1
|
Kuroiwa T, Tsuboi Y, Michikawa T, Tajima K, Uraya Y, Maeda A, Shizu K, Suzuki K, Suzuki K, Kawano Y, Fujita N. DNA methylation of bone morphogenetic protein 7 in leukocytes as a possible biomarker for hand osteoarthritis: A pilot study. J Orthop Res 2025; 43:84-93. [PMID: 39182186 PMCID: PMC11615413 DOI: 10.1002/jor.25963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Hand osteoarthritis (HOA), characterized by an earlier onset age and reduced susceptibility to mechanical stress compared with knee and hip osteoarthritis, is considered a suitable disease for identifying predictive biomarkers of osteoarthritis. In particular, DNA methylation variants, expected to contribute to HOA susceptibility, hold potential as osteoarthritis biomarkers. In this study, leukocyte DNA methylation patterns were analyzed in blood samples from patients with HOA, aiming to identify disease-specific biomarkers for osteoarthritis. Using DNA methylation microarrays, we analyzed samples from three subjects with HOA and three age- and gender-matched healthy individuals. For validation, pyrosequencing analysis was conducted using samples from 16 to 9 subjects with and without HOA, respectively. From 735,026 probes in the DNA methylation array, the Top 100 CpG sites associated with HOA, based on low adjusted P-values, including those targeting bone morphogenetic protein 7 (BMP7), SBF2-AS1, PLOD2, ICOS, and CSF1R were identified. Validation analysis revealed significantly higher methylation levels in the BMP7-related site in the HOA group compared with the control group, even after adjusting for age, gender, and body mass index (p = 0.037). In contrast, no significant difference was observed in the other selected CpG sites between the HOA and control groups. This study highlights the significantly increased frequency of methylation at the specific BMP7 site in leukocytes of patients with HOA, suggesting its potential as a biomarker for HOA. Measurement of methylation levels at the CpG sites identified in this study offers a potential approach to prevent future osteoarthritis progression, providing valuable insights into disease management.
Collapse
Affiliation(s)
- Takashi Kuroiwa
- Department of Orthopaedic SurgeryFujita Health University School of MedicineToyoakeAichiJapan
| | - Yoshiki Tsuboi
- Department of Preventive Medical SciencesFujita Health University School of Medical SciencesToyoakeAichiJapan
| | - Takehiro Michikawa
- Department of Environmental and Occupational Health, School of MedicineToho UniversityTokyoJapan
| | - Kaori Tajima
- Department of Orthopaedic SurgeryFujita Health University School of MedicineToyoakeAichiJapan
| | - Yuki Uraya
- Department of Orthopaedic SurgeryFujita Health University School of MedicineToyoakeAichiJapan
| | - Atsushi Maeda
- Department of Orthopaedic SurgeryFujita Health University School of MedicineToyoakeAichiJapan
| | - Kanae Shizu
- Department of Orthopaedic SurgeryFujita Health University School of MedicineToyoakeAichiJapan
| | - Katsuji Suzuki
- Department of Orthopaedic SurgeryFujita Health University School of MedicineToyoakeAichiJapan
| | - Koji Suzuki
- Department of Preventive Medical SciencesFujita Health University School of Medical SciencesToyoakeAichiJapan
| | - Yusuke Kawano
- Department of Orthopaedic SurgeryFujita Health University School of MedicineToyoakeAichiJapan
| | - Nobuyuki Fujita
- Department of Orthopaedic SurgeryFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
2
|
Malinowska K, Tarhonska K, Foksiński M, Sicińska P, Jabłońska E, Reszka E, Zarakowska E, Gackowski D, Górecka K, Balcerczyk A, Bukowska B. Impact of Short-Term Exposure to Non-Functionalized Polystyrene Nanoparticles on DNA Methylation and Gene Expression in Human Peripheral Blood Mononuclear Cells. Int J Mol Sci 2024; 25:12786. [PMID: 39684496 DOI: 10.3390/ijms252312786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of the present study was to investigate the concentration- and size-dependent effects of non-functionalized polystyrene nanoparticles (PS-NPs) of varying diameters (29 nm, 44 nm, and 72 nm) on specific epigenetic modifications and gene expression profiles related to carcinogenesis in human peripheral blood mononuclear cells (PBMCs) in vitro. This in vitro human-cell-based model is used to investigate the epigenetic effect of various environmental xenobiotics. PBMCs were exposed to PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 h period. The analysis encompassed epigenetic DNA modifications, including levels of 5-methyl-2'-deoxycytidine (5-mdC) and 5-(hydroxymethyl)-2'-deoxycytidine (5-hmdC), as well as the levels of 2'-deoxyuridine (dU) and 5-(hydroxymethyl)-2'-deoxyuridine (5-hmdU) by mass spectrometry methods, methylation in the promoter regions of selected tumor suppressor genes TP53 (P53), CDKN2A (P16), and CDKN1A (P21) and proto-oncogenes (CCND1, BCL2, BCL6), along with the expression profile of the indicated genes by real-time PCR assays. The results obtained revealed no significant changes in global DNA methylation/demethylation levels in PBMCs after short-term exposure to non-functionalized PS-NPs. Furthermore, there were no changes observed in the level of dU, a product of cytosine deamination. However, the level of 5-hmdU, a product of both 5-hmdC deamination and thymine oxidation, was increased at the highest concentrations of larger PS-NPs (72 nm). None of the PS-NPs caused a change in the methylation pattern of the promoter regions of the TP53, CDKN2A, CDKN1A, CCND1, BCL2 and BCL6 genes. However, gene profiling indicated that PS-NPs with a diameter of 29 nm and 44 nm altered the expression of the TP53 gene. The smallest PS-NPs with a diameter of 29 nm increased the expression of the TP53 gene at a concentration of 10 µg/mL, while PS-NPs with a diameter of 44 nm did so at a concentration of 100 µg/mL. An increase in the expression of the CDKN2A gene was also observed when PBMCs were exposed to PS-NPs with 29 nm in diameter at the highest concentration. The observed effect depended on both the concentration and the size of the PS-NPs.
Collapse
Affiliation(s)
- Kinga Malinowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Teresy Str. 8, 91-348 Lodz, Poland
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Ewa Jabłońska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Teresy Str. 8, 91-348 Lodz, Poland
| | - Edyta Reszka
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Karolina Górecka
- The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
- Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Aneta Balcerczyk
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Bi F, Gao C, Guo H. Epigenetic regulation of cardiovascular diseases induced by behavioral and environmental risk factors: Mechanistic, diagnostic, and therapeutic insights. FASEB Bioadv 2024; 6:477-502. [PMID: 39512842 PMCID: PMC11539034 DOI: 10.1096/fba.2024-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Behavioral and environmental risk factors are critical in the development and progression of cardiovascular disease (CVD). Understanding the molecular mechanisms underlying these risk factors will offer valuable insights for targeted preventive and therapeutic strategies. Epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNA (ncRNA) expression, and epitranscriptomic modifications, have emerged as key mediators connecting behavioral and environmental risk factors to CVD risk and progression. These epigenetic alterations can profoundly impact on cardiovascular health and susceptibility to CVD by influencing cellular processes, development, and disease risk over an individual's lifetime and potentially across generations. This review examines how behavioral and environmental risk factors affect CVD risk and health outcomes through epigenetic regulation. We review the epigenetic effects of major behavioral risk factors (such as smoking, alcohol consumption, physical inactivity, unhealthy diet, and obesity) and environmental risk factors (including air and noise pollution) in the context of CVD pathogenesis. Additionally, we explore epigenetic biomarkers, considering their role as causal or surrogate indicators, and discuss epigenetic therapeutics targeting the mechanisms through which these risk factors contribute to CVD. We also address future research directions and challenges in leveraging epigenetic insights to reduce the burden of CVD related to behavioral and environmental factors and improve public health outcomes. This review aims to provide a comprehensive understanding of behavioral and environmental epigenetics in CVD and offer valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Bi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| | - Chen Gao
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Hongchao Guo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
4
|
Molfino A, Ambrosani F, Udali S, Imbimbo G, Moruzzi S, Castagna A, Pattini P, Tambaro F, Ramaccini C, Muscaritoli M, Friso S. DNA Methylation Signatures Characterize Gene Expression Modulation in Lung Cancer Patients Affected by Anorexia. Nutrients 2024; 16:3721. [PMID: 39519555 PMCID: PMC11547925 DOI: 10.3390/nu16213721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES The pathophysiology of cancer anorexia is multifactorial and unclear. Transcriptomic analysis from PBMCs RNA showed diverse patterns of gene expression pathways in anorexic cancer patients. We assessed whether the different transcriptomic signatures are modulated by DNA methylation in lung cancer patients presenting with poor appetite. METHODS Lung cancer patients and controls were enrolled, and anorexia was assessed by the FAACT-score questionnaire. Genome-wide DNA methylation was determined by Human Infinium MethylationEPIC BeadChip Kit. Data from genome-wide methylation analysis were merged with those from gene expression analysis, previously obtained by RNA sequencing (NGS). Four groups of genes were identified for each comparison: hypermethylated repressed, hypermethylated induced, hypomethylated repressed, and hypomethylated induced. RESULTS Cancer patients (n = 16) showed 382 differentially methylated genes when compared with controls (n = 8). Anorexic patients (n = 8) presented 586 hypomethylated and 174 hypermethylated genes compared with controls. In anorexic patients vs. non-anorexic (n = 8), 211 genes were identified as hypomethylated and 90 hypermethylated. When microarray methylation data were merged with transcriptomic data by RNA sequencing, we observed significant differences in anorexic patients vs. controls; a total of 42 genes resulted as hypomethylated and induced, 5 hypermethylated repressed, 10 hypermethylated induced, and 15 hypomethylated repressed. The CG sites analyzed by targeted bisulfite NGS in four genes of interest (FLNA, PGRMC1, GNL3L, and FHL1) resulting as hypomethylated in anorexic vs. controls allowed the validation of the data obtained from DNA methylation. Interestingly, the four genes resulted as hypomethylated in anorexic patients vs. non-anorexic patients and vs. controls (p < 0.0001). CONCLUSIONS Our data support that methylation is implicated in cancer-associated anorexia and nutritional derangements among lung cancer patients.
Collapse
Affiliation(s)
- Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (F.T.); (C.R.); (M.M.)
| | - Francesca Ambrosani
- Unit of Internal Medicine B, Department of Medicine, School of Medicine, University of Verona, 37129 Verona, Italy; (F.A.); (S.U.); (S.M.); (A.C.); (P.P.)
| | - Silvia Udali
- Unit of Internal Medicine B, Department of Medicine, School of Medicine, University of Verona, 37129 Verona, Italy; (F.A.); (S.U.); (S.M.); (A.C.); (P.P.)
| | - Giovanni Imbimbo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (F.T.); (C.R.); (M.M.)
| | - Sara Moruzzi
- Unit of Internal Medicine B, Department of Medicine, School of Medicine, University of Verona, 37129 Verona, Italy; (F.A.); (S.U.); (S.M.); (A.C.); (P.P.)
| | - Annalisa Castagna
- Unit of Internal Medicine B, Department of Medicine, School of Medicine, University of Verona, 37129 Verona, Italy; (F.A.); (S.U.); (S.M.); (A.C.); (P.P.)
| | - Patrizia Pattini
- Unit of Internal Medicine B, Department of Medicine, School of Medicine, University of Verona, 37129 Verona, Italy; (F.A.); (S.U.); (S.M.); (A.C.); (P.P.)
| | - Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (F.T.); (C.R.); (M.M.)
| | - Cesarina Ramaccini
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (F.T.); (C.R.); (M.M.)
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (F.T.); (C.R.); (M.M.)
| | - Simonetta Friso
- Unit of Internal Medicine B, Department of Medicine, School of Medicine, University of Verona, 37129 Verona, Italy; (F.A.); (S.U.); (S.M.); (A.C.); (P.P.)
| |
Collapse
|
5
|
Moulton C, Lisi V, Silvestri M, Ceci R, Grazioli E, Sgrò P, Caporossi D, Dimauro I. Impact of Physical Activity on DNA Methylation Signatures in Breast Cancer Patients: A Systematic Review with Bioinformatic Analysis. Cancers (Basel) 2024; 16:3067. [PMID: 39272925 PMCID: PMC11394229 DOI: 10.3390/cancers16173067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer (BC) continues to significantly impact women worldwide. Numerous studies show that physical activity (PA) significantly enhances the quality of life, aids recovery, and improves survival rates in BC patients. PA's influence extends to altering DNA methylation patterns on both a global and gene-specific scale, potentially reverting abnormal DNA methylation, associated with carcinogenesis and various pathologies. This review consolidates the findings of the current literature, highlighting PA's impact on DNA methylation in BC patients. Our systematic analysis indicates that PA may elevate global DNA methylation within tumour tissues. Furthermore, it appears to modify gene-specific promoter methylation across a wide spectrum of genes in various tissues. Through bioinformatic analysis, to investigate the functional enrichment of these affected genes, we identified a predominant enrichment in metabolic pathways, cell cycle regulation, cell cycle checkpoints, mitosis, cellular stress responses, and molecular functions governing diverse binding processes. The Human Protein Atlas corroborates this enrichment, indicating gene functionality across 266 tissues, notably within various breast tissues. This systematic review unveils PA's capacity to systematically alter DNA methylation patterns across multiple tissues, particularly in BC patients. Emphasising its influence on crucial biological processes and functions, this alteration holds potential for restoring normal cellular functionality and the cell cycle. This reversal of cancer-associated patterns could potentially enhance recovery and improve survival outcomes.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Monica Silvestri
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| |
Collapse
|
6
|
Pokupec Bilić A, Bilić I, Radić Brkanac S, Simetić L, Blažičević K, Herceg D, Mikloš M, Tonković Đurišević I, Domijan AM. Impact of anthracycline-based chemotherapy on RB1 gene methylation in peripheral blood leukocytes and biomarkers of oxidative stress and inflammation in sarcoma patients. Clin Transl Oncol 2024; 26:1508-1518. [PMID: 38310203 DOI: 10.1007/s12094-023-03375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 02/05/2024]
Abstract
PURPOSE We investigated the impact of anthracycline-based chemotherapy on methylation status of RB1 gene in peripheral blood leukocytes together with parameters of oxidative stress and inflammation in sarcoma patients. PATIENTS/METHODS Blood samples were collected from 51 consecutive newly diagnosed sarcoma patients admitted to University Hospital Center Zagreb (Zagreb, Croatia) for first-line chemotherapy before the first cycle and post-chemotherapy. Methylation and copy number variation (CNV) of leukocyte RB1 gene were assessed using MS-MLPA probes. In addition, in blood samples, parameters of oxidative stress (ROS, MDA, SOD, and GSH) and inflammation (CRP, WBC, and NBC) were followed. RESULTS In pre-chemotherapy samples, no CNVs and aberrant methylation of CpG106 promoter region of RB1 gene were detected; however, one patient had hypermethylation (by approximately 10%) of imprinted locus CpG85 in intron 2 of RB1 gene. In addition, a very good correlation of the tumor burden and CRP and tumor burden and GSH was found. The anthracycline-based chemotherapy reverts methylation of RB1 gene-imprinted locus CpG85 to normal level. Moreover, inflammation and oxidative stress parameters such as CRP, WBC, ROS, and MDA were significantly decreased in post-chemotherapy samples. CONCLUSION This single-centered study on a cohort of consecutive sarcoma patients indicates that sarcoma patients can have aberrant germline DNA methylation and confirms the relationship of tumor burden with inflammation and oxidative stress. The applied chemotherapy protocols reverted RB1 gene methylation to normal level and decreased the level of inflammation and oxidative damage, thus indicating chemotherapy benefit to the patient's health status.
Collapse
Affiliation(s)
- Anita Pokupec Bilić
- Division of Cytogenetics, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Ivan Bilić
- Department of Pathophysiology, University of Zagreb School of Medicine, Šalata 2, Zagreb, Croatia
- Department of Oncology, University Hospital Centre Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Sandra Radić Brkanac
- Department of Biology, University of Zagreb Faculty of Science, Ravnice 48, Zagreb, Croatia
| | - Luka Simetić
- Department of Oncology, University Hospital Centre Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Krešimir Blažičević
- Department of Oncology, University Hospital Centre Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Davorin Herceg
- Department of Oncology, University Hospital Centre Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Morana Mikloš
- Division of Cytogenetics, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Ivana Tonković Đurišević
- Division of Cytogenetics, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Ana-Marija Domijan
- University of Zagreb Faculty of Pharmacy and Biochemistry, Kovačićeva 1, Zagreb, Croatia.
| |
Collapse
|
7
|
Saba L, Maindarkar M, Johri AM, Mantella L, Laird JR, Khanna NN, Paraskevas KI, Ruzsa Z, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh N, Isenovic ER, Viswanathan V, Fouda MM, Suri JS. UltraAIGenomics: Artificial Intelligence-Based Cardiovascular Disease Risk Assessment by Fusion of Ultrasound-Based Radiomics and Genomics Features for Preventive, Personalized and Precision Medicine: A Narrative Review. Rev Cardiovasc Med 2024; 25:184. [PMID: 39076491 PMCID: PMC11267214 DOI: 10.31083/j.rcm2505184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 07/31/2024] Open
Abstract
Cardiovascular disease (CVD) diagnosis and treatment are challenging since symptoms appear late in the disease's progression. Despite clinical risk scores, cardiac event prediction is inadequate, and many at-risk patients are not adequately categorised by conventional risk factors alone. Integrating genomic-based biomarkers (GBBM), specifically those found in plasma and/or serum samples, along with novel non-invasive radiomic-based biomarkers (RBBM) such as plaque area and plaque burden can improve the overall specificity of CVD risk. This review proposes two hypotheses: (i) RBBM and GBBM biomarkers have a strong correlation and can be used to detect the severity of CVD and stroke precisely, and (ii) introduces a proposed artificial intelligence (AI)-based preventive, precision, and personalized ( aiP 3 ) CVD/Stroke risk model. The PRISMA search selected 246 studies for the CVD/Stroke risk. It showed that using the RBBM and GBBM biomarkers, deep learning (DL) modelscould be used for CVD/Stroke risk stratification in the aiP 3 framework. Furthermore, we present a concise overview of platelet function, complete blood count (CBC), and diagnostic methods. As part of the AI paradigm, we discuss explainability, pruning, bias, and benchmarking against previous studies and their potential impacts. The review proposes the integration of RBBM and GBBM, an innovative solution streamlined in the DL paradigm for predicting CVD/Stroke risk in the aiP 3 framework. The combination of RBBM and GBBM introduces a powerful CVD/Stroke risk assessment paradigm. aiP 3 model signifies a promising advancement in CVD/Stroke risk assessment.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Mahesh Maindarkar
- School of Bioengineering Sciences and Research, MIT Art, Design and Technology University, 412021 Pune, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Laura Mantella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD 20742, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2368 Agios Dometios, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| |
Collapse
|
8
|
Ndeke JM, Klaunig JE, Commodore S. Nicotine or marijuana vaping exposure during pregnancy and altered immune responses in offspring. JOURNAL OF ENVIRONMENTAL EXPOSURE ASSESSMENT 2024; 3:10.20517/jeea.2024.03. [PMID: 38840831 PMCID: PMC11152453 DOI: 10.20517/jeea.2024.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electronic nicotine delivery systems (ENDS) - which include electronic cigarettes or e-cigarettes, or simply e-cigs, and marijuana vaping have become increasingly popular. ENDS devices have been established as one of the tobacco quit methods and promoted to be safer compared to traditional tobacco cigarettes. Emerging evidence demonstrates that e-cigarette and marijuana vape use can be harmful, with potential associations with cancer. Herein, we summarize the level of evidence to date for altered immune response, with a focus on cancer risks in the offspring after maternal use of, or aerosol exposures from, ENDS or marijuana vape during pregnancy. From 27 published articles retrieved from PubMed, we sought to find out identified carcinogens in ENDS aerosols and marijuana vapor, which cross the placental barrier and can increase cancer risk in the offspring. Carcinogens in vaping aerosols include aldehydes, metals, tobacco-specific nitrosamines, tobacco alkaloids, polycyclic aromatic hydrocarbons, and volatile organic compounds. Additionally, there was only one passive vaping exposure case study on a human fetus, which noted that glycerol, aluminum, chromium, nickel, copper, zinc, selenium, and lead crossed from the mother to the offspring's cord blood. The carcinogens (metals) in that study were at lower concentrations compared to the mother's biological matrices. Lastly, we observed that in utero exposures to ENDS-associated chemicals can occur in vital organs such as the lungs, kidneys, brain, bladder, and heart. Any resulting DNA damage increases the risk of tumorigenesis. Future epidemiological studies are needed to examine the effects of passive aerosol exposures from existing and emerging electronic nicotine and marijuana products on developing offspring to cancer.
Collapse
Affiliation(s)
- Jonas M. Ndeke
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - James E. Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47408, USA
| | - Sarah Commodore
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47408, USA
| |
Collapse
|
9
|
Li JL, Jain N, Tamayo LI, Tong L, Jasmine F, Kibriya MG, Demanelis K, Oliva M, Chen LS, Pierce BL. The association of cigarette smoking with DNA methylation and gene expression in human tissue samples. Am J Hum Genet 2024; 111:636-653. [PMID: 38490207 PMCID: PMC11023923 DOI: 10.1016/j.ajhg.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Cigarette smoking adversely affects many aspects of human health, and epigenetic responses to smoking may reflect mechanisms that mediate or defend against these effects. Prior studies of smoking and DNA methylation (DNAm), typically measured in leukocytes, have identified numerous smoking-associated regions (e.g., AHRR). To identify smoking-associated DNAm features in typically inaccessible tissues, we generated array-based DNAm data for 916 tissue samples from the GTEx (Genotype-Tissue Expression) project representing 9 tissue types (lung, colon, ovary, prostate, blood, breast, testis, kidney, and muscle). We identified 6,350 smoking-associated CpGs in lung tissue (n = 212) and 2,735 in colon tissue (n = 210), most not reported previously. For all 7 other tissue types (sample sizes 38-153), no clear associations were observed (false discovery rate 0.05), but some tissues showed enrichment for smoking-associated CpGs reported previously. For 1,646 loci (in lung) and 22 (in colon), smoking was associated with both DNAm and local gene expression. For loci detected in both lung and colon (e.g., AHRR, CYP1B1, CYP1A1), top CpGs often differed between tissues, but similar clusters of hyper- or hypomethylated CpGs were observed, with hypomethylation at regulatory elements corresponding to increased expression. For lung tissue, 17 hallmark gene sets were enriched for smoking-associated CpGs, including xenobiotic- and cancer-related gene sets. At least four smoking-associated regions in lung were impacted by lung methylation quantitative trait loci (QTLs) that co-localize with genome-wide association study (GWAS) signals for lung function (FEV1/FVC), suggesting epigenetic alterations can mediate the effects of smoking on lung health. Our multi-tissue approach has identified smoking-associated regions in disease-relevant tissues, including effects that are shared across tissue types.
Collapse
Affiliation(s)
- James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Niyati Jain
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Committee on Genetics, Genomics, Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lizeth I Tamayo
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn Demanelis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Guedes Pinto T, da Silva GN, Renno ACM, Salvadori DMF, Ribeiro DA. The impact of genetic polymorphisms on genotoxicity in workers occupationally exposed to pesticides: a systematic review. Toxicol Mech Methods 2024; 34:237-244. [PMID: 37982319 DOI: 10.1080/15376516.2023.2280806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
In a world with a rising use of pesticides, these chemicals, although designed to effectively control pests, pose potential threats to the environment and non-target organisms, including humans. Thus, this systematic review aims to investigate a possible association between genetic polymorphisms and susceptibility and genotoxicity in individuals occupationally exposed to pesticides. This review was conducted following the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. A total of 14 carefully selected studies were thoroughly analyzed by two reviewers, who assigned scores based on previously set evaluation criteria. This study classified over half of the chosen studies as having moderate or strong quality, observing a correlation between certain genetic polymorphisms involved in xenobiotic metabolism and genotoxicity in workers exposed to pesticides. Results suggest that the genes associated with xenobiotic metabolism play a substantial role in determining individuals' susceptibility to genomic damage due to pesticide exposure, affecting both their peripheral blood and oral mucosa. This implies that individuals with specific genotypes may experience increased or decreased levels of DNA damage when exposed to these chemicals.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, Brazil
| | - Glenda Nicioli da Silva
- Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, Brazil
| | | | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, Brazil
| |
Collapse
|
11
|
Wang J, Niu Y, Yang M, Shu L, Wang H, Wu X, He Y, Chen P, Zhong G, Tang Z, Zhang S, Guo Q, Wang Y, Yu L, Gou D. Altered cfDNA fragmentation profile in hypomethylated regions as diagnostic markers in breast cancer. Epigenetics Chromatin 2023; 16:33. [PMID: 37740218 PMCID: PMC10517480 DOI: 10.1186/s13072-023-00508-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Breast cancer, the most common malignancy in women worldwide, has been proven to have both altered plasma cell-free DNA (cfDNA) methylation and fragmentation profiles. Nevertheless, simultaneously detecting both of them for breast cancer diagnosis has never been reported. Moreover, although fragmentation pattern of cfDNA is determined by nuclease digestion of chromatin, structure of which may be affected by DNA methylation, whether cfDNA methylation and fragmentation are biologically related or not still remains unclear. METHODS Improved cfMeDIP-seq were utilized to characterize both cfDNA methylation and fragmentation profiles in 49 plasma samples from both healthy individuals and patients with breast cancer. The feasibility of using cfDNA fragmentation profile in hypo- and hypermethylated regions as diagnostic markers for breast cancer was evaluated. RESULTS Mean size of cfDNA fragments (100-220 bp) mapped to hypomethylated regions decreased more in patients with breast cancer (4.60 bp, 172.33 to 167.73 bp) than in healthy individuals (2.87 bp, 174.54 to 171.67 bp). Furthermore, proportion of short cfDNA fragments (100-150 bp) in hypomethylated regions when compared with it in hypermethylated regions was found to increase more in patients with breast cancer in two independent discovery cohort. The feasibility of using abnormality of short cfDNA fragments ratio in hypomethylated genomic regions for breast cancer diagnosis in validation cohort was evaluated. 7 out of 11 patients were detected as having breast cancer (63.6% sensitivity), whereas no healthy individuals were mis-detected (100% specificity). CONCLUSION We identified enriched short cfDNA fragments after 5mC-immunoprecipitation (IP) in patients with breast cancer, and demonstrated the enriched short cfDNA fragments might originated from hypomethylated genomic regions. Furthermore, we proved the feasibility of using differentially methylated regions (DMRs)-dependent cfDNA fragmentation profile for breast cancer diagnosis.
Collapse
Affiliation(s)
- Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Ming Yang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Lirong Shu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Hongxian Wang
- Department of Thyroid and Breast, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Xiaoqian Wu
- Department of Thyroid and Breast, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Yaqin He
- Surgical Department, General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - Peng Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Guocheng Zhong
- Department of Hematology and Oncology, Shenzhen University General Hospital, Carson International Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Zhixiong Tang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Shasha Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Qianwen Guo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Yun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, Carson International Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
12
|
Huang CY, Chen WJ, Lee HL, Lin YC, Huang YL, Shiue HS, Pu YS, Hsueh YM. Possible Combined Effects of Plasma Folate Levels, Global DNA Methylation, and Blood Cadmium Concentrations on Renal Cell Carcinoma. Nutrients 2023; 15:nu15040937. [PMID: 36839294 PMCID: PMC9959822 DOI: 10.3390/nu15040937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Epigenetic effects of environmental pollutants may be related to carcinogenesis. This study aimed to explore the association between the global DNA methylation marker: 5-methyl-2-deoxycytidine (5mdC) and renal cell carcinoma (RCC), and further investigated whether plasma folate and vitamin B12 levels and 5mdC modified the association between blood cadmium concentrations and RCC. We recruited 174 RCC patients and 673 non-RCC controls. Blood cadmium concentrations, plasma folate and vitamin B12 levels were measured. The amount of 5mdC in the DNA sample was expressed as percentages of the total cytosine content. An increase of 5mdC (%) and plasma folate and vitamin B12 levels were associated with decreasing odds ratio (OR) of RCC. Although plasma folate levels were not directly associated with 5mdC (%), a combined effect was observed with the odds of low plasma folate levels and low 5mdC (%) were greater among RCC patients compared to controls (OR (95% confidence interval, CI) = 11.86 (5.27-26.65)). Additionally, we observed that the odds of low plasma folate and high blood cadmium levels were greater among RCC patients than in controls (OR (95% CI): 8.15 (1.39-7.13)). This study provides suggestive evidence that plasma folate levels may modify the associations between 5mdC (%) or blood cadmium concentrations and RCC.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei City 110, Taiwan
| | - Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Department of Occupational Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei City 110, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Correspondence: ; Tel.: +886-2736-1661 (ext. 6513)
| |
Collapse
|
13
|
Praud D, Deygas F, Amadou A, Bouilly M, Turati F, Bravi F, Xu T, Grassot L, Coudon T, Fervers B. Traffic-Related Air Pollution and Breast Cancer Risk: A Systematic Review and Meta-Analysis of Observational Studies. Cancers (Basel) 2023; 15:cancers15030927. [PMID: 36765887 PMCID: PMC9913524 DOI: 10.3390/cancers15030927] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Current evidence of an association of breast cancer (BC) risk with air pollution exposure, in particular from traffic exhaust, remains inconclusive, and the exposure assessment methodologies are heterogeneous. This study aimed to conduct a systematic review and meta-analysis on the association between traffic-related air pollution (TRAP) and BC incidence (PROSPERO CRD42021286774). We systematically reviewed observational studies assessing exposure to TRAP and BC risk published until June 2022, available on Medline/PubMed and Web of Science databases. Studies using models for assessing exposure to traffic-related air pollutants or using exposure proxies (including traffic density, distance to road, etc.) were eligible for inclusion. A random-effects meta-analysis of studies investigating the association between NO2/NOx exposure and BC risk was conducted. Overall, 21 studies meeting the inclusion criteria were included (seven case-control, one nested case-control, 13 cohort studies); 13 studies (five case-control, eight cohort) provided data for inclusion in the meta-analyses. Individual studies provided little evidence of an association between TRAP and BC risk; exposure assessment methods and time periods of traffic emissions were different. The meta-estimate on NO2 exposure indicated a positive association (pooled relative risk per 10 µg/m3 of NO2: 1.015; 95% confidence interval, CI: 1.003; 1.028). No association between NOx exposure and BC was found (three studies). Although there was limited evidence of an association for TRAP estimated with proxies, the meta-analysis showed a significant association between NO2 exposure, a common TRAP pollutant marker, and BC risk, yet with a small effect size. Our findings provide additional support for air pollution carcinogenicity.
Collapse
Affiliation(s)
- Delphine Praud
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Correspondence:
| | - Floriane Deygas
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Amina Amadou
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Maryline Bouilly
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Federica Turati
- Department of Clinical Sciences and Community Health, University of Milan, Via A. Vanzetti 5, 20133 Milan, Italy
| | - Francesca Bravi
- Department of Clinical Sciences and Community Health, University of Milan, Via A. Vanzetti 5, 20133 Milan, Italy
| | - Tingting Xu
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Lény Grassot
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Thomas Coudon
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Béatrice Fervers
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| |
Collapse
|
14
|
Smail HO, Mohamad DA. Identification of DNA methylation change in TCF7L2 gene in the blood of type 2 diabetes mellitus as a predictive biomarker in Iraq Kurdistan region by using methylation-specific PCR. Endocr Regul 2023; 57:53-60. [PMID: 36966366 DOI: 10.2478/enr-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Objective. Nowadays, type 2 diabetes mellitus (T2D) is the most common chronic endocrine disorder affecting an estimated 5-10% of adults worldwide, and this disease also rapidly increased among the population in the Kurdistan region. This research aims to identify DNA methylation change in the TCF7L2 gene as a possible predictive T2D biomarker. Methods. One hundred and thirteen participants were divided into three groups: diabetic (47), prediabetic (36), and control (30). The study was carried out in patients who visited the private clinical sector between August and December 2021 in Koya city (Iraq Kurdistan region) to determine DNA methylation status using a methylation-specific PCR (MSP) with paired primers for each methylated and non-methylated region. In addition, the X2 Kruskal-Wallis statistical and Wilcoxon signed-rank tests were used, p<0.05 was considered significant. Results. The results showed hypermethylation of DNA in the promoter region in diabetic and prediabetic groups compared to the healthy controls. Different factors affected the DNA methylation level, including body max index, alcohol consumption, family history, and physical activity with the positive Coronavirus. Conclusion. The results obtained indicate that DNA methylation changes in the TCF7L2 promoter region may be used as a potential predictive biomarker of the T2D diagnosis. However, the findings obtained in this study should be supported by additional data.
Collapse
Affiliation(s)
- Harem Othman Smail
- 1Department of Biology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region - F.R. Iraq
- 2Department of Biology, College of Science, University of Sulaimani, Sulaymanyah, Iraq
| | - Dlnya Asaad Mohamad
- 2Department of Biology, College of Science, University of Sulaimani, Sulaymanyah, Iraq
| |
Collapse
|
15
|
Alqahtani A, Alsubai S, Sha M, Attique Khan M, Alhaisoni M, Rameez Naqvi S. Automated White Blood Cell Disease Recognition Using Lightweight Deep Learning. COMPUTER SYSTEMS SCIENCE AND ENGINEERING 2023; 46:107-123. [DOI: 10.32604/csse.2023.030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 08/25/2024]
|
16
|
Hypomethylation of RPTOR in peripheral blood is associated with very early-stage lung cancer. Clin Chim Acta 2022; 537:173-180. [DOI: 10.1016/j.cca.2022.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
17
|
Issah I, Arko-Mensah J, Rozek LS, Rentschler K, Agyekum TP, Dwumoh D, Batterman S, Robins TG, Fobil JN. Association between global DNA methylation (LINE-1) and occupational particulate matter exposure among informal electronic-waste recyclers in Ghana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2406-2424. [PMID: 34404291 DOI: 10.1080/09603123.2021.1969007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
This study examined the associations between PM (2.5 and 10) and global DNA methylation among 100 e-waste workers and 51 non-e-waste workers serving as controls. Long interspersed nucleotide repetitive elements-1 (LINE-1) was measured by pyrosequencing. Personal PM2.5 and PM10 were measured over a 4-hour work-shift using real-time particulate monitors incorporated into a backpack . Linear regression models were used to assess the association between PM and LINE-1 DNA methylation. The concentrations of PM2.5 and PM10 were significantly higher among the e-waste workers than the controls (77.32 vs 34.88, p < 0.001 and 210.21 vs 121.92, p < 0.001, respectively). PM2.5 exposure was associated with increased LINE-1 CpG2 DNA methylation (β = 0.003; 95% CI; 0.001, 0.006; p = 0.022) but not with the average of all 4 CpG sites of LINE-1. In summary, high levels of PM2.5 exposure was associated with increased levels of global DNA methylation in a site-specific manner.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katie Rentschler
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Duah Dwumoh
- Department of Biostatistics, University of Ghana School of Public Health, Legon, Ghana
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| |
Collapse
|
18
|
Page CM, Nøst TH, Djordjilović V, Thoresen M, Frigessi A, Sandanger TM, Veierød MB. Pre-diagnostic DNA methylation in blood leucocytes in cutaneous melanoma; a nested case-control study within the Norwegian Women and Cancer cohort. Sci Rep 2022; 12:14200. [PMID: 35987900 PMCID: PMC9392730 DOI: 10.1038/s41598-022-18585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
The prognosis of cutaneous melanoma depends on early detection, and good biomarkers for melanoma risk may provide a valuable tool to detect melanoma development at a pre-clinical stage. By studying the epigenetic profile in pre-diagnostic blood samples of melanoma cases and cancer free controls, we aimed to identify DNA methylation sites conferring melanoma risk. DNA methylation was measured at 775,528 CpG sites using the Illumina EPIC array in whole blood in incident melanoma cases (n = 183) and matched cancer-free controls (n = 183) in the Norwegian Women and Cancer cohort. Phenotypic information and ultraviolet radiation exposure were obtained from questionnaires. Epigenome wide association (EWAS) was analyzed in future melanoma cases and controls with conditional logistic regression, with correction for multiple testing using the false discovery rate (FDR). We extended the analysis by including a public data set on melanoma (GSE120878), and combining these different data sets using a version of covariate modulated FDR (AdaPT). The analysis on future melanoma cases and controls did not identify any genome wide significant CpG sites (0.85 ≤ padj ≤ 0.99). In the restricted AdaPT analysis, 7 CpG sites were suggestive at the FDR level of 0.15. These CpG sites may potentially be used as pre-diagnostic biomarkers of melanoma risk.
Collapse
Affiliation(s)
- Christian M Page
- Oslo Centre for Biostatistics and Epidemiology, Division for Research Support, Oslo University Hospital, Oslo, Norway.
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Therese H Nøst
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vera Djordjilović
- Department of Economics, Ca' Foscari University of Venice, Venice, Italy
| | - Magne Thoresen
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Arnoldo Frigessi
- Oslo Centre for Biostatistics and Epidemiology, Division for Research Support, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marit B Veierød
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Abstract
DNA methylation is one of the most important epigenetic modifications in breast cancer (BC) development, and long-term dietary habits can alter DNA methylation. Cadherin-4 (CDH4, a member of the cadherin family) encodes Ca2+-dependent cell-cell adhesion glycoproteins. We conducted a case-control study (380 newly diagnosed BC and 439 cancer-free controls) to explore the relationship of CDH4 methylation in peripheral blood leukocyte DNA (PBL DNA), as well as its combined and interactive effects with dietary factors on BC risk. A case-only study (335 newly diagnosed BC) was conducted to analyse the association between CDH4 methylation in breast tissue DNA and dietary factors. CDH4 methylation was detected using quantitative methylation-specific PCR. Unconditional logistic regressions were used to analyse the association of CDH4 methylation in PBL DNA and BC risk. Cross-over analysis and unconditional logistic regression were used to calculate the combined and interactive effects between CDH4 methylation in PBL DNA and dietary factors in BC. CDH4 hypermethylation was significantly associated with increased BC risk in PBL DNA (ORadjusted (ORadj) = 2·70, (95 % CI 1·90, 3·83), P < 0·001). CDH4 hypermethylation also showed significant combined effects with the consumption of vegetables (ORadj = 4·33, (95 % CI 2·63, 7·10)), allium vegetables (ORadj = 7·00, (95 % CI 4·17, 11·77)), fish (ORadj = 7·92, (95 % CI 3·79, 16·53)), milk (ORadj = 6·30, (95 % CI 3·41, 11·66)), overnight food (ORadj = 4·63, (95 % CI 2·69, 7·99)), pork (ORadj = 5·59, (95 % CI 2·94, 10·62)) and physical activity (ORadj = 4·72, (95 % CI 2·87, 7·76)). Moreover, consuming milk was significantly related with decreased risk of CDH4 methylation (OR = 0·61, (95 % CI 0·38, 0·99)) in breast tissue. Our findings may provide direct guidance on the dietary intake for specific methylated carriers to decrease their risk for developing BC.
Collapse
|
20
|
Szigeti KA, Kalmár A, Galamb O, Valcz G, Barták BK, Nagy ZB, Zsigrai S, Felletár I, V Patai Á, Micsik T, Papp M, Márkus E, Tulassay Z, Igaz P, Takács I, Molnár B. Global DNA hypomethylation of colorectal tumours detected in tissue and liquid biopsies may be related to decreased methyl-donor content. BMC Cancer 2022; 22:605. [PMID: 35655145 PMCID: PMC9164347 DOI: 10.1186/s12885-022-09659-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypomethylation of long interspersed nuclear element 1 (LINE-1) is characteristic of various cancer types, including colorectal cancer (CRC). Malfunction of several factors or alteration of methyl-donor molecules' (folic acid and S-adenosylmethionine) availability can contribute to DNA methylation changes. Detection of epigenetic alterations in liquid biopsies can assist in the early recognition of CRC. Following the investigations of a Hungarian colon tissue sample set, our goal was to examine the LINE-1 methylation of blood samples along the colorectal adenoma-carcinoma sequence and in inflammatory bowel disease. Moreover, we aimed to explore the possible underlying mechanisms of global DNA hypomethylation formation on a multi-level aspect. METHODS LINE-1 methylation of colon tissue (n = 183) and plasma (n = 48) samples of healthy controls and patients with colorectal tumours were examined with bisulfite pyrosequencing. To investigate mRNA expression, microarray analysis results were reanalysed in silico (n = 60). Immunohistochemistry staining was used to validate DNA methyltransferases (DNMTs) and folate receptor beta (FOLR2) expression along with the determination of methyl-donor molecules' in situ level (n = 40). RESULTS Significantly decreased LINE-1 methylation level was observed in line with cancer progression both in tissue (adenoma: 72.7 ± 4.8%, and CRC: 69.7 ± 7.6% vs. normal: 77.5 ± 1.7%, p ≤ 0.01) and liquid biopsies (adenoma: 80.0 ± 1.7%, and CRC: 79.8 ± 1.3% vs. normal: 82.0 ± 2.0%, p ≤ 0.01). However, no significant changes were recognized in inflammatory bowel disease cases. According to in silico analysis of microarray data, altered mRNA levels of several DNA methylation-related enzymes were detected in tumours vs. healthy biopsies, namely one-carbon metabolism-related genes-which met our analysing criteria-showed upregulation, while FOLR2 was downregulated. Using immunohistochemistry, DNMTs, and FOLR2 expression were confirmed. Moreover, significantly diminished folic acid and S-adenosylmethionine levels were observed in parallel with decreasing 5-methylcytosine staining in tumours compared to normal adjacent to tumour tissues (p ≤ 0.05). CONCLUSION Our results suggest that LINE-1 hypomethylation may have a distinguishing value in precancerous stages compared to healthy samples in liquid biopsies. Furthermore, the reduction of global DNA methylation level could be linked to reduced methyl-donor availability with the contribution of decreased FOLR2 expression.
Collapse
Affiliation(s)
- Krisztina A Szigeti
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary.
| | - Alexandra Kalmár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
| | - Orsolya Galamb
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
| | - Gábor Valcz
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
| | - Barbara K Barták
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - Zsófia B Nagy
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - Sára Zsigrai
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - Ildikó Felletár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - Árpád V Patai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082, Budapest, Hungary
- Interdisciplinary Gastroenterology (IGA) Working Group, Semmelweis University, 1082, Budapest, Hungary
| | - Tamás Micsik
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085, Budapest, Hungary
| | - Márton Papp
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, 1078, Budapest, Hungary
| | - Eszter Márkus
- Department of Anaesthesia and Intensive Care, Pest County Flor Ferenc Hospital, 2143, Kistarcsa, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
- Department of Internal Medicine and Hematology, Faculty of Medicine, Semmelweis University, 1088, Budapest, Hungary
| | - Peter Igaz
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - Béla Molnár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
| |
Collapse
|
21
|
Barouti Z, Heidari-Beni M, Shabanian-Boroujeni A, Mohammadzadeh M, Pahlevani V, Poursafa P, Mohebpour F, Kelishadi R. Effects of DNA methylation on cardiometabolic risk factors: a systematic review and meta-analysis. Arch Public Health 2022; 80:150. [PMID: 35655232 PMCID: PMC9161587 DOI: 10.1186/s13690-022-00907-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Epigenetic changes, especially DNA methylation have a main role in regulating cardiometabolic disorders and their risk factors. This study provides a review of the current evidence on the association between methylation of some genes (LINE1, ABCG1, SREBF1, PHOSPHO1, ADRB3, and LEP) and cardiometabolic risk factors. Methods A systematic literature search was conducted in electronic databases including Web of Science, PubMed, EMBASE, Google Scholar and Scopus up to end of 2020. All observational human studies (cross-sectional, case–control, and cohort) were included. Studies that assessed the effect of DNA methylation on cardiometabolic risk factors were selected. Results Among 1398 articles, eight studies and twenty-one studies were included in the meta-analysis and the systematic review, respectively. Our study showed ABCG1 and LINE1 methylation were positively associated with blood pressure (Fisher’s zr = 0.07 (0.06, 0.09), 95% CI: 0.05 to 0.08). Methylation in LINE1, ABCG1, SREBF1, PHOSPHO1 and ADRB3 had no significant association with HDL levels (Fisher’s zr = − 0.05 (− 0.13, 0.03), 95% CI:-0.12 to 0.02). Positive association was existed between LINE1, ABCG1 and LEP methylation and LDL levels (Fisher’s zr = 0.13 (0.04, 0.23), 95% CI: 0.03 to 0.23). Moreover, positive association was found between HbA1C and ABCG1 methylation (Fisher’s zr = 0.11 (0.09, 0.13), 95% CI: 0.09 to 0.12). DNA methylation of LINE1, ABCG1 and SREBF1 genes had no significant association with glucose levels (Fisher’s zr = 0.01 (− 0.12, 0.14), 95% CI:-0.12 to 0.14). Conclusion This meta-analysis showed that DNA methylation was associated with some cardiometabolic risk factors including LDL-C, HbA1C, and blood pressure. Registration Registration ID of the protocol on PROSPERO is CRD42020207677.
Collapse
|
22
|
Fu J, Zhang L, Li D, Tian T, Wang X, Sun H, Ge A, Liu Y, Zhang X, Huang H, Meng S, Zhang D, Zhao L, Sun S, Zheng T, Jia C, Zhao Y, Pang D. DNA Methylation of Imprinted Genes KCNQ1, KCNQ1OT1, and PHLDA2 in Peripheral Blood Is Associated with the Risk of Breast Cancer. Cancers (Basel) 2022; 14:cancers14112652. [PMID: 35681632 PMCID: PMC9179312 DOI: 10.3390/cancers14112652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Methylation alterations of imprinted genes lead to loss of imprinting (LOI). Although studies have explored the mechanism of LOI in breast cancer (BC) development, the association between imprinted gene methylation in peripheral blood and BC risk is largely unknown. We utilized HumanMethylation450 data from TCGA and GEO (n = 1461) to identify the CpG sites of imprinted genes associated with BC risk. Furthermore, we conducted an independent case-control study (n = 1048) to validate DNA methylation of these CpG sites in peripheral blood and BC susceptibility. cg26709929, cg08446215, cg25306939, and cg16057921, which are located at KCNQ1, KCNQ1OT1, and PHLDA2, were discovered to be associated with BC risk. Subsequently, the association between cg26709929, cg26057921, and cg25306939 methylation and BC risk was validated in our inhouse dataset. All 22 CpG sites in the KCNQ1OT1 region were associated with BC risk. Individuals with a hypermethylated KCNQ1OT1 region (>0.474) had a lower BC risk (OR: 0.553, 95% CI: 0.397−0.769). Additionally, the methylation of the KCNQ1OT1 region was not significantly different among B cells, monocytes, and T cells, which was also observed at CpG sites in PHLDA2. In summary, the methylation of KCNQ1, KCNQ1OT1, and PHLDA2 was associated with BC risk, and KCNQ1OT1 methylation could be a potential biomarker for BC risk assessment.
Collapse
Affiliation(s)
- Jinming Fu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Dapeng Li
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Tian Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Xuan Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Hongru Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Anqi Ge
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Yupeng Liu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China;
| | - Hao Huang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Shuhan Meng
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Ding Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Liyuan Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Simin Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Ting Zheng
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Chenyang Jia
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
- Correspondence: (Y.Z.); (D.P.); Tel.: +86-451-8750-2823 (Y.Z.); +86-451-8750-2885 (D.P.)
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China;
- Correspondence: (Y.Z.); (D.P.); Tel.: +86-451-8750-2823 (Y.Z.); +86-451-8750-2885 (D.P.)
| |
Collapse
|
23
|
Lee JY, Lee WK, Kim DS. Particulate matter-induced hypomethylation of Alu and LINE1 in normal human bronchial epithelial cells and epidermal keratinocytes. Genes Environ 2022; 44:8. [PMID: 35172897 PMCID: PMC8848652 DOI: 10.1186/s41021-022-00235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Airborne particulate matter (PM), a complex mixture of organic and inorganic compounds, is a major public health concern due to its adverse health effects. Understanding the biological action of PM is of particular importance in the improvement of public health. Differential methylation of repetitive elements (RE) by PM might have severe consequences for the structural integrity of the genome and on transcriptional activity, thereby affecting human health. This study aimed to evaluate the effect of inhaled and non-inhaled PM (PM2.5, PM10, and PM10-PAH) exposure on DNA methylation. We quantitatively measured the methylation content of Alu and LINE1 in PM-treated normal human bronchial epithelial cells (NHBE) and normal human epidermal keratinocytes (NHEK) by using whole-genome bisulfite sequencing and pyrosequencing. RESULTS All PMs exposure significantly lowered Alu and LINE1 methylation in both cells than in mock-treated controls. Hypomethylation was more prominent in PM10-PAH exposed-NHBE and PM10 exposed-NHEK. Alu and LINE1 methylation change exhibited different sensitivity according to the subfamily evolutionary ages, with stronger effects on the oldest L1-M and Alu J in NHBE, and oldest L1-M and youngest Alu S in NHEK. CONCLUSIONS These results demonstrate that the differential susceptibility of PM-induced hypomethylation of Alu and LINE1 depends upon RE evolutionary age and PM type.
Collapse
Affiliation(s)
- Ji Yun Lee
- Department of Anatomy and BK21 Plus KNU Biomedical Convergence Program, Daegu, Republic of Korea
| | - Won Kee Lee
- Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Sun Kim
- Department of Anatomy and BK21 Plus KNU Biomedical Convergence Program, Daegu, Republic of Korea.
- Department of Anatomy, School of Medicine, Kyungpook National University, 2-101 Dongin-dong, Jung-gu, 702-422, Daegu, Republic of Korea.
| |
Collapse
|
24
|
Pradhan RK, Ramakrishna W. Transposons: Unexpected players in cancer. Gene 2022; 808:145975. [PMID: 34592349 DOI: 10.1016/j.gene.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.
Collapse
|
25
|
Yadav S, Longkumer I, Garg PR, Joshi S, Rajkumari S, Devi NK, Saraswathy KN. Association of air pollution and homocysteine with global DNA methylation: A population-based study from North India. PLoS One 2021; 16:e0260860. [PMID: 34855899 PMCID: PMC8638980 DOI: 10.1371/journal.pone.0260860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Anthropogenic air pollution has been implicated in aberrant changes of DNA methylation and homocysteine increase (>15μM/L). Folate (<3 ng/mL) and vitamin B12 (<220 pg/mL) deficiencies also reduce global DNA methylation via homocysteine increase. Although B-vitamin supplements can attenuate epigenetic effects of air pollution but such understanding in population-specific studies are lacking. Hence, the present study aims to understand the role of air pollution, homocysteine, and nutritional deficiencies on methylation. METHODS We examined cross-sectionally, homocysteine, folate, vitamin B12 (chemiluminescence) and global DNA methylation (colorimetric ELISA Assay) among 274 and 270 individuals from low- and high- polluted areas, respectively, from a single Mendelian population. Global DNA methylation results were obtained on 254 and 258 samples from low- and high- polluted areas, respectively. RESULTS Significant decline in median global DNA methylation was seen as a result of air pollution [high-0.84 (0.37-1.97) vs. low-0.96 (0.45-2.75), p = 0.01]. High homocysteine in combination with air pollution significantly reduced global DNA methylation [high-0.71 (0.34-1.90) vs. low-0.93 (0.45-3.00), p = 0.003]. Folate deficient individuals in high polluted areas [high-0.70 (0.37-1.29) vs. low-1.21 (0.45-3.65)] showed significantly reduced global methylation levels (p = 0.007). In low polluted areas, despite folate deficiency, if normal vitamin B12 levels were maintained, global DNA methylation levels improved significantly [2.03 (0.60-5.24), p = 0.007]. Conversely, in high polluted areas despite vitamin B12 deficiency, if normal folate status was maintained, global DNA methylation status improved significantly [0.91 (0.36-1.63)] compared to vitamin B12 normal individuals [0.54 (0.26-1.13), p = 0.04]. CONCLUSIONS High homocysteine may aggravate the effects of air pollution on DNA methylation. Vitamin B12 in low-polluted and folate in high-polluted areas may be strong determinants for changes in DNA methylation levels. The effect of air pollution on methylation levels may be reduced through inclusion of dietary or supplemented B-vitamins. This may serve as public level approach in natural settings to prevent metabolic adversities at community level.
Collapse
Affiliation(s)
- Suniti Yadav
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Imnameren Longkumer
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | | | - Shipra Joshi
- Manbhum Ananda Ashram Nityananda Trust-MANT, Kolkata, West Bengal, India
| | - Sunanda Rajkumari
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Naorem Kiranmala Devi
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Kallur Nava Saraswathy
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| |
Collapse
|
26
|
Malakootian M, Nasiri A, Osornio-Vargas AR, Faraji M. Effect of titanium dioxide nanoparticles on DNA methylation of human peripheral blood mononuclear cells. Toxicol Res (Camb) 2021; 10:1045-1051. [PMID: 34733489 DOI: 10.1093/toxres/tfab085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/14/2022] Open
Abstract
The aim of the current study was to investigate the effect of well-characterized TiO2 nanoparticles on DNA methylation of peripheral blood mononuclear cells (PBMCs) in vitro. Maximum non-toxic concentration of nanoparticles for PBMCs was determined by MTT assay. The effect of TiO2 nanoparticles at concentrations of 25-100 μg/ml on DNA methylation of PBMCs was investigated by measuring the %5-mC alterations through an ELISA assay. The physicochemical analysis showed that the TiO2 nanoparticles were crystalline, pure and in the anatase phase. Peaks related to Ti-O tensile vibrations were observed in the range of 1510 cm-1. The size of nanoparticles was in the range of 39-74 nm with an average hydrodynamic diameter of 43.82 nm. According to the results of the MTT test, 100 μg/ml was found to be maximum non-toxic concentration. The %5-mC in treated PBMCs revealed that TiO2 nanoparticles could lead to DNA hypomethylation in PBMCs. The %5-mC difference compared with the negative control was found to be 2.07 ± 1.02% (P = 0.03). The difference of %5-mC between the 25 and 100 μg/ml concentration of nanoparticles was statistically significant (P = 0.02). The results of the current study show that the TiO2 nanoparticles cause DNA hypomethylation in PBMCs in a dose-response manner. Therefore, it is recommended to evaluate the effects of cytotoxicity and epigenotoxicity of commonly used nanoparticles before their use.
Collapse
Affiliation(s)
- Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alvaro R Osornio-Vargas
- Department of Pediatrics, University of Alberta, 3-591 Edmonton Clinic Health Academy, Edmonton T6G 1C9, Canada
| | - Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
28
|
Scattone NV, Epiphanio TMF, Caddrobi KG, Ferrão JSP, Hernandez-Blazquez FJ, Loureiro APDM, Massoco CDO, Dagli MLZ. Quantification of Global DNA Methylation in Canine Melanotic and Amelanotic Oral Mucosal Melanomas and Peripheral Blood Leukocytes From the Same Patients With OMM: First Study. Front Vet Sci 2021; 8:680181. [PMID: 34504885 PMCID: PMC8421724 DOI: 10.3389/fvets.2021.680181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/02/2021] [Indexed: 02/03/2023] Open
Abstract
Oral mucosal melanomas (OMMs) are aggressive and resistant cancers of high importance in veterinary oncology. Amelanotic OMM produces comparatively less melanin and is considered to be more aggressive than melanotic OMM. Global DNA methylation profiles with hypomethylated or hypermethylated patterns have both been associated with aggressive neoplasms; however, global DNA hypomethylation seems to correlate to higher aggressiveness. Accordingly, global DNA methylation in peripheral blood leukocytes has been investigated to understand the role of systemic or environmental factors in cancer development. This study aimed to quantify global DNA methylation in canine melanotic and amelanotic OMM samples and in the peripheral blood leukocytes of the same dogs. Tumor tissue samples were collected from 38 dogs, of which 19 were melanotic and 19 were amelanotic OMM. These were submitted to immunohistochemistry (IHC) with anti-5-methylcytosine (5mC) and anti-Ki67 primary antibodies. Ki67- and 5mC-positive nuclei were manually scored with the help of an image analysis system. Peripheral blood samples were collected from 18 among the 38 OMM-bearing dogs and from 7 additional healthy control dogs. Peripheral blood leukocytes were isolated from the 25 dogs, and DNA was extracted and analyzed by high-performance liquid chromatography (HPLC) for global DNA methylation. The pattern of global DNA methylation in both canine melanotic and amelanotic OMM indicated higher percentages of weakly or negatively stained nuclei in most of the OMM cells, presuming predominant global DNA hypomethylation. In addition, Ki67 counts in amelanotic OMM were significantly higher than those in melanotic OMM (p < 0.001). Global DNA methylation different immunostaining patterns (strong, weak or negative) correlated with Ki67 scores. Global DNA methylation in circulating leukocytes did not differ between the 9 melanotic and 9 amelanotic OMM or between the 18 OMM-bearing dogs and the 7 healthy dogs. This study provides new information on canine melanotic and amelanotic OMM based on global DNA methylation and cell proliferation.
Collapse
Affiliation(s)
- Nayra Villar Scattone
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Tatiane Moreno Ferrarias Epiphanio
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Paula de Melo Loureiro
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristina de Oliveira Massoco
- Laboratory of Pharmacology and Toxicology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Schamschula E, Lahnsteiner A, Assenov Y, Hagmann W, Zaborsky N, Wiederstein M, Strobl A, Stanke F, Muley T, Plass C, Tümmler B, Risch A. Disease-related blood-based differential methylation in cystic fibrosis and its representation in lung cancer revealed a regulatory locus in PKP3 in lung epithelial cells. Epigenetics 2021; 17:837-860. [PMID: 34415821 PMCID: PMC9423854 DOI: 10.1080/15592294.2021.1959976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease, characterized by massive chronic lung inflammation. The observed variability in clinical phenotypes in monozygotic CF twins is likely associated with the extent of inflammation. This study sought to investigate inflammation-related aberrant DNA methylation in CF twins and to determine to what extent acquired methylation changes may be associated with lung cancer. Blood-based genome-wide DNA methylation analysis was performed to compare the DNA methylomes of monozygotic twins, from the European CF Twin and Sibling Study with various degrees of disease severity. Putatively inflammation-related and differentially methylated positions were selected from a large lung cancer case-control study and investigated in blood by targeted bisulphite next-generation-sequencing. An inflammation-related locus located in the Plakophilin-3 (PKP3) gene was functionally analysed regarding promoter and enhancer activity in presence and absence of methylation using luciferase reporter assays. We confirmed in a unique cohort that monozygotic twins, even if clinically discordant, have only minor differences in global DNA methylation patterns and blood cell composition. Further, we determined the most differentially methylated positions, a high proportion of which are blood cell-type-specific, whereas others may be acquired and thus have potential relevance in the context of inflammation as lung cancer risk factors. We identified a sequence in the gene body of PKP3 which is hypermethylated in blood from CF twins with severe phenotype and highly variably methylated in lung cancer patients and controls, independent of known clinical parameters, and showed that this region exhibits methylation-dependent promoter activity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | - Yassen Assenov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Hagmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Anna Strobl
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Frauke Stanke
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik Heidelberg, University of Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Burkhard Tümmler
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Angela Risch
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Cluster Salzburg, Salzburg, Austria.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
30
|
Laqqan MM, Yassin MM. Potential effect of tobacco cigarettes smoking on global DNA methylation status and protamines transcripts in human spermatozoa. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2021. [DOI: 10.1186/s43043-021-00066-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Epigenetics refers to an alteration in gene expression without alteration in the sequence of DNA and this process may be affected by environmental factors and lifestyle like cigarette smoking. This study was designed to evaluate the potential effect of cigarette smoking on the global DNA methylation status and the transcription level of protamine 1 and protamine 2 in human spermatozoa. A total of 188 semen samples were collected from men with a mean age of 34.9 ± 5.8 years old (98 heavy smokers and 90 non-smokers). The DNA and RNA were isolated from purified spermatozoa, then the status of global DNA methylation and the transcription level of protamine 1 and protamine 2 were evaluated using ELISA and qPCR, respectively. The chromatin non-condensation and DNA fragmentation in human spermatozoa were evaluated using chromomycin A3 staining and TUNEL assay, respectively.
Results
A significant increase has been found in the status of global DNA methylation in spermatozoa of heavy smokers compared to non-smokers (7.69 ± 0.69 ng/μl vs. 4.90 ± 0.40 ng/μl, P < 0.001). Additionally, a significant reduction has been found in transcription level of protamine 1 (25.49 ± 0.31 vs. 23.94 ± 0.40, P < 0.001) and protamine 2 (28.27 ± 0.39 vs. 23.45 ± 0.30, P < 0.001) in heavy smokers. A downregulation has been found in the transcription level of protamine 1 and protamine 2 with a fold change of 0.497 and 0.047, respectively. A significant increase has been shown in the level of DNA fragmentation and chromatin non-condensation in heavy smokers compared to non-smokers (P < 0.001). On the other hand, a significant positive correlation has been found between sperm chromatin non-condensation, sperm DNA fragmentation, transcription level of protamine 1, transcription level of protamine 2, and global DNA methylation status (r = 0.304, P < 0.001; r = 0.399, P < 0.001; r = 0.216, P = 0.003; r = 0.494, P < 0.001, respectively).
Conclusion
Tobacco cigarette smoking has a potential influence on the global DNA methylation and the transcription level of protamine genes in human spermatozoa, and consequently, affect negatively on the semen parameters.
Collapse
|
31
|
Overweight and obesity in pregnancy: their impact on epigenetics. Eur J Clin Nutr 2021; 75:1710-1722. [PMID: 34230629 PMCID: PMC8636269 DOI: 10.1038/s41430-021-00905-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
Over the last few decades, the prevalence of obesity has risen to epidemic proportions worldwide. Consequently, the number of obesity in pregnancy has risen drastically. Gestational overweight and obesity are associated with impaired outcomes for mother and child. Furthermore, studies show that maternal obesity can lead to long-term consequences in the offspring, increasing the risk for obesity and cardiometabolic disease in later life. In addition to genetic mechanisms, mounting evidence demonstrates the induction of epigenetic alterations by maternal obesity, which can affect the offspring’s phenotype, thereby influencing the later risk of obesity and cardiometabolic disease. Clear evidence in this regard comes from various animal models of maternal obesity. Evidence derived from clinical studies remains limited. The current article gives an overview of pathophysiological changes associated with maternal obesity and their consequences on placental structure and function. Furthermore, a short excurse is given on epigenetic mechanisms and emerging data regarding a putative interaction between metabolism and epigenetics. Finally, a summary of important findings of animal and clinical studies investigating maternal obesity-related epigenetic effects is presented also addressing current limitations of clinical studies.
Collapse
|
32
|
Qian Y, Wang H, Zhang Y, Wang JW, Fan YC, Gao S, Wang K. Hypermethylation of Cyclin D2 Predicts Poor Prognosis of Hepatitis B Virus-Associated Hepatocellular Carcinoma after Hepatectomy. TOHOKU J EXP MED 2021; 254:233-243. [PMID: 34334537 DOI: 10.1620/tjem.254.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prognosis of patients with hepatocellular carcinoma remains poor because of progression of hepatocellular carcinoma and high recurrence rates. Cyclin D2 (CCND2) plays a vital role in regulating the cell cycle; indeed, aberrant methylation of CCND2 is involved in the development of hepatocellular carcinoma. Therefore, we aimed to investigate levels of CCND2 methylation in patients with hepatitis B virus (HBV)-associated hepatocellular carcinoma and to evaluate its prognostic significance after hepatectomy. In total, 257 subjects were enrolled (166 hepatocellular carcinoma patients undergoing surgical resection, 61 chronic hepatitis B (CHB) patients, and 30 healthy controls). CCND2 methylation in peripheral blood mononuclear cells was measured quantitatively using MethyLight. We found that CCND2 methylation levels in patients with HBV-associated hepatocellular carcinoma were significantly higher than in CHB patients (P < 0.001) or healthy controls (P < 0.001). Within the hepatocellular carcinoma group, CCND2 methylation levels were higher in patients with portal vein invasion, early tumor recurrence, TNM III/IV stage, and tumor size ≥ 5 cm (P < 0.05). Furthermore, higher levels of CCND2 methylation were associated with worse overall survival and disease-free survival (P = 0.005 and P < 0.001, respectively). Multivariate analysis identified CCND2 methylation as an independent prognostic factor for early tumor recurrence (P = 0.021), overall survival (P = 0.022), and disease-free survival (P < 0.001) in hepatocellular carcinoma patients after resection. In conclusion, hypermethylation of CCND2 may have clinical utility for predicting a high risk of poor prognosis and early tumor recurrence in patients with HBV-associated hepatocellular carcinoma after hepatectomy.
Collapse
Affiliation(s)
- Yu Qian
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - He Wang
- Department of Hepatopathy, Qingdao Sixth People's Hospital
| | - Ying Zhang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| |
Collapse
|
33
|
Tian T, Bi H, Zhang D, Liu Y, Sun H, Jia C, Zheng T, Huang H, Fu J, Zhu L, Zhao Y. Methylation of three genes encoded by X chromosome in blood leukocytes and colorectal cancer risk. Cancer Med 2021; 10:4964-4976. [PMID: 34145793 PMCID: PMC8290255 DOI: 10.1002/cam4.4056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022] Open
Abstract
X chromosome change has been proved to be associated with carcinogenesis and related to gender differences in cancer risk. If aberrant methylation of genes encoded by X chromosome involve in the risk and prognosis of cancers, including colorectal cancer (CRC), remain unclear. We conducted a case–control study consisted of 432 CRC cases and 434 controls, detecting the methylation levels of FAM156B, PIH1D3, and PPP1R3F in the X chromosome in blood leukocytes using methylation‐sensitive high‐resolution melting (MS‐HRM). We analyzed the relationship between the methylation levels and CRC susceptibility and then explored the interactions with environmental factors on CRC risk with logistics regression. Moreover, we conducted a follow‐up study containing 225 CRC patients to explore the associations between the methylation of FAM156B, PPP1R3F, and PIH1D3 and CRC prognosis. The hypermethylation of FAM156B, PPP1R3F, and PIH1D3 was related to increased CRC risk (ORPS‐adj = 2.932, 95% confidence interval [CI]: 2.029–4.237; ORPS‐adj = 1.602, 95% CI: 1.078–2.382; ORPS‐adj = 1.628, 95% CI: 1.065–2.490, respectively). In the multiple CpG site methylation (MCSM) analysis, compared with non‐MCSM, a significant relationship between MCSM and increased CRC risk was found (ORPS‐adj = 2.202, 95% CI: 1.512–3.208). We observed synergistic interaction between PPP1R3F hypermethylation and fried food consumption on CRC risk (ORi = 2.682, 95% CI: 1.321–5.446). However, there were no associations between the methylation of FAM156B, PPP1R3F, and PIH1D3 and CRC prognosis (p > 0.05). In conclusion, the methylation of FAM156B, PPP1R3F, and PIH1D3 genes in blood leukocytes is significantly related to CRC risk and may be potential biomarkers for CRC risk but not prognosis.
Collapse
Affiliation(s)
- Tian Tian
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Haoran Bi
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Ding Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Yupeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Chenyang Jia
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Ting Zheng
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Hao Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Jinming Fu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Lin Zhu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| |
Collapse
|
34
|
Irvin MR, Jones AC, Claas SA, Arnett DK. DNA Methylation and Blood Pressure Phenotypes: A Review of the Literature. Am J Hypertens 2021; 34:267-273. [PMID: 33821945 DOI: 10.1093/ajh/hpab026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic studies of DNA have been unable to explain a significant portion of the variance of the estimated heritability of blood pressure (BP). Epigenetic mechanisms, particularly DNA methylation, have helped explain additional biological processes linked to BP phenotypes and diseases. Candidate gene methylation studies and genome-wide methylation studies of BP have highlighted impactful cytosine-phosphate-guanine (CpG) markers across different ethnicities. Furthermore, many of these BP-related CpG sites are also linked to metabolism-related phenotypes. Integrating epigenome-wide association study data with other layers of molecular data such as genotype data (from single nucleotide polymorphism arrays or sequencing), other epigenetic data, and/or transcriptome data can provide additional information about the significance and complexity of these relationships. Recent data suggest that epigenetic changes can be consequences rather than causes of BP variation. Finally, these data can give insight into downstream effects of long-standing high BP (due to target organ damage (TOD)). The current review provides a literature overview of epigenetic modifications in BP and TOD. Recent studies strongly support the importance of epigenetic modifications, such as DNA methylation, in BP and TOD for relevant biological insights, reliable biomarkers, and possible future therapeutics.
Collapse
Affiliation(s)
- Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alana C Jones
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Steven A Claas
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Donna K Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
35
|
Paredes-Céspedes DM, Rojas-García AE, Medina-Díaz IM, Ramos KS, Herrera-Moreno JF, Barrón-Vivanco BS, González-Arias CA, Bernal-Hernández YY. Environmental and socio-cultural impacts on global DNA methylation in the indigenous Huichol population of Nayarit, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4472-4487. [PMID: 32940839 DOI: 10.1007/s11356-020-10804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Alterations of global DNA methylation have been evaluated in several studies worldwide; however, Long Interspersed Nuclear Elements-1 (LINE-1) methylation in genetically conserved populations such as indigenous communities have not, to our knowledge, been reported. The aim of this study was to evaluate the relationship between LINE-1 methylation patterns and factors such as pesticide exposure and socio-cultural characteristics in the Indigenous Huichol Population of Nayarit, Mexico. A cross-sectional study was conducted in 140 Huichol indigenous individuals. A structured questionnaire was used to determine general and anthropometric characteristics, diet, harmful habits, and pesticide exposure. DNA methylation was determined by pyrosequencing of bisulfite-treated DNA. A lower level of LINE-1 methylation was found in the indigenous population when compared to a Mestizo population previously studied by our group. This difference might be due to the influence of the genetic admixture and differing dietary and lifestyle habits. The males in the indigenous population exhibited increased LINE-1 methylation in comparison to the females. Sex and alcohol consumption showed positive associations with LINE-1 methylation, while weight, current work in the field, current pesticide usage, and folate intake exhibited negative associations with LINE-1 methylation. The results suggest that ethnicity, as well as other internal and environmental factors, might influence LINE-1 methylation.
Collapse
Affiliation(s)
- Diana Marcela Paredes-Céspedes
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, México
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Kenneth S Ramos
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, 121 W. Holcombe Blvd, Houston, TX, 77030 m EE,UU, USA
| | - José Francisco Herrera-Moreno
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, México
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México.
| |
Collapse
|
36
|
Qian Y, Wang JW, Yu-Fang, Yuan XD, Fan YC, Gao S, Wang K. Measurement of Cyclin D2 (CCND2) Gene Promoter Methylation in Plasma and Peripheral Blood Mononuclear Cells and Alpha-Fetoprotein Levels in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma. Med Sci Monit 2020; 26:e927444. [PMID: 33320844 PMCID: PMC7749526 DOI: 10.12659/msm.927444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alpha-fetoprotein (AFP) is widely used to screen for hepatocellular carcinoma (HCC). However, the use of this biomarker has been challenged due to its low sensitivity and high rate of false negatives. In this study, we evaluated the diagnostic capability of cyclin D2 (CCND2) promoter methylation in patients with HCC related to hepatitis B virus (HBV). MATERIAL AND METHODS Using methylation-specific PCR and quantitative real-time PCR, we measured methylation status and mRNA levels of CCND2 in plasma and peripheral blood mononuclear cells (PBMCs) from 275 subjects: 75 patients with chronic hepatitis B (CHB), 47 with liver cirrhosis (LC), 118 with HCC, and 35 healthy controls (HCs). RESULTS The methylation rate of the CCND2 promoter was significantly higher in HCC patients than in patients without HCC (P<0.001). Furthermore, advanced HCC (TNM III/IV) was associated with a significantly higher frequency of CCND2 methylation and lower CCND2 mRNA levels than early-stage disease (TNM I/II; P<0.05). Combined measurement of CCND2 methylation and AFP yielded significantly higher sensitivity and area under the curve (AUC) than AFP alone in distinguishing patients with HCC from subjects with LC and CHB (P<0.001). CONCLUSIONS CCND2 methylation may be useful for predicting HCC progression. In addition, combined measurement of CCND2 methylation and AFP could serve as a non-invasive diagnostic marker for patients with HBV-related HCC.
Collapse
Affiliation(s)
- Yu Qian
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yu-Fang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiao-Dong Yuan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Institute of Hepatology, Shandong University, Jinan, Shandong, P.R. China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Institute of Hepatology, Shandong University, Jinan, Shandong, P.R. China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Institute of Hepatology, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
37
|
Ennour-Idrissi K, Dragic D, Durocher F, Diorio C. Epigenome-wide DNA methylation and risk of breast cancer: a systematic review. BMC Cancer 2020; 20:1048. [PMID: 33129307 PMCID: PMC7603741 DOI: 10.1186/s12885-020-07543-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND DNA methylation is a potential biomarker for early detection of breast cancer. However, robust evidence of a prospective relationship between DNA methylation patterns and breast cancer risk is still lacking. The objective of this study is to provide a systematic analysis of the findings of epigenome-wide DNA methylation studies on breast cancer risk, in light of their methodological strengths and weaknesses. METHODS We searched major databases (MEDLINE, EMBASE, Web of Science, CENTRAL) from inception up to 30th June 2019, for observational or intervention studies investigating the association between epigenome-wide DNA methylation (using the HM450k or EPIC BeadChip), measured in any type of human sample, and breast cancer risk. A pre-established protocol was drawn up following the Cochrane Reviews rigorous methodology. Study selection, data abstraction, and risk of bias assessment were performed by at least two investigators. A qualitative synthesis and systematic comparison of the strengths and weaknesses of studies was performed. RESULTS Overall, 20 studies using the HM450k BeadChip were included, 17 of which had measured blood-derived DNA methylation. There was a consistent trend toward an association of global blood-derived DNA hypomethylation and higher epigenetic age with higher risk of breast cancer. The strength of associations was modest for global hypomethylation and relatively weak for most of epigenetic age algorithms. Differences in length of follow-up periods may have influenced the ability to detect associations, as studies reporting follow-up periods shorter than 10 years were more likely to observe an association with global DNA methylation. Probe-wise differential methylation analyses identified between one and 806 differentially methylated CpGs positions in 10 studies. None of the identified differentially methylated sites overlapped between studies. Three studies used breast tissue DNA and suffered major methodological issues that precludes any conclusion. Overall risk of bias was critical mainly because of incomplete control of confounding. Important issues relative to data preprocessing could have limited the consistency of results. CONCLUSIONS Global DNA methylation may be a short-term predictor of breast cancer risk. Further studies with rigorous methodology are needed to determine spatial distribution of DNA hypomethylation and identify differentially methylated sites associated with risk of breast cancer. PROSPERO REGISTRATION NUMBER CRD42020147244.
Collapse
Affiliation(s)
- Kaoutar Ennour-Idrissi
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec, QC, Canada
- Laval University Cancer Research Center, Quebec, QC, Canada
- Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, 1050 chemin Sainte-Foy, Quebec City, QC, G1S 4L8, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Dzevka Dragic
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec, QC, Canada
- Laval University Cancer Research Center, Quebec, QC, Canada
- Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, 1050 chemin Sainte-Foy, Quebec City, QC, G1S 4L8, Canada
| | - Francine Durocher
- Laval University Cancer Research Center, Quebec, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Caroline Diorio
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec, QC, Canada.
- Laval University Cancer Research Center, Quebec, QC, Canada.
- Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, 1050 chemin Sainte-Foy, Quebec City, QC, G1S 4L8, Canada.
- Deschênes-Fabia Center for Breast Diseases, Saint-Sacrement Hospital, Quebec, QC, Canada.
| |
Collapse
|
38
|
Wielsøe M, Tarantini L, Bollati V, Long M, Bonefeld‐Jørgensen EC. DNA methylation level in blood and relations to breast cancer, risk factors and environmental exposure in Greenlandic Inuit women. Basic Clin Pharmacol Toxicol 2020; 127:338-350. [PMID: 32352194 PMCID: PMC7540549 DOI: 10.1111/bcpt.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/22/2023]
Abstract
Several studies have found aberrant DNA methylation levels in breast cancer cases, but factors influencing DNA methylation patterns and the mechanisms are not well understood. This case-control study evaluated blood methylation level of two repetitive elements and selected breast cancer-related genes in relation to breast cancer risk, and the associations with serum level of persistent organic pollutants (POPs) and breast cancer risk factors in Greenlandic Inuit. DNA methylation was determined using bisulphite pyrosequencing in blood from 74 breast cancer cases and 80 controls. Using first tertile as reference, the following was observed. Positive associations for ATM in second tertile (OR: 2.33, 95% CI: 1.04; 5.23) and ESR2 in third tertile (OR: 2.22, 95% CI: 0.97; 5.05) suggest an increased breast cancer risk with high DNA methylation. LINE-1 methylation was lower in cases than controls. In third tertile (OR: 0.42, 95% CI: 0.18; 0.98), associations suggest in accordance with the literature an increased risk of breast cancer with LINE-1 hypomethylation. Among controls, significant associations between methylation levels and serum level of POPs and breast cancer risk factors (age, body mass index, cotinine level) were found. Thus, breast cancer risk factors and POPs may alter the risk through changes in methylation levels; further studies are needed to elucidate the mechanisms.
Collapse
Affiliation(s)
- Maria Wielsøe
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Letizia Tarantini
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Valentina Bollati
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Manhai Long
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Eva Cecilie Bonefeld‐Jørgensen
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
- Greenland Center for Health ResearchUniversity of GreenlandNuukGreenland
| |
Collapse
|
39
|
Castagné R, Kelly-Irving M, Krogh V, Palli D, Panico S, Sacerdote C, Tumino R, Hebels DG, Kleinjans JC, de Kok TM, Georgiadis P, Kyrtopoulos SA, Vermeulen R, Stringhini S, Vineis P, Chadeau-Hyam M, Delpierre C. A multi-omics approach to investigate the inflammatory response to life course socioeconomic position. Epigenomics 2020; 12:1287-1302. [PMID: 32875816 DOI: 10.2217/epi-2019-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: Inflammation represents a potential pathway through which socioeconomic position (SEP) is biologically embedded. Materials & methods: We analyzed inflammatory biomarkers in response to life course SEP by integrating multi-omics DNA-methylation, gene expression and protein level in 178 European Prospective Investigation into Cancer and Nutrition-Italy participants. Results & conclusion: We identified 61 potential cis acting CpG loci whose methylation levels were associated with gene expression at a Bonferroni correction. We examined the relationships between life course SEP and these 61 cis-acting regulatory methylation sites individually and jointly using several scores. Less-advantaged SEP participants exhibit, later in life, a lower inflammatory methylome score, suggesting an overall increased expression of the corresponding inflammatory genes or proteins, supporting the hypothesis that SEP impacts adult physiology through inflammation.
Collapse
Affiliation(s)
- Raphaële Castagné
- LEASP, UMR 1027, Inserm-Université Toulouse III Paul Sabatier, Toulouse, France
| | | | - Vittorio Krogh
- Epidemiology & Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Domenico Palli
- Cancer Risk Factors & Lifestyle Epidemiology Unit, Institute for Cancer Research Prevention & Clinical Network-ISPRO, Florence 50141, Italy
| | - Salvatore Panico
- Department of Clinical Medicine & Surgery, University of Naples Federico II, Naples 80131, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital & Center for Cancer Prevention (CPO), Turin 10133, Italy
| | - Rosario Tumino
- Cancer Registry & Department of Histopathology, Provicial Health Authority (ASP) Ragusa 97100, Italy
| | - Dennie Gaj Hebels
- MERLN Institute, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Jos Cs Kleinjans
- Department of Toxicogenomics, GROW Institute & Developmental Biology, Maastricht University, Maastricht 6211LK, The Netherlands
| | - Theo McM de Kok
- Department of Toxicogenomics, GROW Institute & Developmental Biology, Maastricht University, Maastricht 6211LK, The Netherlands
| | - Panagiotis Georgiadis
- National Hellenic Research Foundation, Institute of Chemical Biology, Vas. Constantinou 48, 11635 Athens, Greece
| | - Soterios A Kyrtopoulos
- National Hellenic Research Foundation, Institute of Chemical Biology, Vas. Constantinou 48, 11635 Athens, Greece
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80178, 3508 TD, Utrecht, The Netherlands
| | - Silvia Stringhini
- Institute of Social & Preventive Medicine, Lausanne University Hospital, Lausanne 1010, Switzerland
| | - Paolo Vineis
- MRC-PHE Centre for Environment & Health, School of Public Health, Department of Epidemiology & Biostatistics, Imperial College London, SW7 2BU, London, UK.,Molecular & Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM), Torino 10126, Italy
| | - Marc Chadeau-Hyam
- MRC-PHE Centre for Environment & Health, School of Public Health, Department of Epidemiology & Biostatistics, Imperial College London, SW7 2BU, London, UK
| | - Cyrille Delpierre
- LEASP, UMR 1027, Inserm-Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
40
|
Gogna P, King WD. The relationship between colorectal cancer risk factors and LINE-1 DNA methylation in healthy colon tissue. Epigenomics 2020; 12:1087-1093. [PMID: 32790479 DOI: 10.2217/epi-2019-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: LINE-1 DNA methylation is a modifiable epigenetic process linked to colorectal cancer (CRC). However, studies of methylation in the tissue of interest are limited. This research examines associations between CRC risk factors and LINE-1 DNA methylation in healthy colon tissue. Materials & methods: LINE-1 methylation was measured in colon tissue samples from 317 patients undergoing a screening colonoscopy. Associations were examined with established CRC risk factors including alcohol consumption, smoking, BMI, NSAIDs, physical activity and fruit and vegetable consumption. Results: All studied risk factors were not related to LINE-1 DNA methylation in this population. Conclusion: The observed results may reflect that the effect of this set of established risk factors is not mediated through LINE-1 DNA methylation in the healthy colon.
Collapse
Affiliation(s)
- Priyanka Gogna
- Department of Public Health Sciences, Queen's University, Kingston K7K 3N6, Ontario, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston K7K 3N6, Ontario, Canada
| |
Collapse
|
41
|
Contribution of Dopamine Transporter Gene Methylation Status to Cannabis Dependency. Brain Sci 2020; 10:brainsci10060400. [PMID: 32586035 PMCID: PMC7348832 DOI: 10.3390/brainsci10060400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The susceptibility to cannabis dependency results from the influence of numerous factors such as social, genetic, as well as epigenetic factors. Many studies have attempted to discover a molecular basis for this disease. However, our study aimed at evaluating the connection between altered methylation of the dopamine transporter gene (DAT1) promoter CpG sites and cannabis dependency. In the cases of some DNA sequences, including the DAT1 gene region, their methylation status in blood cells may reflect a systemic modulation in the whole organism. Consequently, we isolated the DNA from the peripheral blood cells from a group of 201 cannabis-dependent patients and 285 controls who were healthy volunteers and who were matched for age and sex. The DNA was subjected to bisulfite conversion and sequencing. Our analysis revealed no statistical differences in the general methylation status of the DAT1 gene promoter CpG island between the patients and controls. Yet, the analysis of individual CpG sites where methylation occurred indicated significant differences. These sites are known to be bound by transcription factors (e.g., SP1, p53, PAX5, or GR), which, apart from other functions, were shown to play a role in the development of the nervous system. Therefore, DAT1 gene promoter methylation studies may provide important insight into the mechanism of cannabis dependency.
Collapse
|
42
|
Wang X, Liu Y, Sun H, Ge A, Li D, Fu J, Li Y, Pang D, Zhao Y. DNA Methylation in RARβ Gene as a Mediator of the Association Between Healthy Lifestyle and Breast Cancer: A Case-Control Study. Cancer Manag Res 2020; 12:4677-4684. [PMID: 32606959 PMCID: PMC7308131 DOI: 10.2147/cmar.s244606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Lifestyle factors and methylation in the retinoic acid receptor β (RARβ) gene are associated with breast cancer (BC). This study aims to examine the mediation effect of RARβ methylation on the association between healthy lifestyle and BC in Chinese women. Patients and Methods This case–control study consisted of 408 BC patients and 573 controls. A healthy lifestyle score (HLS) was constructed based on diet, alcohol use, physical activity, body mass index and smoking. The mediation effect of RARβ methylation in peripheral blood leukocytes was assessed in a causal mediation model using R package Lavaan. Results A higher HLS was significantly associated with lower risk of BC (P-value<0.001). In mediation analyses, the total effect of HLS on BC measured as a regression coefficient was significant (−0.237). The indirect effects of HLS on RARβ methylation (−0.153) and RARβ methylation on BC (0.220) were both significant. The significant mediation effect of RARβ methylation on the HLS-BC association was estimated at 14.3%. Conclusion The relationship between healthy lifestyle and BC is partly mediated by RARβ methylation, suggesting that epigenetic modifications play a role in the underlying mechanisms in response to lifestyles and contribute to the development of BC.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Yupeng Liu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Anqi Ge
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Dapeng Li
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Jinming Fu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Yan Li
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Da Pang
- Department of Breast Surgery, The Affiliated Cancer Hospital of Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| |
Collapse
|
43
|
Hernandez Puente CV, Hsu PC, Rogers LJ, Jousheghany F, Siegel E, Kadlubar SA, Beck JT, Makhoul I, Hutchins LF, Kieber-Emmons T, Monzavi-Karbassi B. Association of DNA-Methylation Profiles With Immune Responses Elicited in Breast Cancer Patients Immunized With a Carbohydrate-Mimicking Peptide: A Pilot Study. Front Oncol 2020; 10:879. [PMID: 32582547 PMCID: PMC7290046 DOI: 10.3389/fonc.2020.00879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/04/2020] [Indexed: 02/04/2023] Open
Abstract
Immune response to a given antigen, particularly in cancer patients, is complex and is controlled by various genetic and environmental factors. Identifying biomarkers that can predict robust response to immunization is an urgent need in clinical cancer vaccine development. Given the involvement of DNA methylation in the development of lymphocytes, tumorigenicity and tumor progression, we aimed to analyze pre-vaccination DNA methylation profiles of peripheral blood mononuclear cells (PBMCs) from breast cancer subjects vaccinated with a novel peptide-based vaccine referred to as P10s-PADRE. This pilot study was performed to evaluate whether signatures of differentially methylated (DM) loci can be developed as potential predictive biomarkers for prescreening subjects with cancer who will most likely generate an immune response to the vaccine. Genomic DNA was isolated from PBMCs of eight vaccinated subjects, and their DNA methylation profiles were determined using Infinium® MethylationEPIC BeadChip array from Illumina. A linear regression model was applied to identify loci that were differentially methylated with respect to anti-peptide antibody titers and with IFN-γ production. The data were summarized using unsupervised-learning methods: hierarchical clustering and principal-component analysis. Pathways and networks involved were predicted by Ingenuity Pathway Analysis. We observed that the profile of DM loci separated subjects in regards to the levels of immune responses. Canonical pathways and networks related to metabolic and immunological functions were found to be involved. The data suggest that it is feasible to correlate methylation signatures in pre-treatment PBMCs with immune responses post-treatment in cancer patients going through standard-of-care chemotherapy. Larger and prospective studies that focus on DM loci in PBMCs is warranted to develop pre-screening biomarkers before BC vaccination. Clinical Trial Registration:www.ClinicalTrials.gov, Identifier: NCT02229084.
Collapse
Affiliation(s)
- Cinthia Violeta Hernandez Puente
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,UnivLyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Ping-Ching Hsu
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lora J Rogers
- Division of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Fariba Jousheghany
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Eric Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Susan A Kadlubar
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Division of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Issam Makhoul
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Division of Hematology Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Laura F Hutchins
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Division of Hematology Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Thomas Kieber-Emmons
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Behjatolah Monzavi-Karbassi
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
44
|
Nafea OE, El-Korashi LA, Gehad MH, Yousif YM, Zake LG. Association between blood aluminum and beta-2 receptor gene methylation with childhood asthma control. Hum Exp Toxicol 2020; 39:1301-1309. [PMID: 32351130 DOI: 10.1177/0960327120921436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that environmental exposure to heavy metals has been related to epigenetic changes, such as DNA methylation in receptors involved in pathogenesis of asthma. One of these receptors is beta-2 adrenergic receptor (ADRB2). We conducted this study to examine the association between blood aluminum concentration, blood ADRB2 5' untranslated region (5'-UTR) methylation level, and childhood asthma control level. Our results showed a significant positive association between high blood aluminum concentration (odds ratio, 16, 95% confidence interval (CI) [3.57 to 71.76], p < 0.001) and high blood ADRB2 5'-UTR methylation level (odds ratio, 4.75, 95% CI [1.39 to 16.2], p = 0.013), and risk of uncontrolled asthma. Multivariable logistic regression revealed that higher blood aluminum concentration was independently associated with increased risk of uncontrolled bronchial asthma (odds ratio, 9.10, 95% CI [2.38 to 34.85], p = 0.0013], after controlling for age, sex, and blood ADRB2 5'-UTR methylation level. In addition, blood ADRB2 5'-UTR methylation level significantly correlated with whole blood aluminum concentration in asthmatic children (r = 0.480, p < 0.001). We concluded that increasing blood aluminum concentration is an important independent correlate of risk for uncontrolled bronchial asthma as well as increased blood aluminum concentration caused ADRB2 5'-UTR hyper-methylation with increasing risk of uncontrolled bronchial asthma.
Collapse
Affiliation(s)
- O E Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - L A El-Korashi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - M H Gehad
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Y M Yousif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - L G Zake
- Department of Pulmonology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
45
|
Page CM, Djordjilović V, Nøst TH, Ghiasvand R, Sandanger TM, Frigessi A, Thoresen M, Veierød MB. Lifetime Ultraviolet Radiation Exposure and DNA Methylation in Blood Leukocytes: The Norwegian Women and Cancer Study. Sci Rep 2020; 10:4521. [PMID: 32161338 PMCID: PMC7066249 DOI: 10.1038/s41598-020-61430-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/26/2020] [Indexed: 12/04/2022] Open
Abstract
Ultraviolet radiation (UVR) exposure is a leading cause of skin cancers and an ubiquitous environmental exposure. However, the molecular mechanisms relating UVR exposure to melanoma is not fully understood. We aimed to investigate if lifetime UVR exposure could be robustly associated to DNA methylation (DNAm). We assessed DNAm in whole blood in three data sets (n = 183, 191, and 125) from the Norwegian Woman and Cancer cohort, using Illumina platforms. We studied genome-wide DNAm, targeted analyses of CpG sites indicated in the literature, global methylation, and accelerated aging. Lifetime history of UVR exposure (residential ambient UVR, sunburns, sunbathing vacations and indoor tanning) was collected by questionnaires. We used one data set for discovery and the other two for replication. One CpG site showed a genome-wide significant association to cumulative UVR exposure (cg01884057) (pnominal = 3.96e-08), but was not replicated in any of the two replication sets (pnominal ≥ 0.42). Two CpG sites (cg05860019, cg00033666) showed suggestive associations with the other UVR exposures. We performed extensive analyses of the association between long-term UVR exposure and DNAm. There was no indication of a robust effect of past UVR exposure on DNAm.
Collapse
Affiliation(s)
- Christian M Page
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public health, Oslo, Norway
| | - Vera Djordjilović
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Therese H Nøst
- Department of Community Medicine, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Reza Ghiasvand
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Arnoldo Frigessi
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Magne Thoresen
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marit B Veierød
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
46
|
Wu HC, Cohn BA, Cirillo PM, Santella RM, Terry MB. DDT exposure during pregnancy and DNA methylation alterations in female offspring in the Child Health and Development Study. Reprod Toxicol 2020; 92:138-147. [PMID: 30822522 PMCID: PMC6710160 DOI: 10.1016/j.reprotox.2019.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Studies measuring dichlorodiphenyltrichloroethane (DDT) exposure during key windows of susceptibility including the intrauterine period suggest that DDT exposure is associated with breast cancer risk. We hypothesized that prenatal DDT exposure is associated with DNA methylation. Using prospective data from 316 daughters in the Child Health and Development Study, we examined the association between prenatal exposure to DDTs and DNA methylation in blood collected in midlife (mean age: 49 years). To identify differentially methylated regions (DMRs) associated with markers of DDTs (p,p'-DDT and the primary metabolite of p,p'-DDT, p,p'-DDE, and o,p'-DDT, the primary constituents of technical DDT), we measured methylation in 30 genes important to breast cancer. We observed DDT DMRs in three genes, CCDC85A, CYP1A1 and ZFPM2, each of which has been previously implicated in pubertal development and breast cancer susceptibility. These findings suggest prenatal DDT exposure may have life-long consequence through alteration in genes relevant to breast cancer.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Piera M. Cirillo
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Regina M. Santella
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY
| | - Mary Beth Terry
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY
- Imprints Center, Columbia University Medical Center, New York, NY
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY
| |
Collapse
|
47
|
Caliri AW, Caceres A, Tommasi S, Besaratinia A. Hypomethylation of LINE-1 repeat elements and global loss of DNA hydroxymethylation in vapers and smokers. Epigenetics 2020; 15:816-829. [PMID: 31996072 DOI: 10.1080/15592294.2020.1724401] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The outbreak of vaping-related severe lung injuries and deaths and the epidemic of teen vaping in the U.S. underscore the urgent need for determining the biological consequences of electronic cigarette (e-cig) use. We have investigated the association between vaping and epigenetic changes by quantifying DNA methylation levels in Long Interspersed Nucleotide Element 1 (LINE-1) and global DNA hydroxymethylation (5-hmC) levels and measuring the expression level of enzymes catalysing the respective processes in peripheral blood of exclusive vapers, smokers, and controls, matched for age, gender, and race (n = 45). Both vapers and smokers showed significant loss of methylation in LINE-1 repeat elements in comparison to controls (P = 0.00854 and P = 0.03078, respectively). Similarly, vapers and smokers had significant reductions in 5-hmC levels relative to controls (P = 0.04884 and P = 0.0035, respectively). Neither the LINE-1 methylation levels nor the global 5-hmC levels were different between vapers and smokers. There was a direct correlation between methylation levels in the LINE-1 elements and global 5-hmC levels in the study subjects (r = 0.31696, P = 0.03389). Inverse and statistically significant correlations were found between both the LINE-1 methylation levels and the global 5-hmC levels and various vaping/smoking metrics in the study subjects. There were modest but not statistically significant changes in transcription of DNA methyltransferases and ten-eleven translocation enzymes in both vapers and smokers relative to controls. Our findings support follow-up genome-wide investigations into the epigenetic effects of vaping, which may further clarify the health consequences of e-cig use. ABBREVIATIONS 5-mC: 5-methylcytosine; 5-hmC: 5-hydroxymethylcytosine; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; ACTIN: actin beta; ANOVA: Analysis of Variance; BER: base excision repair; BMI: body mass index; CO: carbon monoxide; COHb: carboxyhaemoglobin; COBRA: combined bisulphite restriction analysis; COPD: chronic obstructive pulmonary disease; DNMT1: DNA methyltransferase 1; DNMT3A: DNA methyltransferase 3A; DNMT3B: DNA methyltransferase 3B; e-cigs: electronic cigarettes; ELISA: enzyme-linked immunosorbent assay; ENDS: electronic nicotine delivery systems; FDA: Food and Drug Administration; GAPDH; glyceraldehyde-3-phosphate dehydrogenase; HPLC: high-performance liquid chromatography; LINE-1: Long Interspersed Nucleotide Element 1; PBS: phosphate-buffered saline; RFU: relative fluorescence units; RT-qPCR: quantitative reverse-transcription polymerase chain reaction; ROS: reactive oxygen species; SAM, S-adenosylmethionine; SE: standard error; TET1: ten-eleven translocation 1; TET2: ten-eleven translocation 2; TET3: ten-eleven translocation 3.
Collapse
Affiliation(s)
- Andrew W Caliri
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California , Los Angeles, CA, USA
| | - Amanda Caceres
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California , Los Angeles, CA, USA
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California , Los Angeles, CA, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California , Los Angeles, CA, USA
| |
Collapse
|
48
|
Zhu S, Wu D, Han Y, Wang C, Xiang N, Ni Z. Inertial microfluidic cube for automatic and fast extraction of white blood cells from whole blood. LAB ON A CHIP 2020; 20:244-252. [PMID: 31833515 DOI: 10.1039/c9lc00942f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report here a novel inertial microfluidic (IM) cube integrated with lysis, storage and extraction modules for extracting white blood cells (WBCs) from whole blood automatically, harmlessly and quickly. Lysis, storage, and extraction modules are designed to realize the purposes of complete mixing of whole blood and lysing buffer, thorough lysis of red blood cells (RBCs), and automatic extraction of WBCs from the lysed background RBCs, respectively. After demonstrating its conceptual design, we characterize the performances of the lysis and extraction modules. The results show that a high mixing efficiency of 94.2% can be achieved using our lysis modules for complete mixing of whole blood and lysing buffer. In the extraction module, an extraction efficiency of 88.1% can be achieved for the extraction of WBCs. Finally, we successfully apply our IM cube for the high throughput extraction of WBCs from human whole blood with an extraction efficiency of 83.9% and a cell viability of 96.6%, which are comparable to those using centrifugation and even better in some aspects. Our IM cube is based on passive secondary-flow mixing and inertial sorting, offers the advantages of small footprint, high stability and simple fabrication, and is a promising alternative method for extracting WBCs from human blood.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Dan Wu
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Yu Han
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Cailian Wang
- Tumor Center of Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Nan Xiang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
49
|
Murata Y, Fujii A, Kanata S, Fujikawa S, Ikegame T, Nakachi Y, Zhao Z, Jinde S, Kasai K, Bundo M, Iwamoto K. Evaluation of the usefulness of saliva for DNA methylation analysis in cohort studies. Neuropsychopharmacol Rep 2019; 39:301-305. [PMID: 31393092 PMCID: PMC7292296 DOI: 10.1002/npr2.12075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction Epigenetic information such as DNA methylation is a useful biomarker that reflects complex gene‐environmental interaction. Peripheral tissues such as blood and saliva are commonly collected as the source of genomic DNA in cohort studies. Epigenetic studies mainly use blood, while a few studies have addressed the epigenetic characteristics of saliva. Methods The effects of methods for DNA extraction and purification from saliva on DNA methylation were surveyed using Illumina Infinium HumanMethylation450 BeadChip. Using 386 661 probes, DNA methylation differences between blood and saliva from 22 healthy volunteers, and their functional and structural characteristics were examined. CpG sites with DNA methylation levels showing large interindividual variations in blood were evaluated using saliva DNA methylation profiles. Results Genomic DNA prepared by simplified protocol from saliva showed a similar quality DNA methylation profile to that derived from the manufacturer provided protocol. Consistent with previous studies, the DNA methylation profiles of blood and saliva showed high correlations. Blood showed 1,514 hypomethylated and 2099 hypermethylated probes, suggesting source‐dependent DNA methylation patterns. CpG sites with large methylation difference between the two sources were underrepresented in the promoter regions and enriched within gene bodies. CpG sites with large interindividual methylation variations in blood also showed considerable variations in saliva. Conclusion In addition to high correlation in DNA methylation profiles, CpG sites showing large interindividual DNA methylation differences were similar between blood and saliva, ensuring saliva could be a suitable alternative source for genomic DNA in cohort studies. Consideration of source‐dependent DNA methylation differences will, however, be necessary. We compared quality of saliva methylome data collected by several DNA purification protocols and examined the characteristics of saliva methylome. Optimized protocol and identified characteristics such as common informative CpG sites to blood and unique epigenetic changes in saliva will contribute to promote the use of saliva for epigenetic studies in clinical settings and epidemiological cohort studies.![]()
Collapse
Affiliation(s)
- Yui Murata
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayaka Fujii
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sho Kanata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Shinya Fujikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Zhilei Zhao
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
50
|
Bi H, Liu Y, Pu R, Xia T, Sun H, Huang H, Zhang L, Zhang Y, Liu Y, Xu J, Rong J, Zhao Y. CHST7 Gene Methylation and Sex-Specific Effects on Colorectal Cancer Risk. Dig Dis Sci 2019; 64:2158-2166. [PMID: 30815821 DOI: 10.1007/s10620-019-05530-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/11/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND X chromosome aberrations are involved in carcinogenesis and are associated with gender differences in cancer development. Abnormal DNA methylation also contributes to cancer. Carbohydrate Sulfotransferase 7 (CHST7), encoded by the X chromosome, is abnormally expressed during tumor development. However, its impact on colorectal cancer (CRC) and the effect of CHST7 methylation on sex-specific CRC risk remain unclear. AIMS To investigate the effect of CHST7 methylation in white blood cells on CRC risk and to evaluate its impact on gender-specific differences. METHODS CHST7 methylation in white blood cells was determined using methylation-sensitive high-resolution melting. A propensity score analysis was performed to control potential confounders. Furthermore, extensive sensitivity analyses were applied to assess the robustness of our findings. In addition, we validated the initial findings with a GEO dataset (GSE51032). RESULTS CHST7 hypermethylation in white blood cells was associated with an increased CRC risk [odds ratio (OR)adj = 4.447, 95% confidence interval (CI) 2.662-7.430; p < 0.001]. The association was validated with the GEO dataset (ORadj = 2.802, 95% CI 1.235-6.360; p = 0.014). In particular, CHST7 hypermethylation significantly increased the CRC risk in females (ORadj = 7.704, 95% CI 4.222-14.058; p < 0.001) and younger patients (≤ 60 years) (ORadj = 5.755, 95% CI 2.540-13.038; p < 0.001). Subgroup analyses by tumor location and Duke's stage also observed these associations. CONCLUSION CHST7 methylation in white blood cells is positively associated with CRC risk, especially in females, and may potentially serve as a blood-based predictive biomarker for CRC risk.
Collapse
Affiliation(s)
- Haoran Bi
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yupeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Rui Pu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Tingting Xia
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Hao Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Lei Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yuanyuan Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Ying Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jing Xu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jiesheng Rong
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Harbin Medical University, 246, Xuefu Street, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|