposition - prenatal, perinatal and pediatric environmental influences - microbiome aberration (dysbiosis) and immune dysregulation appear to be important elements in disease development, progression and maintenance. The prevalence of combined genetic and epigenetic susceptibility toward UC and CD is calculated herein to be as high as 2%, and approximately 1% for UC and CD in highly developed countries, respectively. This review emphasizes the significant challenges for epigenetic research in inflammatory bowel diseases. Overcoming these challenges, however, could reveal unique opportunities for disease prevention, treatment and possible cure.
Collapse
Affiliation(s)
- Richard Kellermayer
- Section of Pediatric Gastroenterology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, USDA/ARS Children's Nutrition Research Center, Houston, TX 77030, USA
| |
Collapse
|
46
|
Álvarez-Errico D, Vento-Tormo R, Ballestar E. Genetic and Epigenetic Determinants in Autoinflammatory Diseases. Front Immunol 2017; 8:318. [PMID: 28382039 PMCID: PMC5360705 DOI: 10.3389/fimmu.2017.00318] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/07/2017] [Indexed: 01/20/2023] Open
Abstract
The concept of autoinflammation has evolved over the past 20 years, beginning with the discovery that mutations in the Mediterranean Fever (MEFV) gene were causative of Familial Mediterranean Fever. Currently, autoinflammatory diseases comprise a wide range of disorders with the common features of recurrent fever attacks, prevalence of hyperreactive innate immune cells, and signs of inflammation that can be systemic or organ specific in the absence of pathogenic infection of autoimmunity. Innate immune cells from the myeloid compartment are the main effectors of uncontrolled inflammation that is caused in great extent by the overproduction of inflammatory cytokines such as IL-1β and IL-18. Defects in several signaling pathways that control innate immune defense, particularly the hyperreactivity of one or more inflammasomes, are at the core of pathologic autoinflammatory phenotypes. Although many of the autoinflammatory syndromes are known to be monogenic, some of them are genetically complex and are impacted by environmental factors. Recently, epigenetic dysregulation has surfaced as an additional contributor to pathogenesis. In the present review, we discuss data that are currently available to describe the contribution of epigenetic mechanisms in autoinflammatory diseases.
Collapse
Affiliation(s)
- Damiana Álvarez-Errico
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain
| | - Roser Vento-Tormo
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain
| |
Collapse
|
47
|
Abstract
INTRODUCTION Aberrant DNA methylation frequently occurs in the inflammatory mucosa in ulcerative colitis (UC) and is involved in UC-related tumorigenesis. We performed comprehensive DNA methylation profiling of the promoter regions of the inflamed rectal mucosae of patients with UC. DESIGN The methylation status of the promoter CpG islands (CGIs) of 45 cancer/inflammation or age-related candidate genes and the LINE1 repetitive element were examined in the colonic mucosae of 84 cancer-free patients with UC by bisulfite pyrosequencing. Methylation status of selected genes (DPYS, N33, MIR1247, GSTP1, and SOX11) was also determined in 14 neoplastic lesions (5 with high-grade dysplasia and 9 with carcinoma) and 8 adjacent tissues derived from 12 patients. An Infinium HumanMethylation450 BeadChip array was used to characterize the methylation status of >450,000 CpG sites for 10 patients with UC. RESULTS Clustering analysis based on the methylation status of the candidate genes clearly distinguished the inflammatory samples from the noninflammatory samples. The hypermethylation of the promoter CGIs strongly correlated with increased disease duration, which is a known risk factor for the development of colon cancer. Genome-wide methylation analyses revealed a high rate of hypermethylation in the severe phenotype of UC, particularly at the CGIs. Exclusively hypermethylated promoter CGIs in the severe phenotypes were significantly related to genes involved in biosynthetic processes, the regulation of metabolic processes, and nitrogen compound metabolic processes. CONCLUSION Our findings suggest the potential utility of DNA methylation as a molecular marker and therapeutic target for UC-related tumorigenesis.
Collapse
|
48
|
Epigenetic Changes in Chronic Inflammatory Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:139-189. [DOI: 10.1016/bs.apcsb.2016.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Ventham NT, Kennedy NA, Adams AT, Kalla R, Heath S, O'Leary KR, Drummond H, Wilson DC, Gut IG, Nimmo ER, Satsangi J. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat Commun 2016; 7:13507. [PMID: 27886173 PMCID: PMC5133631 DOI: 10.1038/ncomms13507] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using paired genetic and epigenetic data, we delineate methylation quantitative trait loci; VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium with a known IBD susceptibility variant. Separated cell data shows that IBD-associated hypermethylation within the TXK promoter region negatively correlates with gene expression in whole-blood and CD8+ T cells, but not other cell types. Thus, site-specific DNA methylation changes in IBD relate to underlying genotype and associate with cell-specific alteration in gene expression.
Collapse
Affiliation(s)
- N. T. Ventham
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 6XU, UK
| | - N. A. Kennedy
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 6XU, UK
| | - A. T. Adams
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 6XU, UK
| | - R. Kalla
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 6XU, UK
| | - S. Heath
- CNAG-CRG, Centro Nacional de Análisis Genómico, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - K. R. O'Leary
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 6XU, UK
| | - H. Drummond
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 6XU, UK
| | - D. C. Wilson
- Department of Child Life and Health, University of Edinburgh, Edinburgh EH9 1UW, UK
| | - I. G. Gut
- CNAG-CRG, Centro Nacional de Análisis Genómico, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - E. R. Nimmo
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 6XU, UK
| | - J. Satsangi
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 6XU, UK
| |
Collapse
|
50
|
Tschurtschenthaler M, Kachroo P, Heinsen FA, Adolph TE, Rühlemann MC, Klughammer J, Offner FA, Ammerpohl O, Krueger F, Smallwood S, Szymczak S, Kaser A, Franke A. Paternal chronic colitis causes epigenetic inheritance of susceptibility to colitis. Sci Rep 2016; 6:31640. [PMID: 27538787 PMCID: PMC4990911 DOI: 10.1038/srep31640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) arises by unknown environmental triggers in genetically susceptible individuals. Epigenetic regulation of gene expression may integrate internal and external influences and may thereby modulate disease susceptibility. Epigenetic modification may also affect the germ-line and in certain contexts can be inherited to offspring. This study investigates epigenetic alterations consequent to experimental murine colitis induced by dextran sodium sulphate (DSS), and their paternal transmission to offspring. Genome-wide methylome- and transcriptome-profiling of intestinal epithelial cells (IECs) and sperm cells of males of the F0 generation, which received either DSS and consequently developed colitis (F0DSS), or non-supplemented tap water (F0Ctrl) and hence remained healthy, and of their F1 offspring was performed using reduced representation bisulfite sequencing (RRBS) and RNA-sequencing (RNA-Seq), respectively. Offspring of F0DSS males exhibited aberrant methylation and expression patterns of multiple genes, including Igf1r and Nr4a2, which are involved in energy metabolism. Importantly, DSS colitis in F0DSS mice was associated with decreased body weight at baseline of their F1 offspring, and these F1 mice exhibited increased susceptibility to DSS-induced colitis compared to offspring from F0Ctrl males. This study hence demonstrates epigenetic transmissibility of metabolic and inflammatory traits resulting from experimental colitis.
Collapse
Affiliation(s)
- Markus Tschurtschenthaler
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, CB2 0QQ Cambridge, United Kingdom.,Department of Medicine II (Gastroenterology &Hepatology), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Priyadarshini Kachroo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Timon Erik Adolph
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, CB2 0QQ Cambridge, United Kingdom
| | | | - Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Felix Albert Offner
- Department of Pathology, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, CB22 3AT Cambridge, United Kingdom
| | - Sébastien Smallwood
- Epigenetics Programme, Babraham Institute, CB22 3AT Cambridge, United Kingdom
| | - Silke Szymczak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, CB2 0QQ Cambridge, United Kingdom
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| |
Collapse
|